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Abstract—Current trends in virtualization, green computing
and Cloud computing require ever increasing efficiency in consol-
idating virtual machines without degrading quality of service. In
this work, we consider consolidating virtual machines on the min-
imum number of physical containers (e.g., hosts or racks) where
the physical network (e.g., network interface or top of the rack
switch link) may become a bottleneck. Since virtual machines
do not require maximum of their nominal bandwidth simultane-
ously, capacity of the physical container can be multiplexed. We
assume that each virtual machine has a probabilistic guarantee
– derived from its Service Level Agreement with the Cloud
provider – on realizing its bandwidth requirements. Therefore,
the problem of consolidating virtual machines on the minimum
number of physical containers, while preserving these bandwidth
allocation guarantees, can be modeled as Stochastic Bin Packing
(SBP) problem, where each virtual machine’s bandwidth demand
is treated as a random variable.

We consider both off-line and on-line versions of SBP. Under
the assumption that virtual machines’ bandwidth consumption
obeys Normal distribution, we show a 2-approximation algorithm
for the off-line version and improve the previously reported
results by presenting (2+ε)-competitive algorithm for the on-line
one. We also observe that a dual PTAS for SBP can be obtained
via reduction to the 2-dimensional vector bin packing problem.

Finally, we perform a thorough performance evaluation study
using both synthetic and real data to evaluate the behavior of
our proposed algorithms showing their practical applicability.

I. INTRODUCTION

Modern virtualization technology allows a broad spectrum
of resource allocation optimizations, which were not avail-
able in a traditional data centers. The virtualized workloads
comprised of Virtual Machines (VMs) can be migrated across
different physical hosts spanning disparate racks and even
data centers. One obvious usage of this new flexibility is VM
consolidation on the minimum number of physical hosts/racks
to reduce capital expenditures and save operational costs such
as power and maintenance.

When VMs are consolidated on the same physical host or
rack, they share the same physical network device such as
network interface or top-of-the-rack switch port, which may
become a bottleneck. In fact, a number of recent studies indi-
cate that network bandwidth may constrain VM performance
in Cloud environments due to network over-subscription [1]–
[3]. As Cloud paradigm attracts an ever increasing number
of customers, and network traffic in and out of the Cloud
proliferates, sharing of the network bandwidth without hurting
VMs quality of service gains in importance. While over-

subscription of other physical resource types such as CPU and
memory has been studied intensively for the last few years [4]–
[6], bandwidth over-subscription in virtualized Cloud-like en-
vironments attracted less attention thus far [7].

In this work, we focus on placement algorithms that allow to
consolidate VMs with bandwidth demand that varies over time
on a minimum number of hosts/racks, such that the physical
bandwidth capacity shared by the VMs placed together on the
same container will be sufficient to satisfy VMs bandwidth
demand with a given probability, thus controlling the risk of
bandwidth congestion on the shared physical network device.

To satisfy demand of all the consolidated VMs, the total si-
multaneous bandwidth consumption of these workloads should
not exceed the host’s network interface or top-of-the-rack’s
switch port capacity, which is shared by the consolidated VMs.
One way to ensure this is to place VMs on the same host or
rack, such that the sum of maximum bandwidth demands (his-
torically observed or predicted) will not exceed the bandwidth
of the network device shared by the VMs. Obviously, this
over-provisioning technique would not leverage advantages of
the Cloud computing approach. It will result in resource waste
at the provider side and higher costs to the customers.

Fortunately, thanks to statistical multiplexing, the actual
aggregate bandwidth consumption of the consolidated VMs
might be much smaller than the available physical network
capacity, the latter can be multiplexed among VMs, removing
the need for costly over-provisioning. Intuitively, if dynamic
bandwidth consumption of VMs is regarded as a random vari-
able and multiple such random variables are ”packed” together
in the same bin, the standard deviation of the random variable
that represents the sum of dynamic bandwidth demands is
smaller than the sum of standard deviations of the individual
variables. This phenomenon is known as smoothing.

Cost-efficiency of a Cloud provider depends on its abil-
ity to over-subscribe capacity by leveraging the smoothing
effect without degrading the quality of service. The inter-
nal policy of the provider for bandwidth over-subscription
may be expressed, for example, by a set of values
pcopper, pbronze, ..., pplatinum specifying that bandwidth de-
mand (either estimated from historical data or predicted) of
a VM in a corresponding SLA class will be satisfied with
probability at least 1− psla.

This problem can be formulated as a Stochastic Bin Packing
problem (SBP) where the items are random variables rep-
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resenting dynamic bandwidth consumption of VMs [8], [9].
The problem is to consolidate VMs belonging to the same
SLA class on the minimum number of bins (hosts or racks)
such that the probability of satisfying VM bandwidth demand
is at least 1 − psla. For simplicity in what follows we will
consider a single SLA class and refer to psla, probability
of resource congestion, called target overflow probability, per
physical container, simply as p.

A. Our Contribution and Paper Organization
Recently, [7] provided an online algorithm with a competi-

tive ratio of (1+ ε)(1+
√

2) for any ε > 0, for SBP where the
items follow Normal distribution. We improve this result by
providing an online algorithm with competitive ratio (2 + ε)
for any ε > 0.

We make use of the fact that the statistical multiplexing
effect is more pronounced in bins where items with higher
variability of bandwidth demand are packed together. We
prove that a greedy algorithm that packs items in a non-
increasing order of their variance to mean ratio (VMR) is a
2-approximation algorithm for SBP. The proof is based on the
fact that this greedy algorithm obtains an optimal fractional
solution to a relaxation of the natural mathematical program
for SBP. To obtain our improved online algorithm, we partition
the items into classes according to their VMR and solve SBP
separately for each class using a greedy packing algorithm.

We also show how to obtain a dual PTAS for SBP by reduc-
tion to the 2-dimensional vector bin packing problem [10]. In
the dual PTAS the number of bins produced by the algorithm
is optimal, but capacity constraints of each bin is relaxed by
a factor of 1 + ε, for ε > 0.

We perform a thorough performance evaluation study of our
algorithms using synthetic data and the data obtained from a
production data center environment.

In our experiments, the proposed algorithms consistently
outperformed the known alternatives on the synthetic and real
data sets in terms of the number of bins used for packing.
Since the real data trace deviates from the Normal distribution
assumption, we discovered that the actual overflow probabil-
ities achieved by our algorithms were larger than the target
ones. However, as we show, the achieved overflow probability
violation rates are sufficiently small to allow the practical
application of the proposed algorithms.

The rest of this paper is organized as follows. Section II
discusses background and related work. Section III defines the
model. Section IV presents our algorithms and provides proofs
of their worst case performance guarantees. Section V presents
our simulation study of the proposed algorithms performance.
Finally, Section VI provides some conclusions and future
work.

II. RELATED WORK

The need to improve cost-efficiency by reducing capital in-
vestments into computing infrastructure and operational costs
such as energy, floor space, and cooling drive the research
efforts on VM consolidation [11]–[16] and motivate features
of the products such as [17]–[19]. In most of the research
work, VM consolidation is regarded as a classical bin pack-
ing problem where resource consumption is inferred from

historical data or predicted using forecasting techniques. In
addition to the primary optimization goal, which is the number
of hosts, secondary goals such as migration minimization,
performance optimization and other are considered. Variants of
the classic packing algorithms such as First Fit (FF) and First
Fit Decreasing (FFD) [20] are often used to achieve practical
solutions.

Bin packing is one of the basic problems in theoretical
computer science and combinatorial optimization and has
many real-world applications. In the classical bin packing
problem we are given a finite list of elements, called items
where each item has size in (0, 1]. The goal is to pack the
items into a minimum number of unit-capacity bins such that
the total size of the items in each bin does not exceed the
bin capacity. The problem is known to be NP-hard [20], thus
research has focused on the study and design of approximation
algorithms, which find near optimal solutions with proven
performance guarantees efficiently. A particular class of algo-
rithms is on-line algorithms. An on-line algorithm receives the
input incrementally, one piece at a time and the algorithm must
generate output for each input part without knowing future
input. This is in contrast to traditional off-line algorithms that
have a complete knowledge of the entire input. In particular,
an online algorithm for bin packing is given one item from
the list of items at a time and must assign each item to a bin
immediately upon arrival.

Various approximation algorithms are known for the prob-
lem. The simple First Fit Decreasing (FFD) algorithm, which
sorts the items in non-increasing order of size and applies the
first fit (FF) packing rule (each item is placed in the earliest
bin into which it fits) has asymptotic approximation ratio of
11
9 (see e.g., [21], [22]). These results imply that the absolute

approximation ratio of FFD is 3
2 . This bound is tight since no

algorithm can have absolute approximation ratio less than 3
2

unless P=NP [20]. An improved version of FFD, called MFFD,
has asymptotic approximation ratio of 71

60 [23].
In [24] an asymptotic polynomial time approximation

scheme (APTAS) for the problem is presented. This result
was improved by [25] who provided an AFPTAS (asymptotic
fully polynomial time approximation scheme).

The online bin packing problem was first studied in [26]
who showed that First Fit has competitive ratio 17

10 . A revised
version of First Fit has competitive ration of 5

3 [27]. Another
simple online algorithm for the problem is Next Fit (NF) which
has competitive ratio of 2 [28]. In [29] the HARMONIC
algorithm, which uses a bounded space and has competitive
ratio that approaches 1.69103, is presented. The best upper
bound currently known is 1.58899 [30] and the best lower
bound currently known is 1.54014 [31].

In the stochastic bin packing problem we are given a list
of items where each item is a random variable and we are
given an overflow probability p. The goal is to pack the items
into a minimum number of unit-capacity bins such that the
probability that the total size of the items in each bin exceeds
1 is at most p.

The study of stochastic bin packing from the perspective of
approximation algorithms was initiated in [8]. They showed
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an algorithm with approximation ratio of O(
√

log p−1

loglogp−1 ) for
the stochastic bin packing problem with Bernoulli variables.
Later, [9] obtained polynomial time approximation schemes
for Poisson and exponential distributions. They also obtained
a quasi-polynomial time approximation scheme for Bernoulli
variables, assuming p is a constant. Their algorithms relax bin
capacity constraints and overflow probability constraint by a
factor 1 + ε.

Recently, [7] provided an online algorithm for stochastic
bin packing with Normal distribution with a competitive ratio
of (1 + ε)(1 +

√
2) for any ε > 0. This work studies SBP

in the context of VM consolidation in a virtualized data
center, where VMs have dynamic bandwidth requirements.
The results presented in [7] serve as a basis for the algorithms
that we develop in this work.

III. MODEL AND PROBLEM DEFINITION

A. Preliminaries

In this paper we consider the approximation ratio per-
formance guarantee for approximation algorithms and the
asymptotic competitive ratio performance guarantee for online
algorithms. For a given input I , let A(I) be the cost of
algorithm A for input I and let OPT (I) denote the cost of
the optimal solution for input I . The asymptotic approximation
ratio (or asymptotic competitive ratio) of algorithm A, RA is
defined to be RA = limn→∞

(
supI:OPT (I)≥n

A(I)
OPT (I)

)
.

The absolute approximation ratio (or absolute competitive
ratio) of algorithm A is the infimum R such that for any input
I , A(I) ≤ R ·OPT (I).

B. Problem Definition

We are given a set of items S = {X1, . . . , Xn}, where each
item is a random variable, and an overflow probability p. The
problem is to find the minimum number of unit capacity bins
that are needed in order to pack all the items, such that for
each bin, the probability that its capacity is exceeded is at
most p.

In this paper we consider the case where the items inde-
pendently follow Normal distribution N (µi, σi), where the
distribution is left truncated at 0 since, obviously, bandwidth
cannot assume negative values. For simplicity we will refer to
items Xi simply as i wherever no ambiguity arises.

When σi = 0, for all i, then Xi = µi and the problem
reduces to the classical bin packing problem, which is NP-
hard [20].

A packing of the set S of items to the bins is a partition of
the set of items S into sets S1, . . . , Sm. We say that a packing
is feasible if for every bin j, Pr[

∑
i:Xi∈Sj

Xi > 1] ≤ p.
Since the items are independent and Normally distributed,

the total size of the items in bin j is a random variable with
mean

∑
i:Xi∈Sj

µi and variance
∑
i:Xi∈Sj

σ2
i .

Lemma 3.1: A packing is feasible for a given overflow
probability p if and only if for every bin j,

∑
i:Xi∈Sj

µi +

β
√∑

i:Xi∈Sj
σ2
i ≤ 1, where β = Φ−1(1−p) and the quantile

function Φ−1 is the inverse function of the CDF Φ of N (0, 1).
For the proof see [7].

To ensure a feasible packing exists, we assume that each
item alone can be packed into a bin. Thus, ∀i ∈ (1, n): µi +
βσi ≤ 1.

Definition 3.1: The effective load of bin j is lj =∑
i:Xi∈Sj

µi + β
√∑

i:Xi∈Sj
σ2
i .

We denote the variance to mean ratio (VMR) of item i by
di = σ2

i /µi.
A simple solution approach to the SBP is to reduce the

problem to the classical bin packing problem by regarding
each item i as a deterministic item of size µi + βσi. Every
feasible solution to the classical bin packing is also feasible
for the SBP, since for any bin j,

∑
i∈Sj

µi +β
√∑

i∈Sj
σ2
i ≤∑

i∈Sj
µi + βσi.

An example showing that the optimal number of bins for
the classical bin packing problem when using µi +βσi as the
size of item i may be much larger than the optimal number of
bins for SBP is given in [7]. Thus, even if we could solve the
classical bin packing problem, which is NP-hard, optimally,
this optimal number of bins may be much larger than the
optimum for SBP.

IV. STOCHASTIC BIN PACKING ALGORITHMS

In this section we first show a 2-approximation algorithm.
Then we present a (2 + ε)-competitive online algorithm for
SBP with Normal distribution. Finally, we show that a dual
PTAS for SBP can be obtained by reducing the problem to
2-dimensional vector bin packing problem [10].

A. Approximation Algorithm
We first show an approximation algorithm for SBP with

Normal distribution.

Algorithm 1: FIRST FIT VMR-DECREASING

Order the items in non-increasing order of VMR.1

Place the next item (in non-increasing order of VMR) in2

the first bin into which it can be feasibly packed
according to Lemma 3.1 (i.e., the effective load of the bin
after placing the item does not exceed the bin capacity).
If no such bin exists, open a new bin to pack this item.3

Our proof of the approximation ratio of Algorithm 1 is
based on the structure of a certain feasible solution to the
mathematical program for SBP with Normal distribution. Let
m ≤ OPT be the least number of bins for which the following
Mathematical Program (MP), a relaxation of SBP, is feasible.
The value of m can be found easily using binary search.

n∑
i=1

xijµi + β

√√√√ n∑
i=1

xijσ2
i ≤ 1 1 ≤ j ≤ m, (1)

m∑
j=1

xij = 1 1 ≤ i ≤ n,

xij ≥ 0 1 ≤ i ≤ n, 1 ≤ j ≤ m.

In this mathematical program the variable xij denotes the
fraction of item i assigned to bin j.
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Definition 4.1: A vector (v1, . . . , vm) is greater than
(v̄1, . . . , v̄m) lexicographically if for some i, vi > v̄i and
vk = v̄k for all k < i.

Lemma 4.1: There exists a feasible solution to the MP with
the following property. For any pair of items k, l and a pair
of bins i < j, if xkj > 0 and xli > 0, then dl ≥ dk.

Proof:
For a feasible solution to the MP, we denote the mean vector

of the bins by (M1, . . . ,Mm), where Mj =
∑n
i=1 xijµi.

We denote the variance vector of the bins by (V1, . . . , Vm),
where Vj =

∑n
i=1 xijσ

2
i . We denote the effective load vector

of the bins by (L1, . . . , Lm), where Lj = Mj + β
√
Vj .

Consider a feasible solution to the MP with lexicographically
maximal variance vector of the bins (V1, . . . , Vm). Suppose by
contradiction that there exist items k, l and pair of bins i < j
such that xkj > 0 and xli > 0 and dk > dl. We exchange
fractions of the items as follows. Let y = min{xkjµk, xliµl}
and let δ = y

µl
. We decrease xli by δ and increase xlj by δ.

Next we increase xki by δ′ such that constraint (1) for bin i
becomes tight again and decrease xkj by the same amount δ′.
Let x′ denote the new assignment, let (M ′1, . . . ,M

′
m) denote

the new mean vector of the bins, let (V ′1 , . . . , V
′
m) denote the

new variance vector of the bins and let (L′1, . . . , L
′
m) denote

the new effective load vector of the bins. We will reach a
contradiction by showing that the new solution x′ is a feasible
one with variance vector of the bins lexicographically greater
than that of the solution x.

We have that M ′i = Mi − δµl + δ′µk and V ′i = Vi −
δσ2
l + δ′σ2

k = Vi − dlδµl + dkδ
′µk. Since dk > dl, it follows

that δ′µk < δµl and thus M ′i < Mi. Otherwise, M ′i ≥Mi and
V ′i > Vi and thus constraint (1) would be violated. Now, since
M ′i < Mi and constraint (1) is tight, we have that V ′i > Vi.

Since Vi + Vj = V ′i + V ′j and V ′i > Vi, it follows that
V ′j < Vj . Let f(z) =

√
Vi + z +

√
Vj − z. Since Vi ≥ Vj ,

the function f is strictly decreasing for z > 0. Thus,
√
V ′i +√

V ′j <
√
Vi +

√
Vj and therefore L′i + L′j < Li + Lj . Since

constraint (1) for bin i is tight and L′i + L′j < Li + Lj , it
follows that constraint (1) holds for bin j. Thus, solution x′ is a
feasible solution to the MP. Moreover, since V ′i > Vi and V ′j <
Vj , it follows that (V ′1 , . . . , V

′
m) is lexicographically greater

than (V1, . . . , Vm). This is a contradiction to the lexicographic
maximality of the vector (V1, . . . , Vm).

Algorithm 2: COMPUTE FRACTIONAL OPTIMUM

Order the items in non-increasing order of VMR.1

Place the next item in the bin with remaining capacity2

according to constraint (1) of the MP as follows. Assign
to this bin the maximum fraction of this item not
violating constraint (1). If the item cannot be completely
placed in this bin, open a new bin to pack the remaining
part of this item.

Lemma 4.1 yields the following observation.
Observation 4.1: Algorithm 2 produces a feasible fractional

solution to the MP.

We note that in each step of Algorithm 2 there is at most one
open bin with remaining capacity according to constraint (1).

For an instance I to the problem we denote by B(I) the
number of bins used by our algorithm, by OPT(I) the number
of bins used by the optimal algorithm and by FRAC(I) the
minimum number of bins for which the MP has a feasible
solution. Clearly, FRAC(I) ≤ OPT (I).

Theorem 4.2: Algorithm 1 is a 2-approximation algorithm
for SBP with Normal variables.

Proof: We prove the theorem for the NEXT FIT version
of Algorithm 1 that considers the items in the same order as
Algorithm 1 and keeps a single active bin at each step. If
the next item cannot be packed into this bin then the bin is
closed and never used again and a new active bin is opened
for placing this item. It is easy to see that the number of bins
used by Algorithm 1 that places an item in the first bin into
which it fits is at most the number of bins used by the NEXT
FIT version of Algorithm 1.

Consider an instance I of the problem. For j = 1, . . . , B,
let Uj be the set of items assigned to bin j by the algorithm
and let i(j) be the item that caused the algorithm to open
a new bin j + 1, since it could cause bin j to overflow if
assigned to bin j. Consider the set of bins j = 2k − 1, for
k = 1, . . . , dB/2e. For each item i(j), let xi(j) denote the
maximum fraction of item i(j) that could be packed into bin
j containing the set of items Uj without causing an overflow
to bin j according to constraint (1) of the MP.

Consider the instance of the problem I ′ with the set of items
U ′, where U ′ is the set of items containing the items U2k−1
and items i(2k−1) for k = 1, . . . , dB/2e where the latter are
modified from their original values as follows. We decrease
the mean and variance of items i(2k− 1) to xi(2k−1)µi(2k−1)
and xi(2k−1)σ2

i(2k−1), respectively.
By Observation 4.1, FRAC(I ′) = dB/2e. Clearly,

FRAC(I ′) ≤ FRAC(I) and FRAC(I) ≤ OPT (I). There-
fore, B(I) ≤ 2OPT (I).

B. Online Algorithm

Next, we present an online algorithm for the problem. We
partition the items in the input instance into classes according
to their VMRs as follows. Class 0 consists of all items i with
di ≤ ε2. Let C = d 8ε ln 1

ε e ≥ log1+ε
1
ε4 . For k = 1, . . . , C,

class k consists of all items i with ε2(1+ε)k−1 < di ≤ ε2(1+
ε)k. Class C+ 1 consists of all items with 1

ε2 ≤ ε
2(1 + ε)C <

di.

Algorithm 3: ON-LINE ALGORITHM

Classify next item according to the VMR classes.1

Place the next item in the first bin of its class into which2

it can be feasibly packed according to Lemma 3.1. If no
such bin exists, open a new bin in this class to pack this
item.

Let I ′ be the modified instance obtained from the original
instance I by rounding up each µi and σi of each item i as
follows. Let k be the class of item i. If 0 ≤ k ≤ C, we set
σi = ε2(1 + ε)kµi. Otherwise, we set µi = ε2σ2

i . Throughout
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this section we refer to instance I ′ as the rounded instance of
instance I .

Lemma 4.2: Let 0 < ε ≤ min{β2, 1/(2β), 1/2} and let
ε′ = max{1, 2β}ε. Let I be an instance of the problem where
all items are from the same class 0 ≤ k ≤ C+ 1. It holds that
FRAC(I ′) ≤ (1 + ε′)FRAC(I) + 1.

Proof:
Let µmin and µmax be the minimum and maximum total

mean, respectively, of the items from class k that can be
packed into a bin, such that constraint (1) of the MP for the bin
is tight. Let σmin and σmax be the minimum and maximum
total variance, respectively, of the items from class k that can
be packed into a bin such that constraint (1) of the MP for
the bin is tight. We denote the total mean of all the items
by M =

∑n
i=1 µi and the total variance of all the items by

V =
∑n
i=1 σ

2
i .

We will show that the following holds.
1) If 0 ≤ k ≤ C then µmax ≤ (1 + ε′)µmin.
2) If k = C + 1 then σmax ≤ (1 + ε′)σmin.
It follows from (1) that for class 0 ≤ k ≤ C, M/µmax ≤

FRAC(I) and FRAC(I ′) ≤ dM/µmine. Therefore,

FRAC(I ′) ≤ dM/µmine
≤ d(1 + ε′)M/µmaxe
≤ (1 + ε′)M/µmax + 1

≤ (1 + ε′)FRAC(I) + 1

It follows from (2) that for class k = C + 1, V/σmax ≤
FRAC(I) and FRAC(I ′) ≤ dV/σmine. Therefore,

FRAC(I ′) ≤ dV/σmine
≤ d(1 + ε′)V/σmaxe
≤ (1 + ε′)V/σmax + 1

≤ (1 + ε′)FRAC(I) + 1

Now it remains to show that for class 0 ≤ k ≤ C, µmax ≤
(1 + ε′)µmin and for class k = C + 1, σmax ≤ (1 + ε′)σmin.

We first consider class 0 ≤ k ≤ C. We distinguish between
two cases.

Case 1: k = 0. Since, VMR of class 0 lies in [0, ε2], µ
assumes the maximum value µmax = 1 when VMR=0 and
µmin is a solution to the equation µ + β

√
ε2µ = 1, which

satisfies µmin ≥ 1− βε. Thus, µmax/µmin ≤ 1 + 2βε.
Case 2: 1 ≤ k ≤ C. Since VMR of class k lies in (ε2(1 +

ε)k−1, ε2(1 + ε)k], µmin and µmax are solutions to the equa-
tions µ+β

√
ε2(1 + ε)kµ = 1 and µ+β

√
ε2(1 + ε)k−1µ = 1,

respectively. Thus, it easily follows that µmax/µmin ≤ 1 + ε.
We now consider class C+1. Clearly, σmax ≤ 1/β2. Since

VMR of class C+1 is at least 1
ε2 , then σmin is a solution to the

equation ε2σ2+β
√
σ2 = 1, which satisfies σmax/σmin ≤ 1+ε

for ε ≤ β2.

We prove theorem 4.3 for the NEXT FIT version of Algo-
rithm 3 that considers the items in the same order and keeps a
single active bin at each step. If the next item cannot be packed
into this bin then the bin is closed and never used again and
a new active bin is opened for placing this item. It is easy to
see that the number of bins used by the FIRST FIT version of

the algorithm that places an item in the first bin into which it
fit is at most the number of bins used by NEXT FIT.

Let Ik, I ′k denote the subinstances of instances I, I ′, respec-
tively, that contain only the items from class k. Recall that
instance I ′ is the rounded instance of instance I . Let µi, µ′i be
the mean of item i and let σi, σ′i be the standard deviation of
item i in instances Ik and I ′k, respectively. We denote the total
mean of the items packed in bin j by Mj ,M

′
j and the total

variance of the items packed in bin j by Vj , V ′j for instances
Ik and I ′k, respectively.

The proof of Theorem 4.3 requires the following lemma.

Lemma 4.3: For any k it holds that B(Ik) ≤ B(I ′k).
Moreover, if B(Ik) = B(I ′k) then Mm ≤M ′m and Vm ≤ V ′m,
where m = B(Ik).

Proof: We proceed by induction on |Ik|. Clearly, B(Ik) =
B(I ′k) = 1 if |Ik| = 1. Suppose |Ik| = i > 1. By the induction
hypothesis, the claim holds for the instances Ik \ {i} and I ′k \
{i}.

Consider step i = |Ik|, where Algorithm 3 packs item i in
instances Ik and I ′k.

We distinguish between two cases:

Case 1: B(Ik \ {i}) < B(I ′k \ {i}). If B(Ik) = B(I ′k), it
follows that B(I ′k) = B(I ′k \ {i}). Let j = B(I ′k). Since,
Algorithm 3 opened a new bin for item i in instance Ik and
used already opened bin for item i in instance I ′k and the fact
that µi = µ′i and σi ≤ σ′i, it follows that at the end of step i,
Mj ≤M ′j and Vj ≤ V ′j . Otherwise, clearly B(Ik) < B(I ′k).

Case 2: B(Ik\{i}) = B(I ′k\{i}). Let j = B(I ′k). If B(I ′k) =
B(I ′k \{i}), then by the induction hypothesis and the fact that
µi ≤ µ′i and σi ≤ σ′i, it follows that the algorithm can pack
item i of instance Ik in bin j. Moreover, at the end of iteration
i, Mj ≤ M ′j and Vj ≤ V ′j . Otherwise, B(I ′k) > B(I ′k \ {i}),
clearly the claim holds.

Let ε′ be as defined in Lemma 4.2.

Theorem 4.3: Algorithm 3 is a 2(1+ε′)-competitive online
algorithm for stochastic bin packing with Normal variables.

Proof:

We first show a lower bound for FRAC(I). Consider a
feasible solution y created by Algorithm 2 for the instance
I with FRAC(I) bins and a feasible solution yk created by
Algorithm 2 for the instances Ik with FRAC(Ik) bins. Since
for each class k, the number of bins containing any items
of class k in the solution y is at least FRAC(Ik) and the
number of bins containing items from at least two classes in
the solution y is at most C + 1 (recall that Algorithm 2 packs
the items such that the items of each class are packed in group
of consecutive bins), we get

FRAC(I) + C + 1 ≥
C+1∑
k=0

FRAC(Ik) (2)
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Now we show the upper bound for B(I).

B(I) =

C+1∑
k=0

B(Ik) ≤
C+1∑
k=0

B(I ′k) ≤
C+1∑
k=0

2FRAC(I ′k)

≤
C+1∑
k=0

2((1 + ε′)FRAC(Ik) + 1)

= 2(1 + ε′)

C+1∑
k=0

FRAC(Ik) + 2(C + 2).

The first inequality follows from Lemma 4.3. The second
inequality follows from the proof of Theorem 4.2 and the fact
that all the items in instance I ′k have the same VMR. The last
inequality follows from Lemma 4.2. We now apply inequality
(2) and get

B(I) ≤ 2(1 + ε′)(FRAC(I) + C + 1) + 2(C + 2))

= 2(1 + ε′)FRAC(I) + (2 + 2ε′)(C + 1) + 2(C + 2)

≤ 2(1 + ε′)OPT (I) + (4 + 2ε′)(C + 2).

The last inequality follows from the fact that FRAC(I) ≤
OPT (I).

C. PTAS
We obtain a dual PTAS for SBP problem with Normal

distribution by a simple reduction to the 2-dimensional Vector
Bin Packing problem. The PTAS presented by Chekuri and
Khanna [10] for the Vector Scheduling problem can be viewed
as a dual PTAS for the 2-dimensional vector bin packing
problem, where a dual PTAS for bin packing is a polynomial
time algorithm that uses the optimal number of bins, but
relaxes the bin capacity constraints by a factor 1 + ε. We then
use the dual PTAS for the 2-dimensional Vector Bin Packing
problem to obtain a dual PTAS for SBP with Normal variables

We now define the vector bin packing problem. For a vector
x, the quantity ‖x‖∞ denotes the standard `∞ norm.

Definition 4.2: (Vector Bin Packing (VBP)) Given a set of
n rational vectors p1, . . . , pn from [0, 1]d, find a partition of the
set into sets S1, . . . , Sm, such that ‖S̄i‖∞ ≤ 1 for 1 ≤ j ≤ m.
The objective is to minimize the size of the partition.

The linearity of the mean and variance of the items that
are packed into a bin can be used to translate an instance of
SBP with normal variables to an instance of two-dimensional
vector bin packing as follows. Each item i with mean µi and
standard deviation σi is replaced by a 2-dimensional item pi =
(pi1, pi2) = (µi, βσi). We normalized the second coordinate
to ensure that the range of both coordinates is [0, 1]. We add
a new constraint as follows.∑

i∈Sj
pi1 +

√∑
i∈Sj

p2i2 ≤ 1 1 ≤ j ≤ m, (3)

where Sj is the set of items packed in bin j. Thus, the effective
load of a bin does not exceed 1 if and only if constraint
(3) holds. We observe that the dual PTAS for the vector bin
packing problem can be simply extended to deal with the
additional constraint (3) that ensures that the effective load
of a bin does not exceed 1. This observation follows from
the fact that constraint (3) can be handled by the PTAS as
follows. The algorithm guesses the capacity configuration of

the bins, where a capacity configuration of a bin is a pair
(c1, c2) such that 0 ≤ ci ≤ d1/εe. A capacity configuration of
a bin approximately describes how a bin is filled. A packing
of vectors is said to respect a capacity configuration (c1, c2)
if the load of the packing in each dimension k is at most
εck. We can prune capacity configurations that do not respect
constraint (3) where we relax the bin capacity to 1 + 2ε. This
pruning maintains approximate bin configurations of valid bin
configurations, since the approximate configuration (c1, c2) of
any valid bin filling represented by a 2-dimensional vector r,
where ri is the height of the packing in dimension i satisfies
εc1 ≤ r1 + ε and εc2 ≤ r2 + ε. Therefore, if r1 +

√
r22 ≤ 1

then εc1 +
√

(εc2)2 ≤ 1 + 2ε. The PTAS for SBP proceeds
as follows. We guess the number of bins m in an optimal
solution to the problem (can be found easily using binary
search) and then we solve the corresponding 2-dimensional
vector bin packing using its dual PTAS. Since constraint (3)
holds for bin capacity 1 + 2ε, the solution is feasible for SBP
with bins of size 1 + 2ε.

V. SIMULATION STUDY

In this section we present the results of our simulation study.
We used two sets of data to compare the performance of our
proposed algorithms with that of the previously reported ones.
The first data set comprises synthetic traces that we generate
to simulate a typical use case. The second data set is a real
production data center trace that we used to compute the mean
and standard deviation of bandwidth consumption for 6000
VMs over a few hours period.

For the sake of a thorough evaluation, we implemented the
following bin packing algorithms:
• Algorithms 1–3;
• First Fit (FF) with deterministic item sizes µi + βσi;
• First Fit Descending (FFD) according to deterministic

item sizes µi + βσi;
• Group Packing (GP) reported in [7].
We compare performance of Algorithm 1 and FFD, which

are off-line algorithms and algorithms FF, GP and Algorithm 3,
which are on-line algorithms. For both off-line and on-line
algorithms we compare their performance with the lower
bound for the optimal solution obtained by Algorithm 2.

We start with presenting our results for synthetic data.
We generate problem instances ranging from 2000 to 50000
items. To make statistical properties of the synthetic trace
similar to those reported for the real traces (e.g., in [7]), 80%
of the generated items have their standard deviation smaller
than twice their mean. For the rest of the items, standard
deviation ranges from twice an item mean to four times an item
mean. Figure 1 depicts performance of Algorithm 1 and FFD
for problem instances of different size. In these experiments
the overflow probability p = 0.01. This value of p yields
β = 2.32623.

As one can see, FFD uses 70% more bins than Algorithm 1
and the number of bins used by Algorithm 1 is at most 0.3%
more than the lower bound.

Figures 2, 3 present the results of performance evaluation
for the online algorithms for small and large problem instances
for ε = 0.1. We split the graphs into two parts to avoid visual
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Fig. 3. Comparing On-Line Algorithms on Synthetic Data

distortion due to the scale used. For the same reason we do
not show performance of FF on these graphs. FF performed
significantly worse than the rest of the algorithms as we
explain below. The data set used to benchmark the online
algorithms is the same synthetic data set as the one used
to compare the offline algorithms, but the data set is being
processed one VM at a time.

As Figure 2 shows, for small instances ranging from 2000
to 22000 items, Algorithm 3 used from 18% to 8% more bins,
respectively, than Algorithm 2, which obtains a theoretical
lower bound. Group Packing algorithm used from 50% to 14%
more bins than Algorithm 3.

Figure 3 presents the results for the large problem instances
ranging from 26000 to 50000 items. Algorithm 3 consistently
used at most 8% more bins than the theoretical lower bound.
On the large problem instances. Group Packing algorithm used
from 12.8% to 9% more bins than Algorithm 3.

FF used from 62% to 49% more bins than Algorithm 3 on
the same problem instances ranging from 2000 to 50000 items
respectively.

As expected, for smaller instances Algorithm 3 significantly
outperforms the Group Packing algorithm, but for the larger
instances the gap between the two stabilizes around 9%
in favor of Algorithm 3. The reason for that is that both
algorithms approach their competitive ratios asymptotically.
There is a constant factor that is paid by both algorithms due
to classifying items into classes and spending at least one bin
per every non-empty class. In the Group Packing algorithm the
number of classes is proportional to ln (1/µmin)

εµmin
, where µmin

is the minimal item mean. Therefore, the number of classes in
the Group Packing algorithm potentially can be much larger
than in Algorithm 3, where it is proportional to 1

ε ln 1
ε and,

therefore, depends only on ε, but not on the properties of the
problem instance.

p Algorithm 3 Algorithm 1 Group FFD FF Algorithm 2
Packing

0.1 164 146 595 332 334 144
0.01 215 195 785 519 522 192
0.001 263 243 881 656 662 237

TABLE I
COMPARING ALGORITHMS ON REAL DATA

Table I summarizes the online and offline algorithms per-
formance on the real trace that was at our disposal. We
evaluate the algorithms for three values of target overflow
probability p: 0.001, 0.01, and 0.1, which correspond to the
percentiles widely used in today Cloud practices to specify up-
time SLAs for VMs. Even though bandwidth SLAs usually are
not provided in the public clouds today, we believe that in the
future, they will be provided and the percentiles of success in
those SLAs will be similar to the percentiles used today for the
more simple VM up-time SLAs; hence the choice of values
for the overflow probability to assess the practical applicability
of the proposed algorithms.

As Table I shows, both Algorithm 3 (online) and Algo-
rithm 1 (offline) obtain the number of bins that is very close
to the theoretical lower bound obtained by Algorithm 2, with
the offline algorithm performing 8%− 10% better then Algo-
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rithm 3, the online one, as naturally expected. The number of
bins used by Algorithm 3 grows by 30% and 20% as the target
overflow probability reduces by an order of magnitude and two
order of magnitudes, respectively. Algorithm 3 consistently
outperforms Group Packing algorithm by a factor ranging
between 3.3 and 3.65 and First Fit by a factor ranging from
2 to 2.5. Moreover, as one can see in Table I, the number
of bins packed by Algorithm 3 for target overflow probability
p = 0.001 is significantly smaller than the number of bins
packed by Group Packing, FF and FFD algorithms for target
overflow probability p = 0.1. The relatively poor performance
of the Group Packing algorithm is explained by the small size
of the problem instance (6000 items) and the fact that VMs
with relatively small bandwidth consumptions appear in the
trace. This increases the number of item classes as explained
above. We believe that on larger problem instances and on
the instances with less variability in bandwidth consumption
across different VMs, Group Packing algorithm will behave
significantly better (as suggested by our experiments on the
synthetic data).

Now we turn to validating the packing obtained by the
algorithms and the question we want to answer is whether
we indeed obtained the packing that respects the target values
of the overflow probability.

To validate the actual overflow probability we performed
the following procedure. For each packing that was obtained
by the algorithms and for each bin in the packing, we sampled
the trace to obtain 2000 samples of the momentary values of
each item size (i.e., bandwidth consumption) and summed up
the total momentary bandwidth consumption per bin checking
whether the bin capacity constraint is broken.

Figure 4 shows the Cumulative Distribution Function (CDF)
of bin compliance with the overflow probabilities. As one
can see, Algorithm 1 and Algorithm 3 performed significantly
worse for the target overflow value p = 0.01 then the Group
Packing, FF, and FFD algorithms. More specifically, only
18% of the bins packed by Algorithm 3 respected the target
overflow probability 0.01 while more than 80% of bins packed
by the Group Packing algorithm and more than 90% of the bins
packed by FF and FFD obeyed the target overflow probability.
At the same time, we see that for all bins packed by our
algorithms, the actual overflow probability achieved was 5%.
The explanation for this is as follows. Our algorithms create
much better packing than their counterparts. This packing is
produced under the assumption that VM bandwidth follows
Normal distribution. By inspecting the trace we found out
that (a) the distribution of bandwidth consumption of a single
VM may deviate from the Normal distribution and (b) many
large items appear in the trace. Therefore, the actual average
load per bin in our approach is larger than the theoretically
expected effective load and because we use less bins than other
algorithms, this increases the overflow probability.

Although the probability violation that we obtain is larger
than the target overflow probability, this is still a sufficiently
low rate of violations to be applicable in a public Cloud (which
today do not support any bandwidth SLAs at all). Given that
this rate is achieved while reducing the number of bins by 50%
to 70% (compared to other algorithms as explained above), the

Cloud provider can benefit significantly from employing the
proposed algorithms.

Figure 5 summarizes the same validation experiment, but
the target overflow probability for the packing algorithms was
increased to 0.1. As one can see, 80% of bins produced by
Algorithm 3 respected the target overflow probability and 99%
of them had overflow probability at most 0.12.

In general, when we consider large physical hosts or racks
that are capable of co-hosting tens and hundreds of VMs and
the size of each VM is small relatively to the total capacity of a
host or rack, the importance of deviation of specific VMs from
the Normality assumption diminishes. This is due to the well
known Central Limit theorem that states that the distribution
of a sum of the random variables asymptotically approaches
Normal distribution irrespectively of the distributions of the
individual variables. Therefore, as larger hosts/racks are
used for consolidating VMs, the actual overflow probability
approaches the target one.
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Figure 6 compares the algorithms using a large synthetic
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problem instance comprising 30000 items. As one can see,
in all algorithms, the number of bins decreases as the target
overflow probability increases. This behavior is explained by
the fact that as the target overflow probability increases, the
weight of the standard deviation component (i.e., β) of the
effective load reduces and, thus, the effective load decreases.
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Fig. 6. Comparing the algorithms for different overflow probabilities

VI. CONCLUSIONS AND FUTURE WORK

We presented off-line and on-line algorithms for SBP. Under
the assumption that virtual machines’ bandwidth consumption
obeys Normal distribution, we showed a 2-approximation
algorithm for the off-line version and a (2 + ε)-competitive
algorithm for the on-line one. We also observed that a dual
PTAS for SBP can be obtained via reduction to the 2-
dimensional vector bin packing problem.

Using synthetic and real data sets we thoroughly studied
performance of our proposed algorithms and their applicability
to real life scenarios.

Our proposed algorithms considerably reduce the number
of bins compared to the best known algorithms for SBP with
Normally distributed random variables.

Today public clouds do not provide explicit SLAs guaran-
tees on VM bandwidth. However, traditional hosting environ-
ments provide bandwidth guarantees as a common practice.
Thus, we may expect that the Cloud SLA practices will also
be extended to bandwidth in the future.

Our algorithms can be used as building blocks to support
such future SLAs in a cost-efficient manner

Our approach is general, so it can be applied to resources
other than bandwidth. We defer this to future work.

Other topics that we plan to explore in the future, include
multidimensional SBP to consider resources other than band-
width, and other statistical distributions. Also, we plan to
validate our approach with more data coming from the real
production environments.
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