
H-0316 (HAI1208-008) August 28, 2011
Computer Science

IBM Research Report

Designing Modular Overlay Solutions for 
Network Virtualization

Liane Lewin-Eytan1, Katherine Barabash1, Rami Cohen1, 
Vinit Jain2, Anna Levin1

1IBM Research Division
Haifa Research Laboratory

Mt. Carmel 31905
Haifa, Israel

2IBM STG

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich



Designing Modular Overlay Solutions
for Network Virtualization

Liane Lewin-Eytan†, Katherine Barabash†, Rami Cohen†, Vinit Jain∗ and Anna Levin†
∗IBM

†IBM Haifa Research Lab

Abstract—Networking is currently facing important challenges
arising from the advent of virtualization and cloud computing.
Broad acceptance of these advanced technologies has raised new
networking requirements related to the complex configuration,
management and control means needed in order to cope with
large scale virtual networks of highly dynamic nature supporting
multi-tenancy. Coping efficiently with these requirements has
brought to the fore the need to virtualize the network by properly
decoupling the logical network functionality from the underlying
physical infrastructure. An essential method for enabling such a
decoupling and achieve a good abstraction of the network is the
use of overlays.

In this work, we investigate the main overlay solutions recently
proposed and explore their main components, namely: the tun-
neling protocol, the control plane and the logical view. We observe
that while these solutions efficiently extend the connectivity
boundaries and solve the imminent scalability concerns, they
do not provide a specification of an enhanced logical view.
We describe the Distributed Overlay Virtual nEtwork (DOVE)
solution, an architecture based on overlay networks that achieves
an advanced network abstraction, allowing to define provider-
tenant contracts and to provide network services at application
level.

I. INTRODUCTION

Virtualization technologies and cloud computing have been
the main enablers for innovation and massive changes in
the world of IT. Virtualizing workloads has led to major
enhancements in key aspects such as efficient utilization of
physical resources and energy saving. As a result, networks
in virtualized environments face critical challenges such as
the need to support large scale workloads of dynamic nature,
spread in any possible location, as well as the need to support
multi-tenancy. In order to properly face these requirements,
it is crucial that networking technologies achieve a proper
separation between the virtual and physical layers. A proper
decoupling of these layers and abstraction of the network will
enable the design and realization of scalable virtualized multi-
tenant data centers, providing services to a very large number
of entities over varying physical networking media.

Virtualized networking environments are not adequately
supported by existing networking tools. Earlier technologies
such as VLAN [1] are too rigid and too tied to the physical
infrastructure and thus cannot allow for proper network virtu-
alization where dynamics, flexibility and scale are required
both in operation and in configuration. Initial technologies
developed to address networking in a virtualized data center
fail to provide a proper decoupling, thus increasing both
management complexity and cost. For example, the attempts

to extend the physical network all the way to the virtual
machines, such as VNTag [2], 802.1Qbg [3], while solve real
problems, still expose the VMs to the physical devices and thus
do not provide scalable solutions that can cope with multi-
tenancy. Evolution of DCNs has emphasized the problems
encountered in scaling the number of isolated networks, as
well as the problems of managing these networks. Recently, it
has become clear that the overlay based approach is the correct
answer achieving independency from the physical networking
infrastructure [4], [5], [6], [7].

Overlay networks enable the design of modular networking
protocols and services in which logical functions are separated
from the underlying physical infrastructure. Applications of
overlay networks are various, and major examples of such
are resilient routing, security, multicast, and mobility. Conse-
quently, overlays play a vital role in advanced networking en-
vironments such as cloud computing and virtual data centers.
Software Defined Networks [8], [9], [10], referring to an archi-
tecture where network services and policies are fully separated
from the physical topology, takes virtualized technologies one
step further. This abstraction considers the high level network
logic as a set of services and policies, decoupling it from the
lower level physical connectivity mechanisms used to enable
these functions. Logical network functions range from the
basic connectivity service to more complex and advanced
services such as security, compression, acceleration and QoS.
Achieving a full network virtualization layer is feasible only
if built upon overlays, so as to provide these services while
supporting critical requirements such as scalability, isolation,
and ease of operation and configuration in a dynamic multi-
tenant environment.

In our previous work [11], the novel networking require-
ments brought up by the server virtualization were explored,
and it was shown how host-based overlays provide first
answers to these new requirements. During the past year,
multiple vendors have put significant efforts in order to achieve
efficient overlay solutions built upon different tunneling proto-
cols [12], [13], [14]. It has become evident that overlays should
be an inherent part of the design and deployment of large scale
virtual networks, and varying solutions have been proposed.
In this work, we initiate a more elaborate discussion, and a
better understanding of how should a good modular overlay
design look like. A complete overlay solution enabling a rich
logical view of the network can be roughly divided into three
components (see Figure 1): (1) the logical view and application



Tunneling protocol,
encapsulation headers

Control plane,
address dissemination

Logical view

Fig. 1. Modular design of an overlay solution.

layer network services offered to the virtual end points, (2)
the control plane and address dissemination method, and (3)
the tunneling protocol and encapsulation format. Ideally, these
components should be decoupled from each other, in order
to achieve a modular design and avoid being restricted to a
specific implementation method and/or vendor lock-in.

Recent solutions building upon overlays to achieve benefits
of scale in multi-tenant virtual networks are VXLAN [12],
NVGRE [13] and STT [14]. All these solutions ensure multi-
tenancy support as well as efficient delivery within the under-
lying network by encapsulating tenants’ L2 packets. Each of
these methods is characterized by the type of encapsulation
it uses, the control plane it relies on, and the logical view
it supports. In this paper, we discuss the different compo-
nents of these solution as well as the level of decoupling
they accomplish. We present the Distributed Overlay Virtual
Ethernet (DOVE) solution [15], a new architecture based
on overlay networks that achieves an advanced network ab-
straction, allowing to enrich provider-tenant contracts with
application level network services. DOVE solution allows
the consolidation of multiple abstractly defined networks on
large scale commodity physical infrastructures, completely
delegating network administration and control to their tenants.
Paper Organization The remainder of this paper is organized
as follows. In Section I-A, we discuss the overlay solution
components, as well as the main attributes that should be
supported by the tunneling protocol in order to guarantee
the quality of the overlay solution. In Section II, we present
several important overlay solutions proposed during the past
year, explore their main components and discuss the network
abstraction they achieve as well as the richness of the logical
view they offer. In Section III, we present the Distributed Over-
lay Virtual Ethernet (DOVE) solution, which has significantly
evolved during the past year. Finally, conclusions and future
directions are presented in Section IV.

A. Overlays and Virtualized Networking Technologies

An overlay network is created on top of an existing network,
by generating logical communication links between hosts
within the service domain. It is commonly implemented by
tunneling, where a delivery network protocol encapsulates a
payload protocol. The payload protocol is initiated from the
higher service layer, and is intended to be transferred between
endpoints within the service domain. A logical tunnel is
created between these endpoints by wrapping the payload with

headers specific to the delivery protocol. Tunneling can operate
at different layers of the network stack, while payload can
originate either from standard or custom application protocols.
The encapsulation can be either simple, assuring only connec-
tivity above the underlying infrastructure, or be more complex
and allow different advanced control functions such as explicit
routing, QoS, security or traffic engineering. In addition, the
tunneling control information can be exchanged either in
a conceptually centralized or distributed way. As shown in
Figure 1, the main architectural components of overlay-based
solutions for network virtualization are as follows.

1) The logical view offered to the virtual end points,
whether an L2 connection domain, or an extended L3
domain where endpoints can make use of advanced
services and policies offered within the domain. The
logical view is determined by the use of the layer’s
headers for control information of the logical tunnel. For
example, in case L3 services are used by the end-points
across the infrastructure, then appropriate control infor-
mation should be carried in the respective encapsulation
headers.

2) The control plane and address dissemination method, re-
ferring to the mechanism used to obtain the information
needed to create a proper tunnel, as well as the control
information that should be carried in the encapsulation
headers. The control plane could be fully distributed, or
rely on conceptually centralized components.

3) The encapsulation format, that is, the specific headers
involved in the encapsulation method, along the specific
control information carried across the tunnels.

As mentioned, these components should ideally be decou-
pled from each other in order to achieve a modular design and
avoid being restricted to a specific implementation method.
However, the tunneling protocol, comprising of the encap-
sulation format and the layers involved in the creation of
the logical tunnels, has an important effect on the quality of
the overlay solution achieved. In order to realize an efficient
scalable solution providing a rich logical view, the tunneling
protocol should support several attributes that can affect the
overall quality of the overlay solution.

• The first attributes are interoperability and scalability. The
delivery headers added to the payload protocol should be
genuine headers used within the underlying infrastructure.
This relies on the knowledge of the type of infrastructure
used for delivery. In order to obtain full scalability,
advanced tunneling methods could be designed to adapt
to different underlays.

• Another attribute is the full exploitation of the function-
alities offered by the underlying network. In order to
achieve that, the encapsulated headers need to support all
the relevant fields contributing to these functions. A good
example is the exploitation of acceleration capacities of
the physical entities. This can be performed by offload
of TCP segmentation, requiring the presence of a TCP
header within the encapsulation protocol in order to take

2



advantage of the TSO (TCP Segmentation Offload) and
LRO (Large Receive Offload) engines in existing NICs.
In some cases, additional functionality is required at the
end points of the tunnel during decapsulation, in order
to process the control information and possibly replace it
in the proper fields of the payload headers. For example,
consider the option of offloading checksum calculation
for means of acceleration. When sending the packet,
IP checksum can be calculated in the network adapter,
and be placed in the encapsulation IP header. When the
packet is received at the endpoint of the tunnel, in order
not to lose the checksum, there’s need for a transport
header where the respective checksum (which can easily
be derived from the IP checksum) can be placed. Another
example of exploiting advanced functionalities within the
tunnel (however not related to hardware acceleration) is
the support of the ECN (Explicit Congestion Notification)
option in the IP header to allow end-to-end notification
of congestion without dropping packets. To support this
function, end-points of the tunnel are required to pass this
information through the IP and TCP payload headers.
Losslessness is a key feature in advanced data center
networks, and means by which it can be achieved as well
as performance results are presented in [16], [17].

• The last crucial attribute is extendibility [18]. In order
to guarantee the ability to enhance the logical view
seen by the virtual endpoints, the encapsulation method
used for tunneling should be extendible. This can be
achieved by allocating more space for the control data
within the headers, or setting a length field along optional
header extensions. The richness of the environment that
can be presented to the endpoints is a direct function
of the control information that can be carried along
the packet. While it is clear that the virtual network
identification should be carried, other parameters such as
policy domain within the virtual network, QoS attributes,
traffic engineering parameters etc., would guarantee a
richer logical environment. As a major part of the services
and policies reflected to the endpoints are activated along
the route, this information should be carried within the
encapsulation headers.

II. VIRTUAL NETWORK OVERLAY SOLUTIONS

We present the state-of-the-art main overlay solutions for
virtual networks, namely the solutions of the key players in
the network virtualization market: (1) VXLAN mainly led by
VMWare and Cisco, (2) NVGRE mainly led by Microsoft,
Intel and Dell; and (3) STT, Nicira’s solution. In section III
we present DOVE, IBM’s novel networking architecture for
network virtualization, focusing on its overlay solution.

A. VXLAN

Virtual eXtensible Local Area Network (VXLAN) is a
framework for overlaying virtualized Layer 2 networks over
Layer 3 networks [12]. Published in August 2011, its goal is to
address the need for overlay networks within virtualized data

Outer
MAC

Outer IP
Outer
UDP

VXLAN
Inner
MAC

Inner IP Payload

0 31

Reserved

VXLAN Network Identifier (VNI) Reserved
24

Inner IP

Fig. 2. VXLAN encapsulation frame format.

centers accommodating multiple tenants. Its purpose was to
present a proper solution solving the main scalability problems
obvious in MAC-in-MAC VLAN based solutions:

• The limited VLAN address space. The current limit
of 4094 VLANS is inadequate in face of the growing
embrace of virtualization, where data centers might need
thousands of VLANs to correctly partition the traffic.

• The inability to support multi-tenancy, both from sepa-
ration as well as scalability aspects. As different tenants
are likely to be hosted over shared network resources, as-
signing independent MAC addresses and VLAN IDS can
potentially lead to duplication on the physical network.

• The limited Layer 2 connectivity and functionality. Layer
2 is not a scalable solution for wide connectivity across
large data centers. In addition, using IP for interconnec-
tion allows the use of multipathing to achieve resiliency
and efficient use of network resources. This is not possi-
ble with the Layer 2 approach which uses the Spanning
Tree Protocol for a loop free topology.

VXLAN provides an overlay solution for expanding a Layer
2 network over a Layer 3 network. It comprises of a stateless
tunneling protocol, where Layer 2 frames are wrapped within
Layer 3 packets, after adding a VXLAN header containing a
24-bit VXLAN Network Identifier (VNI). A VNI identifies a
“VXLAN segment”, called also a “VXLAN overlay network”,
thus expanding the number of unique virtual segments to
16M. An endpoint of a virtual segment is called a VTEP,
and is located within the hypervisor on the hosting server
(in software or hardware/physical switch); thus the VXLAN
header is known only to VTEPs. The VTEP performs the
encapsulation/decapsulation, and is thus responsible for the
association between VM’s MAC and VTEP’s IP (learning
from incoming packets), as well the verification of the VNI
of received packets.
Encapsulation Method

The VXLAN encapsulation format is shown in Figure 2.
The inner MAC frame is encapsulated with the following
headers, by order of encapsulation:

• VXLAN header comprising of flags, reserved bits and the
24-bit VNI.

• Outer UDP header, with valid source and destination
ports, and (commonly) zero checksum.

• Outer IP header, with source and destination addresses
being the IP addresses of the respective VTEP endpoints
of the segment.

• Outer Ethernet header, with destination MAC address
being the address of the target VTEP or of an intermediate
router within the segment.

3



Control Plane
VXLAN has no dedicated control plane, that is, there is

no out-of-band mechanism that could be used for a VM to
discover other hosts in its segment, their MAC and VTEP
IP addresses, or any other relevant connectivity information.
Rather, it uses existing Layer 2 mechanisms such as flooding
and dynamic MAC learning. Layer 2 broadcast is replaced
by IP multicast, by mapping a VXLAN segment to an IP
multicast address, limiting the layer 2 broadcast transmissions
to the servers hosting VMs in the same VXLAN segment.
VTEPs can join or leave multicast groups as needed, using
IGMP. Then, ARP is implemented over IP multicast to resolve
MAC-to-VTEP mappings. The dependency on IP-multicast
has several drawbacks. Ideally, each VNI should be assigned a
different multicast group, however, in a large scale deployment
of virtual networks, it is likely that several VNIs would be
assigned the same group, due to the limited number of mul-
ticast groups supported by the network devices. In addition,
implementing the control flow by multicast results by multiple
floodings within the logical segment boundaries. Any attempt
to limit the flooding might interfere with the MAC-to-VTEP
learning. Lastly, the scalability of this solution depends on the
type of multicast tree used. For example, in case of source
base trees, the routing tables would not be able to support the
multiple entries needed for large VNIs.
Logical View & Discussion

By adding the VNI field and wrapping frames in layer 3
packets, VXLAN addressed the main concerns raised: scala-
bility problems due to VLAN space limitations, multitenancy
concerns and layer 2 connectivity issues. Following the use of
standard IP headers, this encapsulation method benefits from
IP address scalability, and provides interoperability across
traditional Layer 3 routing boundaries. In addition, functions
dependent on the IP & transport headers can be exploited
(such as multipathing using ECMP, which distributes the load
over different paths using a hash function over the standard
5-tuple). However, the VXLAN encapsulation method does
not aim to provide an enhanced logical view of the virtual
domain, but rather to efficiently extend the connectivity bound-
aries and solve the imminent scalability concerns. In fact, it
mainly supports Layer 2 within the logical network. As to
extendibility, additional control data could be placed within
the reserved fields of the VXLAN header, however this option
is not mentioned in the specification of this method.

B. NVGRE

Network Virtualization using Generic Routing Encapsula-
tion (NVGRE) was proposed as “a framework for policy-
based, software controlled network virtualization to support
multitenancy in public and private clouds using Generic
Routing Encapsulation (GRE)” [13], published in September
2011. Similarly to VXLAN, it presents an overlay solution
for virtualized Layer 2 networks over an IP infrastructure,
and addresses similar problems: limited connectivity and use
of resources of Layer 2 (which applies a spanning tree
protocol to eliminate loops and thus converges all the flow

Outer
MAC

Outer IP GRE
Inner
MAC

Original IP Payload

0 31

Reserved
Tenant Network ID (TNI) Reserved

24

Inner IP

Ver Protocol Type

Fig. 3. NVGRE encapsulation frame format.

to specific links); scalability problems of VLAN configuration
and limited address space; and the need for a scalable and
secure solution supporting multi-tenancy. The key concepts
addressed summarize the main goal of the overlay solution
for virtualized networks using a Layer 2 logical view:

• Location independent addressing.
• Scalability of the logical networks irrespective of the

underlying infrastructure.
• Preservation of Layer 2 semantics, for example, unique

addresses despite migration.
• Broadcast isolation despite the large scale deployment

and possible migration of workloads.
The two first points relate to the overlay solution decoupling
logical and physical infrastructure, while the two last points
are specific to the Layer 2 logical view provided by NVGRE
(as well as VXLAN).

NVGRE provides a method for tunneling Ethernet frames
in IP, using a GRE header which provides space to carry a
24-bit Tenant Network Identifier (TNI). Each TNI represents
a logical network, equivalent to a logical Layer 2 broadcast
domain. The tunneling mechansism is designed to be stateless,
although special issues such as IP fragmentation might require
some soft state to be efficiently handled. An NVGRE endpoint
is a gateway between the logical and physical domain, and is in
charge of the encapsulation/decapsulation of Ethernet frames
to and from the GRE tunnel.
Encapsulation Method

The NVGRE encapsulation format is shown in Figure 3. The
inner MAC frame is encapsulated with the following headers,
by order of encapsulation:

• GRE header comprising of the common fixed field (flags,
version, type), reserved bits and a 32-bit key field, of
which the lower 24 bits are used for TNI. The upper
8 bits of the key field are reserved for use by NVGRE
endpoints and are currently set to zero.

• Outer IP header, with source and destination addresses
referred to as Provider Addresses (PA). Here, there is a
policy based option, as in case of several PAs associated
with an NVGRE endpoint, the PA choice depends on the
policy used for the VM.

• Outer Ethernet header, with destination Ethernet address
being the MAC address of the next hop IP address for
the destination PA.

Discussion
NVGRE does not use any dedicated control plane. As to

the logical view, it mainly provides a Layer 2 logical domain,
while realizing virtual broadcast domains through physical
multicast. In addition, it addresses limited policy and routing
control by NVGRE endpoint configuration. Policy tables in

4



an NVGRE endpoint comprises of customer (inner) addresses,
TNI and selected PA for the virtual endpoint.

While architecturally NVGRE is very similar to VXLAN,
there are some differences related to interoperability and
exploitation of existing network functionalities that are worth
to be mentioned. On one hand, the use of GRE eases de-
ployment over existing hardware and software stacks, com-
pared to the need of porting a new tunneling format. On
the other hand, NVGRE does not use any standard transport
protocol (TCP/UDP), and thus functions depending on these
headers need to be applied differently. The main example is
ECMP hashing for multipathing and better use of bandwidth
resources. Another problem acknowledged by NVGRE is
IP fragmentation due to over-sized encapsulated frames. A
possible future solution could be to use Path MTU Discovery
to respectively reduce the virtual network MTU size for IP
packets and avoid fragmentation.

C. STT

Stateless Transport Tunneling Protocol (STT) for network
virtualization [14] was published in February 2012, as yet an-
other tunneling encapsulation method for building overlays for
virtualized networks. It provides the aforementioned require-
ments network virtualization places on tunneling protocols
(decoupling of logic domain from physical infrastructure with
respect to topology, services, machine mobility and addressing,
multitenancy support, and unlimited address space of VNs).
While addressing all these aspects, a major strength of this
method is its efficient use of the capacities of network interface
cards to improve performance.

As the previous overlay methods presented, STT is an IP-
based encapsulation. According to the STT conceptual model,
an STT tunnel operates between a pair of endpoints, whether
virtual/physical switches or some other devices, providing
a virtual Ethernet link between the endpoints. Frames are
encapsulated with an STT frame header carrying the logical
information of the virtual domain as well as an outer TCP-
like header before the standard IP encapsulation. The TCP
header is added for pragmatic reasons, to take advantage of
hardware-based TCP Segmentation Offload (TSO) support,
but is stateless. Thus, there is no association of TCP-state
connection to the tunnel.
Segmentation Offload.

As mentioned, STT was designed to use the high perfor-
mance of the NIC when tunnel endpoints are located in end-
systems. A NIC supporting TSO gets a large frame along with
metadata for completion of TCP header. It then fragments the
frame according to MSS size (for efficiency, equal to MTU),
performs checksum operation and applies the appropriate
headers to the segments. On the receive side, reassembly can
be performed by NICs supporting LRO. Taking advantage of
TSO capacities is important in the context of virtualization,
as transitions between the guest and the hypervisor as well as
between the hypervisor and the NIC are relatively expensive.
STT allows packets to be first processed by the virtual switch
which can perform different network virtualization functions,

Outer
MAC

Outer IP
Outer
TCP

STT
Inner
MAC

Inner IP Payload

0 31

Reserved

16

Inner IP

Version Flags L4 Offset
PCP V VLAN ID

Context ID

Padding

Fig. 4. STT encapsulation frame format.

and then encapsulate the packets adding the TCP-like header.
The encapsulated packets can then be segmented in hardware
by the NIC. It is worth to note that packet loss can be
efficiently handled despite segmentation. Partial frame payload
might be delivered to the TCP stack of the VM, which will
deal with missing bytes as for regular transmissions.
Encapsulation Method

The STT encapsulation format is shown in Figure 4. The
inner MAC frame is encapsulated with the following headers,
by order of encapsulation:

• STT header comprising of fixed field (flags, version,
type), reserved bits, and metadata (such as MSS and
VLAN ID) passed for the case where the frame is re-
assembled at an STT endpoint and then re-transmitted
on another physical interface. The logical information
is carried within the 64-bit context field, which is a
generalized form of network identifier, allowing room for
further extension.

• The TCP-like header used for TSO.
• Outer IP and Ethernet headers.

Discussion
STT does not provide any specification as to the control

plane used to manage the tunnels. As to the logical view,
STT allocates more space to logical data, without specifying
its interpretation, thus providing more freedom for software
processing. This method can be considered as fitted for soft
switching with hardware acceleration. Additional features al-
lowing efficient processing in software are the use of redundant
fields in the header for more efficient lookup and padding to
improve byte-alignment on 32-bit boundaries.

Clearly, the most important functionality exploited by this
method is hardware acceleration, however other functions such
as multipathing could be exploited as well. As distribution
of traffic over multiple path is performed as a function of
the source port, this can be achieved by using a method for
calculating the port which provide a random distribution over
the port numbers range, for example by applying a random
hash on ports and addresses of the TCP-like header.

With respect to interoperability, an STT packet appears
exactly the same as a TCP-IP packet, and thus can be
transmitted over any IP underlying infrastructure, assuming
no TCP processing occurs on the way. As no TCP state is
maintained along the header, undesired behavior might occur
in case STT packets pass through middle boxes that process
TCP.

5



III. DOVE OVERLAY SOLUTION

A. Modular Overlay Design

A good modular design of an overlay solution should
separate the three main components: encapsulation format,
control plane and logical view. After all, why should any
of these components be restricted by the specification of the
others? For example, the same logical view could be provided
by several ways of implementing the control plane, while an
encapsulation method should not be tied to any explicit control
plane or logical view. Both VXLAN and NVGRE focus on the
encapsulation method, while considering the essence of the
logical view as an extended Layer 2 logical domain. Alter-
natively, STT is merely an optimized encapsulation method,
and does not address the control plane or logical view (but
provides room for logical view extensions).

We view the encapsulation format as just one of the ele-
ments that is part of a design of a full overlay solution. In
DOVE, tunneling format is decoupled from the logical view
offered by the solution, and only defines the way frames are
wrapped to be transferred by the underlying infrastructure.
Moreover, a logical view offered to a virtualized network could
be applied using most extendible encapsulation methods.

B. Logical View

The Distributed Overlay Virtual nEtwork is a novel net-
working architecture that provides a clean abstraction fully
separating the logical function from the underlying physi-
cal infrastructure [15]. It allows to create a network vir-
tualization layer for deploying, controlling, and managing
multiple independent and isolated network applications over
a shared physical network infrastructure. DOVE meets the
set of requirements presented by large scale deployment of
virtualized networking technologies: scalability, multi-tenancy
support, highly dynamic workloads support, exploitation of the
underlying infrastructure hardware appliances, etc. However,
its major strength, differentiating it from existing overlay
solutions, is the logical view it provides to the endpoints.
Unlike other overlay solutions, DOVE is not limited to L2
emulation (e.g. Ethernet), but considers it as a mean to carry
data rather than as a service.

DOVE’s abstraction captures the high level functionality
required for network virtualization. The basic function is
clearly to provide connectivity between endpoints. However, in
todays rich IT environments, connectivity alone is not enough
and much more is expected from the networking services.
For example, traffic may be required to pass through network
appliances (called also “middleboxes”) such as firewalls, intru-
sion detection systems, encryption and compression engines,
etc. DOVE’s logical view was thus defined based on the
observation that application level networking requirements are
best described in terms of the connectivity between endpoints
and the policies associated with it. In DOVE, a policy is
a set of measures characterizing the connectivity between
communicating entities (source and destination). These mea-
sures can be, among others, access control, QoS, security, or

Fig. 5. DOVE control flow following transmission between endpoints hosted
by two different dSwitches: Step 1 Packet interception by dSwitch hosting
the sending endpoint; Step 2 Local policy lookup and, if needed, acquiring
it from the DPS; Step 3 Packet encapsulation and sending through a set of
appliances towards the destination dSwitch; Step 4 Packet decapsulation and
delivery to the destination endpoint.

performance criteria. More generally, policy measures can be
defined by a sequence of policy actions that must be applied
when forwarding data between the source and the destina-
tion endpoints. Note that although the logical connectivity
and policy specification is decoupled from the underlying
infrastructure, its actual deployment depends on the physical
networking technology and topology used, as specified policy
actions must be backed up by specific infrastructure capacities.

C. Architecture and Control Plane

In DOVE, data traffic is handled by distributed data plane
entities called DOVE Switches (dSwitch) while control is
achieved through a control plane engine called DOVE Policy
Service (DPS). The dSwitch entities are in charge of connec-
tivity and policy enforcement in a DOVE environment, and
get the respective control information from the DPS (if not
available in local cache). Typically, a dSwitch is located on a
physical server, and serves the virtual machines hosted by this
server. All the traffic sent and received by a DOVE endpoint
(VM) must traverse its hosting dSwitch. The DPS maintains
the logical view of the network, as described in the previous
section, and keeps it updated following any change of virtual
network configuration. In addition, it maintains the correlation
between the logical view and the physical infrastructure,
including physical location of virtual machines, location of
network appliances, etc. Based on this information, DPS maps
connectivity requests sent from a dSwitch to packet sending
instructions. DOVE’s control flow is depicted in Figure 5.
The dSwitch. The edge of DOVE’s overlay network com-
prises of the dSwitches, which transfer data between them
using logical tunnels. A dSwitch is thus responsible of the
encapsulation/decapsulation of the packets, delivering data
packets using DOVE’s tunneling protocol. Data is transmitted
subject to the policy actions that should be performed between
the specific endpoints. For example, in case of middleboxes,
these actions can be enforced by controlling the data path,
requiring the data to pass through the physical appliances that
apply the necessitated policies. A dSwitch maintains policy

6



information related to its hosted endpoints. This information
can be obtained from the DPS, and then stored in the dSwitch
local cache using timed entries. In addition, it sends control
information to other dSwitches as well as to the DPS. A
main example is for reporting the location and virtual address
information of hosted endpoints. Endpoint location updates
should be communicated upon every detected change (for
example, following endpoint migration).
The DPS. The DOVE Policy Service is a critical component
serving the entire DOVE environment, and thus must be
highly available, resilient, and scalable. The DPS maintains all
the information required to resolve policy requests issued by
dSwitches, and thus maintains all the information regarding
existing virtual networks as well as their correlation with
the physical infrastructure. This information comprises of the
policy actions and rules (and mapping of these actions to the
physical infrastructure), and the endpoints specification (the
physical information of their dSwitch, as well as their virtual
L2/L3 addresses).

D. Encapsulation Method

DOVE’s design is not restricted to a specific encapsulation
method. Rather, it could use any method relying on L2/L3
connectivity of the underlying infrastructure. In fact the two
parameters that should be present in the encapsulation header
are the virtual network ID and optionally a policy specifier
defined by a domain ID. Virtual network ID along the endpoint
virtual address uniquely identifies the endpoint, due to address
space isolation between virtual networks. These fields, along
others which might be needed to support policy extensions,
could be put in any suitable place within the encapsulation
header, according to the specific method used. In case of
VXLAN encapsulation, these parameters would be placed
in the VXLAN, for example by dividing the 24-bit VNI.
In another case, if using the optimized STT method, these
parameters would be carried within the 64-bit context field.

IV. CONCLUSIONS

In this work, we have investigated overlay solutions for
network virtualization throughout their architectural compo-
nents. Although overlays were previously proposed as an
efficient solution addressing the requirements raised by the
server virtualization, significant evolvements have taken place
during the past year, allowing a more elaborated analysis.
We presented our view of a modular overlay design, where
decoupling should be achieved between the main components:
the tunneling protocol, the control plane and the logical view.
Furthermore, we studied the tunneling protocol, as being
the lower level component supporting the functionality of
the upper components, and examined the attributes it should
support to assure the quality of the complete overlay solution.

We investigated the main methods recently proposed,
namely VXLAN, NVGRE and STT, and discussed the nature
of their control plane and the logical view they offer. While
these solutions efficiently extend the connectivity boundaries
and solve the imminent scalability concerns, they do not

provide specification of an enhanced logical view. However,
we note that reserved fields within their headers could be used
for logical view extensions in the future.

Finally, we described the architecture of our solution,
Distributed Overlay Virtual nEtwork (DOVE). DOVE was
designed focusing on the upper components, in order to
provide a logical view that supports provider-tenant contracts
with application level network services. DOVE’s architecture
has significantly evolved during the past year, and we thus
provided an overview of its main components, and explained
how modularity is achieved. Specifically, we presented the
tunneling format as decoupled from the logical view offered,
stressing that the later could be applied using most extendible
encapsulation methods.

Although it is now clear that overlays provide an efficient
solution for large scale, dynamic and highly virtualized net-
working environments, there are still many significant chal-
lenges ahead. A prominent example is the incorporation of the
overlay components within an enhanced and complete SDN
architecture, enabling a richer customized abstraction of the
network.

REFERENCES

[1] IEEE 802.1q: VLAN, 2005.
[2] “Cisco vn-link: Virtualization-aware networking,” 2009.
[3] “Ieee 802.1qbg - edge virtual bridging,” 2011.
[4] T. Narten, M. Sridharan, D. Dutt, D. Black, and L. Kreeger, “Problem

statement: Overlays for network virtualization,” 2012.
[5] M. Lasserre, F. Balus, T. Morin, N. Bitar, Y. Rekhter, and Y. Ikejiri,

“Framework for dc network virtualization,” 2012.
[6] L. Jin and B. Khasnabish, “Architecture of psn independent overlay

network,” 2012.
[7] L. Kreeger, D. Dutt, T. Narten, D. Black, and M. Sridharan, “Network

virtualization overlay control protocol requirements,” 2012.
[8] P. Pan and T. Nadeau, “Software-defined network (sdn) problem state-

ment and use cases for data center applications,” 2011.
[9] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing

the network forwarding plane,” in Proceedings of the Workshop on
Programmable Routers for Extensible Services of Tomorrow, 2010.

[10] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S. Shenker,
“Extending networking into the virtualization layer,” in HotNets, 2009.

[11] K. Barabash, R. Cohen, D. Hadas, V. Jain, R. Recio, and B. Rochwerger,
“A case for overlays in dcn virtualization,” in Proceedings of the 3rd
Workshop on Data Center - Converged and Virtual Ethernet Switching,
Dc-CaVES, 2011, pp. 30–37.

[12] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. S. M.
Bursell, and C. Wright, “Vxlan: A framework for overlaying virtualized
layer 2 networks over layer 3 networks,” 2012.

[13] M. Sridharan, K. Duda, I. Ganga, A. Greenberg, G. Lin, M. Pearson,
P. Thaler, C. Tumuluri, N. Venkataramiah, and Y. Wang, “Nvgre:
Network virtualization using generic routing encapsulation,” 2011.

[14] B. Davie and J. Gross, “A stateless transport tunneling protocol for
network virtualization,” 2012.

[15] R. Cohen, K. Barabash, V. Jain, R. Recio, and B. Rochwerger, “Dove:
Distributed overlay virtual network architecture,” 2012.

[16] A. S. Anghel, R. Birke, D. Crisan, and M. Gusat, “Partition/aggregate
in commodity 10g ethernet software-defined networking,” in IEEE 13th
Conference on High Performance Switching and Routing (HPSR), 2012.

[17] R. Birke, D. Crisan, K. Barabash, A. Levin, C. DeCusatis, C. Minken-
berg, and M. Gusat, “Cross-layer flow and congestion control for
datacenter networks,” in Proceedings of the 3rd Workshop on Data
Center - Converged and Virtual Ethernet Switching, Dc-CaVES, 2011,
pp. 44–62.

[18] S. Bradner, B. Carpenter, and T. Narten, “Procedures for protocol
extensions and variations,” 2006.

7


