
H-0227 (H0405-004) May 19, 2004
Computer Science

IBM Research Report

Autovectorization in GCC

Dorit Naishlos
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Autovectorization in GCC

Dorit Naishlos
IBM Research Lab in Haifa

dorit@il.ibm.com

Abstract

Vectorization is an optimization technique that
has traditionally targeted vector processors.
The importance of this optimization has in-
creased in recent years with the introduction of
SIMD (single instruction multiple data) exten-
sions to general purpose processors, and with
the growing significance of applications that
can benefit from this functionality. With the
adoption of the new Tree SSA optimization
framework, GCC is ready to take on the chal-
lenge of automatic vectorization. In this pa-
per we describe the design and implementation
of a loop-based vectorizer in GCC. We discuss
the new issues that arise when vectorizing for
SIMD extensions as opposed to traditional vec-
torization. We also present preliminary results
and future work.

1 Introduction

Vector machines were introduced in the 1970’s,
to increase processor utilization by accelerat-
ing the initiation of operations, and keeping the
instruction pipeline full. To take advantage of
vector hardware, programs are rewritten using
explicit vector operations on whole arrays (as
in Figure 1b) instead of operations on individ-
ual array elements one after the other (as in
Figure 1a). This rewrite of loops into vector
form is referred to asvectorization[3].

The vector notation in Figure 1b implies that
all the loads (from arrays a and b) take place
before all the stores (into array a); This means
that loops like the one in Figure 1d, where each
iteration uses a result from a previous iteration,
cannot be rewritten in vector form. This situa-
tion is an example of a data-dependence that is
carried across the iterations of the loop. When
no such dependences between loop iterations
exist, operations from different iterations can
be initiated in parallel, and vectorization may
be applied. Data dependence analysis is there-
fore a fundamental step in the process of vec-
torization.

Vectorization, when applied automatically by a
compiler, is referred to asautovectorization. In
this paper, we use the two terms interchange-
ably to refer to compiler vectorization.

In recent years, a different architectural ap-
proach to exploit a similar kind of data par-
allelism has become increasingly common. It
follows the Single Instruction Multiple Data
(SIMD) model, in which the same instruction
simultaneously executes on multiple data el-
ements that are packed in advance in vector
registers. The length of these vectors (vec-
tor length) is relatively small. The number of
data elements that they can accommodate de-
termines the degree of parallelism (vectoriza-
tion factor, VF) that can be exploited. This
value varies depending on the data-type of the
elements.

1

(a) original serial loop:

for(i=0; i<N; i++){
a[i] = a[i] + b[i];

}

(b) loop in vector notation:

a[0:N] = a[0:N] + b[0:N];

(c) vectorized loop:

for (i=0; i<(N-N%VF); i+=VF){
a[i:i+VF] = a[i:i+VF] + b[i:i+VF];

}
for (; i < N; i++) {

a[i] = a[i] + b[i];
}

(d) unvectorizable loop (dependence cycle):

for (i=1; i<N; i++){
a[i] = a[i-1] + b[i];

}

Figure 1: The vectorization transformation

Vectorizing the loop in Figure 1a for SIMD
therefore implies transforming it to operate on
VF elements at a time, as illustrated in Fig-
ure 1c. This is generally equivalent to strip-
mining the loops by a factorVF, while replac-
ing scalar operations with equivalent vector op-
erations. A serial loop that computes the re-
mainingN%VFiterations is also added for the
case thatNdoes not evenly divide byVF.

Applications in many domains have an abun-
dant amount of natural parallelism present
in the computations they perform. If this
parallelism can be leveraged to exploit the
SIMD/vector capabilities of architectures, the
performance of these applications can be con-
siderably increased.

The GCC vectorizer implements a loop-based
vectorization approach, which means that it fo-
cuses on exploiting the data parallelism present
across loop iterations. Data parallelism present
in straight-line code is not leveraged by the
loop-based vectorizer. Vectorization tech-
niques that exploit this type of parallelism,

such as [12], could be used as a complemen-
tary approach to loop-based vectorization. We
briefly discuss this in Section 8.

As we show in the following sections, practical
vectorization for vector processors, and in par-
ticular the more recent SIMD processors, in-
volves much more than loop dependence anal-
ysis and introduces some nontrivial issues and
choices especially for a multi-platform com-
piler like GCC.

2 Classic Vectorization vs. SIMD
Vectorization

Autovectorization is a mature research area;
automatic detection of vector loops in serial
code has been discussed in literature for more
than a decade [1, 20]. The main focus of classic
vectorization is the theory of data dependences.
It deals with loop analyses to (1) detect state-
ments that could be executed in parallel with-
out violating the semantics of the program, and
(2) increase such occurrences by means of loop
transformations.

The classic (data-dependence based) vector-
ization approach has traditionally targeted the
vector machines of the 1970’s. Two main de-
velopments in recent years have shifted the fo-
cus to vectorizing for the modern SIMD archi-
tectures. One is the proliferation of SIMD ca-
pabilities in modern computing platforms, in-
cluding gaming machines [18], Digital Signal
Processors (DSPs) [7, 10], and even in general
purpose processors [15, 8]. The second factor
is the growing significance of applications that
can benefit from SIMD functionality, particu-
larly those in the multimedia domain.

The classic vectorization theory does not ap-
ply very successfully to SIMD machines [16],
for several reasons. Traditional vectorization

2

has focused on array-based Fortran programs
from the scientific computing domain. Many
of the important modern workloads, such as
multimedia applications, are written in C and
make extensive use of pointers. The presence
of pointers, and other programming language
differences [2] give rise to a new domain of
problems critical for the success of vectoriza-
tion.

The primary difficulties in applying classic
vectorization to SIMD lie in the architectural
differences between SIMD extensions and tra-
ditional vector architectures. First, SIMD
memory architectures are typically weaker
than those of traditional vector machines. The
former generally only support accesses to con-
tiguous memory items, and only on vector-
length aligned boundaries. Computations,
however, may access data elements in an or-
der which is neither contiguous nor adequately
aligned. SIMD architectures usually provide
mechanisms to reorganize data elements in
vector registers in order to deal with such sit-
uations. These mechanisms (packing and un-
packing data elements in and out of vector reg-
isters and special permute instructions) are not
easy to use, and incur considerable penalties.
For a vectorizer, this implies that generating
vector memory accesses becomes much more
involved.

In addition, the instruction sets of SIMD archi-
tectures tend to be much less general purpose
and less uniform. Many specialized domain-
specific operations are included, many oper-
ations are available only for some data types
but not for others, and often a high-level un-
derstanding of the computation is required in
order to take advantage of some of the func-
tionality. Furthermore, these particular charac-
teristics differ from one architecture to another.

These attributes demand that low-level
architecture-specific factors will be consid-
ered throughout the process of vectorization.

Classic dependence analysis is therefore only
a partial solution to vectorizing for SIMD
extensions. Code transformation issues require
much more attention, as discussed later in the
paper.

3 Data-Dependence Analysis

The classic approach for vectorization is based
on the theory of data-dependence analysis.
Some parts of the classic data-dependence-
based analyses and transformations are already
present in GCC (currently in the loop-nest-
optimizations (lno) branch of GCC).

The first step in dependence analysis is the con-
struction of a data dependence graph (ddg).
The nodes of the graph are the loop state-
ments, and edges between statements repre-
sent a data dependence between them. There
are two types of such edges. Edges between
scalar variables represent a def-use link be-
tween statements. These links can be trivially
computed from a SSA representation, such as
the one used in the tree-ssa representation level
of GCC.

The second kind of edges are those be-
tween memory references. The classic data-
dependence theory focused on array-based
Fortran programs, and therefore only array ref-
erences have traditionally been considered. In
other (e.g. C) programs, memory references
can take other forms (e.g, indirect references
through pointers), and these are considered by
the GCC vectorizer. Memory dependences are
determined by applying a set of dependence
tests [9, 3] that compare array subscripts. Sim-
pler and faster tests (GCD, Banerjee) are ap-
plied to simple subscript forms. More complex
and accurate tests (Gamma, Delta, Omega) are
applied to more complicated subscripts.

3

If a dependence is carried by the relevant nest-
ing level then an edge is added to the ddg. For
example, in Figure 1, loops (a) and (d) both
have a dependence between the two references
to arraya, but only the dependence in loop (d)
is carried across the loop iterations and pre-
vents vectorization. In GCC, tests that compute
dependences between array references are im-
plemented in the module tree-data-refs.c. They
are used by the vectorizer to detect depen-
dences between data references in inner-most
loops.

The classic data dependence analysis pro-
ceeds to detect Strongly Connected Compo-
nents (SCCs) in the ddg. SCCs that consist of
a single node represent a statement that can be
executed in parallel at the loop level that is be-
ing considered. SCCs that consist of multiple
nodes represent statements that are involved in
a dependence cycle, and prevent the vectoriza-
tion of the loop unless the cycle can be "bro-
ken".

In order to increase the potential for vector-
ization, the vectorizable parts can be separated
from the groups of statements that are involved
in dependence cycles (loop distribution). This
is done by creating a separate loop for each
SCC, after having topologically sorted the re-
duced graph in which each SCC is represented
by a single node. There is a preliminary imple-
mentation of ddg construction in GCC (as part
of the scalar-evolutions module) but it is not
yet used. Loop distribution to increase vector-
ization opportunities is not yet supported, how-
ever other loop transformations that increase
parallelism (loop interchange, scaling, skew-
ing, and reversal) are supported in GCC as part
of the tree-loop-linear module.

Lastly, special kinds of dependence cycles can
be dealt with if recognized as certain idioms,
such as reduction. The GCC vectorizer will be
enhanced to recognize and handle such situa-
tions in the near future.

4 Vectorizer Overview

The vectorization optimization pass is
developed in the loop-nest-optimizations
(lno) branch (http://gcc.gnu.org/
projects/tree-ssa/lno.html), at
the IR level of SSA-ed GIMPLE trees. The
current development status can be found on
http://gcc.gnu.org/projects/
tree-ssa/vectorization.html .
The vectorizer is enabled by the-ftree-
vectorize flag which also invokes the
scalar-evolutions analyzer, upon which the
vectorizer relies for induction variable recog-
nition and loop bound calculation. The bulk of
the vectorizer functionality can be found in two
files (tree-vectorizer.c and tree-vectorizer.h).
The vectorizer also uses loop-related utilities
that reside elsewhere, many of which are new
contributions developed in the lno branch.

The vectorization pass is in early stages of
development; the basic infrastructure is in
place, supporting initial vectorization capabil-
ities. These capabilities are demonstrated by
the vectorization test-cases, which are updated
to reflect new capabilities as they are added.
Work is underway to extend these capabilities
and to introduce more advanced vectorization
features.

4.1 vectorizer layout

An outline of the vectorization pass is given in
Figure 2. The main entry to the vectorizer is
vectorize_loops(loops) . The vector-
izer applies a set of analyses on each loop, fol-
lowed by the actual vector transformation for
the loops that had successfully passed the anal-
ysis phase.

4

vect_analyze_loop (struct loop *loop) {
loop_vec_info loopinfo;
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)

FAIL;
if (!analyze_data_refs (loopinfo))

FAIL;
if (!analyze_scalar_cycles (loopinfo))

FAIL;
if (!analyze_data_ref_dependences (loopinfo))

FAIL;
if (!analyze_data_ref_accesses (loopinfo))

FAIL;
if (!analyze_data_refs_alignment (loopinfo))

FAIL;
if (!analyze_operations (loopinfo))

FAIL;
LOOP_VINFO_VECTORIZABLE_P (loopinfo) = 1;
return loopinfo;

}

vect_transform_loop (struct loop *loop) {
FOR_ALL_STMTS_IN_LOOP(loop, stmt)

vect_transform_stmt (stmt);
vect_transform_loop_bound (loop);

}

Figure 2: Vectorizer outline

4.2 vectorizer analysis

The first analysis phase, ana-
lyze_loop_form() , examines the loop
exit condition and number of iterations, as
well as some control-flow attributes such as
number of basic blocks and nesting level.
One major restriction imposed on a loop
for vectorization to be applicable, is that the
loop is countable - i.e, an expression that
calculates the loop bound can be constructed
and evaluated either at compile time or at
run-time. For example, the loop in Figure 3a is
not a countable loop. The loop bound analysis
is carried out by the scalar evolution analyzer.
To simplify the initial implementation, the
vectorizer also verifies that the loop is an
inner-most loop, and consists of a single basic
block. Multi-basic-block constructs such as
if-then-else are collapsed into conditional
operations if possible, by an if-conversion pass
prior to vectorization.

Next,analyze_data_refs() finds all the

(a) uncountable loop:

while (*p != NULL){
*p++ = X;

}

(b) reduction - summation:

for (i=0; i<n; i++){
sum += a[i];

}

(c) induction:

for (i=0,j=0; i<n; j++,i++){
a[i] = j;

}

(d) non consecutive access pattern:

for (i=0; i<n; i++){
a[2*i] = X;

}

Figure 3: Loop examples

memory references in the loop, and checks if
they are "analyzable" - i.e, an access func-
tion that describes their modification in the
loop (evolution) can be constructed. This is
required for the memory-dependence, access-
pattern and alignment analyses (described in
Section 5). Other restrictions enforced at this
point are there for simplicity of implementa-
tion, and will be relaxed in the near future.

Dependences which do not involve mem-
ory operations are analyzed directly from
the SSA representation. The functionan-
alyze_scalar_cycles() examines such
"scalar-cycles" (dependence cycles which in-
volve only scalar variables), and verifies that
any scalar cycle, if exists, can be handled in a
way that breaks the cross-iteration dependence.

One kind of such "breakable" scalar cycles are
those that represent reductions. A reduction
operation computes a scalar result from a set
of data-elements. The loop in Figure 3b for
example, computes the sum of a set of array
elements into a scalar resultsum. Some re-
duction operations can be vectorized, generally

5

by computing several partial results in parallel,
and combining them at the end (reducing them)
to single result. Scalar cycles can also be cre-
ated by induction variables (IVs). Certain IVs
that are used for loop control and for address
computation, are handled as an inherent part of
vectorization. An example of an IV of this type
is i from Figure 3c. Other IVs such asj from
the same example require special vectorization
support. Support for vectorization of reduction
and induction will be introduced to GCC in the
near future.

The final analysis phase ana-
lyze_operations() scans all the
operations in the loop and determines a
vectorization factor. The vectorization factor
(VF) represents the number of data elements
that will be packed together in a vector, and
is also the strip-mining factor of the loop.
It is determined according to the data-types
operated on in the loop, and the length of
the vectors supported by the target platform.
Currently we use a simple approach that
allows a single vector length per platform
and a single data-type per loop, but these
restrictions will be relaxed in the near future.
analyze_operations() also checks
that all the operations can be supported in
vector form. The cost of expanding them to
scalar code in case they are not supported, is
expected to offset the benefits of vectorizing
the loop. In the future, a cost model should be
devised to support the vectorizers decisions on
which loops to vectorize.

4.3 vectorizer transformation scheme

During the analysis phase the vectorizer
records information at three levels of granular-
ity - at the loop level (loop_vect_info), at
the statement level (stmt_vec_info), and
per memory reference (data_reference).
These data-structures are later used during the

(a) before vectorization:

S1: x = b[i];
S2: z = x + y;
S3: a[i] = z;

(b) after vectorization of S1:

VS1: vx = vpb[indx];
S1: x = b[i]; ---> VS1
S2: z = x + y;
S3: a[i] = z;

(c) after vectorization of S2:

VS1: vx = vpb[indx];
S1: x = b[i]; ---> VS1
VS2: vz = vx + vy;
S2: z = x + y; ---> VS2
S3: a[i] = z;

(d) after vectorization of S3:

VS1: vx = vpb[indx];
S1: x = b[i]; ---> VS1
VS2: vz = vx + vy;
S2: z = x + y; ---> VS2
VS3: vpa[indx] = vz;

Figure 4: The transformation process

loop transformation phase.

The vectorization transformation can be gener-
ally described as "strip-mine byVF and sub-
stitute one-to-one", which implies that each
scalar operation in the loop is replaced by its
vector counterpart. The loop transformation
phase scans all the statements of the loop top-
down (defs are vectorized before their uses),
inserting a vector statementVS in the loop for
each scalar statementS that needs to be vector-
ized, and recording in thestmt_vec_info
attached toS a pointer toVS; This pointer is
used to locate the vectorized version of state-
mentS during the vectorization of subsequent
statements that depend onS.

After all statements have been vectorized, the
original scalar statements may be removed.
Stores to memory are explicitly removed by the
vectorizer; the remaining scalar statements are

6

expected to be removed by dead code elimina-
tion pass after vectorization.

Figure 4 illustrates the transformation process;
First, stmtS1 is vectorized into stmtVS1; In
order to vectorize stmtS2, the vectorizer needs
to find the relevant vector def-stmt for each
operand ofS2. The figure only shows how
this is done for the operandx : first, the scalar
def-stmt ofx , S1, is found (using SSA), and
the relevant vector defvx is retrieved from the
vectorized statement ofS1, VS1. Similarly for
S3, except thatS3 is also removed.

In practice, many cases require additional han-
dling beyond the "one-to-one substitution".
Constants and loop invariants require that vec-
tors be initialized at the loop pre-header. Other
computations require special epilog code af-
ter the loop (e.g. reductions, and inductions
that are used after the loop). Some access-
patterns require special data manipulations be-
tween vectors within the loop (e.g. data inter-
leaving and permutations). Some scalar op-
erations cannot be replaced by a single vec-
tor operation (e.g. when mixed data-types are
present). Sometimes a sequence of scalar oper-
ations can be replaced by a single vector opera-
tion (e.g. saturation, and other special idioms).
It might be possible to hide some of these com-
plications from the vectorizer, and handle them
at lower levels of code generation. We discuss
these issues in Section 6.

Finally, the loop bound is transformed to re-
flect the new number of iterations, and if neces-
sary, an epilog scalar loop is created to handle
cases of loop bounds which do not divide by
the vectorization factor. This epilog also must
be generated in cases where the loop bound is
not known at compile time.

5 Handling Memory References

Memory references require special attention
when vectorizing. This is true in the clas-
sic vectorization framework, and even more
so when vectorizing for SIMD. The vector-
izer currently considers two forms of data-refs
- one dimensional arrays (represented asAR-
RAY_REFs that areVAR_DECLs), and pointer
accesses (INDIRECT_REFs). Once an access
function has been computed (for the array in-
dex or the pointer) the vectorizer proceeds to
apply a set of data-ref analyses, which we de-
scribe here.

5.1 Dependences and aliasing

As mentioned above, one of the basic restric-
tions that has to be enforced in order to safely
apply vectorization is that no dependence cy-
cles exist. A simplified form of the stan-
dard memory dependence analysis, which we
briefly described in Section 3, is applied, using
simple dependence tests from the tree-data-ref
module of the lno-branch.

This analysis can be enhanced in several direc-
tions, including: (1) using more complex de-
pendence tests, (2) pruning dependences with
distance greater than the vectorization factor,
and (3) not failing when a dependence is found,
but instead attempting to resolve the depen-
dence by reordering nodes in the dependence
graph (consequently distributing the loop).

Pointer accesses require in addition alias anal-
ysis to conclude whether any two pointer-
accesses in the loop may alias. If we cannot
rule out the possibility that two pointers may
alias, loop versioning can be used, with a run-
time-overlap test to guard the vectorized ver-
sion of the loop.

7

5.2 Access pattern

When the data is laid out in memory exactly in
the order in which it is needed for the computa-
tion, it can be vectorized using the simple one-
to-one vectorization scheme. However, com-
putations may access data elements in an or-
der different from the way they are organized
in memory. For example, the computation in
Figure 3d uses a strided access pattern (with
stride 2). Non-consecutive access patterns usu-
ally require special data manipulations to re-
order the data elements and pack them into
vectors. This is because the memory architec-
ture restricts vector data accesses to consecu-
tive vector-size elements.

Some architectures provide relatively flexible
mechanisms to perform such data manipula-
tions (gather/scatter operations in traditional
vector machines, indirect access through vec-
tor pointers [14]). SIMD extensions usu-
ally provide mechanisms to pack data from
two vectors into one (and vice versa), while
possibly applying a permutation on the data
elements. Some SIMD extensions provide
specialized support for certain access-patterns
(most commonly for accessing odd/even ele-
ments for computations on complex numbers),
but these are usually limited only to a few op-
erations and a few data types.

The underlying data reorganization support de-
termines whether vectorization can be applied,
and at what cost. These data manipulations
need to be applied in each iteration of the loop
and therefore incur considerable overhead. In
fact, some access patterns, such as indirect ac-
cess, cannot be vectorized efficiently on most
SIMD/vector architectures. The functionan-
alyze_access_pattern() verifies that
the access pattern of all the data references in
the loop is supported by the vectorizer, which is
currently limited to consecutive accesses only.

5.3 alignment

Accessing a block of memory from a loca-
tion which is not aligned on a natural vector-
size boundary is often prohibited or bears a
heavy performance penalty. These memory
alignment constraints raise problems that can
be handled using data reordering mechanisms.
Such mechanisms are costly, and usually in-
volve generating extra memory accesses and
special code for combining data elements from
different vectors in each iteration of the loop.

In order to avoid these penalties, techniques
like loop peeling and static and dynamic
alignment detection [11, 13, 4] can be used.
Alignment handling therefore consists of
three levels: (1) static alignment analysis,
(2) transformations to force alignment, in-
cluding runtime checks, and (3) efficient
vectorization of the remaining misaligned
accesses. The functionscompute_data_
refs_alignment() and enhance_
data_refs_alignment() (called from
analyze_data_refs_alignment())
are responsible for items (1) and (2) above.
compute_data_refs_alignment()
computes misalignment information for
all data-references; currently only a trivial
conservative implementation is provided.

Following the alignment computation,
the function enhance_data_refs_
alignment() uses loop versioning and loop
peeling in order to force the alignment of data
references in the loop. Loop peeling can only
force the alignment of a single data reference,
so the vectorizer needs to choose which
data reference DR to peel for. In the peeled
loop, only the access DR is guaranteed to be
aligned. Loop versioning could be applied on
top of peeling, to create one loop in which
all accesses are aligned, and another loop in
which only the access DR is guaranteed to be
aligned. A cost model should be devised to

8

guide the vectorizer as to which access to peel
for, and whether to apply peeling or versioning
or a combination of the two, considering the
code size and runtime penalties. Figure 5
illustrates these different alternatives.

If data-references which are not known to be
aligned still remain afterenhance_data_
refs_alignment() , the vectorizer will
proceed to vectorize the loop only if the tar-
get platform provides mechanisms to support
misaligned accesses. Figure 6c presents a pos-
sible scheme for handling misalignment [6]. It
relies on a pair of target hooks: one that cal-
culates the misalignment amount, and repre-
sents it in a form that the second hook can
use (a shift amount or a permutation mask).
The second hook combines data from two vec-
tors, permuted according to the misalignment
shift amount. In some cases the code could be
further optimized by exploiting the data reuse
across loop iterations, as shown in Figure 6d.

Targets that support misaligned accesses di-
rectly, do not need to implement these hooks;
in this case, misaligned vector accesses will
look just like regular aligned vector accesses,
as in Figure 6b. Section 6 discusses the trade-
offs involved in this implementation scheme.

6 Vectorization issues

An issue that repeatedly comes up during the
development of the GCC vectorization is the
tension between two conflicting needs. One
is the requirement to maintain a high-level,
platform-independent program representation.
The other is the need to consider platform-
specific issues and express low-level constructs
during the process of vectorization.

In many ways, the tree-level is the suitable
place for the implementation of a loop-based

(a) original loop, before alignment analysis:

for (i=0; i<N; i++){
x = q[i]; //misalign(q) = unknown
p[i] = y; //misalign(p) = unknown

}

(b) after compute_data_refs_alignment():

for (i=0; i<N; i++){
x = q[i]; //misalign(q) = 3
p[i] = y; //misalign(p) = unknown

}

(c) option 1 - loop versioning:

if (p is aligned) {
for (i=0; i<N; i++){

x = q[i]; //misalign(q) = 3
p[i] = y; //misalign(p) = 0

}
}else {

for (i=0; i<N; i++){
x = q[i]; //misalign(q) = 3
p[i] = y; //misalign(p) = unknown

}
}

(d) option 2 - peeling for access q[i]:

for (i = 0; i < 3; i++){
x = q[i];
p[i] = y;

}
for (i = 3; i < N; i++){

x = q[i]; //misalign(q) = 0
p[i] = y; //misalign(p) = unknown

}

(e) option 3 - peeling and versioning:

for (i = 0; i < 3; i++){
x = q[i];
p[i] = y;

}
if (p is aligned) {

for (i = 3; i<N; i++){
x = q[i]; //misalign(q) = 0
p[i] = y; //misalign(p) = 0

}
}else {

for (i = 3; i<N; i++){
x = q[i]; //misalign(q) = 0
p[i] = y; //misalign(p) = unknown

}
}

Figure 5: Alternatives for forcing alignment

9

(a) scalar data-ref:

i = init;
LOOP:

x = a[i];
i++

(b) vectorized data-ref:

vector *vpx = &a[init];
indx = 0;

LOOP:
vector vx = (*vpx)[indx];
indx++

(c) vectorized data-ref with misalignment support:

vector *vpx1 = &a[init];
vector *vpx2 = &a[init+VF-1];
shft = target_hook_get_shft

(&a[init])
indx = 0;

LOOP:
vx1 = (*vpx1)[indx];
vx2 = (*vpx2)[indx];
vx = target_hook_combine_by_shft

(vx1, vx2, shft)
indx++;

(d) optimized misalignment support:

vector *vpx1 = &a[init];
vector *vpx2 = &a[init+VF-1];
shft = target_hook_get_shft

(&a[init]);
indx = 0;
vx1 = (*vpx1)[indx];

LOOP:
vx2 = (*vpx2)[indx];
vx = target_hook_combine

(vx1, vx2, shft);
indx++;
vx1 = vx2;

Figure 6: Handling data-refs (load example)

vectorizer in GCC. Arrays and other language
constructs are represented in a relatively high-
level form, a fact that simplifies analyses such
as alignment, aliasing and loop-level data-
dependences. Analyses are further simplified
due to the SSA representation. Implementing
the vectorizer at the tree-ssa level allows it to
benefit from the vast suite of SSA optimiza-
tions, and in particular, the loop related utilities
developed in the lno-branch.

On the other hand, at this IR level it is not
so trivial to handle situations in which target-
specific information needs to be consulted, and
even less trivial to handle situations in which
target-specific constructs need to be expressed.

Misalignment is an excellent example of such a
situation. The low-level functionality that sup-
ports misaligned accesses must somehow be
expressed in the tree IR. The implementation
should maintain the following properties: (1) It
should hide low-level details as much as pos-
sible. (2) It should be general enough to be
applicable to any platform. SIMD extensions
vary greatly from platform to platform. (3) De-
spite these restrictions, it should be as efficient
as possible on each platform.

In terms of the above criteria, the misalignment
scheme that was presented in the previous sec-
tion: (1) exposes the vectorizer to low-level
details of misalignment support, (2) might not
be general enough (it assumes that low-order
address bits are ignored by load operations),
and (3) is potentially inefficient for targets that
would be better supported by alternative meth-
ods.

To tackle these problems, two alternatives can
be considered. Alternative 1: Annotate mis-
aligned accesses and let the subsequent RTL
expansion pass handle the details. This is the
most natural way to address architecture spe-
cific details. However, this solution can po-
tentially be very inefficient, because it neglects

10

to take advantage of data reuse between itera-
tions. To do that, the lower-level RTL passes
would have to rediscover the kind of loop-level
information the vectorizer already had. Alter-
native 2: Hide all these implementation details
in a "black box" target hook, that would gener-
ate the most efficient code for its platform. A
disadvantage would be that functionality that
is common to many targets would have to be
duplicated. Also, the vectorizer would be un-
aware of what’s going on, and would have dif-
ficulty estimating the overall cost of applying
vectorization, for example.

Low-level architectural details are not only
problematic with respect to representing them
at a high-level platform-independent abstrac-
tion. Specific architectural vector support can
directly affect the vectorization transformation,
and even determine whether it should be ap-
plied at all. These details must be considered
during vectorization because the choices made
at the vectorization stage are not easily altered
at later low-level stages of compilation. This
is especially true in cases of architectural fea-
tures that require recognition of an entire com-
putational idiom, a task best supported by high-
level analysis (reductions for example may be
difficult to identify without the entire context
of the loop).

These are some of tradeoffs and decisions in-
volved in the implementation of the GCC vec-
torizer. These kinds of problems often come up
in optimizing compilers, but are especially evi-
dent in the context of SIMD vectorization, and
even more so when implemented in a multi-
platform compiler like GCC.

7 Status

The first implementation of a basic vector-
izer in GCC was contributed to the lno-branch

on January 1st, 2004. It has since been en-
hanced with additional capabilities, including
support for vectorization of constants, loop in-
variants, and unary and bitwise operations. The
vector test-suite (gcc/gcc/testsuite/gdd.dg/tree-
ssa-vect/) reflects the current vectorization
functionality. The domain of vectorizable
loops can be summarized in terms of the sup-
portable (1) loop forms, (2) data references,
and (3) operations. Currently support includes
(1) inner-most, single-basic-block loop forms,
with a known loop bound divisible by the vec-
torization factor; (2) consecutive array data ref-
erences for which alignment can be forced, and
(3) operations that do not create a scalar-cycle
(no reduction or induction), that all operate on
the same data-type, and that have a vector form
that can be expressed using existing tree-codes.

Recent development has focused on broaden-
ing the range of loop-forms and data refer-
ences that the vectorizer can support. This in-
cludes the vectorization of loops with unknown
loop bounds, an if-conversion pass that allows
the vectorizer to handle some forms of multi-
basic-block loops, vectorization of unaligned
loads, and vectorization of pointer accesses.
These features are likely to be added by the
time this paper is presented, and will soon be
followed by support for peeling and versioning
for alignment. Other future directions include
support for multiple data-types, and for reduc-
tion and induction operations. In the next sec-
tion we discuss additional directions for further
development of the vectorizer.

8 Future Work

Following is a list of potential enhancements to
the vectorizer, organized into four categories:

Support additional loop forms. Support for
unknown loop bounds and if-then-else con-

11

structs is nearly complete. The major remain-
ing restriction on loop form is the nesting level.
Vectorization of nested loops will be consid-
ered in the future.

Support additional forms of data references.
Potential extensions in this category include
enhancements to the dependence tests (as dis-
cussed in Section 5) and support for additional
access patterns (reverse access, and accesses
that require data manipulations like strided or
permuted accesses). Exploiting data reuse as
in [17] is an optimization related to data refer-
ences that we plan to consider in the future.

Support additional operations. Vectorization
of loops with multiple data-types and type cast-
ing is the first extension expected in this cate-
gory. This capability requires support for data
packing and unpacking, which breaks out of
the one-to-one substitution scheme, and can-
not be directly expressed using existing tree-
codes. The next capabilities to be introduced
will be support for vectorization of induction,
reduction, and special idioms (such as satura-
tion, min/max, dot product, etc.), using target
hooks or adding new tree-code as necessary.

Other enhancements and optimizations.
Two general capabilities that we are planning
to introduce are support for multiple vector
lengths for a single target, and the ability to
evaluate the cost of applying vectorization.
This will require some form of cost modelling
for the vector operations. Interaction with
other optimization passes should also be ex-
amined, and in particular, potential interaction
with other (new) passes that might also exploit
data parallelism. One example could be loop
parallelization (using threads). Another exam-
ple could be straight-line code vectorization (as
opposed to loop based), such as SLP [12].

SLP is in many ways suitable for lower rep-
resentation levels, as it analyzes addresses, and

operates like a peep-hole optimization on a sin-
gle basic block at a time. This is what gives
SLP it’s main strength - scalar operations are
grouped together into a vector operation with-
out a need to prove general attributes about an
enclosing loop as a whole. (In fact, it is not
even aware of any enclosing loops). This prop-
erty allows it to vectorize code sequences that
the loop based vectorizer does not target. How-
ever, this is also its main limiting factor, and it
can benefit from loop-level information which
is already available to the tree-level loop-based
vectorizer. We are therefore considering imple-
menting SLP at the tree-level, as a complemen-
tary solution to the loop-based vectorizer.

With the introduction of support for unknown
loop bounds, pointers, misalignment, and con-
ditional code, the GCC vectorizer will be in
relatively good shape compared to other vec-
torizing compilers. The major remaining re-
strictions (inner-most loops, consecutive ac-
cesses and a single data-type per loop) tend to
be common to vectorizing compilers in gen-
eral [5, 19]. However, as the (long) list above
implies, most of the exciting features still lie
ahead.

9 Acknowledgments

The vectorizer directly uses, or otherwise ben-
efits from, utilities developed in the lno-branch
contributed by Sebastian Pop, Zdenek Dvo-
rak, Devang Patel, and Daniel Berlin. Many
thanks to Sebastian for continuious support for
smooth interaction of his analyzer with the vec-
torizer, and to Zdenek for ongoing resposive
maintenance of the lno-branch. I would like to
thank Olga Golovanevsky for her contributions
to vectorizer functionality, to Ayal Zaks and the
IBM Haifa team for helpful discussions, and to
GCC contributors who offered help, comments
and patches.

12

References

[1] John Randal Allen and Ken Kennedy.
Automatic translation of fortran
programs to vector form.ACM
Transactions on Programming
Languages and Systems, October 1987.

[2] Randy Allen and Steve Johnson.
Compiling c for vectorization,
parallelization, an inline expansion. In
SIGPLAN Conference on Programming
Languages Design and Implementation,
June 1988.

[3] Randy Allen and Ken Kennedy.
Optimizing Compilers for Modern
Architectures - A dependence based
approach. Morgan Kaufmann, 2001.

[4] A. J. C. Bik, M. Girkar, P. M. Grey, and
X. Tian. Efficient exploitation of
parallelism on Pentium III and Pentium 4
processor-based systems.Intel
Technology J., February 2001.

[5] Aart J.C. Bik, Milind Girkar, Paul M.
Grey, and Ximmin Tian. Automatic
intra-register vectorization for the intel
architecture.International Journal of
Parallel Programming, 30(2):65–98,
April 2002.

[6] Apple Computer.
http://developer.apple.com/hardware/ve/.

[7] Paul D’Arcy and Scott Beach. StarCore
SC140: A new DSP architecture for
portable devices. InWireless
Symposium. Motorola, September 1999.

[8] K. Diefendorff and P. K. Dubey et al.
Altivec extension to PowerPC
accelerates media processing.IEEE
Micro, March-April 2000.

[9] Gina Goff, Ken Kennedy, and Chau-Wen
Tseng. Practical dependence testing. In
SIGPLAN Conference on Programming
Languages Design and Implementation,
June 1991.

[10] Texas Instruments. www.ti.com/sc/c6x,
2000.

[11] Andreas Krall and Sylvain Lelait.
Compilation techniques for multimedia
processors.Intl. J. of Parallel
Programming, 28(4):347–361, 2000.

[12] Samuel Larsen and Saman Amarasinghe.
Exploiting superword level parallelism
with multimedia instruction sets.PLDI,
35(5):145–156, 2000.

[13] Samuel Larsen, Emmett Witchel, and
Saman Amarasinghe. Techniques for
increasing and detecting memory
alignment. Technical Memo 621, MIT
LCS, November 2001.

[14] Jaime H. Moreno, V. Zyuban,
U. Shvadron, F. Neeser, J. Derby,
M. Ware, K. Kailas, A. Zaks, A. Geva,
S. Ben-David, S. Asaad, T. Fox,
M. Biberstein, D. Naishlos, and
H. Hunter. An innovative low-power
high-performance programmable signal
processor for digital communications.
IBM Journal of Research and
Development, March 2003.

[15] A. Peleg and U. Weiser. MMX
technology extension to the Intel
architecture.IEEE Micro, pages 43–45,
August 1996.

[16] Gang Ren, Peng Wu, and David Padua.
A preliminary study on the vectorization
of multimedia applications for
multimedia extensions.16th
International Workshop of Languages
and Compilers for Parallel Computing,
October 2003.

13

[17] Jaewook Shin, Jacqueline Chame, and
Mary W. Hall. Compiler-controlled
caching in superword register files for
multimedia extension architectures. In
PACT, 2002.

[18] Sony. http://www.us.playstation.com/.

[19] N. Sreraman and R. Govindarajan. A
vectorizing compiler for multimedia
extension architectures.International
Symposium on Microarchitecture, pages
25–36, 1998.

[20] Michael Wolfe.High Performance
Compilers for Parallel Computing.
Addison Wesley, 1996.

14

