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DERANDOMIZING ARTHUR-MERLIN

GAMES AND APPROXIMATE COUNTING

IMPLIES EXPONENTIAL-SIZE LOWER

BOUNDS

Dan Gutfreund and Akinori Kawachi

Abstract. We show that if Arthur-Merlin protocols can be deran-
domized, then there is a Boolean function computable in deterministic
exponential-time with access to an NP oracle, that cannot be computed
by Boolean circuits of exponential size. More formally, if prAM ⊆ PNP

then there is a Boolean function in ENP that requires circuits of size
2Ω(n). prAM is the class of promise problems that have Arthur-Merlin
protocols, PNP is the class of functions that can be computed in deter-
ministic polynomial-time with an NP oracle and ENP is its exponential
analogue. The lower bound in the conclusion of our theorem suffices to
construct very strong pseudorandom generators.
We also show that the same conclusion holds if the problem of approxi-
mate counting the number of accepting paths of a nondeterministic Tur-
ing machine up to multiplicative factors can be done in nondetermin-
istic polynomial-time. In other words, showing nondeterministic fully
polynomial-time approximation schemes for ♯P-complete problems re-
quire proving exponential-size circuit lower bounds.
A few works have already shown that if we can find efficient deterministic
solutions to some specific tasks (or classes) that are known to be solvable
efficiently by randomized algorithms (or proofs), then we obtain lower
bounds against certain circuit models. These lower bounds were only
with respect to polynomial-size circuits even if full derandomization is
assumed. Thus they only implied fairly weak pseudorandom generators
(if at all).
A key ingredient in our proof is a connection between computational
learning theory and exponential-size lower bounds. We show that the
existence of deterministic learning algorithms with certain properties
implies exponential-size lower bounds, where the complexity of the hard
function is related to the complexity of the learning algorithm.
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1. Introduction

1.1. Background. The fascinating connection between the existence of ex-
plicit functions that cannot be computed by small Boolean circuits and effi-
ciently computable pseudorandom generators (PRGs) that suffice for deran-
domization, is one of the greatest achievements of complexity theory. The
following two are equivalent (Impagliazzo and Wigderson (1997)):

1. There exists a Boolean function in the class E = TIME(2O(n)) that re-
quires Boolean circuits of size 2Ω(n) to be computed.

2. There exists a PRG G : {0, 1}m → {0, 1}n that is computable in time
poly(n) and fools Boolean circuits of size poly(n), where n = 2Ω(m).

It follows that both these items imply derandomization of probabilistic
polynomial-time algorithms with only polynomial-time overhead in the running
time (in the sequel we call such derandomizations full). Namely, BPP = P.
This connection, which was coined hardness vs. randomness, supported the
common belief (or maybe even is the origin of the belief) that in algorithmic
settings, randomness does not enhance computational power in a significant
way. Furthermore, it pointed out a tight relation between two central concepts
in computational complexity: circuit lower bounds and pseudorandomness.

In fact, this connection is so deep and profound that it extends to many
other settings. Klivans and van Melkebeek observed that the proof of Impagli-
azzo and Wigderson (1997) relativizes and thus extends to other complexity
classes (Klivans and van Melkebeek (2002)). For example, one can add an
NP oracle to all the machines and circuits involved in the equivalence above
and obtain the derandomization of the class BPPNP (of languages that can
be computed in probabilistic polynomial-time with access to an NP oracle),
assuming hardness against circuits having access to an NP-oracle. They also
showed, under the same assumption, the derandomization of the class AM (of
languages for which membership can be proven via a constant-round interac-
tive proof), i.e. AM = NP. This result was later improved by Miltersen and
Vinodchandran (2005); Shaltiel and Umans (2005); Umans (2003) who ob-
tained an equivalence between hardness and pseudorandomness as above in
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the nondeterministic setting. I.e., hardness against non-deterministic circuits
is equivalent to PRGs that fool non-deterministic circuits and hence implies
the derandomization of the class AM.

The equivalence above also extends to other settings of parameters. For
example, one can weaken the lower bound in Item 1 to hold against circuits
of size poly(n), and then weaken the quality of the PRG in Item 2 so it only
has a polynomial stretch, i.e., n = poly(m). This in turn implies a weaker
derandomization of BPP placing it in the class SUBEXP (Babai, Fortnow,
Nisan, and Wigderson (1993)). Furthermore, there is a smooth transition of
tradeoffs between the hardness in Item 1 and the quality of the PRG in Item
2, where the exponential setting of parameters that we stated above is at the
one extreme (called the high-end) and the polynomial setting is at the other
(the low-end).

Unfortunately, it is a challenging task to prove lower bounds for circuit size
in general, and the hardness vs. randomness paradigm has been useful in obtain-
ing unconditional derandomizations only in very limited computational models
(Nisan (1991); Viola (2007)). A natural question then arises: Do we really need
to prove circuit lower bounds in order to derandomize more general randomized
complexity classes such as BPP or AM? Several works investigated this ques-
tion and showed that in some settings the answer is yes, i.e., derandomization
itself implies circuit lower bounds! The first result of this flavor was given by
Impagliazzo, Kabanets, and Wigderson (2002) who showed that if the class MA
is contained in subexponential nondeterministic time then NEXP ̸⊆ P/poly.
A similar conclusion follows from the derandomization of the class prBPP (of
promise problems that can be solved in probabilistic polynomial-time) since
it implies the derandomization of the class MA. Kabanets and Impagliazzo
showed that if the problem of Polynomial Identity Testing, which is known to
be in BPP, is in SUBEXP then either NEXP ̸⊂ P/poly or computing the Per-
manent cannot be done by polynomial-size arithmetic circuit (Kabanets and
Impagliazzo (2004)). Results of a similar flavor were given in Arvind and
Mukhopadhyay (2008); Dvir, Shpilka, and Yehudanoff (2009); Kinne, van
Melkebeek, and Shaltiel (2009); Santhanam (1997).

While the lower bounds obtained from the derandomization assumptions in
the above mentioned results are not strong enough to obtain PRGs that im-
ply back the derandomization assumptions, they still suggest that the two-way
connections between hardness and pseudorandomness also extend to derandom-
ization. A natural question is how general this phenomena is? Is it as general
as the equivalence between circuit lower bounds and pseudorandomness which
holds in so many different settings? Can we extend it to other settings of
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parameters or models of computation?

Note that all of the above mentioned results start with the assumption
that a weak derandomization is possible (placing some probabilistic class in a
subexponential class that does not require probability) and conclude in a lower
bound for superpolynomial-size (either Boolean or arithmetic) circuits. Thus
the connections hold in the low-end setting of parameters, and in particular,
they only imply PRGs with polynomial stretch. (We mention that some of
the results do not imply PRGs at all as they obtain lower bounds which are
seemingly too weak for the construction of PRGs). An exception is Kinne, van
Melkebeek, and Shaltiel (2009) who gave an alternative proof to Kabanets
and Impagliazzo (2004) for which the parameters scale better. Thus they
obtain results also for parameter settings in between the very low-end and
the very high-end. However, their proof still falls far short from proving a
connection for the high-end (namely an exponential-size lower bound from full
derandomization), and furthermore, their lower bounds, just like Kabanets and
Impagliazzo (2004), are with respect to arithmetic circuits and thus do not
imply PRGs that fool Boolean circuits. Inspecting the proofs of all the above
mentioned results, one can see that they do not imply stronger lower bounds
and PRGs even if full derandomization is assumed. (See more on previous
proof techniques in Section 1.3.)

1.2. Our Results.

Arthur-Merlin games. In this paper we extend the connections among de-
randomization, circuit lower bounds and PRGs to the high-end setting, by
showing that a full derandomization of a probabilistic class (and in fact a cer-
tain task, see below) implies exponential-size circuit lower bounds and PRGs
with exponential stretch.

Theorem 1.1. If prAM ⊆ PNP then there exist a constant δ > 0 and a
Boolean function in the class ENP that cannot be computed by circuits of size
2δn for infinitely many input lengths.

prAM is the class of promise problems that have Arthur-Merlin protocols,
PNP is the class of functions that can be computed in deterministic polynomial-
time with an NP oracle and ENP is its exponential analogue.1 Note that a full

1We say that the class of promise problems prAM is contained in the syntactic class PNP

if for any promise problem Π ∈ prAM, there is some function in PNP that agrees with Π on
the promise. See Section 2 for details.
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derandomization of prAM would place it in the class NP. Our derandomization
assumption is weaker since clearly NP ⊆ PNP.

An immediate consequence of Theorem 1.1 is that the derandomization of
the class prAM implies the existence of PRGs with exponential stretch that
can be computed efficiently with an NP oracle, and fool deterministic Boolean
circuits. Theorem 1.1 is an “almost” converse of the hardness vs. randomness
tradeoffs of Miltersen and Vinodchandran (2005); Shaltiel and Umans (2005);
Umans (2003) who showed that the existence of a Boolean function in the class
ENP that requires nondeterministic circuits of size 2Ω(n) implies the existence
of a PRG with exponential stretch that can be computed efficiently with an
NP oracle, and fools nondeterministic Boolean circuits. This in turn implies
that prAM ⊆ PNP.

A close inspection of our proof, and the proofs in Chakaravarthy and Roy
(2008) that it relies on, reveals that for obtaining an exponential-size lower
bound, it is enough to derandomize the lower bound protocol of Goldwasser
and Sipser (1989) (and not necessarily the whole of prAM), which is an Arthur-
Merlin protocol for proving that a set which can be recognized by a small circuit
is large (see Lemma 3.3 for the exact formulation of this problem).

Theorem 1.2. If the Goldwasser-Sipser protocol can be done in nondeter-
ministic polynomial-time, or more precisely if the promise problem Π from
Lemma 3.3 is in NP then there exist a constant δ > 0 and a Boolean function
in the class ENP that cannot be computed by circuits of size 2δn for infinitely
many input lengths.

Remark 1.3. We mention that proving in nondeterministic polynomial-time
a lower bound on the size of a set which can be recognized by a small nondeter-
ministic circuit implies a full derandomization of prAM (almost by definition)
and hence the lower bound by Theorem 1.1. The point in Theorem 1.2 is that
the lower bound already follows from derandomizing the lower bound proto-
col for sets that are recognized by small deterministic circuits. This follows
from our proof of Theorem 1.1 (but not necessarily from its statement). See
Section 4.2 for details.

Approximate counting. Counting the number of accepting paths of a non-
deterministic Turing machine (TM) is an important computational problem as
it is related to computational questions in combinatorics (e.g., counting various
structures in graphs) and algebra (e.g., computing the permanent of a matrix).
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The class ♯P is the class of functions computing the number of accepting
paths of a given nondeterministic TM (on a given input). A canonical ♯P-
complete function is the following: given a Boolean circuit C on n inputs,
compute the size of the set C−1(1) = {x ∈ {0, 1}n : C(x) = 1}. This is
the problem ♯Circuit-SAT, which is the counting version of the canonical NP-
complete problem Circuit-SAT (of deciding whether |C−1(1)| > 0 or not). The
class ♯P is extremely powerful as was shown by Toda (1991): with oracle to ♯P
it is possible to compute every function in the polynomial-time hierarchy (PH)
in deterministic polynomial-time. Thus unless PH collapses, we do not expect
to be able to compute ♯Circuit-SAT within PH.

However, it is easier to approximate ♯Circuit-SAT probabilistically. By a
standard application of the Chernoff bound, estimating ♯Circuit-SAT up to an
additive factor, namely computing an estimate γ such that |C−1(1)|−ϵ2n ≤ γ ≤
|C−1(1)| + ϵ2n, can be done in probabilistic poly(|C|, 1/ϵ)-time. A seemingly
harder problem (in fact NP-hard) is to obtain a relative-error approximator (as
it is coined in Shaltiel and Umans (2006)). This is a procedure that outputs an
estimate γ such that (1 − ϵ)|C−1(1)| ≤ γ ≤ (1 − ϵ)−1|C−1(1)|. The problem of
obtaining relative-error approximators received a lot of attention as it is directly
related to obtaining approximation schemes for problems in ♯P. A classic result
in this area (Jerrum, Valiant, and Vazirani (1986); Stockmeyer (1983)) is
that it is possible to compute a relative-error approximator in probabilistic
poly(|C|, 1/ϵ)-time with access to an NP oracle. This in turn implies that
every function in ♯P has a fully polynomial-time randomized approximation
scheme with access to an NP oracle. Another way to look at this is that
there is a randomized (Turing) reduction from the problem of relative-error
approximation to the NP-complete problem Circuit-SAT.

This suggests that relative-error approximation is much easier than exact
computation of the number of accepting inputs (or paths in TMs), and its
complexity is close to the complexity of deciding whether there are accepting
inputs or not. It is a major open problem whether relative-error approxima-
tors can actually be computed in nondeterministic polynomial-time. Shaltiel
and Umans showed that under a hardness assumption against exponential-
size nondeterministic circuits, relative error-approximators can be computed
in deterministic poly(|C|, 1/ϵ)-time with access to an NP oracle (Shaltiel and
Umans (2006)). That is, under their assumption, every function in ♯P has
a fully polynomial-time deterministic approximation scheme with access to an
NP oracle.

We complement this by showing that if relative-error approximators can
be computed in nondeterministic polynomial-time then there are exponential-
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size lower bounds.2 The proof of the following theorem follows easily from
Theorem 1.2. See Section 4.2 for details.

Theorem 1.4. If there is a nondeterministic TM that on input a Boolean cir-
cuit C and a parameter 0 < ϵ < 1, runs in nondeterministic time poly(|C|, 1/ϵ),
has at least one accepting path, and on every accepting path outputs a number
γ, such that (1−ϵ)|C−1(1)| ≤ γ ≤ (1−ϵ)−1|C−1(1)|, then there exist a constant
δ > 0 and a Boolean function in the class ENP that cannot be computed by
circuits of size 2δn for infinitely many input lengths.

In other words while it is possible that there is a fully polynomial-time
nondeterministic approximation scheme for ♯Circuit-SAT (and hence for ev-
ery function in ♯P), showing it requires proving exponential-size circuit lower
bounds.

1.3. Our and Previous Proof Techniques. In this section we discuss pre-
vious proof techniques and their limitations, followed by a short description of
our proof and how it overcomes these limitations. Let us start with describing
the general strategy of Impagliazzo, Kabanets, and Wigderson (2002) to prove
that the derandomization of MA implies that there is a function in NEXP that
requires circuits of super-polynomial size. Later results in this line are based
on a similar strategy (or directly on Impagliazzo, Kabanets, and Wigderson
(2002)).3 This strategy dates back to Kannan (1982) who used it to prove cir-
cuit lower bounds (without unproven assumptions). Consider two cases, either
NEXP ⊆ P/poly, or not. If it does not, we are done. Otherwise, Impagli-
azzo, Kabanets, and Wigderson (2002) shows the following Karp-Lipton style

2We mention that there is a closely related problem to approximate counting called ap-
proximate sampling, in which the aim is to sample an almost uniform element in the set
C−1(1) (given the Boolean circuit C). Jerrum, Valiant, and Vazirani (1986) showed a ran-
domized reduction from approximate sampling to approximate counting. The derandomized
object that is related to approximate sampling was defined in Shaltiel and Umans (2006),
and it is a generalization of the notion of PRG. By the equivalence between PRGs and
lower bounds discussed above, it is clear that derandomizing approximate sampling implies
exponential-size lower bounds. However this was not known to hold for approximate count-
ing. The best known result in this direction is by Impagliazzo, Kabanets, and Wigderson
(2002) who showed that computing (even) additive-error approximators in nondeterministic
polynomial-time (and even subexponential-time) implies that NEXP ̸⊆ P/poly.

3An exception is the work of Kinne, van Melkebeek, and Shaltiel (2009) who takes a
different route and indeed obtain lower bounds for more general settings of parameters.
However, they fall short of implying PRGs and they do not break the “half-exponential
barrier” that we discuss below.
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collapse:4 if NEXP ⊆ P/poly then NEXP = MA. Now if MA ⊆ NSUBEXP
(i.e., there is derandomization) then NEXP = NSUBEXP which contradicts
the nondeterministic time hierarchy.

Suppose that we want to use this strategy to derive a lower bound against
exponential-size circuits in some uniform class C. We will need in this case to
condition on whether C (or some class that is contained in C) can be computed
by exponential-size circuits or not. If it does not we are done. If it does, we
will need to prove some Karp-Lipton style collapse from the assumption that
C can be computed by exponential-size circuits. The problem is that this as-
sumption is too weak and we do not know of such collapses. This issue also
arises when trying to prove lower bounds in the exponential-time hierarchy,
and is the reason for the gap between the known super-polynomial size lower
bounds (which hold with respect to classes that are contained in the second
level, namely MA-EXP (Buhrman, Fortnow, and Thierauf (1998))), and the
known exponential-size lower bounds (which only hold with respect to classes
that are in the third level of the hierarchy, namely EΣP

2 (Kannan (1982))). Mil-
tersen, Vinodchandran and Watanabe investigated this issue and argued that
Karp-Lipton style collapses that are needed for Kannan’s strategy hold with re-
spect to size functions up to half-exponential (a function f is half-exponential if
f(f(n)) ∈ 2Θ(n)) but do not seem to carry over to larger size bounds (Miltersen,
Vinodchandran, and Watanabe (1999)).

Thus in order to prove Theorem 1.1 we need a different strategy. Somewhat
surprisingly, our proof also goes via an easy/hard case analysis but not with re-
spect to the classes that we are interested in, namely ENP and exponential-size
circuits, but rather NP and fixed polynomial-size circuits! Consider two cases,
either SAT can be computed by circuits of size, say n10, or not. In the former
case we are in a good position because we can use a Karp-Lipton style collapse.
Chakaravarthy and Roy showed that if SAT has polynomial-size circuits then
PH collapses to the class PprAM, and therefore by the derandomization assump-
tion to PNP (Chakaravarthy and Roy (2008)). Kannan showed that one can
compute in the third level of PH the truth-table on an explicit function on
O(log n) bits whose circuit complexity is nδ (for some δ > 0), i.e., the truth-
table is computable in poly(n) time with three alternations (Kannan (1982)).
By the collapse it can be computed in PNP. By translation to exponential time
bounds this implies the desired lower bound.

The second case, in which SAT does not have circuits of size n10, is more

4Results that show the containment of some uniform class in a non-uniform class imply
a collapse of high uniform classes into lower classes are called Karp-Lipton style collapses
(after Karp and Lipton (1980) who were the first to show such a result).
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interesting. This is because at a first glance, the (fixed) polynomial-size lower
bound for SAT seems to have nothing to do with exponential-size lower bounds.
We show that in fact it does and the connection is via computational learning
theory. Let us briefly discuss some notions from this theory. Let s(n), s′(n)
be size functions (where s′(n) ≥ s(n)). An algorithm A exactly learns a
Boolean function f with respect to the concept class SIZE(s) and hypothe-
sis class SIZE(s′), if the following holds: if f can be computed by circuits of
size s(n), then A, on input 1n, outputs a circuit of size s′(n) that computes f
at input length n (i.e., A has to learn a circuit for f from the hypothesis class
but not necessarily from the concept class). A classic result in computational
learning theory by Bshouty, Cleve, Gavaldà, Kannan, and Tamon (1996) is
that there is an algorithm that exactly learns SAT with respect to the concept
class SIZE(nk) and hypothesis class SIZE(nk+2) (for any k > 1). The algorithm
runs in probabilistic expected polynomial-time with access to an NP oracle. Of
course, we do not know if SAT has polynomial-size circuits. Indeed in the case
that we consider, SAT cannot be computed by n10-size circuits. So how does
the algorithm of Bshouty, Cleve, Gavaldà, Kannan, and Tamon (1996) behave
when SAT is not even in the hypothesis class SIZE(nk+2)? Fortnow, Pavan and
Sengupta observed that in this case the algorithm outputs a poly(n)-long list of
SAT instances such that every circuit of size nk fails to compute correctly the
SAT-value of at least one of them5 (Fortnow, Pavan, and Sengupta (2008)).
We call this a list of counterexamples.

We proceed in two steps. First we show that if there is a deterministic
learning algorithm that outputs a polynomially-long list of counterexamples,
then there is an explicit function that requires exponentially large circuits (see
Lemma 3.2). The complexity of computing this function is directly related to
the complexity of the learning algorithm. In particular if the algorithm runs
in deterministic polynomial-time with access to an NP oracle, then there is
a function in ENP that requires exponentially large circuits. Next we show
(in Theorem 3.4), based on ideas from Bshouty, Cleve, Gavaldà, Kannan, and
Tamon (1996); Chakaravarthy and Roy (2008); Fortnow, Pavan, and Sengupta
(2008), that there is a deterministic algorithm that uses an oracle to prAM
for learning counterexamples (recall that the result of Fortnow, Pavan, and
Sengupta (2008) only gives a randomized algorithm, so it is not good for us).
By the hypothesis of the theorem, the algorithm is in fact in PNP and the lower
bound follows.

5We mention that a slightly stronger statement was later given by Atserias (2006).
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1.4. On the Search for Truth-Tables of Hard Functions. Proving exponential-
size circuit lower bounds for functions in the exponential-time hierarchy is
equivalent to the problem of finding in the polynomial-time hierarchy a truth-
table of length n of a function on ⌊log n⌋ bits that cannot be computed by
circuits of size nδ, for some δ > 0 (for every or at least infinitely many n’s).
Indeed Kannan’s lower bound (Kannan (1982)) can be viewed in this way:
given a truth-table of length n one can verify in ΣP

2 that it is the first lexico-
graphic truth-table of a function that requires circuits of size nδ. Now one can
run a binary search, using a ΣP

2 oracle, through all length n truth-tables to find
in poly(n) time the lexicographic first hard one. This proves that there is a
Boolean function in the class EΣP

2 that requires circuits of size 2Ω(n),6 and it is
currently (as it has been for almost 30 years) the best known exponential-size
lower bound.

Our proof can also be viewed in this light. We show that in order to find
exponentially hard truth-tables we can replace the ΣP

2 oracle with a prAM
oracle. Note that prAM ⊆ ΠP

2 (Fürer, Goldreich, Mansour, Sipser, and Zachos
(1989)) (and clearly oracle access to ΣP

2 is equivalent to oracle access to ΠP
2 ),

so our oracle is certainly not stronger than the oracle in Kannan’s proof, and is
widely believed to be much weaker. Indeed our result implies the lower bound
for EΣP

2 . In Section 5 we explain why we nevertheless do not prove a new
explicit lower bound.

2. Basic Notions and Notation

For a Boolean function f : {0, 1}∗ → {0, 1}, we denote by fn the restriction
of f to instances of length n. For a (possibly infinite) family of circuits C we
denote by Cn the circuits in C with exactly n input gates.

For an integer n > 0, we denote by [n] the set {1, . . . , n}. for a string
s ∈ {0, 1}∗ we denote by |s| the length of s. For two strings s, t ∈ {0, 1}∗ we
denote by s ◦ t their concatenation.

2.1. Complexity Classes. We assume that the reader is familiar with stan-
dard complexity classes such as P, NP, E etc. For a class of algorithms A and
a class of functions F we denote by AF the class of functions that are com-
putable by some algorithm in A that is given an oracle access (i.e., unit cost)
to a function in F .

6In Kannan (1982) a weaker lower bound was proven. The lower bound for EΣP
2 that we

described is obtained by a small modification of Kannan’s proof which is considered folklore
(yet appears explicitly in Miltersen, Vinodchandran, and Watanabe (1999)).
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Often when we describe algorithms that use as oracle some function in a
class F it is convenient to actually assume that the algorithm has unit cost
access to several (constant number) of functions f1, . . . , fc all in F . We can
then think of the algorithm having access to a single function in F by binding
the functions to a single function f(i, x) = fi(x) for 1 ≤ i ≤ c.

For a size function s : N → N, we denote the class of s(n)-size n-input
Boolean circuits by SIZE(s(n)). For a fixed size function s, for every n ∈ N,
there exist a certain m = poly(s(n)) such that all the n-input circuits of size
s(n) can be described by strings of length m. For simplicity we assume that
m = s(n), and thus our size function will be the description size of the circuits
(rather than say the number of gates).

2.2. Promise Problems. A promise problem Π is defined by two disjoint
sets ΠY ⊆ {0, 1}∗ which we call the ‘yes’ instances of Π, and ΠN ⊆ {0, 1}∗
which we call the ‘no’ instances of Π. A function f : {0, 1}∗ → {0, 1} agrees
with a promise problem Π, if f(x) = 1 for every x ∈ ΠY , f(x) = 0 for every
x ∈ ΠN and f(x) can take any value in {0, 1} if x ̸∈ ΠY ∪ ΠN .

For a class of algorithms A and a class of promise problems F , we say that
a function g : {0, 1}∗ → {0, 1} is in the class AF , if there exist an algorithm
A ∈ A and a promise problem Π ∈ F , such that when A is given oracle access
to any function f that agrees with Π, it computes the function g. In other
words, while A may ask queries which are not in ΠY ∪ ΠN and hence receive
arbitrary answers, it must compute the same function g regardless of the values
of these arbitrary answers.

We say that a class of promise problems F is contained in a class of Boolean
functions C, if for every promise problem Π ∈ F , there exists a function c ∈ C
which agrees with Π. As an example in our context, consider the conditional
derandomization result that follows from Miltersen and Vinodchandran (2005):
under a certain hardness assumption against nondeterministic circuits, for ev-
ery Π ∈ prAM (defined below) there is a nondeterministic polynomial-time
machine that answers correctly on ΠY and ΠN . On instances not in ΠY ∪ ΠN

it answers something but these answers are arbitrary. Thus we get that under
their assumption prAM ⊆ NP.

The class prAM contains all the promise problems for which there is an
Arthur-Merlin protocol whose completeness holds with respect to all the ‘yes’
instances and the soundness holds with respect to all the ‘no’ instances. The
protocol may behave arbitrarily on instances which are not in ΠY ∪ ΠN . For-
mally, it is defined as follows.

Definition 2.1. We say that a promise problem Π is in the class prAM if
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there is a polynomial-time computable relation R(·, ·, ·) such that the following
holds:

◦ Completeness: For every x ∈ ΠY , Prr[∃y such that R(x, y, r) = 1] ≥
2/3

◦ Soundness: For every x ∈ ΠN , Prr[∃y such that R(x, y, r) = 1] ≤ 1/3,

where |r| = |y| = poly(|x|).

It is well known (Babai and Moran (1988); Goldwasser and Sipser (1989))
that the definition above is equivalent to the class of all the promise problems
that have interactive protocols (in the model of Goldwasser, Micali, and Rack-
off (1989)) with a constant number of rounds between an all-powerful prover
(Merlin) and a probabilistic polynomial-time verifier (Arthur).

3. Learning Counterexamples

3.1. Learning Counterexamples Implies Exponential-Size Lower Bounds.
In this section we show the connection between the problem of learning coun-
terexamples for SAT and exponential-size lower bounds. First, we formally
define the problem of learning counterexamples.

Definition 3.1. Let f : {0, 1}∗ → {0, 1} be a function, and C a family of
Boolean circuits such that f /∈ C. We say that an algorithm A learns ℓ = ℓ(n)
counterexamples for f with respect to the concept class C, if for every n for
which fn /∈ Cn, on input 1n, the algorithm outputs a list of at most ℓ strings
x1, . . . , xℓ of n-bit length such that for every circuit C ∈ Cn, there exists 1 ≤
i ≤ ℓ such that C(xi) ̸= f(xi).

The following lemma shows that deterministic learning counterexamples for
SAT implies exponential-size lower bounds.

Lemma 3.2. Suppose that for some c > k > 4 there is a deterministic algo-
rithm A with access to an NP oracle that runs in time poly(n), such that A
learns a list of nc counterexamples for SATn with respect to the concept class
SIZE(nk), for infinitely many n ∈ N. Then there is a constant δ > 0 (that
depends only on k and c), and a Boolean function in the class ENP that cannot
be computed by circuits of size 2δn, for infinitely many input lengths n.

Before we give the formal proof we briefly present the intuition. By the
hypothesis, the algorithm A generates, in polynomial-time with access to an
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NP oracle, a list of counterexamples (ϕ1, ..., ϕℓ) for some polynomial ℓ(n) :=
nc > nk. It holds that every nk-size circuit fails on at least one instance in the
list. It is tempting to take the function f(i) := SAT(ϕi) as our hard function.
However, this is not necessarily true. Since we cannot assume any particular
property regarding the order of the ϕi’s, it is hypothetically possible that the
location of a formula in the list determines its satisfiability (e.g., every even
formula in the list is satisfiable and every odd is unsatisfiable). Furthermore,
since ℓ > nk a circuit of size nk cannot necessarily determine the index of
a formula from the formula itself, thus it is possible that the list is indeed
hard for circuits of size nk but f itself is easy. Instead we show that if f is
easy for circuits of size nk then the hardness of the counterexamples stems
from the fact that it is hard to generate their description (under some canon-
ical representation of Boolean formulas). That is, we show that the function
h(i, j) = [the j-th bit in the description of ϕi] is sufficiently hard for Boolean
circuits. Let us proceed with the proof.

Proof. Fix a sufficiently large n so that no nk-size circuit solves SATn. In
this case, A outputs a list of ℓ(n) counterexamples. Let (ϕ1, ..., ϕℓ) be the list
sorted in lexicographical order so that ϕ1 < · · · < ϕℓ. Define m := ⌈log ℓ(n)⌉ ≤
⌈c log n⌉.

In the sequel we define several functions on different input lengths. A
superscript denotes the input length of each function. Consider the following
function gn : {0, 1}n → {0, 1}m defined as gn(ϕ) = i if ϕ = ϕi for some
1 ≤ i ≤ ℓ, and gn(ϕ) = 0 otherwise. We consider two cases, whether (I) an
nk−1-size circuit can compute gn or (II) not.

Case (I): In this case, we prove that no circuit of size nk−1 ≥ 2
k−1

c
(m−1) can

compute the function fm(i) = SAT(ϕi). Assume that some nk−1-size circuit Cf

can compute fm. By the hypothesis of Case (I), we have an nk−1-size circuit
Cg that computes gn. Using Cf and Cg, we can obtain an nk-size circuit C
that computes the SAT-values of all the counterexamples {ϕ1, ..., ϕℓ}, which
contradicts the hardness of the counterexamples. The circuit C is constructed
as follows. Let ϕ be a given instance of n-bit length.

1. Run Cg(ϕ). If the output is 0, then output 0 and quit. Otherwise let
i ∈ [ℓ] be the output of Cg(ϕ).

2. Output Cf (i).

Obviously, the size of this circuit C is 2nk−1 ≤ nk and it correctly computes
SAT(ϕi) for any i.
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Moreover, the function f can be computed in poly(n) = 2O(m) time using
an NP oracle as follows. Let i ∈ {0, 1}m be an input.

1. Run A and lexicographically sort the output formulas. The resulting list
is (ϕ1, ..., ϕℓ).

2. Invoke the NP oracle to determine if ϕi ∈ SAT, and output the result.

Therefore, fm is hard against 2
k−1

c
(m−1)-size circuits and computable in 2O(m)

time using an NP oracle.
Case (II): In this case, we prove that no nk−3-size circuit can compute yet an-

other function h defined as hm′
(i, j) = [the j-th bit in the description of ϕi ∈ {0, 1}n],

where m′ := m + ⌈log n⌉ = ⌈log ℓ(n)⌉ + ⌈log n⌉ = O(log n). For contradiction,
we assume that hm′

can be computed by an nk−3-size circuit Ch. Then, we can
compute gn by a small circuit C ′ that uses Ch, contradicting the hardness of
gn, i.e., the hypothesis for Case (II).

The circuit C ′ computes gn as follows. Let ϕ be a given SAT instance of
n-bit length.

1. Perform a binary search on the list (ϕ1, . . . , ϕℓ) to find the index i such
that ϕ = ϕi, if ϕ is in the list. Each comparison in the binary search,
against the formula with index i′, is done by computing ϕi′ = (Ch(i

′, 1), . . . , Ch(i
′, n))

and checking whether ϕ is lexicographically equal, larger or smaller than
ϕi′ .

2. Output the obtained index i if the binary search succeeds, otherwise
output 0.

The binary search can be implemented by a circuit of size O(|Ch|n log ℓ) =
O(nk−2 log n). Therefore, the size of C ′ is at most nk−1, which contradicts the
hardness of gn. Also, hm′

is computable in poly(n) = 2O(m′) time using an NP
oracle as follows. Let (i, j) ∈ {0, 1}m′

be a given instance.

1. Run A and sort the output formulas. The resulting list is (ϕ1, ..., ϕℓ).

2. Output the j-th bit of ϕi.

Therefore, hm′
is hard against nk−3 ≥ 2

k−3
c+1

m′
-size circuits and computable in

poly(n) = 2O(m′) time using an NP oracle.
We showed that either fm or hm′

has the required hardness for a fixed
input length. By setting δ := k−3

c+1
, we get that either f or h is a hard function

for circuits of size 2δr for infinitely many r ∈ N, while both functions are
computable in deterministic time 2O(r) with access to an NP oracle. ¤
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3.2. Learning Counterexamples with an Oracle to Promise AM. In
this section we show how to deterministically learn counterexamples for SAT
with a prAM oracle.

We will need an Arthur-Merlin protocol that lower bounds the size of any set
that is recognizable by a small circuit. Such a protocol was given by Goldwasser
and Sipser (1989). The formulation that we use is taken from Bogdanov and
Trevisan (2006).

Consider the following promise problem Π on inputs (C, a, ϵ), where C is a
description of a Boolean circuit with m inputs, 0 ≤ a ≤ 2m is given in binary,
and 0 ≤ ϵ < 1 is given in unary representation.

◦ Yes instances: (C, a, ϵ) ∈ ΠY if |C−1(1)| ≥ a.
◦ No instances: (C, a, ϵ) ∈ ΠN if |C−1(1)| ≤ (1 − ϵ)a.

Lemma 3.3. (Bogdanov and Trevisan (2006); Goldwasser and Sipser (1989))
There is an Arthur-Merlin protocol for Π that runs in time poly(|C|,m, 1/ϵ).
That is, Π ∈ prAM.

We now present the deterministic algorithm that learns counterexamples
for SAT with a prAM oracle. Our algorithm is based on ideas from Bshouty,
Cleve, Gavaldà, Kannan, and Tamon (1996); Chakaravarthy and Roy (2008);
Fortnow, Pavan, and Sengupta (2008).

Theorem 3.4. Suppose that for some k > 4, SAT ̸∈ SIZE(nk+2). There
is a promise problem Γ ∈ prAM and a polynomial-time deterministic oracle
algorithm A, such that for every function f : {0, 1}∗ → {0, 1} that agrees with
Γ, for every input length n for which SATn does not have circuits of size nk+2,
Af learns O(n2k) counterexamples for SATn with respect to the concept class
SIZE(nk).

Proof. Let us first set up the following notation. For a Boolean circuit
C on n inputs, define the circuit S(C) that on an input formula ϕ of length
n, attempts to find the lexicographic first satisfying assignment for ϕ, via the
downward self-reducibility property of SAT using C to solve the SAT instances
along the search path. If S(C) finds a satisfying assignment it outputs the
assignment and otherwise it outputs 0. For a list of satisfiable formulas L =
(ϕ1, . . . ϕℓ) each of description length n, let TL be the set of nk-size circuits that
are consistent with L. Namely, C ∈ TL if and only if S(C) finds a satisfying
assignment for every ϕj ∈ L.
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With this notation we can now describe the learning algorithm. Below we
will define several promise problems in prAM and allow the algorithm oracle
access to all of them (or to functions that agree with them to be more accurate).
We can then bind them to a single promise problem in prAM as discussed in
Section 2.

The algorithm has two stages. The first stage runs in iterations. Every
iteration step i, passes to step i + 1 a list Li of satisfiable formulas ϕ1, . . . , ϕi

each of description length n, as well as a number 1 ≤ γi ≤ 2nk
, where γi is an

estimate for |TLi
| such that

|TLi
| ≤ γi ≤

(
1 − 1

n2

)−1

|TLi
|.(3.5)

Initially we set L0 := ∅. This means that TL0 contains all the circuits of
description length nk, and we therefore set γ0 := 2nk

.

The algorithm works in such a way that for every i > 0, |TLi
| ≤ 4

5
|TLi−1

|.
Thus for some I ≤ ⌈(log5/4 2) · nk⌉, TLI

= ∅ at which stage we will terminate
the loop and with it the first stage of the algorithm.

In the second stage, the algorithm uses its oracle as a SAT solver (clearly
SAT ∈ prAM) to generate for every ϕj ∈ LI the list of formulas that are
queried along the search path (via the downward self-reducibility property of
SAT) for the lexicographic first satisfying assignment to ϕj (recall that every
ϕj is satisfiable). We may assume w.l.o.g. that all the formulas thus generated
are of description length n. The algorithm outputs all these formulas as the
list of counterexamples, and note that this list contains O(n2k) formulas. By
the fact that TLI

= ∅ it follows that for every C ∈ SIZE(nk), S(C) fails to find
a satisfying assignment for at least one ϕj ∈ LI . This means that C errs on at
least one query along the search path for a satisfying assignment for ϕj, and
this query appears in the list that the learning algorithm outputs. It therefore
follows that the algorithm indeed outputs a list of counterexamples for the
concept class SIZE(nk).7

It remains to describe iteration step i > 0, given a list Li−1 = (ϕ1, . . . , ϕi−1)
and γi−1 as above. We need some more notation. For a list L of satisfiable
formulas all of the same length n and one additional satisfiable formula ρ of
length n, it is clear that TL∪{ρ} ⊆ TL. Define the set GL,ρ to be TL \ TL∪{ρ}.

7Note that at the end of the first stage we already have a list of counterexamples, but
those are only counterexamples for the search circuits S(C), C ∈ SIZE(nk). In fact the
list after the end of the first stage is very easy for decision circuits because it only contains
satisfiable formulas. This is the reason that we need the second stage.
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Fortnow, Pavan and Sengupta used a probabilistic argument (similar to the
one in the result of Bshouty, Cleve, Gavaldà, Kannan, and Tamon (1996)) to
prove the following lemma.

Lemma 3.6. (Fortnow, Pavan, and Sengupta (2008)) If SATn cannot be com-
puted by circuits of size nk+2, then for every list L of satisfiable formulas each
of length n, there exist a formula ϕ of length n such |TL∪{ϕ}| ≤ 2

3
|TL|.

By this Lemma there exist ϕ, such that

|GLi−1,ϕ| ≥ 1

3
|TLi−1

|

≥ 1

4

(
1 − 1

n2

)−1

|TLi−1
|

≥ 1

4
γi−1.(3.7)

(Recall that |TLi−1
| ≤ γi−1 ≤ (1 − 1

n2 )
−1|TLi−1

|.)
We would like to find such a formula ϕ and then set Li := Li−1 ∪ {ϕ}. We

will not achieve quite that, but we will show how to find a ϕ such that

|GLi−1,ϕ| ≥
1

5
γi−1 ≥

1

5
|TLi−1

|.(3.8)

Claim 3.9. There is a promise problem Π1 ∈ prAM and a deterministic
polynomial-time procedure, that when given an estimate γi−1 for |TLi−1

| that
satisfies Inequality (3.5) and oracle access to any function that agrees with Π1,
outputs a Boolean formula ϕ of length n that satisfies Inequality (3.8).

Proof. The instances of Π1 are of the form (1m, (ρ1, . . . , ρℓ), p, a), where
m, ℓ > 0 are arbitrary integers, ρj ∈ {0, 1}m for every 1 ≤ j ≤ ℓ, p ∈ {0, 1}b

for some integer 0 ≤ b ≤ m, and a is an integer between 0 and 2mk
(in binary

representation). We define Π1 as follows:

◦ Yes instances: (1m, (ρ1, . . . , ρℓ), p, a) ∈ ΠY
1 if ρ1, . . . , ρℓ are all satisfiable

Boolean formulas and there exist s ∈ {0, 1}m−b such that ρ = p ◦ s is a
satisfiable formula and |G(ρ1,...,ρℓ),ρ| ≥ a.

◦ No instances: (1m, (ρ1, . . . , ρℓ), p, a) ∈ ΠN
1 if either at least one of

ρ1, . . . , ρℓ is not satisfiable, or for every s ∈ {0, 1}m−b, ρ = p◦s is not a sat-
isfiable formula, or ρ1, . . . , ρℓ are all satisfiable and for every s ∈ {0, 1}m−b

for which ρ = p ◦ s is a satisfiable formula, |G(ρ1,...,ρℓ),ρ| ≤ (1 − 1
m2 )a
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Claim 3.10. Π1 ∈ prAM.

Proof. The protocol is as follows. Merlin sends a string s ∈ {0, 1}m−b. Let
ρ = p ◦ s. Merlin also sends satisfying assignments for all of ρ1, . . . , ρℓ, ρ. If he
fails to do so, Arthur rejects.

Define the circuit C (which both Merlin and Arthur construct on their own)
that on input a description of a circuit B of size mk, checks whether S(B)
finds a satisfying assignment to all of ρ1, . . . , ρℓ but fails to find a satisfying
assignment to ρ. If so it outputs 1 and otherwise 0. Note that C computes the
characteristic function of G(ρ1,...,ρℓ),ρ. Arthur and Merlin run the lower bound
protocol from Lemma 3.3 on input (C, a, 1

m2 ). Arthur accepts/rejects according
to whether he accepts/rejects the lower bound protocol.

It is easy to verify that the protocol runs in time that is polynomial in its
input length. We next argue about the completeness and soundness.

Completeness: If ρ1, . . . , ρℓ are all satisfiable Boolean formulas and there
exist s ∈ {0, 1}m−b such that ρ = p◦s is a satisfiable formula and |G(ρ1,...,ρℓ),ρ| ≥
a, then Merlin can find and send such an s as well as satisfying assignments to
ρ1, . . . , ρℓ, ρ, and then the completeness follows from the completeness of the
lower bound protocol.

Soundness: If one of ρ1, . . . , ρℓ is not satisfiable or there is no s such that
p ◦ s is satisfiable, then Arthur will reject after the first message of Merlin
with probability 1. Otherwise for every s, for which ρ = p ◦ s is satisfiable,
|G(ρ1,...,ρℓ),ρ| ≤ (1 − 1

m2 )a, and the soundness follows from the soundness of the
lower bound protocol. ¤

We show how to find, with the help of Π1, a formula ϕ that satisfies In-
equality ((3.8)). We will do that iteratively where in each iteration we will set
another bit of ϕ. Let µ0 := ⌊1

4
γi−1⌋. Recall, by Lemma 3.6, that there exist

a formula that satisfies Inequality (3.7). The most significant bit of such a
formula is either 0 or 1. In other words at least one of the following is true
(1n, Li−1, 0, µ0) ∈ ΠY

1 and/or (1n, Li−1, 1, µ0) ∈ ΠY
1 . We query the Π1 oracle on

the input (1n, Li−1, 0, µ0). If the answer is 1 we set the MSB of ϕ to 0, otherwise
we set it to 1. Note that if we set the MSB to 1 then necessarily it is the MSB
of a formula that satisfies Inequality (3.7). However, if we set it to 0, this is
not necessarily the case. The reason is that the query (1n, Li−1, 0, µ0) may fall
outside the promise of Π1. What we are assured of though is that if the Π1

oracle answered 1 on (1n, Li−1, 0, µ0) then it is not in ΠN
1 . That is, there is a

satisfiable formula ϕ whose MSB is 0 such that |GLi−1,ϕ| ≥ (1 − 1
n2 )µ0. We set

µ1 = (1 − 1
n2 )µ0 and continue. In the j’th iteration, suppose that we already

fixed a prefix p of length j − 1 such that we know that there is a suffix that
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creates a satisfiable formula ϕ = p◦ s for which |GLi−1,ϕ| ≥ µj−1, then we query
the Π1 oracle on (1n, Li−1, p◦0, µj−1) and set the next bit to 0 if the answer is 1
and otherwise we set it to 1. By the same argument as above we are guaranteed
that the new prefix has a suffix that together they create a formula ϕ for which
|GLi−1,ϕ| ≥ (1 − 1

n2 )µj−1. We then set µj := (1 − 1
n2 )µj−1 and continue. After

n iterations we hold a formula ϕ of length n such that

|GLi−1,ϕ| ≥
(

1 − 1

n2

)
µn ≥

(
1 − 1

n2

)n

µ0

≥ 1

4

(
1 − 1

n2

)n

γi−1 ≥
1

5
γi−1

≥ 1

5
|TLi−1

|.

¤
By Claim 3.9 we can find ϕ that satisfies Inequality (3.8). We then set

Li = Li−1 ∪ {ϕ}. By the definition of |GLi−1,ϕ|, we get that |GLi−1,ϕ| = |TLi−1
\

TLi
| ≥ 1

5
|TLi−1

| which implies that |TLi
| ≤ 4

5
|TLi−1

| as required.
Next we show how to compute an estimate γi for |TLi

|. First we check
whether TLi

= ∅, in which case we terminate the main loop and move to the
second stage of the algorithm. Note that this is a coNP statement: for every C
of description length nk, S(C) fails to find a satisfying assignment for at least
one ϕj ∈ Li. Thus we can query the prAM oracle to check that. If TLi

̸= ∅, the
next claim shows that we can compute γi as required (with oracle to prAM).
This completes the description of the i’th iteration and hence the description
of the algorithm.

Claim 3.11. There is a promise problem Π2 ∈ prAM and a deterministic
polynomial-time procedure that when given oracle access to any function that
agrees with Π2 outputs a number γi ∈ [2nk

], such that |TLi
| ≤ γi ≤ (1 −

1
n2 )

−1|TLi
|.

Proof. Let Π2 be the following promise problem on instances (1m, (ρ1, . . . , ρℓ), a),
where m, ℓ > 0 are arbitrary integers, ρ1, . . . , ρℓ are all of length m, and a is
an integer between 0 and 2mk

(in binary representation):

◦ Yes instances: (1m, (ρ1, . . . , ρℓ), a) ∈ ΠY
2 if ρ1, . . . , ρℓ are all satisfiable

formulas and |T(ρ1,...,ρℓ)| ≥ a.
◦ No instances: (1m, (ρ1, . . . , ρℓ), a) ∈ ΠN

2 if either at least one of ρ1, . . . , ρℓ

is not a satisfiable formula, or they are all satisfiable and |T(ρ1,...,ρℓ)| ≤
(1 − 1

m2 )a.
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Claim 3.12. Π2 ∈ prAM.

Proof. The protocol is as follows. Merlin sends satisfying assignments for
all of ρ1, . . . , ρℓ. If he fails to do so, Arthur rejects.

Define the circuit C (which both Merlin and Arthur construct on their own)
that on input a description of a circuit B of size nk, checks whether S(B) finds
satisfying assignments to all of the formulas ρ1, . . . , ρℓ. If so it outputs 1 and
otherwise 0. Note that C computes the characteristic function of T(ρ1,...,ρℓ).
Arthur and Merlin run the lower bound protocol from Lemma 3.3 on input
(C, a, 1

m2 ). Arthur accepts/rejects according to whether he accepts/rejects the
lower bound protocol.

It is easy to verify that the protocol runs in time that is polynomial in its
input length. We next argue about the completeness and soundness.

Completeness: If ρ1, . . . , ρℓ are all satisfiable Boolean formulas such that
|T(ρ1,...,ρℓ)| ≥ a, then Merlin can find and send satisfying assignments to ρ1, . . . , ρℓ,
and then the completeness follows from the completeness of the lower bound
protocol.

Soundness: If one of ρ1, . . . , ρℓ is not satisfiable then Arthur will reject
after the first message of Merlin with probability 1. Otherwise, |T(ρ1,...,ρℓ)| ≤
(1 − 1

m2 )a, and the soundness follows from the soundness of the lower bound
protocol. ¤

By the definition of Π2, we know that for every a ≤ |TLi
| a Π2 oracle answers

1 on the query (1n, Li, a), and for every a ≥ (1− 1
n2 )

−1|TLi
| a Π2 oracle answers

0 on the query (1n, Li, a). For values of a in between these two bounds we have
no guarantee on the oracle’s answers. The algorithm conducts a binary search
on the set [2nk

] to find an a such that the Π2 oracle answers 0 on (1n, Li, a) but
1 on (1n, Li, a − 1) (forcing the answer on (1n, Li, 0) to be 1). Such a search
takes O(nk) time and we are guaranteed that for the a that we find,

|TLi
| ≤ a ≤

(
1 − 1

n2

)−1

|TLi
|.

We then set γi := a. ¤

¤

4. Derandomization Implies Exponential-Size Lower
Bounds

4.1. Arthur-Merlin Games. We now prove Theorem 1.1.
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Proof. We condition on whether SAT ∈ SIZE(n10) or not.
Case 1: SAT ∈ SIZE(n10). By hypothesis, PprAM = PPNP

= PNP. For every
0 < δ < 1, Kannan showed that on an input 1n, we can compute in ΣP

3 the
lexicographic first truth-table of length n (n = 2m) of a function (on m inputs)
whose circuit complexity is at least nδ (Kannan (1982)). By Chakaravarthy
and Roy (2008), if SAT ∈ SIZE(n10), the polynomial-time hierarchy collapses
to PprAM, and hence to PNP by our hypothesis. In particular ΣP

3 ⊆ PNP and we
can compute the truth-table of the hard function in this class. By translation
to the exponential level, this implies that there is a function in ENP that cannot
be computed by circuits of size 2δn (for all sufficiently large n).
Case 2: SAT /∈ SIZE(n10). Let Γ be the promise problem in prAM from
Theorem 3.4. By hypothesis, prAM ⊆ PNP so there is a function f : {0, 1}∗ →
{0, 1} in PNP that agrees with Γ. By Theorem 3.4 there is a polynomial-
time deterministic oracle algorithm A, such that for every input length n for
which SATn does not have circuits of size O(n10), Af learns a poly(n)-long
list of counterexamples for SATn with respect to the concept class SIZE(n8).
The function that Af computes is in the class PPNP

= PNP. This implies by
Lemma 3.2, that there is a constant δ > 0 and a Boolean function in the class
ENP that cannot be computed by circuits of size 2δn (for infinitely many input
lengths n). ¤

4.2. The Goldwasser-Sipser Protocol and Approximate Counting. A
close inspection of our proof, and the proofs that it relies on (namely, Chakar-
avarthy and Roy (2008)), reveals that the algorithm that computes the hard
function asks the oracle questions of the following form: let P be some easily
computable property of Boolean circuits. Given a number 1 ≤ a ≤ 2n and
0 ≤ ϵ ≤ 1, distinguish between the case that there is a Boolean circuit C ∈ P
with n inputs such that (C, a, ϵ) ∈ ΠY and the case that for every C ∈ P with
n inputs, (C, a, ϵ) ∈ ΠN . Where Π is the promise problem from Lemma 3.3.
(The algorithm also asks standard NP questions but these can also be stated
as instances of Π: distinguish between the case |C−1(1)| ≥ 1 and the case
|C−1(1)| = 0 ≤ 1 − ϵ.) A conclusion is that it is enough to derandomize the
Goldwasser-Sipser protocol (so it can be done in NP) to get the lower bound.
This gives Theorem 1.2.

Theorem 1.4 follows in a similar way as we now explain. Let us first formally
define the problem of approximate counting.

Definition 4.1. The problem of relative-error approximate counting is de-
fined as follows:

input: A Boolean circuit C on n inputs and a parameter 0 < ϵ < 1.
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output: A number γ ∈ [2n] such that (1 − ϵ)|C−1(1)| ≤ γ ≤ (1 −
ϵ)−1|C−1(1)|.

We say that relative-error approximation can be done in nondeterministic
polynomial-time if there exist a nondeterministic TM that on input C and ϵ
runs in nondeterministic poly(|C|, 1/ϵ)-time, has at least one accepting path,
and on each accepting path outputs an estimate γ as above (γ may differ from
one accepting path to another, as long as the condition holds).

It is easy to see that if a relative-error approximator can be computed
in nondeterministic polynomial-time then the oracle described above can be
implemented in NP: guess a circuit C and check whether C ∈ P , if not reject.
Then choose an ϵ′ such that ϵ > 1 − (1 − ϵ′)2, and run the nondeterministic
procedure for the approximator with parameters C and ϵ′. Let γ be its answer
(unless it rejects in which case the outer procedure rejects), then accept if and
only if γ ≥ (1 − ϵ′)a.

If there exist a Boolean circuit C ∈ P such that (C, a, ϵ) ∈ ΠY , then by the
definition of Π, |C−1(1)| ≥ a. It hence holds that γ ≥ (1−ϵ′)|C−1(1)| ≥ (1−ϵ′)a
for the γ that is returned by the approximator and we will accept. On the other
hand, if for every C ∈ P , (C, a, ϵ) ∈ ΠN , it must be the case that (if C passed
the first test of being in P ), γ ≤ (1 − ϵ′)−1(1 − ϵ)a < (1 − ϵ′)a, and we will
reject.

Theorem 1.4 now immediately follows.

5. Concluding Remarks

Our proof shows that there is a deterministic exponential-time algorithm A and
a promise problem in prAM, such that for every function f that agrees with it,
Af computes a function that cannot be computed by circuits of size 2δn. The
dependence on the specific f comes from the fact that the counterexamples in
Theorem 3.4 depend on the values of the function outside the promise. This is
the reason that we do not get a lower bound for an explicit function in the class
EprAM. Recall that a function is in this class if for every oracle that agrees with
the promise, the algorithm computes the same function (i.e., the values of the
function do not depend on values of the oracle outside the promise). Neverthe-
less, our proof does imply the best known exponential-size lower bound, namely
the one for the class EΣP

2 . This is because the ΠP
2 simulation of our prAM or-

acle (Fürer, Goldreich, Mansour, Sipser, and Zachos (1989)) gives an explicit
function in EΣP

2 that requires circuits of size 2Ω(n). Proving an exponential-size
lower bound for the class EprAM (and thus improving the best known lower
bound) remains an open problem.
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Another interesting open problem is to prove a true converse to Miltersen
and Vinodchandran (2005); Shaltiel and Umans (2005); Umans (2003).
Namely, show that a full derandomization of prAM implies lower bounds against
exponential-size nondeterministic circuits.

Finally, we would like to point out that we do not know how to scale down
our theorem to parameter settings below the very high-end. It would be nice to
obtain a result of the form derandomization implies lower bounds which ranges
over the whole parameters spectrum, as is the case with the results that work
in the other direction.
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