
H-0296 (H1101-002) January 5, 2011
Computer Science

IBM Research Report

Scheduling Live Migrations of Virtual Machines during Host
Evacuation

Alex Glikson, Amir Epstein, Assaf Israel, John Marberg
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Scheduling Live Migrations of Virtual Machines
During Host Evacuation

Alex Glikson, Amir Epstein, Assaf Israel, John Marberg
IBM Haifa Research Lab, Haifa 31905, Israel

{glikson,amire,assafi,marberg}@il.ibm.com

ABSTRACT
Server virtualization introduces new capabilities that im-
prove the efficiency of data centers. One such capability is
live migration of virtual machines – the ability to move an
operational virtual machine from one physical host to an-
other without perceivable downtime of applications running
within the virtual machine. Efficient management of live
migrations is particularly important in scenarios involving
a large number of migrations, such as host maintenance or
workload consolidation, when all virtual machines running
on a host need to be evacuated to other hosts. Since live
migration is demanding on host and network resources, de-
creasing the time needed for host evacuation can improve
system availability and reduce administrative costs. In an
emergency, when a host is likely to become unavailable quick-
ly, minimizing the duration of host evacuation narrows the
risk of losing applications.

This paper presents the problem of scheduling virtual ma-
chine migrations during host evacuation. Given a set of mi-
grations emanating from a single host, each migration hav-
ing a length and a predefined destination host, and a set
of limits on the number of migrations each host can han-
dle concurrently, the goal is to obtain a migration schedule
whose total length (makespan) is minimal. The problem is
known to be NP-hard. We obtain approximation bounds on
the makespan for two common greedy scheduling heuristics:
LS and LPT, and show that an optimal schedule can be
generated using LS. We then devise a (2+ǫ)-approximation
scheme for the problem. Finally, we introduce a family of
custom heuristics, and demonstrate empirically that they
outperform the common heuristics. We also demonstrate
that the custom heuristics are comparable with a sched-
uler deploying a commercial constraint programming solver,
while our heuristics are considerably simpler and faster.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Sequencing

and scheduling ; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Heuristic methods,
Scheduling ; K.6.4 [Management of Computing and In-

formation Systems]: System Management

General Terms
Theory, Algorithms

Keywords
virtual machines, live migration, scheduling, makespan, ap-
proximation

1. INTRODUCTION
Live migration is the process of moving a Virtual Machine
(VM) from one host (physical machine) to another, with-
out noticeable downtime or disruption to the software stack
running within the VM. Live migration enables new capabil-
ities in management of virtualized workloads, such as non-
disruptive maintenance and load balancing. The migration
process itself is non-trivial, and requires significant amount
of CPU resources and network bandwidth, in order to trans-
fer the state of the operational VM (dominated by the con-
tent of RAM allocated to the VM) from the source host to
the destination host [4].

Moreover, in typical implementations of live migration the
state continues to change during the migration itself (e.g.,
the application continues to write to RAM). It is important
to ensure that sufficient resources are allocated to the migra-
tion process. Otherwise, migration could take a very long
time, and the downtime might be disruptive.

Efficient planning and management of live migration is par-
ticularly important in scenarios involving a large number
of migrations that need to happen within a small period of
time. In such case, it is desirable to schedule migrations effi-
ciently, taking into account attributes such as configuration
of the VMs (e.g., memory size), resources at the hosts (e.g.,
number of network adapters), and limitations in the com-
munication media (e.g., network bandwidth). Reducing the
overall time to complete all migrations will typically improve
system availability and reduce administrative costs.

The main scenario involving large number of migrations ad-
dressed in this paper is host evacuation – migrating all VMs
residing in a particular physical host. Host evacuation is
applied before planned or emergency host maintenance, and
during workload consolidation. In an emergency, when the

1

period of time until the host crashes or or is forced to shut
down is limited, minimizing the duration of host evacuation
narrows the risk of losing applications.

1.1 Problem Definition
We now present a model for the problem of scheduling mi-
grations of virtual machines. We then focus particularly on
the case of host evacuation. The objective is to schedule the
migrations concurrently under constraints imposed by the
model, such that the overall time to complete all migrations
is as small as possible.

Our model is equivalent to the model introduced by Coff-
man, Garey, Johnson and LaPaugh [6] for the problem of
scheduling file transfers among nodes in a network (which,
in fact, is a problem of similar nature). It is defined as fol-
lows.

• The topology is a directed multigraph G(H,M), where
H is the set of vertices, representing the hosts, and M
is a set of directed edges representing the migrations.

• Each migration mi ∈ M is characterized by a source
host s(mi) ∈ H and destination host d(mi) ∈ H, and
by a length l(mi) > 0.

• Each host hj ∈ H has a host concurrency limit, c(hj),
defined as the maximum number of migrations that
can run concurrently, for which hj is either source or
destination.

• Migrations proceed directly between the corresponding
source and destination hosts, without routing through
intermediate hosts, and are non-preemptive.

A schedule S(M) is an assignment of a start time t(mi) to
every migration mi ∈ M , such that all concurrency limits
are complied with at all times. The smallest start time is
assumed to be 0. The total length of the schedule, called
makespan, is L(S(M)) = maxi (t(mi) + l(mi)). A schedule
is optimal if its makespan is the smallest among all possi-
ble schedules for the given problem instance. The optimal
makespan is denoted OPT (M).

Host evacuation scheduling is modeled as a private case of
migration scheduling. The topology is a single level directed
tree multigraph, with the evacuated host as root (star topol-
ogy). We denote the evacuated host h0. Thus, for any mi-
gration mi, s(mi) = h0. Without loss of generality, we as-
sume that for any host hj , c(hj) ≤ c(h0) (scheduling cannot
exceed the concurrency limit of either source or destination).

Let C(H) = min (c(h0),
∑

j 6=0
c(hj)). Clearly, at most C(H)

migrations can proceed concurrently at any time during host
evacuation. Hence, we call C(H) the effective concurrency.
Although concurrency limits may vary among hosts, typi-
cally the evacuated host is likely to be the main bottleneck
affecting concurrency.

When a generic problem instance is discussed, or if the spe-
cific problem instance is implied by the context, we denote
the effective concurrency C, the optimal makespan OPT ,

the schedule S, and its makespan L(S). If the schedule is
implied, we denote the makespan L.

Migration scheduling is NP-hard, even when restricted to
host evacuation. This is shown in [6], by reduction from
the multiprocessor scheduling problem to a two-node file
transfer scheduling problem. Scheduling heuristics can be
applied, with the goal of finding a schedule whose makespan
is as close as possible to the optimal. Bounds on the approx-
imation ratio L/OPT for various heuristics and topologies
are of interest.

1.2 Our Contributions
This work focuses on polynomial time approximation heuris-
tics for host evacuation, aproblem known to be NP-hard.
We examine two common greedy scheduling heuristics: List
Scheduling (LS), and Longest Processing Time First (LPT),
and present several new heuristics.

First, we prove that for host evacuation, an optimal schedule
can always be generated using the LS algorithm. This is
in contrast to the general topology case, where for some
instances the optimal schedule is inherently non-greedy, as
shown in [6].

Subsequently, we derive approximation bounds on the make-
span of the LS and LPT heuristics for the host evacuation
topology. These bounds are better than the corresponding
bounds for the general topology given in [6]. For LS, we
show a tight approximation ratio of 3 − 2√

C
, compared to

3 − 2

C
for arbitrary topology. For LPT, we show an upper

bound of 7

3
− 2√

3C
, compared to 5

2
− 1

C
in the general case.

We also present a polynomial time (2+ǫ)-approximation al-
gorithm for the host evacuation problem, leveraging a Poly-
nomial Time Approximation Scheme (PTAS) of the classical
multiprocessor scheduling problem.

Finally, we introduce a family of custom-designed schedul-
ing heuristics, tailored specifically for host evacuation, and
demonstrate empirically that their results outperform the
common heuristics. Also, having implemented a scheduler
which deploys a commercial constraint programming solver
[16], we demonstrate that the custom schedulers and the
solver achieve comparable results, whereas the custom heu-
ristics seem to be significantly more efficient and have sim-
pler implementation.

1.3 Paper Organization
The rest of the paper is organized as follows. In Section 2 we
survey related work. Section 3 discusses approximation algo-
rithms for host evacuation. Two common greedy scheduling
heuristics: LS and LPT, are analyzed in terms of approxima-
tion bounds on the makespan. We also present a polynomial
time (2+ǫ)-approximation algorithm for the host evacuation
problem. Section 4 introduces custom-designed scheduling
heuristics, specific to the host evacuation scenario. Section
5 empirically evaluates the results and the performance of
the custom heuristics and compares them to a commercial
“solver”. In Section 6 we discuss various future research di-
rections.

2

2. RELATED WORK
Job scheduling has been extensively researched. Since in
general it is NP-hard to compute an optimal schedule [10],
a common goal is to obtain polynomial-time approximation
algorithms with provable makespan bounds. Many different
scheduling problems are defined, all of which are known to
be NP-hard [10]. All problems share a common generic goal:
obtaining a schedule with the best possible makespan, using
an approximation algorithm. Bounds on the ratio between
the approximated and optimal makespan are of interest.

The migration scheduling problem defined in this paper is
equivalent to the problem of scheduling file transfers among
nodes in a network, introduced by Coffman et al [6]. Each
file in a set of files needs to be transfered from a given source
node to a given destination, without going through interme-
diate nodes. Each node has a limit on the number of con-
current file transfers to/from this node. A variant of the file
transfer problem, in which in addition to node concurrency
limits there are also communication concurrency limits, is
presented by Nakano and Nishizeki [20].

A related problem is the classic multiprocessor scheduling
problem, which concerns the scheduling of a set of jobs on a
set of processors. Several variants of the problem have been
investigated, among others by Graham [11], who considers
partial order among jobs, and by Harche and Seshadri [12],
who impose processor capacity limits.

Among a variety of known approximation algorithms, or
scheduling heuristics, two are most widely used: LS (List
Scheduling) and LPT (Longest Processing Time first), in-
troduced by Graham [11]. Both heuristics are greedy, and
schedule jobs according to an ordered list of all jobs. In LPT,
the list is ordered by non-increasing job running times. In
LS, the list order is arbitrary, which allows any greedy sched-
ule to be generated.

Approximation bounds on the makespan for file transfer,
using LS and LPT, are shown in [6]. In this paper we ex-
amine both heuristics in the context of host evacuation, a
private case of migration scheduling (and file transfer), ob-
taining improved approximation bounds, as outlined in the
summary of our contributions in Section 1.2.

Scheduling heuristics need to know the length (duration)
of each live migration. A priori, only an estimate can be
provided. In a recent study, Akoush et al [1] have analyzed
the characteristics affecting migration performance, and pre-
sented simulation models that are shown to obtain highly
accurate predictions of migration length.

The performance of scheduling heuristics is commonly eval-
uated as a function of the number of processors (or hosts)
and any capacity limits imposed by the problem definition,
while the jobs are considered to be arbitrary or unknown.
There are, however, results that depend also on character-
istics of the jobs. Kao and Elsayed [17] examine the perfor-
mance of LPT as a function of the number of jobs, under
constraints on the relative lengths of the jobs. In stochastic
analysis of scheduling approximations, the jobs are set of
independent random variables, as exemplified in the work of
Coffman et al [7], and Kao and Elsayed [17]. In this paper,

we show a generic upper bound on greedy scheduling al-
gorithms for host evacuation, which takes into account the
volume (sum of lengths) of migrations and the maximum
migration length.

Polynomial time approximation schemes (PTAS) for multi-
processor scheduling are explored by Hochbaum and Shmoys
[15] and by Alon et al [2]. PTAS is a family of approximation
algorithms, in which for every ǫ there exists a polynomial-
time algorithm whose solution is at most 1 + ǫ times larger
than the optimal, also called (1+ǫ)-approximation. In this
paper, we leverage the PTAS of multiprocessor scheduling
in the construction of a family of (2+ǫ)-approximation algo-
rithms for host evacuation.

A different approximation algorithm, called MF (Multifit),
is studied by Coffman et al [5]. It combines bin packing
methods and binary search over the bin capacity. Further
analysis of MF is given by Lee and Massey [18]. In another
work, Lee and Massey [19] combine LPT and MF, obtaining
an algorithm with improved bounds.

A variation of the file transfer problem, called data migra-
tion, considers the migration of a set of data objects among
storage devices in a fully connected SAN (Storage Area Net-
work). Anderson et al [3] show approximation algorithms
using graph edge coloring methods, for versions of the prob-
lem with bypass nodes (interim storage devices). Gandhi et
al [9] use linear programming methods in approximating the
minimal average completion time over all nodes.

Call scheduling is another related problem domain in which
approximation algorithms are applicable. A set of requests
for calls with given bandwidth and duration requirements
need to be scheduled in a communication network where
links have predefined bandwidth capacity. The entire path
between the two endpoints of the call needs to have sufficient
free bandwidth at the same time. Erlebach and Jansen [8]
present variants of the LS algorithm for call scheduling in
star and tree topologies.

As background on live migration of virtual machines, sig-
nificant research exists on the design, implementation and
performance of live migration mechanisms. The work of
Clark et al [4] defines many of the common principles of
live migration, including the basic stages of the live migra-
tion process. Additional coverage includes, among others,
Zhao and Figueiredo [22], Harney et al [13], and Hines and
Gopalan [14]. These papers present different approaches to
live migration design and variants of the mechanisms, and
empirically evaluate various aspects of performance using
experimental implementations. A survey of migration tech-
niques is given by Venkatesha et al [21].

3. APPROXIMATION ALGORITHMS
The optimal makespan for host evacuation can be approxi-
mated using different heuristics. In this section we examine
the properties of two well known greedy approximation al-
gorithms.

A scheduling algorithm is greedy if it will schedule another
job as soon as the constraints of the problem allow it. The
resulting schedule is called greedy schedule. In the context

3

of host evacuation, jobs are migrations, and constraints are
the concurrency limits of the source and destination hosts
of any unscheduled migrations.

The two greedy scheduling algorithms we examine use the
same approach: given an ordered list of all migrations, select
for scheduling the first feasible migration on the list. The
ordered list of all migrations is considered the heuristic of the
algorithm. The first algorithm, called List Scheduler (LS)
[6], uses an arbitrarily ordered list. The resulting schedule
is called list schedule. The second algorithm, called Longest
Processing Time First (LPT) [11], uses a list sorted in non-
increasing order of migration lengths. The resulting schedule
is called LPT schedule.

3.1 Transfer Channels
A migration schedule can be arranged in a number of trans-
fer channels (or channels, in short), such that each migra-
tion is associated with a specific channel, and the migrations
in any given channel do not overlap in time. Migrations from
different channels may overlap.

The number of channels is determined by the concurrency
limits of the hosts, and is not affected by the migrations.
It is easy to see that the effective concurrency C, defined
in Section 1.1, is a necessary as well as sufficient number
of channels. In other words, given any set of migrations
and any schedule, each migration can be assigned to one of
C channels. Channel assignments could be handled by the
scheduling algorithm.

Without loss of generality, a schedule can be assumed to
proceed along a finite set of discrete time points, each of
which is the start time or end time of some migration. Each
Migration mi starts at time point t(mi) and ends at time
point t(mi)+l(mi). The corresponding channel, source host,
and destination host are said to be engaged in the migration
at time points t such that t(mi) ≤ t < t(mi) + l(mi).

It should be observed that by this definition, a channel or
host are not engaged in a given migration at the time point
where the migration ends. Thus, a channel is engaged in
at most one migration at any time point in the schedule,
whereas a destination host hi is engaged in at most c(hi)
migrations at any time point.

A channel is said to be free at time point t if it is not engaged
in any migration at time t. Destination host hi is said to be
available at time point t if it is engaged in less than c(hi)
migrations at t.

A gap in a given channel is defined as a maximal span of
time points at which the channel is free, followed by a time
point where the channel is engaged in a migration. Similar
to a migration, a gap has a start time, length, and end time.
By definition, the end time of a gap must be the start time
of another migration in the same channel.

3.2 Optimality of List Scheduler
In [6] it was shown that for general migration topologies
(where migrations can have arbitrary source and destination
hosts), there exist instances whose optimal schedule cannot

be achieved using the LS heuristic, for any list ordering. In
other words, such instances are inherently non-greedy.

We now show that when restricting the topology to single
host evacuation, an optimal list schedule always exists.

The following terminology is used with regard to a given
schedule.

A migration is called promotable if it can be moved to an
earlier start time on any channel, without making addi-
tional changes in the schedule, and without violating the
concurrency limits of the corresponding source and destina-
tion hosts. By definition, a greedy schedule does not have
any promotable migrations. The moving of a migration to
an earlier start time is called promotion.

Let t > 0 be a time point in the schedule. A migration is
said to be blocked at time t if it starts at t, and the cor-
responding destination host is not available for additional
migrations at both t and the immediately preceding time
point. It should be observed that by this definition, there
exists another migration to the same destination that ends
at t, thereby enabling the blocked migration to start.

Let t be a time point in the schedule. The t-suffix of a given
channel is the sequence of migrations in that channel whose
start time is t or later. If there are no such migrations, the
t-suffix is empty.

Let t̂ be the end time of the last migration in a channel. The
channel is said to be t̂-terminated. Clearly, the t̂-suffix of the
channel is empty. It should be observed that by definition
of gap, the span of time from t̂ onward is not a gap.

Lemma 1. If a schedule has no gaps and no promotable
migrations, the schedule is greedy.

Proof. Suppose the schedule is not greedy and there are
no gaps. To prove the claim, we need to show that there
exists a promotable migration.

Since the schedule is not greedy, there exists a time point
t′ in the schedule at which some channel cha is free, and
there exist one or more migrations with start time greater
than t′, whose corresponding destination host is available at
time t′. Let m be the migration with the earliest start time
among these migrations. Clearly, destination host d(m) is
available at any time point t, t′ ≤ t < t(m). Since there
are no gaps, it must be that the t′-suffix of channel cha is
empty. Therefore, migration m is promotable to start time
t′ in channel cha.

Theorem 2. Given a non-greedy host evacuation sched-
ule, a greedy schedule can be generated which has smaller or
equal makespan.

Proof. We transform the given schedule into a greedy
one, using an iterative process. Each iteration first pro-
motes any promotable migrations, then swaps suffixes be-
tween channels to render additional migrations promotable.

4

This continues until there are no promotable migrations
and no gaps. The following algorithm generates the greedy
schedule.

Promote and Swap Algorithm:

Starting with the original schedule, perform Step 1 followed
by Step 2 repeatedly until there are no promotable migra-
tions and no gaps.

1. Promote: Promote any promotable migrations to the
earliest possible start time on any channel. This may
open up new gaps and render additional migrations
promotable, but the makespan will not increase. Con-
tinue promoting migrations in arbitrary order, until
eventually no migration is promotable.

2. Swap: Select a gap with the latest end time t. Let cha

be the channel in which this gap is located. Let N t
s be

the number of migrations that start at time t on any
channel, and N t

e the number of migrations that end at
t on any channel. By definition of gap, a migration
starts in channel cha at time t, hence N t

s ≥ 1.

Case A: If N t
s > N t

e , there exists a migration m in
another channel chb, which starts at time t and is not
blocked. Swap t-suffixes between channels cha and chb.
Now migration m is promotable (into the gap in chan-
nel cha).

Case B: If N t
s ≤ N t

e , there exists a channel chb that is
t-terminated (by choice of t, there are no gaps beyond
time t on any channel). Move the t-suffix from chan-
nel cha to chb. This effectively eliminates the gap in
channel cha.

Consider a typical iteration of the algorithm. If there exist
promotable migrations at the beginning of the iteration, at
least one such migration is promoted in Step 1. Then in
Step 2, either some gap is eliminated (Case B), or some
migration becomes promotable (Case A), to be promoted in
the following iteration. A new gap can be opened up only
in Step 1, by promoting a migration. The overall number
of possible promotions is finite (since the number of time
points in the schedule is finite and there are no demotions),
therefore the algorithm is guaranteed to terminate.

By Lemma 1, the resulting schedule is greedy. The algorithm
never demotes any migration, therefore the makespan of the
resulting schedule cannot be larger than that of the original
schedule.

Corollary 3. Given host evacuation schedule S, there
exists a list schedule with smaller or equal makespan.

Proof. By Theorem 2, a greedy schedule S′ can be gen-
erated by applying the Promote and Swap algorithm on S.
Define a list of all migrations ordered by non-increasing start
times in the schedule S′. It is easy to see that with this list
the LS algorithm will generate the identical schedule S′.

Corollary 4. An optimal list schedule exists for any
host evacuation scenario.

Proof. This follows from Corollary 3 when schedule S is
optimal.

Corollary 5. A greedy schedule can always be arranged
in channels such that there are no gaps.

Proof. By definition, a greedy schedule has no promot-
able migrations, in any channel arrangement. Given an ini-
tial channel arrangement with gaps, apply the Promote and
Swap algorithm to the schedule. Consider an iteration that
starts with a greedy schedule, such as the first iteration.
Since there are no promotable migrations, Step 1 is not
applicable. Step 2 rearranges the channels, but does not
change the schedule in terms of makespan or start times.
Thus, Case A is not applicable, as it would have resulted in
a promotable migration. Case B, on the other hand, elimi-
nates one gap. Therefore, the next iteration will start with
the identical greedy schedule, in a channel arrangement that
has one less gap, and the argument can be repeated. When
the algorithm terminates, there are no gaps.

Based on Corollary 5, we will henceforth assume without
loss of generality that a greedy schedule has no gaps.

3.3 Approximation Bounds for Greedy Sched-
ulers

In this section we present a worst-case analysis of schedules
generated by greedy schedulers, in terms of bounds on the
ratio between the makespan of the schedule they generate
and the optimal makespan. This is called the approximation
ratio.

We use the following denotations, in addition to those de-
fined in Section 1.1.

The sum of lengths of all migrations whose destination host
is hj , called the volume of hj , is denoted V (hj). The sum of
lengths of all migrations in the schedule, called total volume,
is denoted V (M). If the problem instance is implied, we
denote the total volume V .

For a given schedule, m∗(hj) denotes the migration that
ends last at destination host hj . Without loss of generality,
we assume there is a single such migration (otherwise pick
one arbitrarily). Let t∗j = t(m∗(hj)) denote the start time
of m∗(hj).

For a given schedule, m∗ denotes the migration that ends
last in the schedule. In other words, t(m∗) + l(m∗) = L.
Without loss of generality, we assume there is a single such
migration (otherwise pick one arbitrarily). Let h∗ = d(m∗),
t∗ = t(m∗) and l∗ = l(m∗) denote, respectively, the des-
tination host, start time, and length of m∗. We also use
c∗ = c(h∗), and V ∗ = V (h∗) to denote, respectively, the
concurrency limit and the volume of migrations of h∗.

The length of the longest migration in the problem instance
is denoted lmax. The length of the longest migration with
destination host hj is denoted ljmax.

We denote by tS(m) and eS(m) the start time and the end
time of migration m in schedule S.

5

We define a front of S towards destination host hj at time
t, denoted FS(hj , t), to be the set of end times of all the
migrations to hj having start time before t and end time at
or after t. Let F ∗

S (t) = FS(h
∗, t) denote the front towards h∗.

Notice that |FS(hj , t)| ≤ c(hj), because no two migrations
whose end times are in this front can use the same channel.

Given two fronts, F and F ′ (not necessarily for the same
schedule or time), we say that F precedes F ′, denoted F ≺
F ′, if there exists a bijective mapping from F to F ′, α : F →
F ′, such that ∀t ∈ F , t ≤ α(t). Informally, this means that
for each migration m whose end time is in F there exists a
corresponding migration m′ whose end time is in F ′, such
that m′ ends no earlier than m. By definition of bijective
mapping, if F ≺ F ′, the cardinality of the two fronts must
be the same.

The earliest time point in the schedule at which some chan-
nel is free is denoted t̄.

Lemma 6. For any greedy schedule and any destination
host hj , if t̄ < t∗j , then at any time point t such that t̄ ≤ t <
t∗j , exactly c(hj) channels are engaged in migrations to hj.

Proof. Assume there exists a time point t (t̄ ≤ t < t∗j)
at which less than c(hj) channels are engaged in migrations
to hj . Moreover, assume that t is the latest such time point.
We will show that the schedule has a promotable migration,
contradicting the greedy nature of the schedule.

Following Corollary 5, we can assume without loss of gen-
erality that there are no gaps in the schedule. Hence, there
exists a channel cha that is t̄-terminated. In other words,
the channel is free at any time from t̄ and onward.

By choice of t, some migration to host hj (possibly m∗(hj))
starts at the time point immediately following t. This mi-
gration is promotable to time t in channel cha, since at time
t host hj is engaged in less than c(hj) migrations, and the
channel is free.

We define γ to be an upper bound on the ratio between
the length of the migration that ends last, and the optimal
makespan.

l∗

OPT
≤ γ

As will be seen in Theorem 8, the approximation bound
of a greedy scheduling algorithm can be formulated as a
function of γ. Clearly, 0 < γ ≤ 1. Scheduling algorithms
may have inherent bounds on γ, which are dependent only
on the characteristics of the algorithm. Let γALG be the
inherent upper bound on γ for a given scheduling algorithm
ALG. For the LS algorithm γLS = 1, and this is tight. An
example of a list schedule with l∗ = OPT is shown in Figure
2, therefore an upper bound which is smaller than 1 cannot
exist. If no inherent bound for ALG is known, we always
use γALG = 1.

When the volume of migrations and the longest migration
of the problem instance are known, the value of γ can be

refined. Since l∗ ≤ lmax and OPT ≥ V/C, it is easy to see
that:

γ ≤ lmaxC

V

Similarly, for any destination host hj :

γ ≤ ljmaxc(hj)

V (hj)

Hence, for greedy scheduling algorithm ALG and a given
host evacuation problem instance,

γ = min

(
γALG,

lmaxC

V
,max

hj

(
ljmaxc(hj)

V (hj)
)

)
(1)

Lemma 7. If t̄ ≥ t∗, then the upper bound on the make-
span of any greedy scheduling algorithm for host evacuation
is:

L ≤
(
1 + γ − γ

C

)
OPT (2)

Proof. The proof is similar to the upper bound for multi-
processor scheduling [11], using l∗

OPT
≤ γ instead of l∗

OPT
≤

1.

Before time point t∗ = L − l∗, all channels are engaged in
migrations. Hence,

(L− l∗)C + l∗ ≤ V ≤ C ·OPT

L · C ≤ l∗(C − 1) + C ·OPT

L ≤
(

l∗

OPT
(1− 1

C
) + 1

)
OPT

Substituting l∗

OPT
with γ, we obtain the specified bound.

Theorem 8. The upper bound on the makespan of any
greedy scheduling algorithm for host evacuation is:

L ≤
(
2 + γ − 2

√
γ

C

)
OPT (3)

Proof. It is easy to see that the bound of Lemma 7
(equation 2) is lower than the bound we prove here (equation
3). Therefore we need to consider only the case t̄ < t∗.

The proof is illustrated by figure 1.

Let ∆t = t∗ − t̄, and let V ′ = ∆t · c∗ + l∗. Then:

∆t =
V ′ − l∗

c∗

It follows from Lemma 6 that V ′ + t̄ · C ≤ V , and hence:

t̄ ≤ V − V ′

C

Therefore:

L = t̄+∆t+ l∗

≤ V − V ′

C
+

V ′ − l∗

c∗
+ l∗

=
V

C
+

V ′

c∗

(
1− c∗

C

)
+ l∗

(
1− 1

c∗

)
(4)

6

Figure 1: Illustration for Theorem 8.

We have the following upper bounds on V , V ′ and l∗:

V ≤ C ·OPT

V ′ ≤ V ∗ ≤ c∗ ·OPT

l∗ ≤ γ ·OPT

Substituting these upper bounds in equation 4, we get:

L ≤ C ·OPT

C
+

c∗ ·OPT

c∗

(
1− c∗

C

)
+ γOPT

(
1− 1

c∗

)

=

(
2 + γ − c∗

C
− γ

c∗

)

︸ ︷︷ ︸
R

OPT (5)

Let R denote the approximation ratio L/OPT . We can find
the maximum of R for all possible values of c∗, using the
derivative.

dR

dc∗
= − 1

C
+

γ

c∗2

Solving for derivative value 0, we get:

c∗ =
√

γ · C
Substituting for c∗ in equation 5, we obtain the maximum
approximation ratio:

R = 2 + γ − 2

√
γ

C
(6)

We will now show approximation bounds for the LS and
LPT algorithms.

Corollary 9. The upper bound on the makespan of the
LS algorithm for host evacuation is

L ≤
(
3− 2√

C

)
OPT (7)

Proof. Substitute γ = 1 in equation 6.

Theorem 10. The approximation bound for LS given by
equation 7 is tight.

Proof. We will show how to construct list schedules that
achieve the approximation ratio specified in equation 7. An
example can be seen in Figure 2.

Figure 2: Example showing that the upper bound

for LS is tight.

There are two destination hosts, the first has concurrency
limit 9, and the second has concurrency limit 3. The source
host has concurrency limit 9. Thus, the number of channels
is 9. The list starts with 18 unit-length migrations to the
first destination, followed by 6 unit-length migrations to the
second destination, and finally a migration with length 3 to
the second destination. The list schedule is shown on the
left, and the optimal schedule on the right. Dotted rect-
angles are migrations to the first destination, and shaded
rectangles are migrations to the second destination.

This example can be generalized, given any integer k ≥ 2
and two or more destination hosts. One of the destination
hosts, call it the last destination, has concurrency limit k,
whereas all other hosts, including the source, have concur-
rency limit k2. Thus, the number of channels is C = k2.
The list starts with (k − 1)k2 unit-length migrations to ar-
bitrary destinations except the last destination (scheduling
k−1 migrations on each of k2 channels), followed by (k−1)k
unit-length migrations to the last destination (k − 1 migra-
tions on each of k channels), and finally a migration of length
k to the last destination. By construction, the makespan of
the list schedule is 3k − 2, whereas the makespan of the
optimal schedule is k. This yields the approximation ratio
3− 2√

C
.

Lemma 11. Given an LPT schedule, if l∗ > 1

3
OPT then

L ≤ 2 ·OPT

Proof. If t̄ ≥ t∗, we have L ≤ t̄+l∗ ≤ 2·OPT (regardless
of any bound on l∗). It remains to consider the more difficult
case t̄ < t∗. The proof is illustrated by Figure 3.

Let S denote the LPT schedule at hand, and let M be the
set of migrations of S. Let m∗, h∗, t∗, l∗ and t̄, as defined
earlier in this section, correspond specifically to the given
schedule S.

Given schedule S, we now construct a subset of M and two
schedules for this subset. Let M be the subset of M com-
prising all the migrations m having the following properties:
d(m) = h∗, l(m) ≥ l∗S , and eS(m) > t̄. Obviously, any
schedule for M uses c∗ channels. Let S be an LPT sched-
ule for M and let S′ be a schedule constructed from S by
shifting the start time of every migrations in S by t̄. Thus,

7

Figure 3: Illustration for Lemma 11.

S′ has a gap of length t̄ at time 0 on each channel. Finally,
let L and L′ be, respectively, the makespan of S and S′. By
construction, L′ = L+ t̄.

Due to Lemma 6, it is easy to see that for any time point t
such that t̄ < t ≤ t∗, the cardinality of F ∗

S (t) is c
∗. Also, by

construction, the scheduling order among migrations in M
is the same in schedules S and S′ (ignoring without loss of
generality any permutations among migrations having the
same length). We now prove by induction on the scheduling
order, that for any migration m ∈ M with tS(m) > t̄, we
have the precedence F ∗

S (tS(m)) ≺ F ∗
S′(tS′(m)). It should be

observed that the migration ending last in S′ is not neces-
sarily m∗, as can be seen in Figure 3.

The induction base is the earliest migration in the scheduling
order that starts after t̄. In this case the fronts consist of
the end times of the first c∗ migrations (both in S and in
S′). By construction of S′, the first c∗ migrations start at
time t̄, while in S they start at times less than or equal to t̄.
Thus, the end time of each of the first c∗ migration in S is
less than or equal to the corresponding end time in S′, and
the precedence holds.

Now, assume the precedence holds for all migrations hav-
ing start times greater than t̄ in the scheduling order of M ,
through migration mi. Then it must hold also when the
next migration is scheduled, since the two fronts are ad-
justed by increasing the respective lowest end times by the
same amount l(mi). This holds even if there are multiple
migrations with the same start time tS(mi), since a differ-
ent member in the front will be adjusted for each of these
migrations. Hence, the precedence holds for all migrations
starting after t̄, and in particular for m∗, meaning that m∗

ends in S′ no earlier than in S.

By construction, eS′(m∗) = eS(m
∗) + t̄. Also, it is obvious

that eS(m
∗) ≤ L, and t̄ ≤ OPT . Therefore,

L = eS(m
∗) ≤ eS′(m∗) = eS(m

∗) + t̄ ≤ L+OPT (8)

It remains to evaluate an upper bound on L. By construc-
tion, m∗ is the shortest migration in M . Also, it is obvious

that OPT ≥ OPT . Thus, for any migration m ∈ M ,

l(m) ≥ l∗ >
1

3
OPT ≥ 1

3
OPT

It should be observed that M is equivalent to a classical mul-
tiprocessor scheduling problem with c∗ processors (it con-
tains only migrations to the single host h∗). It has been
shown in [11] that for multiprocessor scheduling, if all the
jobs are longer than one-third of the optimum makespan,
then LPT necessarily produces an optimal schedule. In our
case, this means that L = OPT . By substituting into equa-
tion 8, we obtain the claimed bound.

Theorem 12. The upper bound on the makespan of the
LPT algorithm for host evacuation is:

L ≤
(
7

3
− 2√

3C

)
OPT (9)

Proof. For C = 1, obviously any greedy schedule is op-
timal. For C ≥ 2, if l∗ > 1

3
OPT , then by Lemma 11,

L ≤ 2 · OPT , which is strictly less conservative than the
bound we want to prove. Otherwise, by substituting γ = 1

3

in equation 6 we obtain the claimed bound.

It is an open question whether the upper bound on LPT for
host evacuation in equation 9 is tight.

An interesting consequence of equation 1 is that for scenarios
with large volumes of migrations, the corresponding γ would
be small. This yields better approximation bounds. For
example, if lmax = 10, C = 4 and V = 160 (e.g., a total of
40 migrations of average length 4), the resulting γ would be
0.25. Substituting γ in equation 6, the corresponding upper
bound would be 1.75, which is considerably better than 2,
derived from the LS bound in equation 7, and slightly better
than 1.7559, derived from the LPT bound in equation 9.

3.4 (2+ǫ)-Approximation Algorithm
Here we show how to construct a polynomial time (2+ǫ)-
approximation algorithm for the host evacuation problem,
using a Polynomial Time Approximation Scheme (PTAS) of
the classical multiprocessor scheduling problem [15].

Theorem 13. Given a polynomial time B(p)-approxima-
tion algorithm for the multiprocessor scheduling problem with
p processors, there exists a polynomial-time (1 + B(C))-
approximation algorithm for the host evacuation problem
with effective concurrency C.

Proof. Let ALG denote the algorithm for multiproces-
sor scheduling. We construct the following algorithm for
host evacuation.

1. Schedule migrations using any greedy algorithm, e.g.,
LS with an arbitrary migrations ordering. Let S be
the resulting schedule.

8

2. Let t̄ be the earliest point of time in schedule S at
which some channel is free. Let H be the set of desti-
nation hosts with migrations having start time at least
t̄. For each h ∈ H, letMh be the set of migrations with
destination host h and end time greater than t̄, and let
M = ∪h∈HMh.

3. For each h ∈ H, construct a schedule Sh for the set
of migrations Mh with c(h) channels using algorithm
ALG (following the straightforward conversion bet-
ween the two problems).

4. For each h ∈ H, construct a schedule S′
h from Sh by

shifting the start time of each of the migrations in Sh

by t̄.

5. Let S′ = ∪h∈HS′
h, and let Ŝ be the sub-schedule of

S for the set of migrations M̂ = M \ M . Output the

schedule S0 = Ŝ ∪ S′.

Let C =
∑

h∈H
c(h) be the sum of concurrency limits of the

set of hosts H, and let Ĉ be the number of channels that

are engaged in migrations of M̂ at time t̄. By Lemma 6,

Ĉ + C ≤ C.

We first consider schedule Ŝ. Since no migration starts after

time t̄ in schedule Ŝ, and t̄ ≤ OPT , it follows that the end
time of the last migration in this schedule is at most 2·OPT .

Thus, the makespan of schedule Ŝ is at most 2 ·OPT .

We now consider schedule S′. For each host h ∈ H, the
algorithm solves a multiprocessor scheduling problem with
the set of migrations Mh and c(h) channels, using a B(C)-
approximation algorithm. Thus, the makespan of each of
the schedules Sh is at most B(C) · OPT . Since each of the
sub-schedules S′

h starts at time t̄ and t̄ ≤ OPT , it follows
that the makespan of schedule S′ is at most (1+B(C))OPT .

Finally, we consider schedule S0. Since schedule Ŝ is a sub-
schedule of S, schedule S0 complies with all the concurrency
limits at any time t ≤ t̄. Since each of the schedules S′ and

Ŝ complies with all concurrency limits at any time t ≥ t̄, and

having Ĉ+C ≤ C, schedule S0 complies with all the concur-
rency limits at any time t ≥ t̄. Thus, schedule S0 complies
with all the concurrency limits at all times. The makespan

of schedules S′ and Ŝ is at most (1+B(C))OPT . Therefore,
the makespan of schedule S0 is at most (1+B(C))OPT .

By using the PTAS for multiprocessor scheduling problem
given in [15], we obtain the following corollary.

Corollary 14. For any ǫ > 0, there exists a polynomial-
time (2+ǫ)-approximation algorithm for the host evacuation
scheduling problem.

4. CUSTOM HEURISTICS
The LS and LPT heuristics were originally designed for the
multiprocessor scheduling problem. In fact, when applying
LPT in the context of host evacuation, the strict LPT order
of all migrations is not an inherent property of the resulting

schedule. On the other hand, LPT order is always main-
tained among the migrations of each destination separately.

With this observation in mind, we introduce a family of cus-
tom scheduling heuristics for host evacuation. Although the
approximation bound of the custom heuristics is identical to
LPT (see Theorem 15), in Section 5 we demonstrate empir-
ically that the custom heuristics achieve considerably better
results than LPT.

Custom Scheduling Scheme:

Perform the following steps repeatedly until all migrations
have been scheduled.

1. For each destination host that is available (i.e., it is
possible to schedule another migration to that desti-
nation without violating its concurrency limit), desig-
nate as candidate for scheduling the longest unsched-
uled migration to that host.

2. Select for scheduling one of the candidate migrations,
according to a given evaluation function (see below).

3. Advance the schedule to the earliest time point where
some channel is free.

It should be observed that in this scheduling scheme, mi-
grations are not scheduled according to a sorted list of all
migrations. However, the migrations of each destination are
scheduled in non-increasing order of lengths.

Let us define the residual volume of a destination host at a
given point in time, to be the sum of all unscheduled migra-
tions to that destination. The normalized residual capacity
is a quantity obtained by dividing the residual capacity by
the corresponding concurrency limit.

We now present two basic evaluation functions, and a variant
of each. The rationale behind all functions is to postpone as
much as possible the point in time at which channels become
underutilized. In other words, a point where only migrations
to a few destination hosts remain unscheduled, such that
the sum of concurrency limits of the remaining destinations
gets below the the number of channels. Informally, we would
like to keep the residual volumes of all destinations as close
together as possible, in an attempt to defer t̄.

Max: Select the candidate migration of the destination host
with the largest residual volume.

Max-norm: Similar to max, except that normalized resid-
ual volumes are used instead of residual volumes.

Balanced: Select the candidate migration such that after
it is scheduled, the difference between the largest and
smallest residual volumes of all destinations is mini-
mized.

Balanced-norm: Similar to balanced, except that nor-
malized residual volumes are used instead of residual
volumes.

9

Theorem 15. The approximation bound of the custom
heuristics for host evacuation (max, max-norm, balanced,
balanced-norm) is:

7

3
− 2√

3C

Proof. The arguments used in the proof of Lemma 11
and Theorem 12 for LPT are valid also for the custom
heuristics, for the following reasons. Due to Lemma 6, start-
ing with t̄, the behavior of the custom schedule is identical
to the LPT schedule. Moreover, the proof for LPT does not
assume anything regarding the ordering of migrations prior
to t̄ (except for the greedy nature of the algorithm).

It is an open question whether this approximation bound for
the custom heuristics is tight.

From an algorithmic perspective, the four custom heuristics
and LPT can all be combined into a single hybrid approxi-
mation algorithm, which applies each of the heuristics, then
returns the schedule that achieves the smallest makespan.

5. EMPIRICAL RESULTS
In this section we examine how the scheduling heuristics
perform in practice. Generating samples of host evacuation
instances and applying the heuristics, we show that the cus-
tom heuristics produce optimal or close to optimal schedules
in a vast majority of the attempted samples.

We apply the heuristics to samples with a small number of
migrations (20–40 VMs on the evacuated host), then com-
pare the outcome to the optimal spolution. We are able to
ascertain the optimal makespan by leveraging a commercial
constraint programming solver. The results support our hy-
pothesis, that although the theoretic approximation bound
of our hybrid heuristic is the same as LPT (see Section 4),
our heuristic performs much better than LPT in practice.

We also demonstrate that the custom heuristics scale better
than a generic solver. We apply the heuristics and the solver
to large samples of 100–1000 migrations, while limiting the
solver either to a threshold on the running time or to a
threshold on the makespan. We then compare the results in
favor of our heuristics.

All the scheduling algorithms we have used are implemented
in Java, and all measurements were done on a standard
workstation computer (Intel Core 2 Duo 2.33 GHz, 2GB
of RAM).

5.1 Simulation Framework
In order to assess the various scheduling approaches, we have
built an extensive simulation framework that simulates a
variety of host evacuation setups, having different combina-
tions of the following parameters:

• Number of destination hosts.

• Concurrency limit of each host.

• Number of VMs on the source host (being evacuated).

• Assignment of evacuated VMs to destination hosts.

• Sizes of the VMs (determining the migration length).

For each parameter, we have considered four statistical dis-
tributions: fixed, uniform, Gaussian and exponential. More-
over, we performed several iterations applying the same set
of distributions. Overall, the analysis was done using data
sets of 4050 samples each.

5.2 Using a Generic Solver
Aside from using common or custom heuristics, an alterna-
tive approach to solving scheduling problems is to deploy
generic constraint programming software (a “solver”). In
order to assess this approach, we have implemented a sched-
uler for host evacuation deploying the IBM ILOG CPLEX
CP Optimizer [16].

The solver can be invoked with an upper threshold on the
running time, or a lower threshold on the makespan. The
solver then stops either when it finds the optimal solution
(and is able to confirm its optimality), or when it crosses the
threshold, in which case it returns the best solution found
so far.

5.3 Comparison of Schedulers
For small samples of 20–40 migrations, it takes the solver few
seconds to find the optimal solution. We use these results to
assess the approximation quality of our custom heuristics.
The comparison among the different heuristics is summa-
rized in the table in Figure 4.

Figure 4: Comparison of heuristics by distance from

optimum.

It can be seen that the hybrid heuristic finds the optimal
solution in 77.7% of the samples, while in another 21.7% of
the samples it finds a result which is less than 5% away from
optimal. This leaves just 0.6% of the samples in which this
heuristic produces a makespan that is away from optimal
by more than 5%. Also, it can be seen that on average,
the max heuristic produces the best results among the in-
dividual heuristics. It finds the optimal solution in 66.6%

10

of the samples, and achieves a makespan at most 5% from
optimal in another 29.4%, compared to 57.5% and 35.4% for
balanced, and 60.2% and 25.2% for LPT).

We have compared the average approximation quality of the
custom heuristics under different statistical distributions of
some of the sample parameters. The results are shown in
Figure 5, which considers distribution of migration lengths,
and in Figure 6, which considers distribution of concurrency
limits of destination hosts. It can be seen that in both
cases, the heuristics are most successful in finding the opti-
mal schedule when the statistical distribution is exponential,
and least successful when the distribution is normal. More-
over, it can be seen that the trend that max provides better
approximation than other individual heuristics (but worse
than their combination) holds also for data sets restricted
to specific distributions. These results can be used to assess
the expected approximation quality of the heuristics under
specific conditions, such as when the statistical distribution
of the problem parameters is known.

Figure 5: Comparison of heuristics by migration

length distribution.

For large samples of 100–1000 migrations, we have utilized
the solver in two ways: finding the optimal solution, and ap-
proximating the optimal solution by finding at least the same
solution as our heuristic. We accomplished the latter by in-
voking the heuristic and recording the achieved makespan,
then invoking the solver while aiming at finding a schedule
with the same makespan. The comparison results are sum-
marized in Figure 7. It can be seen that the custom heuristic
takes significantly less time than the solver approximation,
which in turn takes less time than finding the optimal solu-
tion.

To summarize, our experiments show that the hybrid heuris-
tic algorithm achieves very good results for host evacuation,
both in terms of accuracy, and in terms of scalability. More-
over, it significantly outperforms the LPT heuristic. Finally,
its simplicity is an important factor when comparing with
heavier tools like generic solvers.

Figure 6: Comparison of heuristics by concurrency

limit distribution.

Figure 7: Performance of custom heuristic vs. solver

for large samples.

6. FUTURE RESEARCH DIRECTIONS
This paper is an initial step in exploring scheduling and man-
agement aspects of VM placement changes. There are op-
portunities to continue this research in multiple directions.

6.1 Modeling of Resource Constraints
The migration scheduling model described in Section 1.1 can
be enhanced to capture resource constraints more accurately.
Instead of defining a fixed concurrency limit per each host,
the following more flexible schemes could be used.

Elastic bandwidth utilization: Utilized network band-
width is defined as a function of allocated network band-
width, with minimum and maximum thresholds. A typical
function can be: zero below minimum, linear between min-
imum and maximum, or flat above maximum. Migration
speed is proportional to utilized bandwidth. The model used

11

in this paper can be considered a special case, where mini-
mum equals maximum.

Dedicated processor and network resources: Certain
amount of CPU and network bandwidth are dedicated to
migration work. Multiple migrations compete for CPU cy-
cles(on the the same host) and network bandwidth (depend-
ing on network capacity and topology).

Proportional processor and network resources: Each
migration has an amount of state to be transferred which
is proportional to the size of the VM. Assuming at least a
minimal amount of host CPU and network bandwidth are
dedicated to migration, a fixed ration of CPU and band-
width are allocated per 1MB of state transfer.

6.2 Generalized and Alternative Models
The migration scenarios considered in this paper have lim-
ited versatility, and the scheduling model is therefore rel-
atively straightforward. The model can be generalized to
accommodate a larger scope of realistic situations.

Precedence among migrations: The current model does
not accommodate precedence constraints among migrations,
other than those derived from concurrency limits. This
might not be realistic in environments with large number
of hosts and VMs, where free resources are too fragmented.
This situation imposes a constraint on the sequencing of
migrations. Moreover, routing of migrated VMs via inter-
mediate hosts may become necessary, in order to match the
migrated VMs to free resources. Precedence constraints may
be also be needed due to functional aspects of the applica-
tions running on the VMs. To capture such constraints,
the model can be augmented with a partial order among
migrations. It should be observed that there could also be
requirements to interleave migrations with other placement
operations, such as deployment of new VMs.

Scheduling without predefined placement: In our mo-
del, the destination host of each migrated VM is prede-
fined. In some situations, such as emergency host evacu-
ation due to predicted hardware failure, it is beneficial to
consider a different placement scheme, where the destina-
tion of each migrated VM is derived from a schedule with
minimal makespan, observing the any concurrency and ca-
pacity constraints. After all the VMs are safely evacuated
from the failing host, another round of migrations can be
applied, to shuffle VMs around and achieve a more optimal
placement (for example, in terms of load-balancing).

Alternative optimization goals: The optimization goal
most commonly used, including in this paper, is to minimize
the makespan. Alternative goals can be considered, such as:

• Minimize the average completion time of all migra-
tions.

• By assigning a weight to each migration and setting an
upper bound on the overall migration time, maximize
the total weight of all migrated VMs. This is relevant
in situations where not all the migrations can be com-
pleted, due to time constraints (for example, outage of
the evacuated host is imminent within predicted time).

Offline migration: Our migration model assumes that all
VMs are online prior to evacuation, and stay online during
and after migration. Hence live migration techniques are
required, and concurrency constraints are imposed. In sce-
narios which are either highly time-constrained or resource-
constrained, such as emergency host evacuation, a modified
approach can be used. Only a select subset of the VMs are
migrated live. The remaining VMs are either shut down or
taken into hibernation at the original host (i.e., state infor-
mation that needs to be migrated is moved offline). This is
followed by offline migration of the VMs to their destination,
where the VMs are restarted. The decision which VMs to
migrate live can be made with the help of weights, as dis-
cussed above. The goal is to optimize the tradeoff between
increase in overall migration time (or resource utilization)
and the impact of taking some VMs offline.

6.3 Experimentation on a Real System
The empirical work described in this paper was done using a
specially designed simulation framework. The advantage of
this approach is that it enables experimentation with very
large problem sizes. However, the accuracy of the model
and performance of the algorithms should be put to test in
a real system environment with actual migrations.

7. CONCLUSIONS
This paper presented the problem of scheduling live migra-
tions of virtual machines during host evacuation. We defined
a model for the problem, and analyzed the approximation
bounds of two common scheduling heuristics. Although host
evacuation is a private case of the more general problem of
file transfer scheduling (and equivalently migration schedul-
ing), which has been previously investigated, we showed
improved approximation bounds for the private case. We
also constructed a (2+ǫ)-approximation scheme, and intro-
duced several custom heuristics for host evacuation, which
were shown to outperform the common heuristics in prac-
tice. This research can be extended in several directions,
exploring different aspects of scheduling and management
of VM placement changes.

8. REFERENCES
[1] S. Akoush, R. Sohan, A. Rice, A. W. Moore, and

A. Hopper. Predicting the performance of virtual
machine migration. In MASCOTS 2010: 18th annual
IEEE/ACM international symposium on modeling,
analysis and simulation of computers and
telecommunication systems, pages 37–46. Miami
Beach, FL, Aug. 2010.

[2] N. Alon, Y. Azar, G. J. Woeginger, and T. Yadid.
Approximation algorithms for scheduling on parallel
machines. Journal of Scheduling, 1(1):55–66, June
1998.

[3] E. Anderson, J. Hall, J. Hartline, M. Hobbesm,
A. Karlin, J. Saia, R. Swaminathan, and J. Wilkes.
Algorithms for data migration. Algorithmica,
57(2):349–380, June 2010.

[4] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In USENIX NSDI’05: 2nd
symposium on networked systems design &

12

implementation, pages 273–286. Boston, MA, May
2005.

[5] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson.
An application of bin-packing to multiprocessor
scheduling. SIAM Journal on Computing, 7(1):1–17,
Feb. 1978.

[6] E. G. Coffman Jr., M. R. Garey, D. S. Johnson, and
A. S. LaPaugh. Scheduling file transfers. SIAM
Journal on Computing, 14(3):744–780, Aug. 1985.

[7] E. G. Coffman Jr., G. S. Lueker, and H. G. Rinnooy
Kan. Asymptotic methods in the probabilistic analysis
of sequencing and packing heuristics. Management
Science, 34(3):266–290, March 1988.

[8] T. Erlebach and K. Jansen. Off-line and on-line
call-scheduling in stars and trees. In WG’97: 23rd
international workshop on graph-theoretic concepts in
computer science, LNCS Vol. 1335, pages 199–213.
Berlin, Germany, June 1997.

[9] R. Gandhi, M. M. Halldórsson, G. Kortsarz, and
H. Shachnai. Improved algorithms for data migration
and open shop scheduling. ACM transactions on
algorithms, 2(1):116–129, Jan. 2006.

[10] M. R. Garey and D. S. Johnson. Computers and
intractability, a guide to the theory of
NP-completeness. W. H. Freeman & Co., San
Francisco, 1979.

[11] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics,
17(2):416–429, Mar. 1969.

[12] F. Harche and S. Seshadri. An LPT-bound for a
parallel multiprocessor scheduling problem. Journal of
Mathematical Analysis and Applications,
196(1):181–195, November 1995.

[13] E. Harney, S. Goasguen, J. Martin, M. Murphy, and
M. Westall. The efficacy of live virtual machine
migrations over the internet. In VTDC’07: 2nd
international workshop on virtualization technologies
in distributed computing. Reno, NV, Nov. 2007.

[14] M. R. Hines and K. Gopalan. Post-copy based live
virtual machine migration using adaptive pre-paging
and dynamic self-ballooning. In VEE’09: The 2009
ACM SIGPLAN/SIGOPS international conference on
virtual execution environments, pages 51–60.
Washington, DC, Mar. 2009.

[15] D. S. Hochbaum and D. B. Shmoys. Using dual
approximation algorithms for scheduling problems:
theoretical and practical results. Journal of the ACM,
34(1):144–162, Jan. 1987.

[16] IBM Corporation. IBM ILOG CPLEX CP optimizer,
Data sheet, Somers, NY, June 2010.

[17] T. Y. Kao and E. A. Elsayed. Performance of the LPT
algorithm in multiprocessor scheduling. Computers &
Operations Research, 17(4):365–373, 1990.

[18] C. Lee and J. D. Massey. Multiprocessor scheduling:
an extension of the multifit algorithm. Journal of
Manufacturing Systems, 7(1):25–32, 1988.

[19] C. Lee and J. D. Massey. Multiprocessor scheduling:
combining LPT and multifit. Discrete Applied
Mathematics, 20(3):233–242, 1988.

[20] S. Nakano and T. Nishizeki. Scheduling file transfers
under port and channel constraints. International

Journal on Foundations of Computer Science,
4(2):101–115, June 1993.

[21] S. Venkatesha, S. Sadhu, and S. Kintali. Survey of
virtual machine migration techniques. Technical
report, Dept. of Computer Science, University of
California, Santa Barbara, 2009.

[22] M. Zhao and R. J. Figueiredo. Experimental study of
virtual machine migration in support of reservation of
cluster resources. In VTDC’07: 2nd international
workshop on virtualization technologies in distributed
computing. Reno, NV, Nov. 2007.

13

