
H-0261 (H0808-003) August 11, 2008
Other

IBM Research Report

Proposed New Appendix B for IEEE 1850 (PSL)

Cindy Eisner, Dana Fisman*
IBM Research Division

Haifa Research Laboratory
Mt. Carmel 31905

Haifa, Israel

*Also with Hebrew University

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Proposed New Appendix B for IEEE 1850 (PSL)

Cindy Eisner1 and Dana Fisman1,2

1 IBM Haifa Research Lab
2 Hebrew University

August 7, 20082008-08-07 22:31

Abstract

This proposal for a new Appendix B is based on the document “Simplified Proposal for Ex-
tending the Formal Semantics of PSL with Local Variables, Procedural Blocks, Past Expressions
and Clock Alignment Operators and Including a Solution to Structural Contradictions” as sent
to the subcommittee on February 14, 2008.

Annex B

(normative)

Formal Syntax and Semantics of IEEE Std 1850 Property Specifi-
cation Language (PSL)

This appendix formally describes the syntax and semantics of the temporal layer.

B.1 Typed-text representation of symbols

Table 1 shows the mapping of various symbols used in this definition to the corresponding typed-text
PSL representation, in the different flavors.

NOTE −
For reasons of simplicity, the syntax given herein is more flexible than the one defined by the extended BNF

(given in Annex A). That is, some of the expressions which are legal here are not legal under the BNF

Grammar. Users should use the stricter syntax, as defined by the BNF grammar in Annex A.

B.2 Syntax

The logic PSL is defined with respect to a non-empty finite set of atomic propositions P , a finite set
of local variables V with a finite domain D, a given set of (unary and binary) operators O over the
domain D. We assume that t and f belong to D.

The definition of Boolean expressions, expressions and SEREs is given by mutual induction.

Definition 1 (Boolean Expressions) Let ¯b ∈ O and ⊗b ∈ O be unary and binary operators such
that ¯b : D 7→ {t, f} and ⊗b : D2 7→ {t, f}. Let p ∈ P and let k be a non-negative integer. Let e be
an expression and r a SERE.

1

Table 1: Typed-text symbols in the SystemVerilog, Verilog, VHDL, SystemC and GDL flavors

SystemVerilog Verilog VHDL SystemC GDL

→ |-> |-> |-> |-> |->

⇒ |=> |=> |=> |=> |=>
→ -> -> -> -> ->
↔ <-> <-> <-> <-> <->
¬ ! ! not ! !
∧ && && and && &
∨ || || or || |
.. : : to : ..
〈 〉 [] [] () () ()
← <= <= <= = :=

∪ | | | | |
∩ && && && && &&
· ; ; ; ; ;
◦ : : : : :

Z←E [[equivalent sequence of assignments in the flavor language]]
var(Z) [[declaration of Z in the flavor language]]
free(Z) [[free(Z)]]

The set of Boolean expressions B is defined inductively as follows:

b ::= p | ¯b e | e⊗b e | prev(b, k) | ended(r)

We refer to a Boolean expression that does not use local variables and does not refer to the past (that
is, does not use prev or ended) as a basic Boolean expression.

We use true and false as abbreviations for p∨¬p and p∧¬p, respectively, where p is some atomic
proposition, and ∨,∧ ∈ ⊗b and ¬ ∈ ¯b are defined in the usual way.

Definition 2 (Expressions) Let b ∈ B be a Boolean expression and y ∈ V be a local variable. Let
¯ ∈ O and ⊗ ∈ O be unary and binary operators, respectively, such that ¯ : D 7→ D and ⊗ : D2 7→ D.
Let k be a non-negative integer.

The set of expressions E is defined inductively as follows:

e ::= b | y | ¯ e | e⊗ e | prev(e, k)

Definition 3 (Sequential Extended Regular Expressions (SEREs)) Let e be an expression
and d a value in D. Let Z be a (possibly empty) finite sequence of local variables. Let E be a sequence
of expressions of the same length as Z. Let b be a Boolean expression.The set of SEREs is defined
inductively as follows:

r ::= [∗0] | e=d,Z←E | r · r | r ◦ r | r[+] | r ∪ r | r ∩ r
{r} | {var(Z) r} | {free(Z) r} | r@b |

We sometimes use to denote the empty assignment, i.e. an assignment of the form Z←E where
Z is an empty sequence. For an expression e and value d, we use e=d to abbreviate e=d, and we
use e to abbreviate e=t and e=t, .

Definition 4 (Formulas) Let k be a non-negative integer, r a SERE, Z ⊆ V a finite set of local
variables. Let b be a Boolean expression. Let t be a SERE that does not refer to local variables. The
set of FL formulas is defined inductively as follows:

ϕ ::= r! | r | r →ϕ | (ϕ) | ¬ϕ | ϕ ∧ ϕ
X![k] ϕ | ϕ U ϕ | ϕ sync abort t | (var(Z) ϕ) | ϕ@b

2

NOTE −
The formula ϕ sync abort t is only accessible to the user when t is a Boolean expression.

Definition 5 (Formulas of the Optional Branching Extension (OBE)) Let b be a basic
Boolean expression. The set of OBE formulas is defined inductively as follows:

f ::= b | (f) | ¬f | f ∧ f | EXf | E[f U f] | EGf

Definition 6 (PSL Formulas)

1. Every FL formula is a PSL formula.

2. Every OBE formula is a PSL formula.

In Section B.4, we show additional operators which provide syntactic sugaring to the ones above.

B.3 Semantics

The semantics of PSL formulas are defined with respect to a model. A model is a quintuple
(S, S0, R, P , L), where S is a finite set of states, S0 ⊆ S is a set of initial states, R ⊆ S × S
is the transition relation, P is a non-empty set of atomic propositions, and L is the valuation, a
function L : S −→ 2P , mapping each state with a set of atomic propositions valid in that state.

A path π is a possibly empty finite (or infinite) sequence of states π = (π0, π1, π2, · · · , πn) (or
π = (π0, π1, π2, · · ·)). A computation path π of a model M is a non-empty finite (or infinite) path
π such that π0 ∈ S0 and for every i < n, R(πi, πi+1) and for no s, R(πn, s) (or such that for
every i, R(πi, πi+1)). Given a finite (or infinite) path π, we overload L, to denote the extension of
the valuation function L from states to paths as follows: L(π) = L(π0)L(π1) . . . L(πn) (or L(π) =
L(π0)L(π1) . . .). Thus, we have a mapping from states in M to letters of 2P , and from finite (or
infinite) paths in M to finite (or infinite) words over 2P .

B.3.1 Semantics of FL formulas

We first define the semantics without the clock operator (@), local variables, or expressions that
refer to the past (prev() and ended()). Then we define the full semantics.

B.3.1.1 The Basic Semantics

The basic semantics are the semantics of formulas without the clock operator (@), local variables
or expressions that refer to the past (prev() and ended()). In the basic semantics, D = {true, false}
and all expressions are basic Boolean expressions.

We denote an element of P by p and an element of D by d. Let Σ be the set of all possible
assignments to the atomic propositions P (i.e., Σ = 2P). We denote an element of Σ by σ and we
use σ(p) to denote the truth value given to p by σ.

We use u, v, w to denote (possibly empty) words over Σ. We use a, b, c to denote letters over Σ. We
use ε to denote the empty word. We use · and ◦ to denote concatenation and concatenation with one
overlapping letter, respectively. Formally, given languages L1 and L2 we use L1·L2 to denote the set
{w1w2 | w1 ∈ L1 and w2 ∈ L2}. We use L1◦L2 to denote the set {w1`w2 | w1` ∈ L1 and `w2 ∈ L2}.
For a language L we use L0 to denote {ε}. We use Li to denote Li−1·L. We use L∗ and L+ to
denote

⋃
i≥0 Li and

⋃
i>0 Li, respectively. We use Lω for the language composed of infinitely many

concatenations of L with itself. We use L∞ for the union L∗ ∪ Lω.
For a finite/infinite word w where w = a0a1 · · · an or w = a0a1a2 · · · and integers i, j we use wi

to denote the (i+1)th letter of w. That is, wi = ai. We use wi.. to denote the suffix of w starting at
wi. That is, wi.. = aiai+1 · · · an or wi.. = aiai+1 · · ·. We use wi..j to denote the finite word starting

3

at position i and ending at position j. That is, wi..j = aiai+1 · · · aj . We make use of an “overflow”
and “underflow” for the positions of w. That is, wi.. and wi..j are defined for i bigger than the last
position of w and for j < i as follows: wi.. = wi..j = ε.

For d ∈ {t, f} and a (Boolean) expression e, the semantics of e = d, denoted B(e = d), is the
language of all letters a on which e = d holds. It is defined formally as follows.

Definition 7 (The Basic Boolean Semantics)

• Base case:
∗ B(p=d) = {a | a(p) = d}

• Standard operators:
∗ B(¯e=d) = {a | ∃d′∈D s.t. ¯(d′)=d and a∈B(e=d′)}
∗ B(e1 ⊗ e2=d) = {a | ∃d1, d2 ∈ D s.t. (d1 ⊗ d2)=d and a∈B(e1=d1) and a∈B(e2=d2)}

For a regular expression r the basic language of r, denoted L(r), is defined as follows, where
denotes an empty sequence of assignments.

Definition 8 (The Basic Language of SEREs)

• Base cases:
− L([∗0]) = ε − L(e=d,) = B(e=d)

• Standard SERE operators:
− L({r}) = L(r) − L(r[+]) = L(r)+

− L(r1·r2) = L(r1)·L(r2) − L(r1 ∪ r2) = L(r1) ∪ L(r2)
− L(r1◦r2) = L(r1)◦L(r2) − L(r1 ∩ r2) = L(r1) ∩ L(r2)

The basic language of proper prefixes and the basic loop language of r, denoted F(r) and I(r)
respectively, will be used to define the semantics of a formula r (a weak SERE formula). Intuitively,
F(r) consists of finite proper prefixes of words in L(r), except that logical contradictions such as
false and structural contradictions such as {b}∩ {b·b} are considered satisfiable, and I(r) consists of
infinite words in which we get “stuck forever” in a starred sub-expression of r.

Definition 9 (The Basic Language of Proper Prefixes of SEREs)

• Base cases:
− F([∗0]) = ∅ − F(e = d,) = ε

• Standard SERE operators:
− F({r}) = F(r) − F(r[+]) = L(r)∗·F(r)
− F(r1·r2) = F(r1) ∪ (L(r1)·F(r2)) − F(r1 ∪ r2) = F(r1) ∪ F(r2)
− F(r1◦r2) = F(r1) ∪ (L(r1)◦F(r2)) − F(r1 ∩ r2) = F(r1) ∩ F(r2)

Definition 10 (The Basic Loop Language of SEREs)

• Base cases:
− I([∗0]) = ∅ − I(e=d,) = ∅

• Standard SERE operators:
− I({r}) = I(r) − I(r[+]) = (L(r)∗·I(r)) ∪ L(r)ω

− I(r1·r2) = I(r1) ∪ (L(r1)·I(r2)) − I(r1 ∪ r2) = I(r1) ∪ I(r2)
− I(r1◦r2) = I(r1) ∪ (L(r1)◦I(r2)) − I(r1 ∩ r2) = I(r1) ∩ I(r2)

We define the semantics of a formula with respect to a word w and a context indicating the view
υ ∈ {s,n,w} (where s,n,w correspond to the strong, neutral and weak views, respectively). For a
view υ we use υ to denote the dual view which is s if υ = w, w if υ = s, and υ otherwise (if υ = n).
We use j and k below to denote non-negative integers.

4

The base cases for the definitions of a formula are strong and weak SEREs: r! and r. A strong
SERE r! holds under the neutral or strong view if it has a non-empty prefix in the language of r. A
strong SERE r! holds under the weak view if it holds under the neutral view or the word “‘ended too
soon” — that is, the word is a proper prefix of a word in the language of r (formally, w ∈ F(r)∪{ε}).
A weak SERE r holds on a given word if the strong SERE r holds on that word or the word “got
stuck forever” in a starred sub-SERE of r. That is, w ∈ I(r). In addition, under the weak and
neutral views the word may “end too soon”.

The relation w |=υ ϕ, read “w models ϕ in the view υ under the basic semantics”, is formally
defined as follows.

Definition 11 (Satisfaction in the Basic Semantics)

i. w |=υ r! ⇐⇒ either ∃j s.t. w0..j ∈ L(r)
or (υ = w and w ∈ F(r) ∪ {ε})

ii. w |=υ r ⇐⇒ either ∃j s.t. w0..j ∈ L(r) or w ∈ I(r)
or (υ ∈ {w,n} and w ∈ F(r) ∪ {ε})

iii. w |=υ r → ϕ ⇐⇒ ∀j s.t. w0..j ∈ L(r) we have that wj.. |=υ ϕ and
either υ ∈ {w,n} or w /∈ F(r) ∪ {ε}

iv. w |=υ (ϕ) ⇐⇒ w |=υ ϕ

v. w |=υ ¬ϕ ⇐⇒ w |=/υ ϕ

vi. w |=υ ϕ ∧ ψ ⇐⇒ w |=υ ϕ and w |=υ ψ

vii. w |=υ X! [k] ϕ ⇐⇒ either w0..k ∈ L(true [k+1]) and wk.. |=υ ϕ
or (υ = w and w ∈ F(true [k+1]) ∪ {ε})

viii. w |=υ ϕU ψ ⇐⇒ ∃k s.t. w |=υ X! [k] ψ and ∀j < k, w |=υ X! [j] ϕ

ix. w |=υ ϕ sync abort t ⇐⇒ either w |=υ ϕ or ∃j, k s.t. wj..k ∈ L(t) and w0..k−1 |=w ϕ

Definition 12 (Holds Weakly, Neutrally, Strongly, Pending and Fails in the Basic Semantics)
Let w be a word and ϕ a PSL formula.

• ϕ holds weakly on w in the basic semantics if w |=w ϕ.

• ϕ holds (neutrally) on w in the basic semantics if w |=n ϕ.

• ϕ holds strongly on w in the basic semantics if w |=s ϕ.

• ϕ is pending on word w iff w |=w ϕ and w |=/n ϕ

• ϕ fails on word w iff w |=/w ϕ

NOTES −
i. The semantics given here for the ltl operators under the neutral view and in the absence of non-

degenerate SEREs is equivalent to the standard ltl semantics [B10,B11]. In particular, the semantics
of X! and U under the neutral view can be equivalently phrased as follows:

• w |=n X! [k] ϕ ⇐⇒ |w| > k and wk.. |=n ϕ

• w |=n ϕ U ψ ⇐⇒ ∃k s.t. wk.. |=n ψ and ∀j < k, wj.. |=n ϕ

The semantics of these operators are phrased as they are in Definition 11 since this form is more
similar to the one for full semantics.

ii. The semantics given here for the ltl operators and the sync abort operator is equivalent to the trun-
cated semantics given in [B1] where |=s , |=n and |=w are denoted |=+

, |= and |=−, respectively, and
sync abort is denoted trunc w.

5

iii. For FL formulas without the ∩ operator, the semantics here is equivalent to the semantics given in
the previous version of the standard (IEEE 1850-2005) where words are interpreted over 2P ∪{>,⊥}.
Then, as shown in [B3], the three following equivalences hold for a formula ϕ of ltltrunc:

w |=w ϕ ⇐⇒ w>ω |= ϕ

w |=n ϕ ⇐⇒ w |= ϕ

w |=s ϕ ⇐⇒ w⊥ω |= ϕ

iv. As in [B1], for an infinite word w and a formula ϕ the three views coincide. That is, w |=w ϕ ⇐⇒
w |=n ϕ ⇐⇒ w |=s ϕ when w is infinite.

v. There is a subtle difference between Boolean negation and formula negation. For instance, consider
the formula ¬b. If ¬ is Boolean negation, then ¬b is equivalent to formula {¬b}, which holds on an
empty path. If ¬ is formula negation, then ¬b is equivalent to formula ¬{b}, which does not hold
on an empty path. Rather than introduce distinct operators for Boolean and formula negation, we
instead adopt the convention that negation applied to a Boolean expression is Boolean negation. This
does not restrict expressivity, as braces can be used to get formula negation.

vi. For FL formulas including the ∩ operator, the semantics here differs from the semantics given in the
previous version of the standard (IEEE 1850-2005) for formulas including structural contradictions
such as {a}∩{a·a}. In the previous version of the standard, the formula {a·b[∗]·r} holds weakly on an
infinite path such that a holds on the first letter and b on all the rest if r is a logical contradiction such
as false, but not if r is a structural contradiction such as {c} ∩ {c·c}. In the semantics presented here,
logical and structural contradictions are treated in a consistent manner. We achieve this by eliminating
letters > and ⊥ and including instead a context which represents the view (strong, neutral or weak)
and three languages for a SERE. The language L(r) corresponds to tight satisfaction of the previous
version of the semantics. Intuitively, the language of proper prefixes F(r) consists of finite proper
prefixes of words in L(r) except that logical and structural contradictions are considered satisfiable.
The loop language I(r) consists of infinite words in which we get “stuck forever” in a starred sub-
expression of r. See [B7] for a thorough study of this subject.

B.3.1.2 The Full Semantics

In the full semantics we add the following to the basic semantics: the clock operator (@), local
variables, and expressions that refer to the past (prev() and ended()).

B.3.1.2.1 Supporting the clock operator @

In order to support the clock operator @, we add a context κ — a Boolean expression that remembers
the current clock. In addition, we define three languages no tick, tick and past tick, each of which
uses the clock context (see Definition 19).
NOTE −
The clocked semantics for the ltl subset follows the clocks paper [B2], with the exception that strength is

applied at the SERE level rather than at the propositional level. Furthermore, following [B5] clock alignment

operators are added. The clock strong and weak alignment operators are X![0] and X[0], respectively.

B.3.1.2.2 Supporting local variables

In order to support local variables we use an enhanced alphabet Υ as defined below, and we add a
context Y that remembers the set of local variables currently in scope.

We denote an element of P by p, an element of V by x, y or z, and an element of D by d. Recall
that D can be any finite superset of {t, f}. Let Σ be the set of all possible assignments to the atomic
propositions P (i.e., Σ = 2P). Let Γ be the set of all possible valuations of the local variables in V
(i.e., Γ = DV). We denote an element of Σ by σ and an element of Γ by γ. We use σ(p) to denote
the truth value given to p by σ, and γ(y) to denote the value given to y by γ.

We use Υ to denote the alphabet Σ×Γ×Γ. We use u, v,w,h to denote (possibly empty) words
over Υ. We use a,b, c to denote letters over Υ. We refer to letters and words over Υ as enhanced
letters and enhanced words, respectively. Let w = (σ0, γ0, γ

′
0)(σ1, γ1, γ

′
1) · · · be an enhanced word.

6

We use w|σ,w|γ ,w|γ′ to denote the word obtained from w by leaving only the first, second or third
component, respectively. That is w|σ = σ0σ1 · · ·, w|γ = γ0γ1 · · · and w|γ′ = γ′0γ

′
1 · · ·.

The intuitive roles of the components of a letter are as follows. The first component of a letter a
(i.e. a|σ) holds the valuation of the atomic propositions at the given cycle. The second component
of a letter a (i.e. a|γ) holds the current values of the local variables at the given cycle (the pre-
value). The third component of a letter a (i.e. a|γ′) holds the values of the local variables after the
assignments have taken place (the post-value).
NOTE −
The semantics for local variables follows the semantics proposed in [B6,B8].

B.3.1.2.3 Supporting past expressions prev() and ended()

In order to support past expressions prev() and ended() we use words with history defined as follows.
We refer to a pair of words (h,w) as a word with history (or h-word for short) where intuitively

h is the history and w is the present and future, with the first letter of w being the present. We
refer to a pair (h,a) as an h-letter. We use � and � to denote h-words.

For standard words w1 and w2 from some alphabet, concatenation means simply placing the
letters of w2 after the letters of w1 to get the word w = w1w2. Concatenating h-words is similar, but
we must account for history. Intuitively, the historical component h of an h-word (h,w) records the
historical context of w, for use in case we encounter a prev or ended operator. For concatenation
to be consistent, then, concatenating h-words (h1,w1) and (h2,w2) should only be possible if h2

correctly records the history seen by the resulting word just before it encounters w2. That is, if
h2 = h1w1. Fusion of h-words is similar to concatenation, except that there is a one-letter overlap
between the words being concatenated, where intuitively, the overlap letter is actually the merging of
two separate letters such that the σ components of the two letters agree, but the γ and γ′ components
do not necessarily agree. This allows us to support an assignment taking place “in the middle of a
letter”, as we desire.

Definition 13 (Concatenation and fusion of languages of h-words) Let L1 and L2 be sets
of h-words. Their concatenation and fusion is defined as follows, where · and ◦ denote concatenation
and fusion, respectively.
− L1·L2 = {(h1,u1u2) | (h1,u1) ∈ L1 and (h1u1,u2) ∈ L2}
− L1◦L2 = {(h1, v1av2) | ∃γ̃ such that (h1, v1(a|σ,a|γ , γ̃)) ∈ L1 and (h1v1, (a|σ, γ̃,a|γ′)v2) ∈ L2}

We use � to denote the set {(h, ε) | h ∈ Υ∗} where ε denotes the empty word. For a language
L of h-words we use L0 to denote the set �. We use Li to denote Li−1·L. We use L∗ and L+ to
denote

⋃
i≥0 Li and

⋃
i>0 Li, respectively. We use Lω for the language composed of infinitely many

concatenations of L with itself. We use L∞ for the union L∗ ∪ Lω.
For a finite/infinite h-word � = (h,w) where w = a0a1 · · ·an or w = a0a1a2 · · · and integers j, k

we use �i to denote the letter (i+1)th letter of w. That is, �i = ai. We use �i.. to denote the suffix of
� starting at �i. That is, �i.. = (ha0a1 · · ·ai−1, aiai+1 · · ·an) or �i.. = (ha0a1 · · ·ai−1, aiai+1 · · ·).
We use �i..j to denote the finite word starting at position i and ending at position j. That is,
�i..j = (ha0a1 · · ·ai−1, aiai+1 · · ·aj). We make use of an “overflow” and “underflow” for the
positions of �. That is, �j.. and �j..k are defined for j bigger than the last position of � and for k < j
as follows: �j.. = �j..k = (hw, ε).

B.3.1.2.4 The Full Semantics

For a (Boolean) expression e = d, the Boolean semantics of e = d with respect to a given set of
local variables Y and a clock context κ, denoted Bκ,y(e), is the language of all h-letters (h,a) on
which e = d holds. It is defined formally as follows. The definition is given by mutual induction
with the language of SEREs, denoted Lκ,y(·), given in Definition 20 and the definition of ticks given
in Definition 19.

Definition 14 (The Boolean Semantics)

7

• Base cases:
∗ Bκ,y(p=d) = {(h,a) | a|σ(p) = d}
∗ Bκ,y(y=d) = {(h,a) | a|γ(y) = d}

• Standard operators:
∗ Bκ,y(¯e=d) = {(h,a) | ∃d′ ∈ D s.t. ¯(d′)=d and (h,a)∈Bκ,y(e=d′)}

∗ Bκ,y(e1 ⊗ e2=d) =
{

(h,a)
∣∣∣∣
∃d1, d2 ∈ D s.t. (d1 ⊗ d2)=d and
(h,a)∈Bκ,y(e1=d1) and (h,a)∈Bκ,y(e2=d2)

}

• Past expressions:
∗ Bκ,y(prev(e, n)=d) =

{
(h,a)

∣∣∣∣
∃u, v ∈ Υ∗ ∃b ∈ Υ s.t. ha = ubv and
(u,bv) ∈ past tickn+1

κ,y and (u,b) ∈ Bκ,y(e=d)

}

∗ Bκ,y(ended(r)=t) = {(h,a) | ∃u, v ∈ Υ∗ s.t. h = uv and (u, va) ∈ Lκ,y(r)}

Definition 15 (The value of an expression) For an h-letter (h,a) and an expression e we use
eκ,y(h,a) to denote the single element of the language {d | (h,a) ∈ Bκ,y(e=d)}.

Definition 16 (Agrees Relative to Y) Let γ1, γ2 ∈ Γ and Y ⊆ V . We say that γ1 agrees with
γ2 relative to Y, denoted γ1

y∼ γ2, if for every y ∈ Y we have γ1(y) = γ2(y).

Given a sequence of assignments Z←E where Z = {z1, z2, . . . , zn} is a finite (possibly empty) set
of local variables and E = {e1, e2 . . . , en} is a sequence of assignments of the same length, we would
like to compute the results of all these assignments taking place one after the other. That is, first
the assignment z1←e1 takes place, then the assignment z2←e2 takes place etc., until the assignment
zn←en takes place.

Definition 17 (Sequence of Assignments) Let κ be a Boolean expression and Y ⊆ V . Let z
be a local variable and e an expression. Let Z = z1, . . . , zn be a sequence of local variables and E a
sequence of expressions E = e1, . . . , en of the same length.

• We write [z←e]κ,y(h,a) to denote the valuation γ̂ such that γ̂(z) = eκ,y(h,a) and for every
local variable y ∈ V \{z} we have that γ̂(y) = γ(y).

• We write [z1←e1, . . . , zn←en]κ,y(h,a) to denote the recursive application

[z2←e2, . . . , zn←en]κ,y(h, 〈a|σ, γ̂,a|γ′〉)

where γ̂ = [z1←e1]κ,y(h,a).

We write Z←E to abbreviate z1←e1, . . . , zn←en. If Z is empty we read Z←E as the empty assign-
ment and understand [Z←E]κ,y(h,a) to be a|γ .

The assignment language of Z←E formally defined below returns the set of all h-letters (h,a)
such that a records correctly the assignment Z←E taking place at on a given the past is h.

Definition 18 (The Assignment Language) Let κ be a Boolean expression and Y ⊆ V . Let Z
be a sequence of local variables and E a sequence of expressions E of the same length. The assignment
language of Z←E with respect to κ,Y is defined as follows.

• Aκ,y(Z←E) = {(h,a) | a|γ′ y∼ [Z←E]κ,y(h,a)}

Definition 19 (no tick,tick,past tick) Let κ be a Boolean expression and Y ⊆ V . We define the
languages no tickκ,y, tickκ,y and past tickκ,y as follows:

• no tickκ,y = (Btrue,y(¬κ) ∩ Aκ,y())

• tickκ,y = (no tickκ,y)∗·Btrue,y(κ)

8

• past tickκ,y = Btrue,y(κ)·(no tickκ,y)∗

For a regular expression r the language of r with respect to κ,Y, denoted Lκ,y(r), is defined by
mutual induction with Definition 14 as follows.

Definition 20 (The Language of SEREs)

• Base cases:
− Lκ,y([∗0]) = �
− Lκ,y(e=d,Z←E) = tickκ,y ∩ (Υ∗·(Bκ,y(e=d) ∩ Aκ,y(Z←E)))

• Standard SERE operators:
− Lκ,y({r}) = Lκ,y(r) − Lκ,y(r[+]) = Lκ,y(r)

+

− Lκ,y(r1·r2) = Lκ,y(r1)·Lκ,y(r2) − Lκ,y(r1 ∪ r2) = Lκ,y(r1) ∪ Lκ,y(r2)
− Lκ,y(r1◦r2) = Lκ,y(r1)◦Lκ,y(r2) − Lκ,y(r1 ∩ r2) = Lκ,y(r1) ∩ Lκ,y(r2)

• Context operators:
− Lκ,y({var(Z) r}) = Lκ,y∪z(r)
− Lκ,y({free(Z) r}) = Lκ,y\z(r)
− Lκ,y(r@b) = Lb,y(r)

Definition 21 (The Language of Proper Prefixes of SEREs)

• Base cases:
− Fκ,y([∗0]) = ∅
− Fκ,y(e = d,Z←E) = (no tickκ,y)∗

• Standard SERE operators:
− Fκ,y({r}) = Fκ,y(r) − Fκ,y(r[+]) = Lκ,y(r)

∗·Fκ,y(r)
− Fκ,y(r1·r2) = Fκ,y(r1) ∪ (Lκ,y(r1)·Fκ,y(r2)) − Fκ,y(r1 ∪ r2) = Fκ,y(r1) ∪ Fκ,y(r2)
− Fκ,y(r1◦r2) = Fκ,y(r1) ∪ (Lκ,y(r1)◦Fκ,y(r2)) − Fκ,y(r1 ∩ r2) = Fκ,y(r1) ∩ Fκ,y(r2)

• Context operators:
− Fκ,y({var(Z) r}) = Fκ,y∪z(r)
− Fκ,y({free(Z) r}) = Fκ,y\z(r)
− Fκ,y(r@b) = Fb,y(r)

Definition 22 (The Loop Language of SEREs)

• Base cases:
− Iκ,y([∗0]) = ∅
− Iκ,y(e=d,Z←E) = (no tickκ,y)ω

• Standard SERE operators:
− Iκ,y({r}) = Iκ,y(r) − Iκ,y(r[+]) = (Lκ,y(r)

∗·Iκ,y(r)) ∪ Lκ,y(r)
ω

− Iκ,y(r1·r2) = Iκ,y(r1) ∪ (Lκ,y(r1)·Iκ,y(r2)) − Iκ,y(r1 ∪ r2) = Iκ,y(r1) ∪ Iκ,y(r2)
− Iκ,y(r1◦r2) = Iκ,y(r1) ∪ (Lκ,y(r1)◦Iκ,y(r2)) − Iκ,y(r1 ∩ r2) = Iκ,y(r1) ∩ Iκ,y(r2)

• Context operators:
− Iκ,y({var(Z) r}) = Iκ,y∪z(r)
− Iκ,y({free(Z) r}) = Iκ,y\z(r)
− Iκ,y(r@b) = Ib,y(r)

We define the semantics of a formula with respect to an h-word � and a tuple τ = 〈κ,Y, υ〉 where
κ is a Boolean expression indicating the clock context, Y ⊆ V is a set of local variables indicating
the controlled variables, and υ ∈ {s,n,w} denotes the view (where s,n,w correspond to the strong,
neutral and weak views, respectively). For a view υ we use υ to denote the dual view which is s
if υ = w, w if υ = s, and υ otherwise (if υ = n). We use j and k below to denote non-negative
integers.

9

Intuitively, the semantics of local variables are such that an ltl operator does not change the
value of a local variable. For example, in the formula G (var(z) {req, z←tag} → X! F(ack∧tag = z)),
the value of z “seen” by the operand of the F operator should be the value assigned by the left-hand
side of the suffix implication (exactly as in the following alternative formulation of the same property:
G (var(z) {req, z←tag} → {true·true[∗]·ack ∧ tag = z}!)). Conceptually, this means that a formula
should “see” the value of the local variables as they were at the beginning of the word, unless a
SERE is encountered, in which case the values “seen” should be those dictated by the assignments
made within the SERE. We accomplish this as follows: The semantics of w |= ϕ for a word w over
Σ takes an initial context of local variables and holds it constant across an extended word w whose
σ component is exactly w. The semantics of r!, r and r → ϕ then release the constant value of local
variables at the points on the word where a “match” of r is being checked. This allows the local
variables to be controlled by r. Finally, in the case of r → ϕ, “after” a match of r has been “seen”,
the semantics constrains the values of the local variables to take on constant values starting from
the end of the “match” of the SERE. We accomplish this using three auxiliary definitions, below.

Definition 23 (Good) We say that w is good if w = ε or w = a or w = abv and bv is good and
b|γ = a|′γ , that is, the pre-value of the local variables on a letter is the same as the post-value on the
previous letter (i.e. is the result of the assignments that took place on the previous letter).

Definition 24 (The equivalence class of � releasing γ) Let � = (h,w). Then J�K denotes the
equivalence class {(h′,w′) | h′ = h, w′ is good, w′|σ = w|σ and either w = w′ = ε or w0|γ = w′0|γ}.

Definition 25 (Constraining γ on �) Let � = (h,w) and γ̂ ∈ Γ. Then �[(γ,γ′) ← γ̂] denotes the
word �′ = (h′,w′) such that h′ = h, w′|σ = w|σ and w′|γ = w′|γ′ ∈ {γ̂}∞.

The relation � |=τ ϕ, read “� models ϕ in the context of τ”, is formally defined as follows.

Definition 26 (Satisfaction on h-words)

i. � |=τ r! ⇐⇒ ∃� ∈ J�K s.t. either ∃j s.t. �0..j ∈ Lκ,y(r)
or (υ = w and � ∈ Fκ,y(r) ∪ �)

ii. � |=τ r ⇐⇒ ∃� ∈ J�K s.t. either ∃j s.t. �0..j ∈ Lκ,y(r) or � ∈ Iκ,y(r)
or (υ ∈ {w,n} and � ∈ Fκ,y(r) ∪ �)

iii. � |=τ r → ϕ ⇐⇒ ∀j ∀� ∈ J�K s.t. �0..j ∈ Lκ,y(r) we have that �j..[(γ,γ′) ← �j |γ′] |=τ ϕ and
either υ ∈ {w,n} or w /∈ Fκ,y(r) ∪ {ε}

iv. � |=τ (ϕ) ⇐⇒ � |=τ ϕ

v. � |=τ ¬ϕ ⇐⇒ � |=/τ ϕ where τ = τ [υ←υ]

vi. � |=τ ϕ ∧ ψ ⇐⇒ � |=τ ϕ and � |=τ ψ

vii. � |=τ X! [k] ϕ ⇐⇒ either ∃j s.t. �0..j ∈ Lκ,y(tick [k+1]) and �j.. |=υ ϕ
or (υ = w and � ∈ Fκ,y(tick [k+1]) ∪ �)

viii. � |=τ ϕUψ ⇐⇒ ∃k s.t. � |=τ X! [k] ψ and ∀j < k, � |=τ X! [j]ϕ

ix. � |=τ ϕ sync abort t ⇐⇒ either � |=τ ϕ or ∃k s.t. �k.. |=τ ′ ended(t) and �0..k−1 |=τ ′′ϕ
where τ ′ = τ [υ←s] and τ ′′ = τ [υ←w]

x. � |=τ (var(Z) ϕ) ⇐⇒ � |=τ ′ ϕ where τ ′ = τ [Y←Y ∪ Z]

xi. � |=τ ϕ@b ⇐⇒ � |=τ ′ ϕ where τ ′ = τ [κ←b]

Definition 27 (Satisfaction over Σ) Let w be a word over Σ and ϕ be an FL formula. We say
that w models ϕ in the view υ, denoted w |=υ ϕ iff for all γ̂ ∈ Γ and all extended words w such that
w|σ = w we have that (ε,w)[(γ,γ′) ← γ̂] |=τυ ϕ, where τυ = 〈true, ∅, υ〉. That is, the past is empty,
the pre- and post-values are γ on every letter, the initial clock context is true and the initial set of
controlled variables is empty.

10

Definition 28 (Holds Weakly, Strong, Neutrally, Pending, Fails) Let w be a word over Σ
and ϕ an FL formula. We say that

• ϕ holds weakly on w if w |=w ϕ

• ϕ holds (neutrally) on w if w |=n ϕ

• ϕ holds strongly on w if w |=s ϕ

• ϕ is pending on word w iff w |=w ϕ and w |=/n ϕ

• ϕ fails on word w iff w |=/w ϕ

B.3.2 Semantics of OBE formulas

The semantics of OBE formulas are defined over states in the model, rather than finite or infinite
words. Let f be an OBE formula, M = (S, S0, R, P , L) a model and s ∈ S a state of the model. The
notation M, s |= f means that f holds in state s of model M . The notation M |= f is equivalent to
∀s ∈ S0 : M, s |= f . In other words, f is valid for every initial state of M .

The semantics of OBE formulas are defined inductively, using as the base case the semantics of
Basic Boolean expressions over letters in 2P , as given in Definition 7.

The semantics of an OBE formula are those of standard CTL. The semantics are defined as
follows, where b denotes a Boolean expression and f , f1, and f2 denote OBE formulas.

i. M, s |= b ⇐⇒ L(s) ∈ B(b = t)

ii. M, s |= (f) ⇐⇒ M, s |= f

iii. M, s |= ¬f ⇐⇒ M, s 6|= f

iv. M, s |= f1 ∧ f2 ⇐⇒ M, s |= f1 and M, s |= f2

v. M, s |= EX f ⇐⇒ there exists a computation path π of M such that |π| > 1, π0 = s, and
M, π1 |= f

vi. M, s |= E[f1 U f2] ⇐⇒ there exists a computation path π of M such that π0 = s and there
exists k < |π| such that M, πk |= f2 and for every j such that j < k: M, πj |= f1

vii. M, s |= EG f ⇐⇒ there exists a computation path π of M such that π0 = s and for every j
such that 0 ≤ j < |π|: M,πj |= f

B.4 Syntactic Sugaring

The remainder of the temporal layer is syntactic sugar. In other words, it does not add expressive
power, and every piece of syntactic sugar can be defined in terms of the basic operators presented
above. The syntactic sugar is defined below.

NOTE −
The definitions given here do not necessarily represent the most efficient implementation. In some cases,

there is an equivalent syntactic sugaring, or a direct implementation, that is more efficient.

11

B.4.1 Additional Boolean expressions

Let b ∈ B and e ∈ E . Then additional Boolean expressions can be viewed as abbreviations of the
core Boolean expressions given in Definition 1, as follows:

• rose(b) def= ¬prev(b) ∧ b

• fell(b) def= prev(b) ∧ ¬b

• stable(e) def= prev(e) = e

B.4.2 Additional expressions

Let e ∈ E . Then additional expressions can be viewed as abbreviations of the expressions given in
Definition 2, as follows:

• prev(e) def= prev(e, 1)

B.4.3 Additional SEREs

We regard a procedural block as mechanism for both calculating a set of expressions and assigning
them to a set of local variables which are given to the procedural block as inputs. Formally,

• f(z1, . . . , zn) where f is a procedural block and z1, . . . , zn are local variables is interpreted as
an abbreviation for the sequence of assignments z1←ef1 , . . . , zn←efn where ef1 , . . . , efn are
expressions corresponding to intermediate calculations of f .

Let b, c ∈ B and e ∈ E . Let k be a non-negative integer. Then the following are SEREs:

• rose(b, c) def= rose(b)@c

• fell(b, c) def= fell(b)@c

• stable(e, c) def= stable(e)@c

• prev(e, k, c) def= prev(e, k)@c

• ended(r, c) def= ended(r)@c

B.4.4 Additional SERE operators

Let i, j, k, and l be integer constants such that i ≥ 0, j ≥ i, k ≥ 1, l ≥ k. Then additional
SERE operators can be viewed as abbreviations of the core SERE operators given in Definition 3,
as follows, where b denotes a boolean expression, and r denotes a SERE.

• r[∗] def= [∗0] ∪ r[+]

• r[∗0] def= [∗0]

• r[∗k] def=
k times︷ ︸︸ ︷
r·r·...·r

• r[∗i..j] def= r[∗i] | ... | r[∗j]

• r[∗i..] def= r[∗i]·r[∗]

• r[∗..i] def= r[∗0] | ... | r[∗i]

12

• r[∗..] def= r[∗0..]

• [+] def= true[+]

• [∗] def= true[∗]

• [∗i] def= true[∗i]

• [∗i..j] def= true[∗i..j]

• [∗i..] def= true[∗i..]

• [∗..i] def= true[∗..i]

• [∗..] def= true[∗..]

• b[= i] def= {¬b[∗]·b}[∗i]·¬b[∗]

• b[= i..j] def= b[= i] | ... | b[= j]

• b[= i..] def= b[= i]·[∗]

• b[= ..i] def= b[= 0] | ... | b[= i]

• b[= ..] def= b[= 0..]

• b[→] def= ¬b[∗]·b

• b[→ k] def= {¬b[∗]·b}[∗k]

• b[→ k..l] def= b[→ k] | ... | b[→ l]

• b[→ k..] def= b[→ k] | {b[→ k]·[∗]·b}

• b[→ ..k] def= b[→ 1] | ... | b[→ k]

• b[→ ..] def= b[→ 1..]

• skip
def= {free(V) true} where V is the entire set of local variables

• r1 & r2
def= { {r1·skip[∗]} ∩ r2 } ∪ { r1 ∩ {r2·skip[∗]} }

• r1 within r2
def= {skip[∗]· r1· skip[∗]} ∩ {r2}

• {var(Z←E) r} def= {var(Z) {{true,Z ← E}◦r} ∪ {[∗0] ∩ r}}

B.4.5 Additional FL operators

Let i, j, k and l are integers such that i ≥ 0, j ≥ i, k > 0 and l ≥ k. Then additional FL operators
can be viewed as abbreviations of the core operators given in Definition 4, as follows, where b denotes
a boolean expression, r, r1, and r2 denote SEREs, and ϕ, ϕ1, and ϕ2 denote FL formulas.

• ϕ1 ∨ ϕ2
def= ¬(¬ϕ1 ∧ ¬ϕ2)

• ϕ1 → ϕ2
def= ¬ϕ1 ∨ ϕ2

• ϕ1 ↔ ϕ2
def= (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1)

13

• X[i]ϕ def= ¬X![i] ¬ϕ

• X!ϕ
def= X![1] ϕ

• Xϕ
def= X[1] ϕ

• Fϕ
def= true U ϕ

• Gϕ
def= ¬F¬ϕ

• ϕ1 W ϕ2
def= (ϕ1 U ϕ2) ∨ Gϕ1

• always ϕ
def= G ϕ

• never ϕ
def= G ¬ϕ

• next! ϕ
def= X! ϕ

• next ϕ
def= X ϕ

• eventually! ϕ
def= Fϕ

• ϕ1 until! ϕ2
def= ϕ1 U ϕ2

• ϕ1 until ϕ2
def= ϕ1 W ϕ2

• ϕ1 until! ϕ2
def= ϕ1 U (ϕ1 ∧ ϕ2)

• ϕ1 until ϕ2
def= ϕ1 W (ϕ1 ∧ ϕ2)

• ϕ1 before! ϕ2
def= (¬ϕ2) U (ϕ1 ∧ ¬ϕ2)

• ϕ1 before ϕ2
def= (¬ϕ2) W (ϕ1 ∧ ¬ϕ2)

• ϕ1 before! ϕ2
def= (¬ϕ2) U ϕ1

• ϕ1 before ϕ2
def= (¬ϕ2) W ϕ1

• next![i] ϕ
def= X![i] ϕ

• next[i] ϕ
def= X[i] ϕ

• next a![i..j]ϕ def= (X![i]ϕ) ∧ . . . ∧ (X![j]ϕ)

• next a[i..j]ϕ def= (X[i]ϕ) ∧ . . . ∧ (X[j]ϕ)

• next e![i..j]ϕ def= (X![i]ϕ) ∨ . . . ∨ (X![j]ϕ)

• next e[i..j]ϕ def= (X[i]ϕ) ∨ . . . ∨ (X[j]ϕ)

• next event!(b)(ϕ) def= (¬b) U b ∧ ϕ

• next event(b)(ϕ) def= (¬b) W (b ∧ ϕ)

14

• next event!(b)[k](ϕ) def= next event!(b)

k−1 times︷ ︸︸ ︷
(X! next event!(b)...(X! next event!(b)(ϕ))...)

• next event(b)[k](ϕ) def= next event(b)

k−1 times︷ ︸︸ ︷
(Xnext event(b)...(Xnext event(b)(ϕ))...)

• next event a!(b)[k..l](ϕ) def= next event!(b)[k](ϕ) ∧ ... ∧ next event!(b)[l](ϕ)

• next event a(b)[k..l](ϕ) def= next event(b)[k](ϕ) ∧ ... ∧ next event(b)[l](ϕ)

• next event e!(b)[k..l](ϕ) def= next event!(b)[k](ϕ) ∨ ... ∨ next event!(b)[l](ϕ)

• next event e(b)[k..l](ϕ) def= next event(b)[k](ϕ) ∨ ... ∨ next event(b)[l](ϕ)

• r(ϕ) def= r → ϕ

• r ⇒ ϕ
def= {r ◦ {true·true}} → ϕ

• ϕ async abort t
def= ϕ sync abort (t@true)

• ϕ abort t
def= ϕ async abort t

B.4.6 Parameterized SEREs and Formulas

Let r be a SERE, and l,m integers. Let S be a set of constants, integers or boolean values and p
an identifier. The left hand side of the following are SEREs, equivalent to the SEREs on the right
hand side.

• for p in S : ∪ r
def= ∪

s∈S
{r[p ← s]}

• for p〈l..m〉 in S : ∪ r
def= ∪

sl∈S
. . . ∪

sm∈S
{r[p〈l..m〉 ← 〈sl..sm〉]}

• for p in S : ∩ r
def= ∩

s∈S
{r[p ← s]}

• for p〈l..m〉 in S : ∩ r
def= ∩

sl∈S
. . . ∩

sm∈S
{r[p〈l..m〉 ← 〈sl..sm〉]}

• for p in S : & r
def= &

s∈S
{r[p ← s]}

• for & p〈l..m〉 in S : & r
def= &

sl∈S
. . . &

sm∈S
{r[p〈l..m〉 ← 〈sl..sm〉]}

Where r[p ← s] is the SERE obtained from r by replacing every occurrence of p by s and r[p〈l..m〉 ←
〈sl..sm〉] is the SERE obtained from r by replacing every occurrence of pj with sj for all j such that
l ≤ j ≤ m.

Let ϕ be an FL formula, and l,m integers. Let S be a set of constants, integers or boolean
values and p an identifier. The left hand side of the following are FL formulas equivalent to the FL
formulas on the right hand side.

• for p in S : ∨ ϕ
def=

∨

s∈S

ϕ[p ← s]

• for p〈l..m〉 in S : ∨ ϕ
def=

∨

sl∈S

. . .
∨

sm∈S

ϕ[p〈l..m〉 ← 〈sl..sm〉]

15

• for p in S : ∧ ϕ
def=

∧

s∈S

ϕ[p ← s]

• for p〈l..m〉 in S : ∧ ϕ
def=

∧

sl∈S

. . .
∧

sm∈S

ϕ[p〈l..m〉 ← 〈sl..sm〉]

• forall p in S : ϕ
def= for p in S : ∧ ϕ

• forall p〈l..m〉 in S : ϕ
def= for p〈l..m〉 in S : ∧ ϕ

where ϕ[p ← s] is the formula obtained from ϕ by replacing every occurrence of p by s and
ϕ[p〈l..m〉 ← 〈sl..sm〉] is the formula obtained from ϕ by replacing every occurrence of pj with
sj for all j such that l ≤ j ≤ m.

B.4.7 Additional OBE operators

Let f, f1, f2 denote OBE formulas. Then additional OBE operators can be derived from the core
OBE operators given in Definition 5 as follows:

• f1 ∨ f2 = ¬(¬f1 ∧ ¬f2)

• f1 → f2 = ¬f1 ∨ f2

• f1 ↔ f2 = (f1 → f2) ∧ (f2 → f1)

• EFf = E[true U f]

• AXf = ¬EX¬f

• A[f1 U f2] = ¬(E[¬f2 U (¬f1 ∧ ¬f2)] ∨ EG¬f2)

• AGf = ¬E[true U ¬f]

• AFf = A[true U f]

B.5 Rewriting rules for clocks

In Section B.3.1.2 we gave the semantics of clocked FL formulas directly. There is an equivalent
definition in terms of FL formulas without clocks, as follows: Starting from the outermost clock, use
the following rules to translate clocked SEREs into unclocked SEREs, and clocked FL formulas into
unclocked FL formulas.

The rewrite rules for SEREs are:

i. Rc({r}) = Rc(r)

ii. Rc(b) = ¬c[∗] · (c ∧ b)

iii. Rc(b,Z←E) = ¬c[∗] · (c ∧ b,Z←E)

iv. Rc(r1 · r2) = Rc(r1) · Rc(r2)

v. Rc(r1 ◦ r2) = {Rc(r1)} ◦ {Rc(r2)}

vi. Rc(r1 ∪ r2) = {Rc(r1)} ∪ {Rc(r2)}

vii. Rc(r1 ∩ r2) = {Rc(r1)} ∩ {Rc(r2)}

16

viii. Rc([∗0]) = [∗0]

ix. Rc(r[+]) = {Rc(r)}[+]

x. Rc(var(Z) r) = {var(Z) Rc(r)}

xi. Rc(free(Z) r) = {free(Z) Rc(r)}

xii. Rc(r@c1) = Rc1(r)

The rewrite rules for FL formulas are:

i. Fc((ϕ)) = (Fc(ϕ))

ii. Fc(¬ϕ) = ¬Fc(ϕ)

iii. Fc(ϕ ∧ ψ) = (Fc(ϕ) ∧ Fc(ψ))

iv. Fc(r!) = Rc(r)!

v. Fc(r) = Rc(r)

vi. Fc(r → ϕ) = Rc(r) → Fc(ϕ)

vii. Fc(X![0]ϕ) = (¬c U (c ∧ Fc(ϕ)))))
Fc(X!ϕ) = (¬c U (c ∧ X! (¬c U (c ∧ Fc(ϕ)))))
Fc(X![k]ϕ) = Fc(X! . . . X!︸ ︷︷ ︸

k times

ϕ) for k ≥ 2

viii. Fc(ϕ U ψ) = ((c → Fc(ϕ)) U (c ∧ Fc(ψ)))

ix. Fc(ϕ sync abort t) = Fc(ϕ) sync abort Fc(t)

x. Fc(var(Z) ϕ) = (var(Z) Fc(ϕ))

xi. Fc(ϕ@c1) = Fc1(ϕ)

Acknowledgments

We would like to acknowledge the contributions of the following people: Shoham Ben-David, Doron
Bustan, John Havlicek, Alexander Ivrii, Erich Marschner, Johan Mårtensson, Avigail Orni, Dmitry
Pidan, Sitvanit Ruah, Thomas Türk and Karen Yorav.

References

[B1] C. Eisner, D. Fisman, J. Havlicek, A. M. Yoad Lustig, and D. V. Campenhout. Reasoning with
temporal logic on truncated paths. In Proc. 15th International Conference on Computer-Aided
Verification conference (CAV’O3), volume 2725 of LNCS, pages 27–39, 2003.

[B2] C. Eisner, D. Fisman, J. Havlicek, A. McIsaac, and D. Van Campenhout. The definition of a
temporal clock operator. In ICALP, volume 2719 of Lecture Notes in Computer Science, pages
857–870. Springer, 2003.

17

[B3] C. Eisner, D. Fisman, J. Havlicek, and J. Martensson. The >,⊥ approach to truncated seman-
tics. Technical Report 2006.01, Accellera, 2006.

[B4] C. Eisner, D. Fisman, and J. Havlicek. A topological characterization of weakness. In PODC
’05: Proceedings of the Twenty-fourth Annual ACM Symposium on Principles of Distributed
Computing, pages 1–8, New York, NY, USA, 2005. ACM.

[B5] D. Fisman. On the characterization of until as a fixed point under clocked semantics. In Proc.
Third International Haifa Verification Conference, volume 4899 of Lecture Notes in Computer
Science, pages 19–33. Springer, 2007.

[B6] C. Eisner and D. Fisman. Proposal for extending annex B of PSL with local variables, proce-
dural blocks, past expressions and clock alignment operators. Technical Report H-0256, IBM,
2008.

[B7] C. Eisner and D. Fisman. Structural Contradictions. Submitted.

[B8] C. Eisner and D. Fisman. Augmenting a Regular Expression-Based Temporal Logic with Local
Variables. FMCAD’08: Proc. 8th International Conference on Formal Methods in Computer-
Aided Design, 2008.

[B10] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag,
New York, 1995.

[B11] A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science, 13:45–60,
1981.

18

