
H-0299 (H1102-014) February 12, 2011
Computer Science

IBM Research Report

Policy-Driven Service Placement Optimization in
Federated Cloud

David Breitgand
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Alessandro Maraschini
Telespazio

Via Tiburtina
965 - 00156, Rome, Italy

Johan Tordsson
Department of Computing Science

Umea University
901 87 Umea, Sweden

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Policy-Driven Service Placement Optimization in
Federated Clouds

David Breitgand
IBM Haifa Research Labs
Haifa University Campus,

Mount Carmel, Haifa, 31905, Israel
davidbr@il.ibm.com

Alessandro Maraschini
Telespazio

Via Tiburtina
965 - 00156, Rome, Italy

alessandro.maraschini@telespazio.com

Johan Tordsson
Department of Computing Science

Umeå University
901 87 Umeå, Sweden

tordsson@cs.umu.se

Abstract—Efficient provisioning of elastic services constitutes a
significant management challenge for cloud computing providers.
We consider a federated cloud paradigm, where one cloud can
subcontract workloads to partnering clouds to meet peaks in
demand without costly over-provisioning. We propose a model for
service placement in federated clouds to maximize profit while
protecting Quality of Service (QoS) as specified in the Service
Level Agreements (SLA) of the workloads. Our contributions
include an Integer Linear Program (ILP) formulation of the
generalized federated placement problem and application of this
problem to load balancing and consolidation within a cloud, as
well as for cost minimization for remote placement in partnering
clouds. We also provide a 2-approximation algorithm based on
a greedy rounding of a Linear Program (LP) relaxation of the
problem. We implement our proposed approach in the context
of the RESERVOIR architecture.

I. INTRODUCTION

Cloud computing facilitates thin provisioning through elasti-
cally matching variations in workloads by dynamically chang-
ing resource allotments to services. This way, non-functional
Service Level Objectives (SLO) are maintained in spite of
unpredictable workload spikes on the one hand, and, on the
other hand, under-utilization is minimized when the load
subsides. We consider a popular Infrastructure as a Service
(IaaS) paradigm where service providers rent Virtual Exe-
cution Environments (VEE) on-demand from IaaS providers.
These VEEs are used by the service providers to supply a
functionality, a service, to the end-users. Usually, the IaaS
provider is oblivious to the service semantics. From the IaaS
service provider’s vantage point, each service is a structured
collection of VEEs. It is the responsibility of the service
provider to dimension capacity of its service in terms of the
number of VEE instances and instance sizes to achieve the
desirable end-user QoS for the expected load levels.

An IaaS provider faces the problem of finding an optimal
– according to some criterion set by the provider – mapping
of the VEEs that comprise the services to physical hosts. If
the VEEs of the service are successfully placed, the user-level
QoS is protected. Obviously, achieving this goal at all times
for the unlimited services population requires the IaaS provider
to maintain significant server capacity. While this may be a
possible, albeit not very cost-efficient, model for a handful
of large providers, it is not a viable strategy for small and

Fig. 1. The RESERVOIR Model

medium-sized ones. This problem is a key motivation for
the RESERVOIR project [1], which is centered around the
concept of organizing multiple data centers (IaaS providers)
of varying sizes into a federation of clouds, where capacity can
be shared by peer clouds, while each of these still preserves
full business autonomy. Figure 1 depicts the RESERVOIR
federation model. The architecture is discussed in greater
details in Section IV. At this point in our presentation, it is
important to stress that in this model, every IaaS cloud operates
as an autonomous business that has its own administrative
policy with respect to solving the VEE placement problem.
As such, one cloud may place VEEs to minimize the number
of powered up physical hosts aiming at maximal consolidation.
Another may use a different placement policy, e.g., load
balancing in a strive to equalize load variance across the active
hosts.

In RESERVOIR, the structure of an elastic service is de-
clared in a service manifest along with cardinality constraints
for the VEEs that make up the service. At run time, the
structure of the service remains fixed, but the number of VEE

instances varies. Thus, at any given point in time, each service
presents the IaaS provider with requirements expressed in
terms of a number of VEE instances of different sizes.

RESERVOIR follows the approach of Amazon EC2 [2] by
offering capacity using discrete virtual hardware configura-
tions. We refer to each such configuration as VEE type. One
important difference from the Amazon EC2 model is that in
RESERVOIR, VEE types also include availability SLOs as
part of the type definition. The charge-back is based on both
the virtual capacity size and availability level.

Each successfully provisioned service (i.e., set of placed
VEE instances) produces revenue for the IaaS provider on a
per VEE and CPU hour basis. Providers that participate in
the federation are interested in maximizing their own profit
from placement of VEE instances. However, each provider
optimizes this objective subject to its local placement policy.
To facilitate capacity sharing, peer clouds enter framework
agreements. These agreements specify the number of VEE
instances of each type that on demand can be offered to a cloud
from its peers, and at what cost. In addition, the framework
agreement specifies availability SLOs and security levels for
the VEE types offered. Table I provides an example framework
agreement that illustrates how a cloud can place VEEs in three
peer clouds.

TABLE I
FRAMEWORK AGREEMENT EXAMPLE WHERE THREE PEER CLOUDS IN

TOTAL PROVIDE SEVEN VEE OFFERS.

ID Type Number Site Cost QoS Security
1 Large 4 UMU 0.15 Golden High
2 Large 2 UMU 0.25 Platinum High
3 Small 10 UMU 0.05 Golden Medium
4 Small 10 IBM 0.02 Golden Medium
5 Medium 5 IBM 0.10 Golden High
6 Large 2 Tele 0.28 Platinum High
7 Small 4 Tele 0.10 Platinum High

In the context of our federation model, we define a
novel Federated VEE Placement Optimization Meta-Problem
(FVPM), where each cloud autonomously maximizes the
utility of VEE placement using both the local capacity and
remote resources available through framework agreements.

Different local placement policies can be incorporated into
the framework provided by FVPM. We present Integer Linear
Program (ILP) formulations for two local VEE placement
optimization policies: power conservation and load balanc-
ing. The objective of the power conservation policy is to
maximize consolidation of VEEs onto the physical hosts
while maximizing utility of the placement. Load balancing
aims at equalizing the load among physical machines with
respect to a single, configurable, capacity dimension such
as CPU utilization, memory usage, network bandwidth, etc.,
while at the maximizing utility of the placement. These two
local placement optimization policies are augmented by a
remote placement cost minimization policy. The latter policy is
applied by each cloud to remotely place the VEEs that cannot

be feasibly placed locally.
For small clouds with few VEEs and hosts, the FVPM

may be solved exactly. However, for large-scale placement
problems even the state of the art ILP solvers may experience
difficulties. We show that under realistic assumptions our
problem is amenable to a highly scalable 2-approximation
heuristic. This heuristic uses LP relaxation to solve local part
of the FVPM in each cloud and then applies a greedy LP
rounding heuristic to the fractional solution. The rounding
heuristic makes use of remote placement enabled by the
framework agreements.

In summary, our contributions are as follows. We present
an architecture for policy-driven placement of VEEs in a
federation of clouds. We formulate a novel combinatorial
optimization meta-problem, the FVPM. The problem is con-
cretized in the form of policies for power saving and load
balancing within a cloud, as well as cost minimization for
placement in peer clouds. We also provide a highly scalable
2-approximation algorithm for the FVPM. Finally, we describe
the integration of our proposed algorithms in the RESERVOIR
architecture.

The rest of this paper is organized as follows. Section II
describes our model for federated cloud computing and in-
troduces the notation. Section III presents the problem and
describes the algorithms used to solve it and provides their
analysis. In Section IV we outline the architecture for im-
plementing the proposed approach. Finally, some concluding
remarks are found in Section VI.

II. MODEL

In this section we describe our model for federated cloud
computing that forms the background for the studied place-
ment problems. Our model comprises multiple clouds (IaaS
providers) where each cloud consists of a set physical hosts
used to provision VEEs. Each VEE has an availability SLO
associated with it, which is part of a service SLA. Each VEE
generates a certain revenue per time unit for the cloud provider
according to the actual usage by the customer. Obviously,
provisioning imposes variable production costs such as power
consumption and SLA incompliance penalties unless avail-
ability SLOs of the service SLA are met. Also included in
the model are costs associated with migration of a VEE from
one physical host to another, potentially located in another
cloud. The latter scenario is regulated through a framework
agreement between the two clouds.

Formally, we consider a set of cloud providers c1, . . . , cn
where each cloud c has mc physical hosts. A physical host
can be viewed as a d-dimensional knapsack of capacity
B = (b1, . . . , bd) where each dimension represents a hardware
capacity feature, e.g., number of CPUs, memory size, disk
volume, or network bandwidth. We assume discrete time
t1, t2, . . ., where at each time instance tk, each cloud provider
c is given nc d-dimensional items, VEEs, that have to be
mapped on the physical hosts available to this provider locally,
or remotely via the framework agreements with the peer

2

clouds1.
All VEEs are offered with discrete virtual hardware con-

figurations, i.e., there are a few pre-defined sizes of VEEs in
terms of CPU, memory, disk, etc. Each VEE has an availability
SLO associated with it. The availability SLO is a tuple of the
following generic form: (availability test, frequency, success
ratio, billing period). An SLO that checks whether a service
is online can look, e.g., as follows: (ping host, 1 per minute,
98 %, 30 days)2.

If an availability SLO of VEE j is breached, the SLA
where this SLO is one of the clauses mandates a penalty
fine(j) at the end of the billing period. Usually this penalty
does not exceed the actual revenue generated by the VEE
during this period. The customer gets compensated by the
service credit for the next billing period. From the provider’s
vantage point the direct repercussion is a loss of revenue
for the next billing period should the customer indeed use
the service [2]–[4]. Indirect losses, for example, in terms of
provider reputation, might be much more significant, but they
are also more difficult to estimate and are omitted in this work.
In our modeling we take a conservative approach and assume
that if a SLO of the customer is breached in the current billing
window, revenue is lost in the next window.

We assume that each cloud provider c has fc framework
agreements with its peer providers. Each framework agreement
(corresponding to one line in Table I) mandates how many
VEEs of a given type can be placed in a peer cloud under
a given availability SLO. Table I shows a simple example of
how a cloud can place VEEs in three peer clouds.

If placed at time t, each VEE j is expected to produce
value vj,c for cloud provider c in the interval (t, t + 1), and
0 otherwise. The value is expressed in monetary terms as
the price paid by the customers of this cloud provider for
obtaining a VEE. We assume a fixed price model, i.e., the
value produced by the placed VEE is time-independent and
utilization independent. Each placement configuration exacts
costs of provisioning on a cloud provider. The objective of
each cloud provider c is to maximize its revenue, expressed
by the utility function:

z =

T∑
t=1

n∑
j=1

(vj − ptj). (1)

In Equation 1, ptj is the cost of placement that VEE j incurs
on the cloud provider at time t 3. The placement may be either

1We make an assumption that every VEE can be placed in any of the
peer clouds having framework agreements, without sacrificing the QoS of the
service to which this VEE belong.

2Depending on the availability test, a cloud provider may have to allocate
different amount of resources to metering and monitoring. A more sophisti-
cated type of availability test would be for example, logging into the system,
executing some synthetic transactions and measuring their response time and
throughput. The RESERVOIR model favors diversifying availability tests and
embedding them within the standardized SLA offerings that are provided to
the customer at different price levels.

3We omit the index c for simplicity of notation wherever this does not lead
to ambiguity.

local or remote. T is a billing period that comprises multiple
time intervals.

It should be noted that the actual value vj generated by VEE
depends on whether the user actually boots VEE j after it is
being placed by the provider. Obviously, it is possible to obtain
0 value from placing a VEE, if the user requests the VEE
and then immediately shuts it down. The value obtained from
placing a VEE on discrete time intervals is a binary random
variable with value 1 if the user has powered up the VEE
during this interval and 0 otherwise. Although observations
of historical VEE behavior may be used to predict activity
in future time intervals, we take a conservative approach and
assume VEEs to be active after initial placement until they are
decomissioned on request from the user.

It should be noted that non-placing a VEE at time t may
result not only in losing revenue for the next time interval
(t, t+1), but also in penalties at the end of the billing period
(as explained above) if non-placement at time t breaches
availability SLO of the VEE in this billing period. The various
aspects that affect the cost of placing a single VEE are
modelled as follows:
• If VEE j is placed remotely at cloud c2 using an

appropriate framework agreement fc1,c2 between clouds
c1 and c2, c1 pays a provisioning fee costfc1,c2c2 (jc1) to
c2.

• If at time t− 1 VEE j is placed in cloud c1 and at time
t, VEE j is placed remotely at cloud c2, then a long-haul
migration penalty long migrc1,c2(j) is incurred on cloud
c1. This cost component is motivated by payments by
cloud c to the Internet service provider and performance
deterioration due to the long distance migration.

• If at time t − 1 VEE j is placed at host h1 in cloud
c and at time t VEE j is placed at host h2 6= h1
within the same cloud c, then a local migration penalty
local migrh1,h2

(j) is incurred on cloud provider c. This
cost component is motivated by the fact that each in-band
VEE migration competes for the same network resources
as the regular services and thus potentially degrades their
performance.

• If at time t− 1, a host h in cloud c is not used to place
any VEE and at time t host h is used to hold at least one
VEE, cost pow(h) of using the host h is incurred on the
cloud provider c. The motivation for this cost is given by
the operational expenses such as power, cooling, etc.

Definition 1. The Federated VEE Placement Meta-Problem
is to find a placement configuration that maximizes the utility
function of Equation 1.

FVPM is an optimization meta-problem in the sense that
different concrete optimization policies can be plugged into
this framework by each cloud c. A local placement optimiza-
tion problem at any cloud has the generic form shown in
Equation 1. However, a concrete problem for a given cloud is
formulated subject to the management policies that are pursued
by this cloud.

The term policy-driven management usually implies the

3

management approach based on executing the rules of the form
if(condition)-then(action) that are defined to handle various
situations. For example, a rule may be defined that if the
average CPU utilization of a cluster of VEEs exceeds a pre-
defined threshold, say, 30%, an additional VEE is added to the
cluster. These simple policies serve as a basic building block
for autonomic computing.

However, the overall optimality criteria of placement, are
controlled by the management goals, which are defined at a
higher level of abstraction than condition-action rules. Man-
agement goals, such as to maximize utility of placement while,
e.g., conserving power, preferring local resources over remote
ones, balancing workload, minimizing VEE migrations, etc.
have complex logical structure and cannot trivially be ex-
pressed using condition-action rules. In our approach, specific
management policies denote the high-level management goals.
These placement policies influence the cost terms comprising
ptj in the utility function of Equation 1 and introduce (or
remove) placement constraints.

III. PLACEMENT OPTIMIZATION PROBLEMS

In this section we formulate concrete placement optimiza-
tion problems, to be used with the FVPM framework, as ILPs
and present algorithms to solve them. The number of decision
variables in these formulations can be quite large, however. For
example, for 1000 physical hosts and 10000 VEEs, 10 million
binary decision variables must be used. While some variables
can be eliminated by preprocessing of the input to remove
infeasible assignments, the problem may still have hundreds
of thousands of binary decision variables, which makes an
exact integer solution impractical even with the state-of-the-art
solvers. To cope with the large scale problems, we perform LP
relaxations and provide a simple 2-approximation greedy LP
rounding heuristic in Section III-D. This heuristic makes use
of the RESERVOIR federation model and remote placement
cost minimization policy described in Section III-F.

We start with the most basic problem formulation that aims
at minimizing provisioning costs due to penalties caused by
violation of availability SLAs, the latter in term resulting
from non-placement and migrations. We show that our basic
problem is essentially a Generalized Assignment Problem
(GAP) [5] with assignment restrictions. This basic formula-
tion serves as a building block for the power conservation
placement policy described in Section III-C and load balancing
placement policy presented in Section III-E.

A. SLA Incompliance Penalties Minimization

We start with formulating the basic optimization problem,
which is being invariant under any placement policy we
consider. More specifically, under any high level placement
policy we are interested to minimize the loss in value due to
penalties and unnecessary migrations that may degrade user
experience to the point of causing service unavailability. Let
ytj denote a binary decision variable such that

ytj =

{
1 if VEE j is placed at time t, and
0 if VEE j is not placed at time t.

(2)

As explained in Section II, each VEE has an availability
SLO associated with it. This SLO defines percentage of non-
placements that can be accumulated during the billing period
T , before SLO incompliance is declared and fine(j)(T) is
exacted on the cloud provider. Notably, the fine does not
exceed 100% of the value generated in this billing period.
We term this percentage the breach budget of VEE j. Another
notable side effect of relating service credits to the pay-as-you-
go usage fees practiced by most cloud providers is that if the
breach budget of a VEE is exceeded in the middle of the billing
period, provisioning this VEE in the reminder of the billing
period increases the fine that is to be exacted on the cloud
provider by the end of the billing period, while not placing
it would cap the losses by the already accumulated usage.
Conversely, while maximal revenue produced by a placed
VEE is determined by a CPU hour based pricing scheme and
is time-independent, the profit of placing VEEs that do not
exceed their breach budget increases with direct proportion
to their actual usage and is captured by the time-dependent
penalty finej(t).

If at time t VEE j is not placed, the cloud provider loses
the value v(j) for duration (t, t+1), but if the breach budget
by the time t+ 1 is greater than 0 in spite of non-placement,
no penalty is incurred on the cloud provider by the end of
T . Otherwise, the cloud provider loses v(j) as before and
in addition pays fine(j)(T) at the end of the billing period,
which is at least fine(j)(t), capturing actual usage of the VEE
by up to time t.

A cloud provider aims to maximize the objective function
of Equation 1. We define an indicator function Ij(t) per VEE
j as shown in Equation 3 and rewrite Equation 1 as shown
in Equation 4 to account for SLA violation penalties due to
non-placement of VEEs.

Ij(t) =

{
0 not placing j in (t, t+ 1) within breach budget,
1 otherwise.

(3)

z =

T∑
t=1

n(t)∑
j=1

(ytj · v(j)− (1− ytj) · fine(j)(t) · Ij(t)) (4)

This can be rewritten as:

z =

T∑
t=1

n(t)∑
j=1

(ytj ·(v(j)+fine(j)(t)·Ij(t))−fine(j)(t)·Ij(t)).

(5)
Since the second term is a sum of non-negative values, to

maximize z, one has to maximize the first term. Thus, we can
rewrite our problem simply as:

4

z =

T∑
t=1

n(t)∑
j=1

(vj + finej(t) · Ij(t)) · yj(t). (6)

.
This equation can be further rewritten as:

z =

T∑
t=1

n(t)∑
j=1

ytjvt(j), (7)

where

vt(j) =

v(j) if at time t, j

is within breach budget,
v(j) + fine(j)(t) otherwise.

(8)

B. Migration Costs Minimization

Our next step in modeling the basic problem is to account
for the costs due to unnecessary migrations of VEEs among
the hosts. An exact modeling of the migration penalty is highly
non-trivial. In an earlier contribution [6], we address modeling
of the live migration costs due to performance degradation
incurred on the VEEs by in-band migration. However, in this
work we leave the problem of how migration penalty should
be modeled out of the scope, assuming that migration penalties
are known for each VEE j and each pair of hosts. Let xti,j be
a binary decision variable such that:

xti,j =

{
1 if at time t VEE j is assigned to host i,
0 otherwise.

(9)

Assigning the value of ytj of Equation 7 to 1 means that at
most one xti,j is set to 1, while ytj = 0 means that all xti,j are
zero. We rewrite the optimization problem of Equation 7 as
follows:

z =

m∑
i=1

n∑
j=1

(xti,j · vt(j)− local migrit−1(j),it(j)(j)). (10)

We define:

it(j) =

i if at time t VEE j

is assigned to host i,
undefined otherwise.

(11)

Obviously, if a placement exists for a VEE at time t−1, the
maximal value for this VEE (if it is placed in the next cycle, t)
is attained if the VEE remains in place and no migration cost
is incurred. Thus, the problem of Equation 10 can be rewritten
as:

z =

m∑
i=1

n∑
j=1

xti,j · vt(i, j), (12)

where:

vi,jt =

{
vt(j) if it(j) = i,

vt(j)− local migrit−1(j),it(j)(j) otherwise.
(13)

To complete our problem formulation, we introduce a
number of placement restrictions. Constraint 14 ensures that
each VEE is assigned to at most one physical host in any
feasible placement:

∀i, j, t :
m∑
i=1

n∑
j=1

xti,j ≤ 1. (14)

Constraint 15 ensures that the total capacity requirements of
all VEEs assigned to a single host does not exceed capacity
of this host:

∀i, t :
n∑

j=1

xti,j · bd(j) ≤ bd(i). (15)

In addition to these, deployment constraints such as anti-
collocation constraints can be specified. Let AAGl denote sets
of VEEs that cannot be placed on the same physical host. The
the anti-collocation constraints can now be defined as follows:

∀i, l, t :
∑

j∈AAGl

xti,j ≤ 1. (16)

The objective function given by Equation 12 and con-
straints 14, 15, and 16 comprise our basic optimization prob-
lem.

Notably, the optimization problem that is greedily solved
at each time instance t is the well studied Generalized As-
signment Problem (GAP) [5] with assignment constraints.
In absence of placement restrictions GAP is known to be
APX hard [7]. In this context we consider both placement
restrictions and extensions to GAP, such as cost of booting
host for placement, to model variable production costs due
to energy consumption. As discussed in Section V, these
extensions make GAP considerably harder to approximate.

While we try to maximize the utility of placement at every
time instance t, a greedy algorithm does not have to be
optimal. An optimal algorithm, however, requires knowledge
of the future VEE placement requests and usage patterns. This
information is usually not available to cloud provider.

Small scale problems can be solved exactly. For large
instances, an exact solution is not a practical option and
approximations must be used. In Section III-D we present an
approximation heuristic based on ILP relaxation and greedy
LP rounding that – under reasonable assumptions about VEEs
and hosts – produces a 2-approximation for local placement.
The excess VEEs are placed in partner clouds under a remote
placement revenue maximization policy via the RESERVOIR
federation model as described in Section III-F.

C. Power Conservation Local Placement Policy

In the previous subsection we introduce the basic opti-
mization problem that remains invariant under any placement
policy. One specific placement policy that we consider, aims
at saving power usage via workload consolidation on a min-
imal number of physical hosts. We call this policy Maximal
Utility Maximal Consolidation (MUM-C). With this policy,

5

the host usage penalty is factored into the objective function
of Equation 12 as follows:

zmum−c =

m∑
i=1

n∑
j=1

(xti,j · vt(i, j))−
m∑
i=1

hti · pow(h). (17)

Constraint 14 and Constraint 16 remain the same. Con-
straint 15 changes as follows:

∀i, t :
n∑

j=1

xti,j · bd(j) ≤ bd(i) · hti, (18)

where:

hti =

{
1 if at time t host i is used for placing VEEs,
0 otherwise.

(19)
Together the objective function of Equation 17 and Con-

straints 14, 16, and 18 form our local power conservation
optimization problem. To allow for fast solutions, we relax
Problem 18 by allowing values for xti,j to assume values
in the interval (0, 1), rather than requiring them to be the
binary decision variables. Once a fractional solution to the
relaxed LP problem is obtained, we round it using the greedy
heuristic described in Section III-D. After rounding, there may
in each cloud exist VEEs that could not be placed locally.
These overflow VEEs are placed in peer clouds using the
minimal placement cost optimization algorithm described in
Section III-F.

D. Greedy LP Rounding Heuristic

In this section we describe the LP rounding heuristic. First,
we introduce a simplifying assumption, namely that every
VEE can be placed on every host in absence of other VEEs.
More formally, we assume that

∀d, j, i : bd(j) ≤ bd(i). (20)

We order all fractionally placed VEEs in descending order
of capacity required by the VEE and pass over this list, the
DC− list, sequentially. At every step j we make a sequential
pass over all the hosts and try to find a host i∗ such that:

n∑
k=1

v(jk) · xi∗,jk ≤ v(j) (21)

and for each capacity dimension d:

n∑
k=1

bd(jk) · xi∗,jk ≥ bd(j), (22)

with xi,jk ∈ (0, 1). In other words, we are looking for a
host i∗ where the total value of the sum of the fractional
assignments is no larger than that of j and total capacity taken
up by the sum of the fractional assignment is at least that of
j. If we find such a host i∗, we set xi∗,j = 1 and xi,j = 0
for all i 6= i∗. Otherwise, we drop j from the placement,

i.e., set xi,j = 0 for all i. If there exists an assignment of
VEE j

′
to host i∗, i.e., xi∗,j′ = 1, and there exists an anti-

collocation placement constraint that prevents placing j and
j
′

on the same host, we drop j from the current placement
if v(j, i∗) ≤ v(j

′
, i∗) and ∀d, bd(j) ≥ bd(j

′
). Otherwise, we

drop j
′

from the current placement, i.e., set xi,j = 0 for each
host i. VEEs that are dropped from placement at each step j
are also dropped from the DC-list and are put on the pending
remote placement list, the PRP − list.

Note that finding subsets satisfying Inequality 21 and In-
equality 22 is equivalent to solving an optimization version of
SUBSET-SUM decision problem [8]. SUBSET-SUM is an NP-
hard problem, but since in our case all values and capacities are
positive numbers, this problem admits a fully polynomial time
approximation scheme (FPTAS). Furthermore, in the average
case it might be expected that for any single host only a small
fraction of all VEEs are assigned to this host and therefore the
problem can be efficiently solved by dynamic programming or
even by direct search.

The rounding algorithm terminates when the DC-list is
empty. All VEEs omitted from the local placement are placed
remotely solving the optimization problem of Subsection III-F
exactly using ILP. In the worst case we have to place n

2 VEEs
on c clouds. So, this still potentially a large problem, but its
scale is smaller in the average case since c� n. It should also
be noted that remote placement is an additional task that does
not improve the theoretical bound on performance ratio given
by Lemma 3. Indeed, it is easy to construct scenarios where
placing each VEE remotely may produce only infinitesimally
small amount of profit to the cloud provider. However, it
is imporatant from a practical perspective. If the problem
of remote placement becomes to large to be solved exactly,
an LP relaxation of it can be solved, using greedy rounding
heuristic similar to the described treating peer clouds as large
knapsacks. Notably, any VEEs omitted from placement by the
remote placement, are omitted permanently. Alternatively, one
can order peer clouds in ascending order of cost and place
VEEs greedily.

Lemma 2. The LP rounding algorithm terminates.

Proof:
The DC-list can contain no more than n VEEs. At each

iteration at least one fractional decision variable gets rounded
after inspecting at most O(m) hosts at each step (m is the
number of hosts). Therefore there cannot be more than n
iterations, after which the algorithm terminates.

Lemma 3. The greedy rounding heuristic is a 2-
approximation.

Proof: In the worst case, each decision variable in the
LP solution is fractional. At every step j, the algorithm
frees at least capacity taken up by VEE j by rounding the
corresponding decision variables while loosing no more value
than v(j) in the relaxed LP solution. Since we process the DC-
list in the descending order of capacity, if a VEE is dropped

6

from placement (i.e., all its decision variables are set to 0), we
free at least the capacity needed to place at least one VEE that
follows the omitted VEE in the DC-list provided that no anti-
collocation placement restrictions exists for that VEE. Because
of Assumption 20, each host created in our rounding process
be utilized by at least one VEE. After n

2 iterations, there must
exist integral solution for at least n

2 VEEs with the total value
at least half of the value obtained in the relaxed LP solution.

E. Load Balancing Local Placement Policy

We next consider the VEE placement problem under the
policy of load balancing. In general, since multiple capacity
dimensions (e.g., CPU, memory, disk) with complex inter-
dependencies are involved, it is not trivial to define load
as a single dimensional metric. We thus consider a more
simple variant of the load balancing policy. Suppose, an
administrator selects a metric of interest, say memory or
CPU and requests a feasible placement such that residual
capacity with respect to the selected capacity dimension is as
equalized as possible across the physical hosts. More formally,
if capacity dimension bd is chosen for load balancing, then
freei = bd(i)−

∑n
j=1 xi,j · bd(j). VEE placement under the

load balancing policy with respect to bd is then to maximize
the objective function of Equation 12 under constraints 14, 15,
and 16 and to minimize zload, where:

zload =

√√√√ m∑
i=1

(freei − µd)2, (23)

with µ = 1
m

∑m
i=1 freei.

Notably, Equation 23 is the standard deviation of the resid-
ual capacity, which is a non-linear function. To stay with the
simple linear optimization, we use a heuristic to minimize
Equation 23, by sequentially solving our basic optimization
problem of Subsection III-B. Figure 2 presents the pseudo-
code of the algorithm.

Essentially, this is a binary search algorithm. In this al-
gorithm, successive attempts are being made to solve the
placement problem by assuming less capacity than actually
is available in each physical host. If a feasible solution is
obtained, a further decrease in capacity is attempted until no
feasible solution is found. At this point capacity is increased
and the process is repeated until no further capacity modifica-
tions are possible.

F. Cost Minimization Remote Placement Policy

The cost minimization algorithm places VEEs at remote
sites and is to large extent based on the information in the
framework agreements. This algorithm minimizes the total
cost for all remotely placed VEEs, while adhering to VEE
constraints in terms of hardware configuration, availability, etc.

Similarly to the power saving and load balancing algo-
rithms, we use a 0-1 ILP formulation for the cost minimization
policy. The inputs to the algorithm are the n VEEs and the m
different framework agreement offers FA1, FA2, . . . , FAm.

1. Load Balance(d, vees, hosts, ε) {
2. //d is capacity dimension along which load balancing is required;
3. //vees is the array of VEEs to be placed
4. //hosts is the hosts array
5. //ε stopping condition
6. low threshold = mind(vees); //VEE with minimal value of
d

7. util =
∑n

j=1 vees[i](d)/
∑m

i=1 hosts[i](d);
8. //ratio of total capacity required to total capacity available
9. //w.r.t. capacity dimension d
10. weight = min{1, util};
11. if (weight == 1) {//local capacity is fully utilized
12. Solve Equation 18;
13. Use Algorithm of Section III-F to place overflow VEEs;
14. }
15. lower = weight;
16. upper = 1;
17. while (|lower − upper| ≥ ε) { //main loop
18. for each i, s.t. host[i](d) > lower threshold(d),
19. hosts[i](d) = hosts[i](d) · weight;
20. Maximize Equation 12
21. if (result contains unplaced (or fractionally placed) VEEs)
22. lower = weight;
23. else
24. upper = weight;
25. weight =

(lower+upper)
2

;
26. //restore original values of capacity dimension d for all hosts
27. } //end: while (main loop)

28. } //end: Load Balance

Fig. 2. Pseudo-code for the threshold calculation algorithm.

The latter each corresponds to one specific offer, as defined
by one line in Table I. Now, let xij = 1 if VEE j is placed
remotely under FAi, and 0 otherwise. The total cost of the
remote placement (our objective function to minimize) now
becomes:

z =

m∑
i=1

(costi ∗
n∑

j=1

xij), (24)

where costi is the hourly cost for a VEE under framework
agreement FAi.

All solutions that minimize Equation 24 must adhere to the
following constraints:
• Framework Agreement granularity constraints - The

number of VEEs placed under each framework agreement
cannot exceed the number of VEEs offered. In other
words, for each framework agreement k,

∑n
j=1 xkj ≤

numberk where numberk is the number of VEEs of-
fered, as illustrated in Table I.

• Aptness constraints - a VEE may only be placed under a
framework agreement that fulfills the requirements of the
VEE in terms on VEE type, QoS, and security level. This
is encoded as follows. For each framework agreement
i and VEE j, add an additional constraint xij = 0
unless framework agreement i has the exact type (i.e.,
the same hardware capacity) that VEE j requests and the
framework agreement offers levels of QoS and security
at least as high as the VEE requests.

7

• Completeness constraints - this constraint expresses that
each VEE must be placed exactly once. We encode this
as: for each VEE l,

∑m
i=1 xil = 1.

IV. ARCHITECTURE

This section describes how our proposed algorithms for
VEE placement are incorporated in the RESERVOIR architec-
ture, which is outlined in Figure 3. The Service Manager (SM)
works at the level of abstraction of a service. The term service
is herein used to describe a collection of VEEs that provide
a functionality towards end-users. The overall configuration
of a service, including number and types of VEEs, VEE
affinity and anti-affinity constraints, SLAs, Key Performance
Indicators (KPIs) and elasticity rules, is specified in a service
manifest. Upon deployment of a new service, the SM requests
creation of new VEEs. Based on the service layout defined
in this manifest, the SM requests the creation of VEEs from
the Virtual Execution Environment Manager (VEEM). When
an elasticity rule is triggered in the SM (based on matching
of KPIs against monitoring data), additional VEEs may be
requested to be created or existing ones may be shut down.
Notably, we here only consider the case of horizontal elasticity,
i.e., creation of additional VEEs, and not vertical elasticity, i.e.,
allocation of more physical resources to existing VEEs.

One prominent feature in the RESERVOIR architecture
is that the actual physical layout of the VEEs of a ser-
vice is unknown to the SM. Management of the VMs of
the provisioned services and the physical hosts these VM
execute in is the responsibility of the VEEM. The Policy
Engine component of the VEEM decides the placement of
VEEs onto physical hosts. The VEEM Core is responsible for
the enactment of the placement, i.e., creation, deletion, and
migration of VEEs, as well as for other tasks in the VEE
life cycle, e.g., contextualization. These management actions
are performed by the VEEM Core via two interfaces, the
Virtual Host Interface (VHI) for interaction with local hosts
and Virtual Manager Interface (VMI) the for remote clouds.
The framework agreement between two sites defines the exact
terms for placement of VEEs at remote clouds. This agreement
specifies the offered number of VEEs, provisioning costs, SLA
levels, etc. as exemplified in Table I. The Virtual Execution
Environment Host (VEEH) layer is responsible for the low-
level management of VEEs on physical hosts, and thus creates
an abstraction over virtualization platforms such as KVM and
Xen, but can also accommodate other types of VEEs such as
virtual Java service containers.

As this work focuses on placement issues, our attention
in on the Policy Engine architecture. Figure 4 illustrates the
internal structure of the Policy Engine and also outlines its
main operations. The Policy Engine performs regular opti-
mization cycles, where the current state of the local cloud is
assessed and the distribution of VEEs over hosts is adjusted
accordingly. Such a cycle also includes placement of new
VEEs, that are created either upon admission of an additional
service, triggering of an elasticity rule for an existing service,

Policy
Engine

VEEM
Core

VEEM
VEEM

VMI

Service Manager

VEEH

VHI

VMI

Fig. 3. Outline of the RESERVOIR architecture that illustrates the relation-
ship between the Policy Engine and the related components.

or an incoming request for remote capacity from a partnering
cloud. Each optimization cycle includes the following steps:

1) Collection of state information from the VEEM database
and creation of the Object Model instance, containing
information about the available hosts, the VEEs and
their runtime state, as well as information about capacity
available (and currently used) in other data centers.

2) Gathering of placement information from the Policy
Repository: placement algorithms to be used, order to
apply these algorithms in, and policies configuration
parameters. Of particular interest here is the usage of
policy chains, which enable multiple algorithms to be
applied in sequence. This enables efficient implemen-
tation of the combination of local placement followed
by remote placement, further as was discussed in Sec-
tion III.

3) Solving the placement problem: in this phase the place-
ment algorithms gathered at previous step are executed
in the needed order and the optimized allocation is
determined for VEEs to hosts/remote data centers, with
respect to the Object Model, deployment constraints,
available capacity, and optimization criteria.

4) Enacting the placement decision: the resulting placement
decisions of previous step form a list of tuples that
map VEEs to hosts (for local placement) or framework
agreements (for remote placement). These are later con-
verted into placement and/or migration instructions and
sent to the VEEM Core, the component responsible for
performing the actual VEE deployment (or migration)
operations.

The components in the Policy Engine and their responsibil-
ities are as follows.
• The Lifecycle Manager component is responsible for

managing and coordinating all other Policy Engine com-

8

Data

Collector

 Policy Engine

Policy Manager

Lifecycle

Manager

1.

2.

3.

Placement

Manager

VEEM Core

4.

VEEM DB

Policy Repository

Solver

Placement Optimizer

Placement

Algorithm
Placement

Algorithm
Placement

Algorithm

Fig. 4. The main components of the policy engine and their interactions.

ponents. It periodically triggers the execution of a new
optimization cycle.

• The Data Collector is responsible for populating the
Policy Engine object model by connecting to and reading
from the VEEM Database.

• The Policy Manager component handles customization
of placement policies. It internally manages a database
of policies allowing dynamic loading, removing, and
updating of new policies from external libraries (jar files).

• The Placement Optimizer computes the optimal alloca-
tion of VEEs over hosts and/or other data centers. An
optimizer algorithm can be implemented directly in Java,
but does more commonly interact with a solver software
to calculate the optimal placement.

• The Placement Manager translates the placement deci-
sions into operations (deploy/migrate) and performs the
needed requests to the VEEM core.

In all, these components provide a flexible and configurable
framework for VEE placement optimization that allows us to
use the herein proposed algorithms in a real-world toolkit for
federated cloud computing.

V. RELATED WORK

Theoretical results related to this work include a contribu-
tion by Chekuri and Khanna [7], who observed that the work
of Shmoys and Tardos [5] implies a 2-approximation algorithm
for GAP, which is known to be APX-hard. Subsequently,
Fleischer et al. [9] design an e/(e−1)-approximation algorithm
. This approximation ratio was improved by Feige and Vondrák
[10] to e/(e− 1) + ε for some constant ε > 0.

Another related field of research is the application of

combinatorial optimization approaches to placement of virtual
machines across multiple clouds. Examples of contributions to
this area include Chaisiri et al., who propose a method to min-
imize the cost of renting virtual machines from public cloud
providers, where stochastic integer programming is used to
handle uncertainty in future prices and resource demands [11].
Van den Bossche et al. [12] study how to minimize cost of
external provisioning in a hybrid cloud scenario, where partial
workloads are outsourced from an internal cloud to public
providers. Their work focus on deadline-constrained and non-
migratable workloads, where memory, CPU, and networking
are taken into account in a binary integer programming
problem formulation. Van den Bossche et al. also provide
some experimental insight into the tractability of their problem
formulations.

Tordsson et al. [13] propose cloud brokering mechanism
where the virtual machines of a service are deployed across
multiple clouds to maximize performance, while considering
various constraints in terms of budget, service configura-
tion, load balance, etc. They formulate the cloud brokering
problems an an integer programming one, and demonstrate
the feasibility of the proposed approach by deploying and
benchmarking some sample service configurations.

Breitgand and Epstein [14] consider the problem of multi-
VM workload placement subject to set constraints that re-
quire to place full configurations to obtain maximum benefit.
Breitgand and Epstein also show that this problem cannot
be approximated to a constant factor and propose a column-
generation based approach to solve the large scale problems
exactly while trading precision for time.

VI. CONCLUDING REMARKS

We address the management challenge of efficient provi-
sioning of elastic cloud services with a federated approach,
where cloud providers can subcontract workloads among each
other to meet peaks in demand without costly overprovision-
ing. Our proposed placement algorithms aim at maximizing
provider profit while protecting QoS. These algorithms, cast
as ILP formulations, can be used to optimize power saving or
load balancing internally in a cloud, as well as to minimize the
cost for outsourcing workloads to external partners. We show
that under realistic assumptions, our problems are amenable to
a highly scalable 2-approximation. To further strengthen the
feasibility of our approach, we demonstrate how our placement
algorithms are integrated into the RESERVOIR toolkit for
federated cloud computing.

ACKNOWLEDGMENT

We thank all members of the RESERVOIR project whose
contributions enabled this work. Partial financial is provided
by the European Commission’s Seventh Framework Pro-
gramme ([FP7/2001-2013]) under grant agreement no. 215605
(RESERVOIR).

9

REFERENCES

[1] B. Rochwerger and D. Breitgand and E. Levy and A. Galis and K.
Nagin and I. Llorente and R. Montero and Y. Wolfsthal and E. Elmroth
and J. Caceres and M. Ben-Yehuda and W. Emmerich and F. Galan,
“The RESERVOIR Model and Architecture for Open Federated Cloud
Computing,” IBM Journal of Research and Development, vol. 53, no. 4,
2009.

[2] , “Amazon EC2,” www.amazon.com/ec2.
[3] , “Rackspace,” http://www.rackspacecloud.com.
[4] , “Gogrid,” http://www.gogrid.com.
[5] D. Shmoys and E. Tardos, “An approximation algorithm for the gener-

alized assignment problem,” Mathematical Programming A, vol. 62, pp.
461–474, 1993.

[6] D. Breitgand, G. Kutiel, and D. Raz, “Cost-aware live migration of
services in the cloud,” in SYSTOR, 2010.

[7] C. Chekuri and S. Khanna, “A polynomial time approximation scheme
for the multiple knapsack problem,” SIAM J. Comput., vol. 35, no. 3,
pp. 713–728, 2005.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[9] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,”
in Proc. 21th ACM-SIAM Symp. on Discrete Algorithms, 2006, pp. 611–
620.

[10] U. Feige and J. Vondrák, “Approximation algorithms for allocation
problems: Improving the factor of 1 - 1/e,” in Proc. 47th IEEE Symp.
on Found. of Comp. Science, 2006, pp. 667–676.

[11] S. Chaisiri, B. Lee, and D. Niyato, “Optimal virtual machine placement
across multiple cloud providers,” in Services Computing Conference,
2009. APSCC 2009. IEEE Asia-Pacific. IEEE, 2010, pp. 103–110.

[12] R. Van den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-Optimal
Scheduling in Hybrid IaaS Clouds for Deadline Constrained Workloads,”
in IEEE 3rd International Conference on Cloud Computing (CLOUD).

[13] J. Tordsson, R. Montero, R. Vozmediano, and I. Llorente, “Cloud
brokering mechanisms for optimized placement of virtual machines
across multiple providers,” 2010, submitted for journal publication.

[14] D. Breitgand and A. Epstein, “SLA-aware Placement of Multi-Virtual
Machine Elastic Services in Compute Clouds,” in 12th IFIP/IEEE
International Symposium on Integrated Network Management (IM’11),
Dublin, Ireland, May 2011, Special Track on Management of Cloud
Services and Infrastructures.

10

