
H-0260 (H0810-010) October 6, 2008
Computer Science

IBM Research Report

Support Vector Machine Solvers: 
Large-scale, Accurate, and Fast (Pick Any Two)

Haggai Toledano, Elad Yom-Tov, Dan Pelleg
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

Edwin Pednault, Ramesh Natarajan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich



Support vector machine solvers: Large-scale, accurate, and fast (Pick any two)

Haggai Toledano
IBM Haifa Research Lab

Haifa 31905, Israel
haggait@il.ibm.com

Elad Yom-Tov
IBM Haifa Research Lab

Haifa 31905, Israel
yomtov@il.ibm.com

Dan Pelleg
IBM Haifa Research Lab

Haifa 31905, Israel
dpelleg@il.ibm.com

Edwin Pednault
IBM T.J. Watson Research Center

Yorktown Heights, NY, 10598, USA
pednault@us.ibm.com

Ramesh Natarajan
IBM T.J. Watson Research Center

Yorktown Heights, NY, 10598, USA
nramesh@us.ibm.com

Abstract

Support vector machines (SVMs) have proved to be
highly successful for use in many applications that require
classification of data. However, training an SVM requires
solving an optimization problem that is quadratic in the
number of training examples. This is increasingly becoming
a bottleneck for SVMs because while the size of the datasets
is increasing, especially in applications such as bioinfor-
matics, single-node processing power has leveled off in re-
cent years. One possible solution to these trends lies in
solving SVMs on multiple computing cores or on comput-
ing clusters.

We introduce a new parallel SVM solver based on the
Forgetron algorithm. We compare this solver to a previ-
ously proposed parallel SVM solver and to a single node
solver. The comparison covers accuracy, speed, and the
ability to process large datasets. We show that while none
of these solvers performs well on all three metrics, each of
them ranks high on two of them. Based on these findings we
discuss how practitioners should choose the most appropri-
ate SVM solver, based on their requirements.

1. Introduction

Support-vector machines (SVMs) [16] are a class of
algorithms that have, in recent years, exhibited superior
performance compared to other pattern classification al-
gorithms. SVMs work by looking in the training data to
find samples that support a hyperplane, which separates the
classes of the data, with the objective of maximizing the
margin between the classes. These samples are known as
the support vectors. SVMs are further augmented by using
a kernel function to optionally map the data onto a higher

dimension. This makes it possible to find a good separating
hyperplane, even when one does not exist in the original
feature space.

Training an SVM requires solving a quadratic program-
ming problem, whose size grows with the square of the
number of training samples. Consequently, much work
has been devoted to finding efficient solution methods for
SVMs. (See Chapter 10 of [16] for a taxonomy of such
methods.)

Recently, large datasets that would benefit from SVMs
have become abundant. The problems in fields such as
bioinformatics, textual processing in the Internet, medical
imaging, and particle physics all generate huge amounts of
data. For example, a dataset comprised of the pages saved
for one year (2005) of the Internet archive is approximately
600 TB in size [1].

Diminishing improvements in the processing power of
single processing cores [8] is another important trend. In-
creasing the speed of current processing cores is too expen-
sive, both financially and in terms of power consumption.
This is the reason why many microprocessor manufacturers
are developing multi-core processors as their next offering
for increased processing power.

These two complementary trends mean that current
SVM solvers will not be sufficient for some datasets. A
new approach based on parallel learning is required in or-
der to build useful models for these data. However, such
algorithms are not without their drawbacks. In this paper
we consider three important objectives of SVM solvers: ac-
curacy, speed for building the classifier, and the ability to
learn from large amounts of data.

We begin by providing an outline of popular solution
methods for SVM solvers. Interior point algorithms solve
the optimization problem by simultaneously satisfying the
primal and dual feasibility conditions of the quadratic pro-



gramming problem. These algorithms work by iteratively
solving a set of equations. Many SVM solvers use subset
selection to reduce the problem size. The initial idea for
subset selection, known as ’chunking’ [18], works by stor-
ing part of the data in memory, finding the support vectors
for this partial problem, and replacing all the points that are
not support vectors with new data, until convergence is met.
This approach works well if the whole set of support vec-
tors can be kept in memory. However, when this is not the
case, chunking will converge extremely slowly.

Working Set algorithms implement a different approach
to subset selection. These algorithms perform gradient de-
scent on a subset of the variables, known as the working set,
while freezing other variables. The working set approach
is taken farthest in Platt’s sequential minimal optimization
(SMO) algorithm [14], where the working set is comprised
of two samples and the analytic update to the variables is
computed.

Iterative solvers sample the training data repeatedly and
the weights are updated accordingly. This can be achieved
using a modified Perceptron algorithm [6] or through algo-
rithms such as the AdaTron algorithm [7].

Theoretically, SVM solution methods have O(n3) time
complexity and O(n2) space complexity [17]; though, in
practice, the computational complexity is usually closer to
O(n2) [3]. Recently some approximation algorithms have
claimed to further reduce the computational complexity of
SVMs to O(n) complexity [17]. However, a recent study
[13] suggested that this reduction may come at the cost
of higher error rates. These complexities imply that only
small to medium sized datasets can be solved by single node
SVMs.

Some research has been devoted to solving SVMs in par-
allel on multiple computing nodes. In [3] the SVM solver
is parallelized by training multiple SVMs, each on a subset
of the training data, and aggregating the resulting classi-
fiers into a single classifier. The training data is then redis-
tributed to the classifiers according to their performance and
the process is iterated until convergence is reached. A more
low-level approach is taken in [21], where the quadratic op-
timization problem is divided into smaller quadratic pro-
grams (similar to the Active Set methods), each of which is
solved on a different node. The results are aggregated and
the process is repeated until convergence. Graf et al. [9]
partition the data and solve an SVM for each partition. The
support vectors from each pair of classifiers are then aggre-
gated into a new training set, for which an SVM is solved.
The process continues until a single classifier remains. The
aggregation process can be iterated using the support vec-
tors of the final classifier in the previous iteration to seed
the new classifiers.

Implementing a parallel SVM solver has its drawbacks
in that the programming effort needed to realize it is sig-

nificantly larger than that of a single node solver. This was
mitigated by the recent introduction of the IBM Parallel Ma-
chine Learning (PML) toolbox1. Using this toolbox, users
can easily code parallel learning algorithms by implement-
ing a small number of functions. All parallel algorithms
described in this paper were realized using the PML.

The main contributions of this article are as follows.
First, we demonstrate a fast new solver for SVMs that in-
cludes attractive properties for many real-life applications.
The second contribution is the comparison of this solver to
two other solvers, illustrating the strengths and weaknesses
of these solvers.

2. Problem statement

In this section we describe the SVM classifier and the
optimization problem required for its construction. For sim-
plicity we consider a binary SVM classifier, although SVMs
have been used for regression, ranking, and other discrimi-
native learning tasks. We begin with a training set:

D = {(xi, yi)} , i = 1, . . . , N, xi ∈ <m, yi ∈ {−1, 1}
(1)

The goal of the SVM classifier is to learn a mapping from
xi to yi such that the error in mapping, as measured on a test
dataset, would be minimal. SVMs learn to find the linear
weight vector that separates the two classes so that:

yi (xi ·w + b) ≥ 1 for i = 1, . . . , N (2)

There may exist many hyperplanes that achieve such sep-
aration, but SVMs find a weight vector w and a bias term
b that maximize the margin, 2/ ‖w‖. Therefore, the opti-
mization problem that needs to be solved is:

Minimize JD(w) =
1
2
‖w‖ (3)

Subject to yi (xi ·w + b) ≥ 1 for i = 1, . . . , N (4)

Any points lying on the hyperplane yi (xi ·w + b) = 1
are called support vectors.

If the data cannot be separated using a linear separator,
a slack variable ξ ≥ 0 is introduced and the constraint is
relaxed to:

yi (xi ·w + b) ≥ 1− ξi for i = 1, . . . , N (5)

The optimization problem then becomes:

MinimizeJD(w) =
1
2
‖w‖+ C

N∑
i=1

ξi (6)

Subject to yi (xi ·w + b) ≥ 1− ξi for i = 1, . . . , N
(7)

1http://www.alphaworks.ibm.com/tech/pml



ξi ≥ 0 for i = 1, . . . , N (8)

The weights of the linear function can be found directly
or by converting the problem into a dual problem. Using the
notation of [19], the dual problem is thus:

Maximize LD(h) =
∑

i

hi −
1
2
h ·D · h (9)

subject to 0 ≤ hi ≤ C, i = 1, ..., N (10)

where D is a matrix such that Dij = yiyjK (xi,xj)
and K (·, ·) is either an inner product of the samples or a
function of these samples. In the latter case, this function
is known as the kernel function, which can be any function
that complies with the Mercer conditions [16]. For example,
these may be polynomial functions, radial-basis (Gaussian)
functions, or hyperbolic tangents. If the data is not sepa-
rable, C is a tradeoff between maximizing the margin and
reducing the number of misclassifications.

The classification of a new data point is then computed
using the following equation:

f (x) = sign

(∑
i∈SV

hiyiK (xi,x) + b

)
(11)

Therefore, finding a solution to the SVM optimization
problem can be formulated as finding a weight vector (as in
Equation 6) or the Lagrange multipliers, as in Equation 9.

3. Description of algorithms

In this section we describe three SVM solvers that have
different merits. One is SVMlight [10], a popular single
node algorithm, which is fast and accurate for small datasets
but performs poorly on large ones. Another is a modifica-
tion of a sequential parallel solver [20], which is as accurate
as SVMlight but is slow to converge. The third proposed
approach is is a parallel version of the Forgetron algorithm
[4], which is extremely fast and can handle large datasets
but is less accurate compared to the other solvers.

SVMlight is an efficient single-node solver for SVMs.
The solver is based on a working set method but is enhanced
by two important improvements: a heuristic for selecting
only some of the training data for the optimization problem
(also referred to as shrinking) and the caching of kernel val-
ues. The latter improvement is important because, as shown
in [20], kernel evaluations account for most of the computa-
tional load in problems that are not easily separable. How-
ever, because SVMlight is a single-node solver, the full ker-
nel matrix cannot usually be held in memory. This implies
that, depending on the specific dataset and the size of the
memory, some kernel values have to be recomputed numer-
ous times during optimization procedure.

?

Time Master node Worker nodes

Initialize

Compute global
update to

Lagrange multipliers

Compute global
update to

Lagrange multipliers

Compute local
slice of

kernel matrix

Compute local
update to

Lagrange multipliers

Compute local
update to

Lagrange multipliers

?
Until convergence

A
A
A
AAU
�
�
�
���
A
A
A
AAU
�
�
�
���

Figure 1. Schematic diagram of the parallel
batch SVM solver (SVM-PB) showing the tim-
ing and the division of work between master
and worker nodes

The repeated computation of kernel matrix values is is
the motivation for the parallel SVM solver proposed in [20].
This algorithm is a parallel batch solver (SVM-PB) based
on a modification of the sequential solver developed in [19].
The idea is to compute the full kernel matrix and hold it in
a distributed memory, where each node holds part (several
rows) of the kernel matrix. The optimization problem is
solved iteratively. (See Figure 1 for a schematic diagram.)
A master node first generates an initial solution comprised
of an initial guess to the Lagrange multipliers. Each node
updates this solution based on the part of the kernel ma-
trix it holds in memory and sends the updated solution to
the master node. The master node aggregates these updates
and sends them to the worker nodes, until the process con-
verges. The main drawback of this algorithm is the commu-
nication load associated with transferring updates between
nodes, which degrade the execution speed of the algorithm.

We propose a third approach based on an ensemble of
smaller SVMs. These SVMs are trained using the Forgetron
algorithm, applied to test data, and then classified using ma-
jority voting. This approach is attractive because it reduces
the communication load to a minimum. The idea of using
an ensemble of SVMs was proposed in [11], but only in the
context of using the ensemble as a basis for a boosting al-
gorithm. In the case of parallel solvers, this takes away the
benefits associated with reduced communication and is thus



?

Time Master node Worker nodes

Partition the
data to

worker nodes

Compute majority
vote classifier

Build Forgetron
classifier using
local partition

A
A
A
AAU
�
�
�
���

Figure 2. Schematic diagram of the parallel
Forgetron SVM solver (SVM-PF) showing the
timing and the division of work between mas-
ter and worker nodes

impractical.
The Forgetron algorithm [4] is a kernel-based on-line

SVM solver. It is especially useful in cases where much
data exists because it imposes a limit on the resources used
by the algorithm: the number of support vectors in the so-
lutions is pre-specified by the user. This makes it possible
to trade accuracy for memory. Thus, when the training data
is abundant, the sparseness of the solution can be set ac-
cording to the memory constraints of the resulting classifier.
The parallel version of the Forgetron algorithm we propose
in this article uses multiple instances of the Forgetron, each
of which learns a subset drawn without replacement from
the training dataset, such that the union of subsets is the
complete training set. The final classifier is a majority vote
on the output of those classifiers. We label this algorithm
SVM-PF.

The schematic process required for constructing this
classifier is shown in Figure 2. Note that only a single com-
munication round between worker node and master node is
required. This greatly speeds up computation, compared
to the SVM-PB algorithm, where multiple iterations are re-
quired.

The computational load associated with this setup is
drastically reduced during the training phase. EveryM For-
getron solvers processes a kernel matrix, which is smaller
by a factor of M , hence the computational load is reduced
by a factor of approximately M2. Clearly, we are inter-
ested in knowing how many Forgetron instances should
be used. Dividing the data between many Forgetrons will
speed training because each Forgetron trains using a small
subset of the data. However, this also degrades the accuracy
of each individual classifier, which sees only a small sample

of the data. That said, using many Forgetrons will improve
the accuracy of the majority vote stage [12]. This question
is investigated in the Results section.

4. Experimental setup

We compared the performance of the three SVM
solvers on eight medium-sized datasets taken from
the UCI repository [2]: Adult, Isolet, Letter
recognition, Mushrooms, Nursery, Page
blocks, Pen digits, and Spambase. The char-
acteristics of all datasets are summarized in Table 1. We
used medium-sized datasets rather than very large ones
because our goal was to show how solvers scale as a
function of the dataset size. This goal is important since,
while processor speed is leveling off, larger datasets will
always be available, and the more important question is
therefore how different solvers scale as a function of dataset
size, rather than their run-times on current machines. Such
scaling can only be computed if datasets can be run on
single nodes.

We followed an experimental protocol described in [15],
as follows: Nominal attributes with t possible values were
substituted by t binary features, where the i − th binary
feature was set to 1 if and only if the corresponding nominal
attribute took the i − th possible value. For each feature,
we computed its average and standard deviation over the
training set, and used these to normalize the data (training
and testing) by subtracting the average and dividing by the
standard deviation.

We used ten-fold cross-validation (10xCV); namely, in
each fold, the union of nine out of ten equally-sized random
subsets was used for training, and the tenth for testing. In all
our experiments, we used a radial basis function (RBF) ker-
nel. To optimize the RBF kernel parameter σ and the clas-
sifier cost parameter, C, we followed [15] and used a simple
greedy search via 10xCV over the training set. Initial values
of σ and C were set to 1. The value of σ was then increased
or decreased by a factor of 2 until no improvements were
observed for three consecutive attempts. Then, σ was fixed
at the best value found and an identical optimization was
performed over C. For the adult dataset, we used default
parameters (σ = 1, C = 0.5), mainly because SVMlight
would not converge within a reasonable amount of time us-
ing other sets of parameters.

The computing nodes were a cluster of 2.4 - 3.4 GHz
Intel Pentium machines with 2 GB memory running Linux.

The convergence criterion we used for SVMlight was the
default stopping criterion. SVM-PB was limited to 250 iter-
ations or an update to the gradient smaller than 10−3. SVM-
PF does not require a stopping criterion because it performs
a single pass over the data.



Dataset Number of Number of
examples features

Adult 32561 (16281) 105
Isolet 6238 (1559) 617
Letter 20000 16
Mushrooms 8124 117
Nursery 12960 25
Page blocks 5473 10
Pen digits 7494 (3498) 16
Spambase 4601 57

Table 1. Summary of datasets. The number
of examples in parentheses is the number of
test examples (if a train/test partition exists)

5. Results

Table 2 shows the error rates obtained for the three
solvers. The rates for the Forgetron algorithm are shown for
five computing nodes, under two budget constraints: 10%
and 50%. These budgets represent the pecentage of the orig-
inal data points which could be selected as support vectors.

We tested the error rates from Table 2 for statistical sig-
nificance using the comparison methodology for multiple
algorithms described in [5]. Specifically, we computed the
FF statistics of Iman and Davenport (1980) (see [5]) with a
confidence level of 90% to determine if all compared algo-
rithms exhibited the same performance. According to this
test, the error rates of the algorithms (with respect to the en-
tire collection of datasets) were statistically different with
a confidence level of 90%. We then applied a Bonferroni-
Dunn test (Dunn, 1961; see [5]) to the error rates. This
test showed that the Forgetron with 10% budget was signif-
icantly worse than the other three classifiers. The difference
between the other three classifiers was not significant statis-
tically.

We therefore conclude that SVMlight and SVM-PB offer
superior accuracy compared to SVM-PF with a low budget.
If used with a high budget, SVM-PF demonstrates accuracy
that is not significantly different from that of SVMlight and
SVM-PB.

Figure 3 compares the run-times and speed-ups of the
three solvers as a function of the number of computing
nodes for seven of the smaller datasets. We excluded
the Adult dataset because running SVM-PB on a single
node caused excessive cache misses and consequently pro-
hibitively long execution times. The run-time for SVMlight
can only be computed on a single node. Therefore, it is de-
noted by a circle on the figure in a location corresponding
to a single node.

Speedup for N nodes is defined as the time required for

completing the computation using a single node divided by
the time required using N nodes. Doubling the computa-
tional power does not usually entail halving the computa-
tional time because of communication overheads. As a re-
sult, linear speedup is usually considered good performance
for a parallel algorithm.

In Figure 3, SVM-PF is shown with a budget of 50%
support vectors. The budget has a negligible effect on run-
times.

The run-time figures show that SVM-PF is the fastest
solver even on a single node, followed by SVMlight. SVM-
PF is approximately two orders of magnitude faster than
SVM-PB, averaged over all datasets and node numbers.

Interestingly, SVM-PF shows superlinear speedup for
the nursery the dataset. That is, doubling the number
of nodes more than halves the computation time. Further-
more, there is a high correlation (Spearman ρ = 0.71) be-
tween the maximal speedup obtained using the Forgetron
algorithm and the square of the number of samples in the
data.

This speedup can be explained by looking at the alloca-
tion of memory blocks. Halving the number of samples for
each Forgetron means allocating memory for a kernel ma-
trix that is only one quarter the size of the kernel matrix
required for the full sample set. In many operating systems
allocating a smaller memory block is much quicker. Fur-
thermore, only one quarter of the kernel computations are
performed at each Forgetron. Thus, it seems that the higher
the number of nodes, the higher the speedup that SVM-PF
will obtain. However, this picture is misleading. First, at a
high number of nodes the communication rates will cause a
degradation in performance. Moreover, the accuracy of the
resulting classifier is dependent on the number of nodes.

As the number of Forgetrons increases (due to additional
computing nodes), the accuracy of the majority vote im-
proves. However, since the dataset size is constant, each
Forgetron is trained using fewer samples. This implies that
the error for each Forgetron will likely be higher. Thus,
there is a trade-off between two opposing trends.

Figure 4 shows the accuracy of SVM-PF as a function of
the number of nodes, using a budget of 50% support vec-
tors. Similar trends were obtained when the budget was
10%. For some datasets (for example, Mushroom) the dif-
ference between the minimal and the maximal error is large
(in the case of Mushrooms, it is fivefold), with most datasets
demonstrating a clear minimum error. Thus, the number of
computing nodes should be taken as an optimization param-
eter to obtain the best possible performance from the algo-
rithm, especially when the size of the training data is small.

Finally, we note that a careful analysis of the results pro-
vided above shows that there is a high correlation between
the run times of the three algorithms and a multiplication of
the square of the number of examples in a data set and the



2 4 6 8
10

0

10
2

10
4

Is
ol

et

2 4 6 8
1

2

3

2 4 6 8
10

0

10
2

10
4

Le
tte

r

2 4 6 8
0

5

10

2 4 6 8
10

0

10
2

10
4

M
us

hr
oo

m
s

2 4 6 8
1

2

3

2 4 6 8
10

0

10
2

10
4

N
ur

se
ry

2 4 6 8
0

5

10

2 4 6 8
10

−2

10
0

10
2

P
ag

eb
lo

ck
s

2 4 6 8
1

1.5

2

2 4 6 8
10

0

10
2

10
4

P
en

di
gi

ts

2 4 6 8
1

1.5

2

2 4 6 8
10

0

10
1

10
2

S
pa

m
ba

se

Number of nodes
2 4 6 8

1

1.5

2

Number of nodes

Figure 3. Run-times (left) and speedup (right) versus the number of computing nodes for the different
datasets. SVM-PB is denoted by crosses, SVM-FB by triangles, and SVMlight by circles. Run-times
(in seconds) are plotted on a logarithmic scale.



Dataset SVM-PF SVM-PF SVM-PB SVMlight
10% bud. 50% bud.

Adult 19.81 17.74 18.08 19.90
Isolet 50.03 50.05 5.84 49.97
Letter 13.59 8.39 2.06 2.30
Mushrooms 6.06 1.48 0.05 0.02
Nursery 11.71 6.81 5.29 0.02
Page blocks 9.05 8.68 4.08 2.74
Pen digits 5.23 4.15 1.37 1.57
Spambase 15.28 11.59 16.57 6.57

Table 2. Error rates for the parallel Forgetron (SVM-PF) with 10% budget and 50% budget, the parallel
batch solver (SVM-PB) and SVMlight. The lowest error rates for each datasets are marked in bold.

number of features in it. This is to be expected because an
RBF kernel requires computing a sum over all features for
each pair of examples. Using a power law curve, an R2 of
0.91, 0.61, and 0.70 was obtained for SVM-PF, SVM-PB,
and SVMlight, respectively. However, the scaling of the
curve is much shallower for SVM-PF and SVM-PB com-
pared to SVMlight: For the two parallel solvers it is in the
order of 0.35 while for SVMlight it is as high as 0.71. Thus,
as datasets grow in size and in the number of features that
they comprise of, the run-time of SVMlight grow far faster
compared to the two parallel solvers.

We therefore conclude this section by summarizing that
SVM-PF demonstrates superior scaling and run-time com-
pared to SVM-PB. This is further shown in Figure 5, where
run-times are plotted as a function of error rates for each
of the eight datasets using the two parallel solvers. As this
figure shows, most datasets processed using SVM-PB fall
in the top left corner of the graph, indicating low error rates
but high run-times. Datasets processed using SVM-PF fall
in the bottom right corner of the graph, with a higher error
rate but shorter run times.

The ability to run on a parallel platform also means that
large datasets can be easily handled by SVM-PF and SVM-
PB, compared to SVMlight, which is accurate for small
datasets, but cannot scale to large ones.

6. Summary

Support vector machines have been demonstrated to out-
perform many other classification techniques in terms of ac-
curacy. Unfortunately, this accuracy is achieved at the price
of a computationally expensive optimization problem. Al-
though datasets become ever larger, single node processing
power has leveled off in recent years. Therefore, it is impor-
tant to find solutions to using SVMs in ways that overcome
these scaling constraints.

In this article we dealt with three important attributes of

Figure 4. Error versus the number of comput-
ing nodes.

classifiers: accuracy, the ability to train using large datasets,
and the speed at which classifiers are trained. Our experi-
ments indicate that SVMlight, a single-node solver, is accu-
rate and fast, but does not scale to very large datasets. Us-
ing a distributed computational platform enables the use of
new parallel SVM solvers. The parallel batch SVM (SVM-
PB) we tested holds the full kernel matrix in memory. This
means that it is both accurate and can scale to large datasets,
but it is relatively slow, especially when used on easily sep-
arable datasets. (In such cases, it is usually unnecessary to
compute the whole kernel matrix as shown in [20].) Finally,
a parallel version of the Forgetron algorithm was shown to
be both fast and scalable, but at the expense of accuracy.

Our experiments thus indicate how practitioners can
choose the most appropriate solver for their needs. If com-
putational resources are limited to a single node, the dataset



Figure 5. Run time versus error rates for the
eight datasets using the two parallel solvers.
SVM-PB is denoted by crosses and SVM-FB
by triangles. The vertical axis is log scaled.

is small, and accuracy is essential, the single node solver
should be chosen. If several computing nodes are avail-
able and data is abundant, SVM-PB should be preferred
when accuracy is the significant factor and SVM-PF should
be used when speed or compactness of the classifier is of
greater importance.

We compared solvers using the three attributes that are
most commonly of interest. However, there are other at-
tributes that may be important under certain circumstances.
For example, there are cases where privacy of data is a
concern. In other cases, data might be distributed in geo-
graphically separate locations and merging the data would
entail a high overhead. Under these circumstances, dis-
tributed solvers such as the ones discussed in this article
will have additional benefits compared to the single node
solvers. For example, when data is divided between sev-
eral parties and cannot be shared between them because of
privacy concerns, SVM-PF can be utilized. A Forgetron is
trained on a subset of the data and merging takes place at
the voting stage, i.e., each Forgetron labels a test example
and only provides this label to the classifier.

References

[1] W. Y. Arms, S. Aya, P. Dmitriev, B. J. Kot, R. Mitchell, and
L. Walle. Building a research library for the history of the
web. In JCDL ’06: Proceedings of the 6th ACM/IEEE-CS
joint conference on Digital libraries, pages 95–102, New
York, NY, USA, 2006. ACM Press.

[2] C. L. Blake, E. J. Keogh, and C. J. Merz. UCI repository of
machine learning databases, 1998.

[3] R. Collobert, S. Bengio, and Y. Bengio. A parallel mixture
of SVMs for very large scale problems. In Advances in Neu-
ral Information Processing Systems. MIT Press, 2002.

[4] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The forgetron:
A kernel-based perceptron on a fixed budget. In Advances in
Neural Information Processing Systems 18, pages 259–266,
2006.

[5] J. Dems̆ar. Statistical comparisons of classifiers over multi-
ple data sets. Journal of Machine Learning Research, 7:1–
30, 2006.

[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classifica-
tion. John Wiley and Sons, Inc, New-York, USA, 2001.

[7] T.-T. Friess;, N. Cristianini, and C. Campbell. The kernel-
adatron algorithm: A fast and simple learning procedure for
support vector machines. In ICML ’98: Proceedings of the
Fifteenth International Conference on Machine Learning,
pages 188–196, San Francisco, CA, USA, 1998. Morgan
Kaufmann Publishers Inc.

[8] D. Geer. Industry trends: Chip makers turn to multicore
processors. Computer, 38(5):11–13, 2005.

[9] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, and V. Vap-
nik. Parallel support vector machines: The cascade svm. In
Advances in Neural Information Processing Systems, 2004.

[10] T. Joachims. Making large-scale svm learning practical.
In Advances in Kernel Methods - Support Vector Learning,
1999.

[11] H.-C. Kim, S. Pang, H.-M. Je, D. Kim, and S. Y. Bang. Pat-
tern classification using support vector machine ensemble.
icpr, 02:20160, 2002.

[12] L. Kuncheva, C. Whitaker, C. Shipp, and R. Duin. Limits
on the majority vote accuracy in classifier fusion. Pattern
Analysis and Applications, 6(1):22–31, 2004.

[13] G. Loosli and S. Canu. Comments on the “core vector ma-
chines: Fast svm training on very large data sets”. Journal
of Machine Learning Research, 2007.

[14] J. Platt. Sequential minimal optimization: A fast algorithm
for training support vector machines. In Advances in Kernel
Methods - Support Vector Learning, pages 185–208, 1999.

[15] R. Rifkin and A. Klautau. In defense of One-vs-All classifi-
cation. Journal of Machine Learning Research, 5:101–141,
2004.

[16] B. Schölkopf and A. J. Smola. Leaning with kernels: Sup-
port vector machines, regularization, optimization, and be-
yond. MIT Press, Cambridge, MA, USA, 2002.

[17] I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector
machines: Fast svm training on very large data sets. Journal
of Machine Learning Research, 6:363–392, 2005.

[18] V. N. Vapnik. Estimation of Dependences Based on Empiri-
cal Data. Springer-Verlag, 1982.

[19] S. Vijayakumar and S. Wu. Sequential support vector clas-
sifiers and regression. In International conference on soft
computing, pages 610–619, 1999.

[20] E. Yom-Tov. A distributed sequential solver for large scale
svms. In Large scale kernel machines, pages 141–156, 2007.

[21] G. Zanghirati and L. Zanni. A parallel solver for large
quadratic programs in training support vector machines.
Parallel computing, 29:535–551, 2003.


