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Abstract—TV whitespaces, recently opened up by the FCC for
unlicensed use, are seen as a potential cellular offload and/or
standalone mechanism, especially in dense metros where the
demand for throughput is high. In this paper, we use real data
collected from whitespaces databases to empirically demonstrate
features unique to whitespaces - “power-spectrum trade-off” and
spatial variation in spectrum availability. From this study, we
conclude the need for whitespaces-specific adaptations to cellular
networks so as to be able to extract maximum throughput and
guarantee reliability. To tackle the effects of the power-spectrum
trade-off, we propose a novel base-station design that specifically
uses low-power transmitters as a means to maximise throughput.
This design co-locates and networks together many low-powered
mode-I devices to act as a multiple-antenna array. We estimate
the size of the array required to meet typical rate targets, and
show that the array design significantly outperforms traditional
designs in terms of throughput for a given cost. We then turn
our attention to spatial variability and study its impact on
the problem of locating base-stations in a whitespaces network.
Here, we propose spectrum-aware placement algorithms for
whitespaces, which account for this spatial variability along with
key parameters like user density. We show that such algorithms
clearly outperform traditional placement algorithms and improve
network coverage in this band.

I. INTRODUCTION

The Federal Communications Commission (FCC) recently

passed a ruling [2] that opens up Television Whitespaces,

(the UHF band from 54 MHz to 806 MHz) for unlicensed

use by wireless devices. The unlicensed devices are expected

to function as “secondary devices” in these bands, i.e., they

are expected to share the spectrum with primary occupants

such as TV stations (and wireless microphones to a lesser

degree) without causing interference to them. Later, the FCC

called [3] for the presence of a central database with which

primary devices can reserve spectrum for their exclusive use.

These reservations detail the frequency bands they expect to

occupy, their period of occupation, and their locations. The

central database aggregates all primary reservations, creates

and provides any querying unlicensed device with a spectrum

map of TV bands (chunks of 6MHz spectrum) that the device

can use at its location. The database is currently set to be

updated once per day.

The FCC classifies unlicensed whitespace devices into three

categories based on the power at which they can transmit: (i)

Fixed devices can transmit at power levels upto 4W. They

play a role in whitespace networks that is akin to cellular

base-stations. (ii) Mode-II devices can transmit at powers upto

100mW. They play a role that is akin to smaller (WiFi) access

points. (iii) Mode-I devices can transmit at powers upto 40mW.

They are similar to mobile or other handheld devices in a

cellular network.

A. Contributions and organization of paper

In this paper, we present real data collected from two

whitespaces database pilots hosted by Spectrum Bridge [4]

and Telcordia [5]. We derive new insights about whitespaces

from this data and use these insights to propose novel design

techniques for whitespace networks. Section II augments data

from our work in [1], and presents the resultant observations.

This section forms the backbone of our paper, and is a key

contribution to whitespaces literature. Our observations in this

section fall under two categories:

1) We observe the existence of a “power-spectrum trade-

off”, where low-powered mode-I devices have access

to more spectrum than higher-powered fixed devices.

We show that this difference in spectrum is often, quite

significant. Importantly, we give insights on how this

trade-off can be exploited to alleviate the severe lack of

whitespaces spectrum in dense metros.

2) We demonstrate that the availability of whitespaces spec-

trum is a function of space, and changes over the scale of

a few kilometers1. Further, the number of available TV

bands can change multiple times with varying patterns

over this scale of distance. Finally, in addition to such

gradual large-scale variation, abrupt localized variations

also exist in some dense metros.

As a result of these observations, we propose and analyze two

modifications to a traditional network that help achieve higher

throughputs and coverage. By traditional network, we mean

a network with a single high-powered/expensive base-station

serving many low-powered/inexpensive users/mobiles.

In Part I of the paper, we argue that large arrays2 of

co-located low-powered mode-I devices networked together

are a compelling, if not necessary, base-station architecture

in whitespaces because of the extra spectral diversity that

comes into play by lowering power. The specific technical

contributions in this part are:

3) in Section IV, we formulate the optimal base-station

composition problem, i.e., the minimum number of low-

powered mode-I devices required to achieve a given set

of long-term throughput targets. We also demonstrate the

usefulness of the max-sum-rate scheduler in long-term

planning for networks.

4) We find the optimal array composition through numeri-

cal experiments under real-world settings in Section V.

We demonstrate that the proposed design can support

throughput-demanding applications such as high-quality

movie streaming in a much more cost-efficient manner

than a traditional design, which is often prohibitively

costly in these regimes.

The scale of spatial variation observed in Section II leads

us to believe that its impact is higher on network-wide

problems rather than the design of a single base-station cell.

Consequently, in Part II of the paper (Section VI onwards),

we consider the problem of placing the large arrays designed

in Part I over a given geographical area, as a function of

the spatial variability of whitespaces spectrum. We argue

that whereas traditional cellular node placement is primarily

carried out based on the location of user hot spots, whitespaces

node placement must additionally account for the spatial

availability of spectrum. The specific technical contributions

in the second part are as follows:

6) In Section VI, we present two different formulations of

the whitespaces base-station placement problem.

1This is not the case in cellular networks where providers typically have
access to the same spectrum over a distance of the order of a kilometer.

2Recently, there has been a growing belief that MIMO arrays comprised of
a large number of cheap, small, antennas (called “Massive MIMO” by some)
is the next step towards breaking the throughput barrier [6]–[9].
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7) In Section VII, we prove that the objective functions

in these formulations are sub-modular, a property that

is useful in light of the fact that the proposed formu-

lations are NP-hard. Low-complexity greedy algorithms

are then presented that have an accuracy guarantee of
(

1− 1
e

)

.

8) We then propose alternate solutions based on convex

relaxations and the well-known k-clustering technique

in Sections VIII and IX respectively. The convex

relaxation technique is shown to be optimal under certain

settings, and the clustering algorithm provides a useful

alternative with a different complexity trade-off.

9) In Section X, we numerically evaluate these proposed al-

gorithms and show that spectrum-aware placement can,

in some cases, even double the average rate supported by

the network compared to traditional placement. We also

demonstrate how spectrum aware-placement is crucial in

dense metros, where spectrum is relatively scarce.

In summary, we propose a shift from a “traditional” placement

of high-power base-stations to low-power antenna-arrays that

are placed in a spectrally-cognizant manner, as a means to

achieve significant throughput gains in whitespaces.

B. Related work

In general, research concerning the design of database-

driven whitespaces networks is still in its nascent stages. Murty

et al. [10] architect a whitespaces network called Senseless that

intelligently addresses the practical challenges proposed by a

database/geo-location driven system. The authors propose and

evaluate the use of a transmit beacon to enable the entry of a

mode-I device, that has no prior knowledge of the spectrum

map at its location, into the white space network. Further,

they also propose an algorithm that adapts the resolution of

the location information and study the associated performance

tradeoffs.

In addition to engineering standalone whitespaces systems,

other literature in the area is centered around the evolving

IEEE 802.22 Regional Access Network standard [11], [12].

In particular, the topic of co-existence [13] amongst many

802.22 networks has received attention. Both cooperative

[14], [15] and non-cooperative or game theoretic [16], [17]

spectrum sharing protocols have been proposed and evalu-

ated. An important take-away from the extensive empirical

evidence provided in the above papers [10] and others [18] is

that whitespaces spectrum maps can exhibit spatio-temporal

variability.

II. WHITESPACES - UNIQUE CHALLENGES AND

SOLUTIONS

A. Power-spectrum trade-off: A case for an array of mode-I

devices

Consider the spectrum available at an FCC-registered cell

tower [19], [20] in Middlesex County, New Jersey, USA,

a densely-populated region twenty four miles west of New

York City. Suppose that this tower operator is interested in

equipping the tower with whitespaces capability. Figure 1(a)

shows the number of TV bands available to a fixed device that

would hypothetically replace or supplement the cell tower at

this location, as seen on the whitespaces database [4]. As we

can see, this fixed device has access to only one TV band (i.e.,

6 MHz of bandwidth). In comparison, a standard WiMAX

base-station operates using 10 MHz or 20 MHz of bandwidth

per sector.

(a) Fixed device

(b) Mode-I device

Fig. 1. Spectrum map [4] of devices at 2 Gowin St., Sayreville, NJ 08872.

Now, consider a mode-I device (to function as a base-

station) placed at the same location. Figure 1(b) shows that

this mode-I device has access to five TV bands (i.e., 30 MHz)

instead of one. Thus, we see that lower-power mode-I devices

can have significantly higher spectrum available to them than

fixed devices at the same location and time. One possible

reason for this is that they are less likely to cause interference

to incumbent primary devices. Empirical evidence from [4]

strongly suggests that this phenomenon of power-spectrum

trade-off is widely prevalent, and not restricted to any one

geography.

This effect has significant implications for network design,

especially in dense cities. Dense cities tend to have more

primary devices (TV transmitters), and consequently, lower

availability of secondary-access spectrum. Consequently, the

spectrum afforded to high-power fixed devices is low or

even, non-existent. Consider the example of the Empire State

Building in New York shown in Figure 2. Here, we see that

the fixed device has access to no spectrum at all. However,

a mode-I device placed at the same location has access to a

bandwidth of 6 MHz, which allows for meaningful service.

Strangely, mode-II devices, which lie between fixed and

mode-I devices in terms of power, do not find a place on the

power-spectrum tradeoff curve. It is observed in the context

of mode-II devices that the reduction in transmit power is just
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(a) Fixed device

(b) Mode-I device

Fig. 2. Spectrum map [4] for devices at the Empire State building

not sufficient to release more spectrum. Figure 3 is a typical

sample of our observations where mode-II devices have at

most as many TV bands as a fixed device and hence offer no

added spectrum.

Fig. 3. Spectrum map [4] for a mode-II device at 2 Gowin St., Sayreville,
NJ 08872 [20].

Design implications: The use of mode-I devices for transmis-

sion would trade-off power for extra bandwidth. Considering

that power is only a logarithmic component in capacity,

whereas bandwidth is a linear factor, this seems like a ben-

eficial choice. However, this design choice also immediately

raises concerns about the hundred-fold loss in transmit power

compared to a fixed device. In the high-SNR regime, it seems

that this hundred-fold loss would be less debilitating, given the

nature of the log function. However, at low-to-moderate SNRs,

the additional spectrum is not always sufficient to overcome

the power loss. Under settings where the additional spectrum is

insufficient, we propose the use of an array of mode-I devices

networked together to perform transmit diversity. We show

that by exploiting spatial diversity in addition to the inherent

extra spectrum, the array design significantly outperforms the

traditional design that uses fixed devices in terms of cost

required to meet the same throughput.

For example, our experiments (detailed in Section V) show

that typically, a single mode-I device does not outperform a

single fixed device (in terms of rate) except under very low

interference conditions 3. However, we find that, depending

on the setting, the mode-I design consistently outperforms the

fixed design when the size of the mode-I array is 5 to 20 times

the number of fixed devices employed. Making a reasonable

assumption that the cost of portable devices is akin to that of a

mobile phone or router whereas the cost of a base-station is at

least two orders larger [21], the array design has the potential

to be more cost-effective. We also note that at higher rate

settings (like 2 Mbps), the number of fixed devices required

to meet the target are prohibitively large, thus making the fixed

design infeasible. In such settings, the mode-I design is even

more compelling. We do recognize however that there are costs

and challenges associated with networking together co-located

devices (e.g., synchronization) that are arguably more difficult

to quantify and are beyond the scope of this paper.

We provide more formal analysis of this design in Sec-

tions IV and V, where we show how it comprehensively

outperforms standard designs.

B. Heterogeneity of spectrum: The case for spatially-aware

placement

(a) 8 sq. km in New Jersey (b) Number of TV bands

Fig. 4. Number of TV bands available to mode-I devices in a region of New
Jersey [5]. Color map : Black diamonds - 6 TV bands, Red squares - 7 TV
bands, Blue triangles - 8 TV bands

Figure 4 shows the whitespaces spectrum available over

a 8 sq. km area of New Jersey, USA, as shown by the

Telcordia whitespaces database [5]. Over this area, we queried

the database for the spectrum available to a mode-I device at

intervals of 500 meters. The number of channels available at

these various points are depicted in Figure 4(b), with different

colors used to denote a different number of channels. Similar

data from two other regions in Newark, USA and around the

Rockefeller Center in New York are also shown in Figures 5

and 6 respectively. We make the following key observations

from these figures:

3Both can however support low-rate requirements like VoIP for normal cell
sizes of 1− 2 kms.
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(a) 8 sq. km in Newark
City

(b) Number of TV bands

Fig. 5. Number of TV bands available to mode-I devices in a region of
Newark [5]. Color map : Black diamonds- 1 TV band, Red squares - 2 TV
bands, Blue triangles- 3 TV bands

(a) 8 sq. km around Rocke-
feller Center

(b) Number of TV bands

Fig. 6. Number of TV bands available to mode-I devices around Rockefeller
Center [5]. Color map : Cyan triangles - 0 TV bands, Black diamonds - 1
TV band, Red squares - 2 TV bands

1) Spatial variation manifests itself as a gradual phe-

nomenon over the scale of a few kilometers. At this

scale, it is not always relevant to the design of a single

base-station cell, except to those cells that fall in the

transition regions. However, there are significant changes

in spectrum within the scale of coverage of a single

network, making it relevant to network-level design

problems.

2) Over the scale of a network’s coverage, the number of

bands available can change multiple times. For example,

in Figure 5, the number of bands available changes from

three to two, and again transitions from two to one

within a 5 km distance.

3) In addition to gradual changes over kilometers, abrupt

and localized changes are also possible. This can be seen

in the cyan points of Figure 6(b), where the spectrum

changes abruptly from one to zero bands over a small

region.

4) The change in spectrum does not follow any specific

pattern across the three regions, making it difficult to

model the phenomenon in a generic way. Consequently,

spatial variation has to be factored in as a geography-

specific input parameter into the design of networks.

5) Interestingly, we observed no temporal variations in

spectrum over the ten-day window through which the

data was collected. Though this is certainly not con-

clusive evidence about the lack of time variability in

spectrum, it is indicative that presently, time-variability

is either very gradual or not present in all regions.

Design Implications: As we can see, spatial variability

occurs on a scale that is typically larger than a single cell, but

smaller than a network’s coverage area. While this variation

can impact different aspects of network design, we feel that

the problem of choosing base-station locations merits special

attention. In traditional cellular networks, base-station place-

ment typically considers parameters such as user hot spots and

the desired coverage region. The following example illustrates

why such a placement algorithm, which is agnostic to spatial

variation in spectrum, will fail in whitespaces. Suppose one

were to find a user hot spot in the cyan region of Figure 6(b).

Placing a base-station at this location would be meaningless

since it would have access to no spectrum. On the other hand,

a base-station placed in the red region would be too far from

this user hot spot to offer sufficient throughput. Thus, the

better choice would be to balance these two requirements

and place a base-station at an intermediate point. Later in the

paper, we demonstrate through more detailed experiments, the

importance of spectrum-aware placement, especially in dense

cities, where whitespaces spectrum is relatively scarce.

In the past, there has been work on optimal placement prob-

lems in the related, but slightly different context of wireless

sensor networks. These works consider placement methods

that optimize various parameters like power-efficiency [22],

coverage (e.g., [23], [24]). In the cellular context, Zhang and

Andrews [25] study the performance of a random (Poisson)

placement of distributed antennas under various diversity

schemes and interference scenarios [25]. However, past liter-

ature has not dealt with variable spectrum availability, which

is a key feature in whitespaces. In that sense, the traditional

cellular placement problem is a special case of the placement

problems formulated in this paper.

Lastly, we point out that while our analysis of placement

problems in this paper does not model temporal variation,

it can be readily extended to cover this case by using, for

instance, time-averaged spatial distributions for spectrum. In

further sections, we explore the two identified complementary

design problems in greater detail. We first explain our system

model briefly in the next section. This is followed by an

analysis of our novel base-station design in Sections IV and V.

Spectrum-aware placement of these novel base-stations is

analysed beginning from Section VI.

III. SYSTEM MODEL

We focus on the downlink of a network that operates in

slotted-time. Since we are interested in the long-term design

of networks (base-station design, placement etc), the network

state variables often take the form of distributions and/or

bounds that do not vary with time; examples include spatial

distributions of users, the maximum number of interferers,

cell capacity and traffic load targets, etc.

Modelling users, locations and traffic: Consider a

whitespaces network with B base-station cells. Each base-

station is assumed to have K ′ users that it must serve.

Each user is represented using a mode-I device and has
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an associated target rate requirement of λ′ 4. The base-

station cell is assumed to be a square cell of side D km,

and users are scattered over this square area according to

some spatial distribution. The base-station is located at

the centre
(

D
2 ,

D
2

)

. For ease of analysis, we partition this

cell into N microcells, where N is chosen to be a perfect

square for simplicity. We index the micro-cells by tuples

{(i, j)}
√
N

i,j=1 beginning with the bottom-left corner. User

locations are quantized to the center of each microcell given

by D√
N
[(i− 1) (j − 1)]

T
+ D√

2N
.

Base-station composition: The base-station is composed of

nI mode-I devices networked together. Ideally, nI should be

chosen as the smallest value required to meet certain target

throughputs in the system. The minimum-nI required to meet

a given desired rate-target λ′ in a cell with K ′ users, and its

comparison with traditional designs will be a subject of our

study shortly.

Spectrum map: Let the set5 of all whitespaces TV bands

be denoted by T = {2, 3, . . . , 51} . The set of available TV

bands at location li is given by T (li) ⊆ T \ {2, 3, . . . , 21}.

Supported by our empirical data, we also make the assumption

that the spectrum availability is homogeneous within each

cell. We also define TF and TI to denote the spectrum

available to a fixed-device and a mode-I device respectively

in the considered cell.

Multiple-access scheme: We assume that the base-station

operates using orthogonal-frequency-division-multiple-access

(OFDMA) over the set of TV bands TI available to it.

OFDMA is the multiple-access scheme of choice in standards

such as IEEE 802.22 [11]. Each TV band of bandwidth

B = 6MHz is sub-divided into L OFDMA sub-bands for

transmission.

Transmit power: According to the FCC mandates, a fixed

and mode-I device can transmit at a maximum power of

PF = 4W and PI = 40mW respectively. For simplicity,

we assume that on each sub-band f on TV band b ∈ TI , a

base-station device type-d transmits at power Pd

L , d ∈ {F, I}.

Equal power transmissions are suitable for the whitespaces

setting where a peak power constraint is imposed. On the

other hand, rate-optimal approaches such as waterfilling

are based on an average power constraint that might cause

unacceptable levels of interference to the incumbents at any

given instant.

Spatial distribution: Within the base-station cell, each user

is thrown independently according to a distribution ρi(l) with

support
{(

(i− 1) D√
N

+ D√
2N

, (j − 1) D√
N

+ D√
2N

)}

√
N

i,j=1
.

The users’ positions induce a path-loss gain [26] that is

4In the absence of more specific information on per-user patterns in the
long-term, we assume symmetric rate targets for all users. Further, given a
set of asymmetric throughput targets, one can always compute the maximum
of the targets and build the array to target this new symmetric set of targets.

5For simplicity in notation, we ignore the six bands that are reserved for
wireless microphones.

given by αi = 10−(32.45+20 log10(fc)+20 log10(di)), where di is

the distance from the i-th user’s location to the base-station

at [D2
D
2 ], fc denotes the carrier frequency. While we have

considered a free-space path-loss model here, we have also

verified that the intuition derived holds for more complex

models like the Sub-urban HATA model [27].

Small-scale Rayleigh fading and transmit diversity: Let

hkfbn be the discrete random variable used to denote the

small-scale fading channel gain to user k on OFDMA sub-

band f and TV band b on device copy n = 1, 2, . . . , nI of the

mode-I array; hkfbn ∼ exp(1), ∀k, f, b, n, is exponentially-

distributed. We assume that all devices of the base-station

array co-operate by transmitting the same data, a technique

popularly called transmit diversity. In view of not violating

the peak power constraint imposed by the FCC mandates, we

do not propose matching the antennas/devices to the channel,

which clearly promises higher signal quality. In particular,

these antennas are separated by at least half the wavelength,

each transmitting the same data at power Pd

L .

This technique motivates the definition of an effective

channel gain to user k on OFDMA sub-band f in TV band

b as hkfb(N ) =
∑

n∈N hkfbn, N = {1, 2, . . . , nI}.

From standard probability theory, we know that

hkfb(N ) ∼ χ2(|N |).

Interference model: We assume that there are NF,int and

NI,int fixed and mode-I interferers respectively in the cell that

are drawn from a uniform distribution ρint(l) on the cell. The

fixed and mode-I interferers are stationary and the path-loss

gain between the j-th fixed (resp. mode-I) interferer and the

k-th user is denoted by βF
kj (resp. βp

kj). The Rayleigh fading

gain between the j-th fixed (resp. mode-I) interferer and the

k-th user in sub-band f of TV band b is denoted by gFkjfb
(resp. gpkjfb).

Scheduling and average rate: Let Ω denote the set of all

possible schedulers. Then, for a base-station with nI mode-

I devices following a scheduling policy s ∈ Ω, we denote

the long-term average service rate by ~νave(s, nI). The kth

element of this vector represents the long-term average rate of

the kth user, and is denoted by νavek (s, nI). Searching over

all scheduling policies s ∈ Ω characterizes the long-term rate

region VLT (nI) of the system.

IV. PART I: BUILDING THE ARRAY BASE-STATION

Having proposed a base-station design that comprises of

an array of mode-I devices, we now formulate the base-

station composition problem where we determine the optimal

composition (minimum-nI ) as a function of the long-term

system parameters. This minimum-nI is given by:

n∗
I = argmin nI

s.t. νave
k (s, nI) ≥ λ′, ∀k = 1, 2, . . . ,K ′.

nI ∈ {0, 1, 2, . . . ,∞}, s ∈ Ω.
(1)

In other words, we identify the smallest array-size such that

all K ′ users receive above a threshold throughput target λ′. An

important property of the rate region that implies the feasibility

of the above problem is the following: Let ~νmax(nI) denote

the element-wise maximum across all symmetric rate vectors
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contained in the rate region. Then, ~νmax(nI) is strictly in-

creasing in nI due to transmit diversity, albeit while exhibiting

diminishing returns. Thus, there always exists a scheduler s∗

and composition n∗
I that meets the throughput demand λ′ for

each user.

There are two main challenges to actually finding a solution

to (1). Firstly, it would involve searching over the space of

schedulers Ω, which seems infeasible at first sight. Secondly,

given any composition nI , we need to calculate the long-

term service rate ~νave (s, nI). To address both these issues,

we use to our advantage, the fact that we are interested in a

long-term design, and make the assumption that all users have

symmetric channel distributions, i.e., ρ1(l) = ρ2(l) = . . . =
ρK′(l) = ρ(l), ∀l for all users. This is reasonable because in

the long-term, one might not possess more specific information

pertaining to the position of each user in the system.

Under this setting, we consider the use of the well-known

max-sum-rate scheduler. This scheduler selects the user with

the strongest channel in each OFDMA sub-band and indepen-

dent decisions are made on each sub-band. In the context of

our long-term design goals, we argue that it is sufficient to

base our design on the max-sum-rate scheduler in particular

without having to search over the searching over the space

of schedulers Ω. This is because the max-sum-rate scheduler

is optimal for symmetric rate points and channels, a notion

that we formalize in the proposition below. We provide only

a sketch of the proof in the interest of space.

Proposition 1. If any scheduler s ∈ Ω can achieve (dominate)

a symmetric rate target of λsym, then so can the max-sum-rate

scheduler.

Proof: Refer Appendix.

Next, we show that the max-sum-rate scheduler, herein

denoted by s∗ ∈ Ω, addresses the second challenge of being

able to evaluate the long-term service rate. We start by defining

the signal-to-interference-plus-noise ratio (SINR) at user k on

frequency f and TV band b as

SINRkfb(N ) =







(PI/L)αkhkfb(N )

I
p
kfb

+IF
kfb

+No
, b ∈ TI ∩ TF

(PI/L)αkhkfb(N )

I
p
kfb

+No
, b ∈ TI \ TF

(2)

where IFkfb = PF

L

∑NF,int

j=1 βF
kjg

F
kjfb and Ipfkb =

PF

L

∑Np,int

j=1 βp
kjg

p
kjfb are the portable and fixed interference

powers and No is the additive noise power. In the interest of

computational complexity, we consider a modified version of

the the above SINR expression, as shown in (3), that contains

the expected interference contributions instead of realizations

in the denominator , i.e.,

ˆSINRkfb(N ) =







(PI/L)αkhkfb(N )

Ī
p
kfb

+ĪF
kfb

+No
, b ∈ TI ∩ TF

(PI/L)αkhkfb(N )

Ī
p
kfb

+No
, b ∈ TI \ TF

(3)

where ĪFkfb = E[IFkfb] and Īpkfb = E[Ipkfb]. Here, the expecta-

tions are computed over both small-scale fading channels and

positions of the interferers. Note that the resulting variables

ĪFkfb and Īpkfb are now deterministic functions of the position

of user k and hence random variables themselves.

The max-sum-rate scheduler schedules the user with the

highest SINR on each OFDMA band and therefore the system-

wide rate is given as

∑K′

k=1 ν
ave
k (s∗, nI)

= L
∑

b∈T E

[

log2

(

1 + maxk
ˆSINRkfbI(N )

)]

= L

(

∑

b∈TF ∩TI
E

[

log2

(

1 + maxk
(PI/L)αkhkfb(N )

Ī
p
kfb

+ĪF
kfb

+No

)]

+
∑

b∈TI\TF
E

[

log2

(

1 + maxk
(PI/L)αkhkfb(N )

Ī
p
kfb

+No

)])

(4)

where we have used the fact that the SINRs on all OFDMA

sub-bands are statistically equivalent. The expectation here is

over the small-scale fading channels and positions of the in-

network users. The per-user rate follows easily from (4) since

each user receives the same rate in a symmetric setting. Thus

νavek (s∗, nI) =

∑

k ν
ave
k (s∗, nI)

K ′ . (5)

The above expression can be estimated efficiently through

Monte Carlo methods. We re-iterate that the only randomness

remaining in the system is that induced by the small-scale

and large-scale fading channels. When conditioned on the

positions of the users, the term ˆSINRkfb(N ) is essentially a

maximum over K ′ non-identical chi-squared random variables

of order nI . By substituting (5) into (1), we now have a form

that is optimizable. In the next section, we solve the optimal

composition problem under many realistic network settings.

V. OPTIMAL COMPOSITION

In this section, we evaluate the approach presented in the

last section using network scenarios that are inspired by

realistic applications. To illustrate how prohibitive the fixed

design is in these settings, we also estimate the size of an array

of high-powered fixed devices needed to meet these rates for

all the users, when a single fixed device is insufficient.

A. Simulation setup

We vary the following long-term state parameters and solve

(1) in each case: (K ′,λ′), the spatial distributions,{ρi(l)}, the

cell size D and the number of interferers NF,int and Np,int.

The simulation models the cell tower in New Jersey (Figure

1(b)) with TF = 47 and TI = {22, 27, 42, 47, 48, 50}. We

focus on a movie streaming application as defined in [28]

where the targeted cell capacity and application bit-rate are

given by K ′ = 10 users, λ′ = 2 Mbps.

We now describe in detail how we choose the the remaining

long-term state parameters in our experiments:

1) Spatial distributions: We consider two types of user

distributions on the square cell. First, we consider the

standard uniform distribution given by ρi(l) =
1
N , ∀i, l,

which essentially models the setting where we have no

extra information on user positions. Next, we study the

optimal composition under a cell-edge distribution that

is given by ρi(l) = 1
4
√
N−4

when i, j = 1 or i, j =√
N and ρi(l) = 0 otherwise. Such an edge-intensive

distribution would represent the worst-case for design

approach.
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2) Interference modelling and cell sizes: We model fixed

interference by considering cellular towers that are oper-

ating in the same area – potentially by different operators

– over the whitespace bands (in standalone and/or of-

fload mode). In particular, we are interested in WiMAX-

order cell sizes D ∈ {1 km, 2 km, 5 km} and find that

there are three, four and six towers/networks within

these respective cell sizes (Figure 7(b)). Assuming that

approximately one half of these towers are in uplink

mode, we set NF,int = 1, NF,int = 2 and NF,int = 3
for D = 1 km, D = 2 km and D = 5 km respectively.

In the absence of more specific information, we treat the

number of portable interferers per fixed interferer as a

parameter. We analyze the optimal composition under

different values of this ratio
NI,int

NF,int
∈ {10, 20, . . .}.

For e.g., when D = 5 km with NF,int = 3 fixed

interfering towers,
NI,int

NF,int
= 10 means that we have

NI,int

NF,int
×NF,int = 30 portable interferers.

(a) 1 km cell (b) 5 km cell

Fig. 7. Number of fixed interferers [20] around 2 Gowin St., Sayreville, NJ
08872. Red markers denote cell-towers.

We compute minimum-nI for this rate target, for the

following network configurations {1 km, 2 km, 5 km} ×
{uniform, cell-edge}, where the per-user throughputs are av-

eraged over 10000, 10000 and 5000 realizations of user

positions, Rayleigh fading and interferer positions respectively.

B. Results on array sizes

In Figure 8(a), we plot the optimal composition (min-

imum number of mode-I devices) for the movie stream-

ing case over the different network settings (D, ρi(l)) ∈
{1 km, 2 km, 5 km} × {uniform, cell-edge} under the low-

interference regime of
NI,int

NF,int
= 10. For comparison purposes,

in the same figure, we also plot the minimum size of a

competing design with only fixed devices constituting the

array. The results show that for a cell radius of D = 1 km,

under the cell-edge distribution, we need either 175 mode-I

devices or 35 fixed devices to meet the specified rate target

(5×). Similarly, for a cell radius of D = 5 km under the cell-

edge distribution, we need either 325 mode-I devices or 150
fixed devices (2.2×). Operating under the premise that mode-I

and fixed devices are akin (cost-wise) to household routers and

base-stations respectively, the use of a large array of portable

devices clearly leads to significant cost savings. Arguably, the

fixed device design is not practical in these scenarios.

Admittedly, offered traffic models are not always reliable

metrics because they are subject to change with space and

time. Consequently, to give a more comprehensive comparison

of the two designs, we have plotted the rate distributions

resulting from each. We note that for the D = 1 km cell having

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

Cell−size in kms

S
iz

e
 o

f 
a
rr

a
y
 n

e
e
d
e
d
 t

o
 m

e
e
t 

2
M

b
p
s
 p

e
r 

u
s
e
r

Fixed vs mode−I designs  − 10 portable interferers per fixed interferer

Fixed Design Edge Distributed users

Mode−I array Edge Distributed Users

Fixed Design Uniformly Distributed users

Mode−I array Uniformly Distributed Users

(a)

1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

900

Cell−size in kms

S
iz

e
 o

f 
a
rr

a
y
 n

e
e
d
e
d
 t

o
 m

e
e
t 

2
M

b
p
s
 p

e
r 

u
s
e
r

Fixed vs mode−I designs − 30 portable interferers per fixed interferer

Fixed Design Edge Distributed users

Mode−I array Edge Distributed Users

Fixed Design Uniformly Distributed users

Mode−I array Uniformly Distributed Users

(b)

Fig. 8. Number of fixed and portable devices required to meet rate target of

2Mbps under (a) low interference
NI,int

NF,int
= 10, (b) moderate interference

NI,int

NF,int
= 40

uniform distribution of users, the 2 Mbps per user target is

achieved by either 4 fixed devices or 12 mode-I devices with
NI,int

NF,int
picked to be 10 (see Figure 8(a)).

Figure 9 below shows the cumulative distributions of rate

across the cell for both these configurations. We can see that

for both cases, the top 5 percentile users have identical rates

(the plots are similar beyond the 95th percentile). However,

the fixed array has a better distribution up to this point. Since

the uniform distribution is less likely to put many users near

the cell edge, the 12 mode-I device array still performs as well

as the 4-device fixed array.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
7
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C
D

F

Rate CDFs for configurations that support equal Avg. rate under Uniform Distribution

4 fixed antennas

12 mode−I antennas

Fig. 9. Cumulative distribution of the rates across a cell of size D = 1km,
NI,int

NF,int
= 10, fixed array of size 4, portable array of size 12.

However, as we increase the mode-I array size beyond 12,

the mode-I arrays’ rate CDF quickly catches up to that of
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the fixed array. For example, Figure 10 shows the Rate CDF

comparison of 4 fixed devices against mode-I arrays of size

30 and 35 . We see that the CDF of the 35 device array is

consistently better than the 4-device fixed array. (The optimal

composition for the edge-distribution for these parameters is

175 mode-I devices.)

So, we summarise that for a typical real-life scenario,

where a base-station is located taking user densities into

consideration, a 12 device array is likely to be sufficient. For

the mode-I array to do better consistently across the cell, a

number closer to 35 will still suffice.
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Further Rate Distributions in a 1km cell

4 fixed

30 mode−I
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Fig. 10. Cumulative distribution of the rates across a cell of size D = 1km,
NI,int

NF,int
= 10, fixed array of size 4, portable array of size 30 and 35.

We continue this analysis in Figure 8(b) for the moderate

interference regime of
NI,int

NF,int
= 40. Here, we see that under

the cell-edge distribution, we need 10× the number of portable

devices for D = 1 km and 6.5× for D = 5 km. To capture

this trend, in Figure 11, we show the ratio of portable to fixed

array sizes as a function of
NI,int

NF,int
, i.e., for various interference

regimes for the D = 1 km case. Here, we see that under the

cell-edge distribution and in the high interference setting of
NI,int

NF,int
= 100, we still only need at most 22 times the number

of portable devices to meet the specified rate target.
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Fig. 11. Ratio of portable to fixed array sizes as a function of
NI,int

NF,int
for

D = 1 km.

Figure 12 shows a similar ratio of mode-I array size to

fixed array size for the case of the sub-urban HATA [27]

model. As expected, using this model increases the number

of devices required to meet 2 Mbps rate under both designs.

However, we find that the ratio of mode-I to fixed devices

actually comes down under this model. This is because, as

the array size required under the fixed design increases, the

spectral diversity gain becomes saturated because the fixed

design has only one TV band to operate on. Figure 3 below

shows the ratio of mode-I array size to fixed array size for the

HATA path-loss model for a 1 km cell under uniform spatial

distribution. When we compare these results to the ones in

Figure 9 of the revised paper, we see that as scattering comes

into play, the extra spectrum from mode-I arrays is even more

valuable. As a result, the mode-I design becomes even more

cost-efficient in this model when compared to the fixed design.
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Fig. 12. Ratio of mode-I array size to fixed array size for D = 1 km, under
Sub-urban HATA model.

.

Thus far, we have considered the effects of transmission

power on whitespaces spectrum, and studied a novel base-

station design to tackle this phenomenon. Having demon-

strated the merits of this array design, we now move on to

the second part of the paper, where we study the problem of

base-station placement under heterogeneous spectrum.

VI. PART II- BASE-STATION PLACEMENT IN SPACE

In this part, we consider placing the mode-I array base-

stations designed in Part I optimally over a given geographical

area. We formulate the placement problem for whitespaces,

provide solutions with varying complexities and accuracy, and

evaluate these solutions using the collected whitespaces data.

First, we make some additional notes on system modeling spe-

cific to the placement problem, and also make some minimal

modifications to our previous notation to keep it consistent

with the change of scale from a single cell to an entire network.

A. Some notes on modelling and notation:

Base-stations and users: In accordance with our design

from Part-I, we assume that each base-station is made of an

array of mode-I devices of size M . To maintain notational

simplicity, we keep M fixed across all the base-stations.

Users are also assumed to be mode-I devices as before.

The spatial distribution of users in the ith micro-cell of the

coverage region is denoted using ρi.

Node placement: We assume that the network contains B
base-stations. Earlier, we denoted the length of a base-station

cell using D. However, D now represents the side of the entire

network coverage region. As before, this network coverage

region, is tessellated into N micro-cells for tractability.

All base-station locations are quantised to the centers of
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these micro-cells, indexed by the set θ = {1, 2, .., N}. We

note that the network coverage region, being larger than a

cell, is divided into a larger number of micro-cells than before.

Channel modeling: We alter the notation used for path-loss

from before. In Section III, we had used αi to denote the path-

loss from micro-cell i to a base-station located at the center

of the square cell. However, in the placement problem, we

must deal with multiple base-stations located within a square

coverage area. Consequently, we use two subscripts for the

pathloss and use αij to denote the pathloss from a user i to a

base-station j.

The small-scale fading coefficient experienced by user i
when receiving from antenna element y of base-station j on

whitespaces band n is represented by the random variable

ginjy . Similar to the pathloss co-efficient, the index j has

been introduced to account for the existence of multiple base-

stations in this problem. In accordance with the principles

of the array design, these antennas exploit transmit diversity

in their transmissions. Hence, the effective channel from the

antenna array base-station to the user is denoted by hinj where

|hinj |2 = ΣM
y=1 | ginjy |2, | hinj |2∼ χ2(M).

For each micro-cell (user) i, we also define Si = PI/L
Ii+NO

,

where Ii denotes the cumulative interference from fixed

and portable devices at location i. αij , hinj and Si together

completely define the channel model in this setting.

Spectrum map: We recall that T denotes the set of all TV

bands and that T (i) denotes the bands available at location

i. We additionally define An(P) = {p ∈ P : n ∈ T (p)},

for n ∈ T . An(P) denotes the subset of base-stations from

base-station set P that have access to band n.

Diversity schemes: Given a placement of base-stations

P ⊆ θ, we consider two types of popular diversity schemes.

Under maximal ratio transmission (MRT), a user is served

by all base-stations together, while under antenna selection

(AS), a user is served by the base-station with the strongest

channel [30]. Intuitively, the MRT scheme represents the

best single-user rate that can be provided by a particular

placement of stations, whereas the AS scheme is similar to

a traditional network, where users are supported by the best

out of the available cells. The achievable network-averaged

spectral efficiency with MRT for a placement of antennas

P ⊆ θ may be expressed as

RMRT (P) =

N
∑

i=1

ρi
∑

n∈T

E



log2



1 + Si

∑

p∈An(P)

αip|hinp|
2







 .

(6)

Note that we have exploited the fact that all sub-bands expe-

rience statistically equivalent fading to simplify our notation

above. An equivalent expression that will be useful in further

analysis is

RMRT (~φ) =
∑

i

ρi
∑

n∈T

E

[

log2

(

1 + Si

N
∑

p=1

φp∆ipnαip|hinp|
2

)]

.

(7)

Here, ~φ = {φ1, ..., φN} is a boolean vector, with φp = 1 if

a base-station is placed at location p and φp = 0 otherwise.

{∆ipn}i,p represents a boolean matrix that encodes the spec-

trum map, i.e, ∆ipn = 1 if locations i and p share TV band

n. Similarly, under AS diversity, the average rate is given by

RAS(~φ) =
∑

i

ρi
∑

n∈T

E

[

log2

(

1 + Si max
p∈θ

φp∆ipnαip|hinp|
2

)]

.

(8)

We observe that when the network-size is B = 1, both

AS and MRT yield the same rate, i.e., RAS({p}) =
RMRT ({p}), ∀p ∈ θ.

B. Optimal Placement Problem

We consider two formulations of the base-station placement

problem:

• Given a budget of B antennas, finding a placement that

maximizes the average network rate 6 in (6). This is

hereafter referred to as the “max-rate” formulation.

• Determining the “smallest” placement set that guarantees

a certain minimum target average network rate. This is

hereafter referred to as the “min-cost” formulation.

These two formulations are standard in the wireless resource

allocation literature (e.g., max-sum-rate vs. min-power subject

to SNR constraints) and either may be used by a network

designer as needed. Under the max-rate formulation, we are

given a budget of B antennas and solve

P∗ = arg max
P⊆θ, |P|≤B

RMRT/AS(P). (9)

Here, RMRT/AS(·) is used to convey that one may substitute

either diversity scheme here. Under the min-cost formulation,

we determine the minimum budget required to satisfy a given

lower bound λ′ on the average rate as follows:

P∗ = argminP⊆θ |P|.
s.t. RMRT/AS(P) ≥ λ′ (10)

We assume that λ′ is such that (10) is feasible, i.e.,

RMRT/AS(θ) ≥ λ′. While the algorithms and analyses pro-

posed in this paper are applicable to both these formulations,

we focus on the max-rate formulation in the interest of space.

The closest analogue to our proposed formulations may be

found in sensor placement literature, (see [31] and references

therein) where they are called maximization and coverage

problems respectively. However, the notion of utility in our

context differs from that used in sensor placement [31], where

the emphasis is on picking a subset of existing sensors to

maximise the information obtained about all locations. In

contrast, our problem is a more standard Shannon-capacity-

based formulation.

It has been shown that sensor placement problems of this

nature are typically NP-hard. While we do not formally

prove hardness of our formulation in this paper, we observe

that any brute-force approach to solving (9) and (10) would

incur exponential complexity in the number of micro-cells

N . In the next section, we appeal to the concept of sub-

modular functions [35] to reduce the solution complexity while

providing guarantees on its accuracy.

6In Sections VI - IX, we use the terms rate and spectral efficiency
interchangeably.
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VII. LEVERAGING SUB-MODULARITY FOR TRACTABLE

SOLUTIONS

Towards designing tractable solutions to the placement

problems, we first establish that the rates RMRT (P) and

RAS(P) possess a special structure called sub-modularity that

allows for efficient optimization. As a result, we show that (9)

and (10) can be solved incurring polynomial complexities

of O(KN2Wmax|T |) and O(N3Wmax|T |) respectively using

the greedy algorithms proposed in Section VII-B, where Wmax

is the maximum number of TV bands available to any one user.

We begin this section with a quick primer on sub-modular

optimization (summarized from [33]–[35]).

A. Primer on sub-modularity

Let E be a finite set and 2E represent all its subsets. Then,

F : 2E → R+ is a non-decreasing, normalized, sub-modular

function if (i) F (∅) = 0 (normalized), (ii) F (A) ≤ F (B) when

A ⊆ B ⊆ E (non-decreasing) and (iii) [F (A∪{e})−F (A)] ≥
[F (B∪{e})−F (B)], e ∈ E \B, ∀A ⊆ B ⊆ E (sub-modular).

Lemma 1 lists a relevant property of sub-modular functions.

Lemma 1. If Fn, n = 1, . . . , N , are sub-modular on set E ,

then
∑N

n=1 wnFn(A), A ⊆ E is a sub-modular function for

wn ≥ 0, ∀n.

The optimization problems that have been often considered

in the context of sub-modular functions are

F ∗ = max
A⊆E, |A|≤K

F (A) (11)

and
F ∗ = maxA⊆E |A|

s.t. F (A) ≥ c
, (12)

for some 0 < K < |E| and c > 0. Since many NP-hard prob-

lems can be reduced to above forms, significant research has

focused on developing efficient approximation algorithms for

them. In particular, the performance of the greedy algorithm –

that serially selects a location that maximizes the incremental

cost has been extensively studied. Nemhauser et al. [36]

considered problem (11) and showed that the greedy algorithm

provides a (1 − 1
e ) approximation factor for this case. Some

years later, Wolsey [32] considered problem (12) and showed

that the greedy algorithm provides a (1 + logmaxs∈E F (s))
approximation factor for this case.

We refer the reader to Goundan et al. [33], Calinescu et

al. [34] and Vondrak [35] for a summary of related results

on sub-modular function optimization over other types of

constraints. Next, we prove that R(P) is a sub-modular

function over P ⊆ θ.

B. Sub-modularity of R(P) and the greedy algorithm

The following theorem constitutes one of the theoretical

results of this paper.

Theorem 1. (i) RMRT (P) is a sub-modular function over

P ⊆ θ.

(ii) RAS(P) is a sub-modular function over P ⊆ θ.

Proof: Refer Appendix.

The seminal works by Nemhauser et al. [36] and Wolsey

[32] have studied the performance of the greedy algorithm in

solving subset selection problems such as (11) and (12), where

the objective function is sub-modular. The greedy algorithms

in the context of our node placement problem are given below.

Algorithm 1 Greedy node placement for max-rate (9)

1: Set P = ∅.
2: while |P| ≤ B do
3: Choose a location that maximizes

e
∗ = arg max

e∈θ\P
RMRT/AS(P ∪ e)−RMRT/AS(P). (13)

4: Set P = P ∪ e∗.
5: end while
6: Set Pgreedy = P .

Algorithm 2 Greedy node placement for min-cost (10)

1: Set P = ∅.
2: while R(P) < Rt do
3: Choose a location that maximizes

e
∗ = arg max

e∈θ\P
RMRT/AS(P ∪ e)−RMRT/AS(P). (14)

4: Set P = P ∪ e∗.
5: end while
6: Set Pgreedy = P .

The following are celebrated results by Nemhauser et

al. [36] and Wolsey [32]. We state them here without proof.

Theorem 2. (i) In solving (9), Algorithm 1 is (1 −
1/e)-optimal. (ii) In solving (10), Algorithm 2 is (1 +
logmaxP∈θ:|P|=1 R(P))-optimal.

Note that in the case of (10), the approximation fac-

tor depends on the objective function. In our case,

maxP∈θ:|P|=1 R(P) represents the maximum rate that may

be obtained if we had a budget of only one antenna or node.

As noted earlier, single node rates are the equal under AS and

MRT. The following proposition quantifies this rate exactly.

Proposition 2. The solution to the maximum rate single node

placement problem under either MRT or AS is given by

p∗ = argmax
p∈θ

N
∑

i=1

ρi|T (i)∩T (p)|E
[

log2
(

1 + Siαip|hinp|2
)]

Proof: Refer Appendix.

Proposition 2 captures the trade-off that forms the main

motivation of the second part of this paper- that maximum

benefit may be achieved in whitespaces if base-stations are

placed at positions that offer a combination of high spectrum

as well as proximity to user hot spots. Finally, we study the

computational complexity of the greedy approach in Proposi-

tion 3.

Proposition 3. (i) Algorithm 1 has a worst-case complexity

of O(BN2Wmax|T |) and (ii) Algorithm 2 has a worst-case

complexity of O(N3Wmax|T |), where Wmax is the maximum

number of TV bands available to any one user.
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Proof: Refer Appendix.

VIII. APPROXIMATION ALGORITHMS: CONVEX

RELAXATION

In this section, we study the use of an alternate convex

relaxation approach to solve (9) and (10). While this approach

may, in general, be treated as an alternate approximation

algorithm, we show that it is in fact, optimal in the low-

SINR regime for MRT diversity. The standard approach in

a convex relaxation is to replace the integer constraints in

a combinatorial problem by some suitably chosen convex

constraints. When the objective function is also convex or

suitably convexified, this relaxed optimization problem may

be solved efficiently. The final critical step is to round the

fractional solution to obtain a feasible integer solution. By

using the alternate expression for rate in (7), the equivalent

integer problem to (9) can be written as

~φ∗ = arg max
~φ∈{0,1}|θ|,

∑
l φl≤B

RMRT/AS(~φ). (15)

For convenience, we introduce the vector ~c(i, n) =
[∆i1nαi1|hnl1|2 ∆i2nαi2|hnl2|2 . . .∆iNnαiN |hnlN |2]T , and

concisely re-write the rate RMRT (~φ) as

RMRT (~φ) =
∑

i

ρi
∑

n∈T

E

[

log2

(

1 + Si(~φ
T
~c(i, n))

)]

. (16)

Note that RAS(~φ) takes the same form as RMRT (~φ) with

the inner summation replaced by a maximum. We replace the

boolean integer constraints in (15) with an interval and propose

the following relaxation:

~φ∗
LP = arg max

~φ∈[0,1]|θ|,
∑

l φl≤B
RMRT/AS(~φ). (17)

For the MRT case, log2

(

1 + Si

∑N
p=1 φp∆ipnαip|hinp|2

)

is a logarithm of a linear function, which is a concave

function, and concavity is preserved under a sum. Coupled

with the linear constraints, (17) is clearly concave. However,

the relaxation approach is not effective in the AS diversity

case. The two natural relaxations that are possible in the AS

setting can be obtained from the following two equivalent

expressions of the objective function in (15). These are

log2

(

1 + Si max
p∈θ

φpcp(i, n)

)

= max
p

log2 (1 + Siφpcp(i, n))

and

log2

(

1 + Si max
p∈θ

φpcp(i, n)

)

= max
p

φp log2 (1 + Sicp(i, n)) .

The former re-expression yields a piecewise-concave relax-

ation while the latter yields a convex objective function. Unfor-

tunately, neither relaxation is useful for efficient computation,

and in fact, the latter relaxation can be shown to be NP-hard.

In the next section, we propose an alternate heuristic based on

clustering that is more suitable for the AS diversity problem.

Interestingly, in the case of the min-cost formulation in (10),

the relaxation leads to a concave program under either diver-

sity scheme as shown below.

~φ∗
LP = argmin~φ∈[0,1]|θ|

∑

p∈θ φp

s.t. RMRT/AS(~φ) ≥ Rt,
(18)

(17) and (18) can be solved in polynomial-time using standard

interior point methods [37]. Once the fractional solution ~φ∗
LP

is computed, the integer solution {~φIP } is generated by

setting the largest B values of ~φ∗
LP to one and the remaining

values/locations to zero. While a universal guarantee on the

accuracy of this approach is difficult to obtain, the following

theorem characterizes the accuracy guarantee of (17) in solv-

ing (15) in the case of MRT diversity and under a low-SINR

regime, where high interference prevails.

Theorem 3. The convex relaxation in (17) solves (15) exactly

in the case of MRT diversity under a low-SINR regime.

Let {ik}Bk=1 index the maximum B values from the set
{
∑

i ρiSi

∑

n∈T E [~c(i, n)]
}N

i=1
. Then, the optimal solution is

given by

φ∗
j =

{

1, j ∈ {ik}Bk=1

0, else,
(19)

for j = 1, 2, . . . , N .

Proof: Refer Appendix.

Thus far, we have proposed two approaches to solve (9)

and (10). The earlier greedy approach may be applied either

diversity scheme. Then, we proposed an approximate solu-

tion based on convex-optimization, which optimally solves

the problem at low SINRs, but is applicable only under

MRT diversity. In the next section, we present an alternate

clustering-based heuristic that solves the problem for the AS

case. Later, in Section X, we experimentally evaluate all the

proposed algorithms and compare them to a spectrum-agnostic

placement approach.

IX. LOWER-COMPLEXITY ALGORITHMS: CLUSTERING

As seen from Proposition 3, the complexity of the greedy

approach becomes higher in spectrum-rich locations. In this

section, we present an alternative approach, whose complex-

ity is independent of spectrum availability. This algorithm

provides the network designer with an alternative complexity

trade-off to the greedy approach. The algorithm presented here

finds its roots in the theory of expectation-maximization [38].

It has found application in many other areas such as vector

quantization where it is popularly known as Lloyd’s algorithm

[39] and in data mining, where it is often called k-clustering

[40].

We begin the algorithm with an arbitrary placement of

B base-stations. We determine a “Voronoi” partitioning or

clustering of the grid, i.e., for each location i, associate it

with the base-station from which it has maximum rate. Next,

given this Voronoi clustering, re-distribute or re-compute the

“optimal” base-station location within each cluster. These

steps are repeated until the increase in (9) diminishes below a

threshold. The algorithm is stated formally below.

The following proposition argues that the above algorithm

indeed terminates. Since theorems of this form are standard in

clustering literature, we only provide a sketch of its proof in

the interest of space.

Proposition 4. Algorithm 3 terminates in a finite number 0 <
Tε < ∞ of iterations.

Proof sketch: Refer Appendix.
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Algorithm 3 Clustering-based placement for AS diversity

1: Pick an arbitrary initialization of positions ~φnew ∈
{0, 1}|θ|,

∑

l φl ≤ B, set ~φold = [0 0 . . . 0]T and choose a
suitable ε > 0.

2: while (RAS(~φnew)−RAS(~φold) ≥ ε) do

3: Set ~φold = ~φnew and reset ~φnew = [0 0 . . . 0]T .
4: Initialize clusters Ck = ∅, ∀k = 1, 2, . . . , B.
5: for i = 1, 2, . . . , N do
6: Determine the closest cluster by solving

k
∗ = arg max

k=1,2,...,B

∑

n∈T

E [log2 (1 + Sick(i, n))] . (20)

7: Set Ck∗ = Ck∗ ∪ i.
8: end for
9: for k = 1, 2, . . . , B do

10: For each cluster, determine optimal single-antenna place-
ment

p
∗ = max

p∈Ck

∑

i∈Ck

ρi
∑

n∈T

E [log2 (1 + Sicp(i, n))] . (21)

11: Set φp∗,new = 1.
12: end for
13: end while
14: Set output placement ~φc = ~φold.

Finally, we study the complexity of Algorithm 3.

Proposition 5. Algorithm 3 has a complexity of

O(BN2|T |Tε).

Proof: Refer Appendix.

We point out that the computational complexity of the

clustering approach is independent of available bandwidth at

the location. As further motivation, we point out that, in our

experiments, the algorithm typically terminates in fewer than

ten iterations.

X. NUMERICAL RESULTS ON PLACEMENT

In this section, we describe the simulation setup for the

placement problem, and present the corresponding results.

Simulation setup: We conduct our evaluation of the pro-

posed placement algorithms using the spectrum data shown

in Section II. For each of the 8 sq. km regions shown in

Figures 4 and 5, we study these algorithms for varying network

sizes. Broadly, we consider two different metrics to compare

the different placement schemes. As an indicator of general

network performance, we compare the average per-user rates

described in (6) and (8). In addition, we also compare the

percentage of users in the network who obtain rates above a

threshold (2 Mbps or 5 Mbps) as an indicator of the extent

of satisfactory coverage that each scheme can provide. In our

evaluation, we assume that each base-station is made of an

array of M = 16 mode-I elements, the size required in Part-I

to support 2Mbps per user in a D = 2 km cell. 7

Baseline for comparison: For baseline comparison, we make

the assumption that over a given coverage region, users are

uniformly distributed. Under this setting, if one were to ignore

7Our results in this section extend up to network sizes of 15 base-stations
over a 8 sq. km area, implying that on average, each station covers an area
of 4 sq. km.

spatial variation, the optimal scheme would be to uniform

placement of network base-stations across the region. We

compare the performance of our algorithms against that of this

base-line scheme in our experiments. While more elaborate

location-specific models on user-density distributions are pos-

sible (like those discussed in Part I), this approach allows us to

isolate the effect of spatial variability, and examine its impact

on the placement problem. Through similar reasoning, we

compare our spectrally placed array network against uniformly

placed arrays instead of uniformly placed fixed devices.

Figure 13 compares the average per-user rates RMRT/AS(.)
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Fig. 13. Average per-user rates in New Jersey and Newark

achieved by the different algorithms for various network sizes.

Let us first consider the MRT case shown in Figure 13(a).

1) In the case of Newark, the rate improvements due

to spectrum-aware placement are significant, with the

greedy algorithm providing 2.3 times the average rate as

uniform placement for the two base-station case (130%
improvement), and 1.6 times (60% improvement) for

fifteen base-stations . We point out that the convergence

between the two schemes with increasing network size

is expected since for larger sizes, all placement schemes

would converge to a full-coverage scenario.

2) In the case of New Jersey, where the average spectrum

availability is significantly higher than Newark (refer

Figures 4 and 5), the penalty for poor placement is lesser

and consequently, the impact of spectrum-aware place-

ment is lower. Nevertheless, gains are still considerable

in this case, with a 35% improvement for a two base-

station network and about 5% improvement in average-
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rate for a 10-base-station network.

In summary, spectrum-aware placement gives significant im-

provement in average rate, especially in spectrum-starved

regions. Next, in the case of AS diversity, whose results are

presented in Figure 13(b), we make the following observations.

1) The average rates of the AS network are lower than the

MRT scheme as expected because of the lack of transmit

diversity between the various base-stations.

2) All the trends in the performance of the greedy place-

ment algorithm vs. the uniform placement are consistent

with the results from the MRT case, with greedy place-

ment consistently outperforming uniform placement.

3) Interestingly, the clustering-based algorithm steadily

under-performs with respect to the greedy algorithm. At

lower network sizes, its performance is comparable to

that of greedy. However, as network-size grows, its per-

formance deteriorates and approaches that of Uniform

placement. This leads us to conclude that the clustering

algorithm is more useful for small networks, where

it forms a low-complexity alternative to the greedy

algorithm.

Next, we study the percentage of users under each scheme who

receive rates above a certain threshold rate (2 Mbps, 5 Mbps

etc.). This metric, which is an indicator of high-rate coverage,

is especially interesting in whitespaces, which is likely to

become a vehicle for offload of bandwidth-intensive appli-

cations like video streaming. Figures 14 and 15 show these

coverage statistics for the MRT and AS networks respectively.

In Newark, we see that the greedy approach considerably

2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of base−stations in network

P
e
rc

e
n
ta

g
e
 o

f 
u
s
e
rs

 w
it
h
 R

a
te

 a
b
o
v
e
 a

 T
h
re

s
h
o
ld

Percentage of users with Rate above a Threshold: MRT Network in Newark

Rate > 2Mbps − Greedy Placement

Rate > 2Mbps − Uniform Placement

Rate > 5Mbps − Greedy Placement

Rate > 5Mbps − Uniform Placement

(a) Network in Newark

2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of base−stations in network

P
e
rc

e
n
ta

g
e
 o

f 
u
s
e
rs

 w
it
h
 R

a
te

 a
b
o
v
e
 a

 T
h
re

s
h
o
ld

Percentage of users with Rate above a Threshold: MRT Network in New Jersey

Rate > 2Mbps − Greedy Placement

Rate > 2Mbps − Uniform Placement

Rate > 5Mbps − Greedy Placement

Rate > 5Mbps − Uniform Placement

(b) Network in New Jersey
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outperforms the uniform placement for both MRT and AS

networks (see Figures 14(a), 15(a)) for both the 2 Mbps and
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the 5 Mbps thresholds. Clearly, the greedy placement provides

better throughputs to a higher fraction of users in this case.

On the other hand, the case of New Jersey is more complex.

Though the fraction of users with rates above 2 Mbps is higher

initially, the gains vanish at larger network sizes. In the 5
Mbps case, however, the greedy approach clearly supports

more users even in the case of New Jersey.

We conclude that in general, the greedy placement approach

is able to provide higher peak throughputs to users than

the uniform placement algorithm, making it more preferable

especially in offload scenarios. As before, we also notice that

for AS networks, the clustering algorithm performs close to

the greedy algorithm at lower network sizes (upto five), but

deteriorates as network size grows.

XI. FUTURE DIRECTIONS

As mentioned in the introduction, the design of high data-

rate systems for TV whitespaces is still at a nascent stage. Our

work is a concrete step in this direction, where we make two-

fold throughput gains by going from uniformly placed fixed

base-stations to spectrally-distributed mode-I arrays. Some

problems that are not addressed in this paper include the design

of scheduling algorithms under general multi-user MIMO

strategies for base-stations. Computational efficiency becomes

even more critical in whitespaces since the number of OFDMA

sub-bands can be significantly large when many TV bands

are available for communication. In the case of base-station

placement, exploration of more efficient placement algorithms

would be interesting. This third angle of variation would be
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the final ingredient in making a network completely tailored

to whitespaces.
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APPENDIX

Proof of Proposition 1: The proof follows from two

ingredients. First, the rate region VLT (nI) is convex for each

~n since our setting has a single centralised controller, thus

permitting time-sharing across scheduling policies. Secondly,

the service rate achieved by the max-sum-rate scheduler is

the solution to argmaxν∈VLT (nI)

∑

k νk, which essentially

corresponds to the “upper-right corner” of the rate region.

Proof of Theorem 1: (i) Let us define fnlh(P) =

log2

(

1 + Si

∑

p∈An(P) αip|hinp|2
)

. From Lemma 1, to show

the sub-modularity of RMRT (P), it is sufficient to show that

fnlh(P) is sub-modular over P for any n, l and {|hinp|2}p∈P .

Now, consider two placement sets P1 and P2 such that

P1 ⊆ P2 ⊆ θ and consider placing an antenna at location

e ∈ θ \ (P1 ∪ P2). To prove the sub-modularity of fnlh, we

need to show that for any i,

fnlh(P2 ∪ e)− fnlh(P2) ≤ fnlh(P1 ∪ e)− fnlh(P1). (22)

The left-hand-side of the inequality can be computed as

fnlh(P2 ∪ e)− fnlh(P2) = log2

(

1 + Si
∑

p∈An(P2∪e) αip|hinp|2
)

− log2

(

1 + Si
∑

p∈An(P2)
αip|hinp|2

)

= log2

(

1 +
Si

∑
p∈An(e) αip|hinp|

2

1+Si

∑
p∈An(P2) αip|hinp|2

)

,

while the right-hand-side is given by

fnlh(P1 ∪ e)− fnlh(P1) = log2

(

1 +
Si

∑
p∈An(e) αip|hinp|

2

1+Si

∑
p∈An(P1) αip|hinp|2

)

.
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Since
∑

p∈An(P1)
αip|hinp|2 ≤ ∑

p∈An(P2)
αip|hinp|2, the

proof of (i) follows.

(ii) For the antenna selection case, we set fnlh(P) =
log2

(

1 + Si maxp∈An(P) αip|hinp|2
)

, and begin by making a

simple observation. Let

X ∗(Pk) = arg max
p∈An(Pk∪e)

αip|hinp|2, k = 1, 2.

If e ∈ X ∗(P2), then e ∈ X ∗(P1) because P1 ⊆ P2. Since

fnlh(P) is a non-decreasing function, (22) is straightforward

to see when e ∈ X ∗(P2).
On the other hand, when e 6∈ X ∗(P2), then X ∗(P2) ⊆ P2 =

P1 ∪ (P2 \ P1). Then fnlh(P2 ∪ e)− fnlh(P2) = 0 and (22)

is trivially satisfied again since fnlh(P) is a non-decreasing

function. The result follows.

Proof of Proposition 2: The single node rate is given

by R({p}) =
∑N

i=1 ρi
∑

n∈T ∆ipnE
[

log2
(

1 + Siαip|hinp|
2
)]

.

The inner summation may be simplified to
∑

n∈T ∆ipnE
[

log2
(

1 + Siαip|hinp|
2
)]

= |T (i) ∩

T (p)|E
[

log2
(

1 + Siαip|hinp|
2
)]

since fading statistics are

assumed identical across TV bands. The result follows.

Proof of Proposition 3: (i) Since Algorithm 1 adds

one node per iteration, it terminates in B iterations. In every

iteration, it considers at most O(N) potential node placements

and for each placement, it computes a sum of O(N |T |) terms.

Each term involves the computation of an effective SINR

which costs O(Wmax). The result follows.

(ii) Due to the feasibility assumption, the algorithm terminates

in at most N iterations. The rest of the arguments may be re-

used from Part (i).

Proof sketch for Theorem 3: In the low-SINR regime,
we may use the well-known approximation log(1+x) ≈ x to
re-express (15) as

~φ∗ = arg max
~φ∈[0,1]|θ|,

∑
l φl≤B

~φT





∑

i

ρiSi

∑

n∈T

E [~c(i, n)]



 . (23)

The result follows since the optimal solution to the linear

program in (23) is in fact integral and given by (19).

Proof sketch for Proposition 4: First, the function RAS

is bounded above by the maximum of the average capacities

of the all possible base-station combinations of size B in

the considered square cell. Since ǫ > 0, and since we solve

successive maximization problems in each iteration on this

function, each iteration will exhibit diminishing returns. This

guarantees termination.

Proof of Proposition 5: In each iteration of Algorithm 3,

Steps 5-8 have a complexity of O(B|T |) operations and Steps

9-12 have a complexity of O(B|T ||Ck|2) = O(B|T |N2)
(since Ck ≤ N ). Consequently, one iteration of Algorithm 3

has a complexity of O(NB|T | + N2B|T |) = O(N2B|T |).
For a total of Tε iterations, the result follows.

K′ Number of users in base-station cell (10 users)

λ′ Rate target for users in bits per second (2Mbps)

D Size of square cell (1, 2, 5 kms)

N Square cell is split into N micro-cells

nI Number of antenna elements in mode-I array

Td, d ∈ {F, I} Spectrum bands available to device d

Pd, d ∈ {F, I} Transmit power limit of device type d (PF = 4W, PI = 40 mW)

fc Carrier-frequency used for transmission

αi Path-loss from user i to base-station array

hkfb(N ) Small-scale fading gain from user k to base-station array
on OFDM sub-band f of TV band b

Nf,int, Ni,int Number of fixed and portable interferers respectively

βF
kj Path-loss from kth user to jth fixed interferer

β
p
kj Path-loss from kth user to jth portable interferer

~νave(s, nI) Average rate supported by base-station array of
size nI under scheduling scheme s ∈ Ω

TABLE I
KEY NOTATION FROM PART-I - TYPICAL VALUES ARE INDICATED IN

PARENTHESIS WHERE APPLICABLE.

M Size of base-station arrays being placed (M = 16)

{ρi} Spatial distribution of users

D Size of network coverage region (D = 8 sq. km)

N Number of micro-cells in coverage region

θ Set of possible placements {1, 2, . . . N} for a single node

αij Path-loss from user i to base-station j

hinj Effective channel gain from user i to base-station j on band n

Ii Cumulative interference at micro-cell i

NO Noise floor

Si Power multiplier
PI/L

Ii+NO
for micro-cell i

P Denotes candidate placement of base-station arrays across region

φi Boolean variable with φi = 1 if base-station array is placed at i

An(P) Subset of P that has access to band n

RMRT (P) Average network-wide rate when base-stations transmit using MRC

RAS(P) Average network-wide rate when base-stations use antenna selection

TABLE II
KEY NOTATION FROM PART-II - TYPICAL VALUES ARE INDICATED IN

PARENTHESIS WHERE APPLICABLE.


