
RI13002, 2 January 2013 Computer Science

IBM Research Report

Combining Machine Learning and Combinatorial
Search in Program Repair

Divya Gopinath
University of Texas at Austin

Sarfraz Khurshid
University of Texas at Austin

Diptikalyan Saha
IBM Research - India

Satish Chandra
IBM Research - India

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside
of IBM and will probably be copyrighted is accepted for publication. It has been issued as a
Research Report for early dissemination of its contents. In view of the transfer of copyright to
the outside publisher, its distribution outside of IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only
by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be
requested from IBM T.J. Watson Research Center, Publications, P.O. Box 218, Yorktown Heights,
NY 10598 USA (email: reports@us.ibm.com).. Some reports are available on the internet at
http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Abstract

We consider the problem of automatically generating repair suggestions for a defective database program that
behaves incorrectly due to an error in the WHERE condition of a SELECT statement.

A common setting in database programs is that the output is incorrect only for part of the data, e.g., for certain
key values. In this paper, we use techniques from machine learning to take advantage of the information revealed by
the defect-free data. Our basic approach is to learn a decision tree from correct behavior—including correct behavior
on the defect-inducing data—of the SELECT statement. This decision tree can give valuable hints, if not directly the
correct WHERE condition.

Our novelty is in the crucial step of determining the correct behavior of the defect-inducing data. We do this using
a combination of SAT-based search and prediction generated by support vector machines (SVMs). Our insight is that
SVMs can learn from the behavior of the defect-free data to predict the behavior of defect-inducing data with high
accuracy, with SAT-based search bridging over any deficit in the accuracy efficiently.

We implemented this approach and present experimental results using a suite of programs and data sets obtained
from real-world applications.

1 Introduction

A majority of enterprise software systems are database-centric programs. Defects in such pro-
grams, specifically in database manipulating statements, are expensive to fix and can require much
human effort in understanding the interplay between traditional imperative code and database-
centric logic. Automated tools to help diagnose these defects, and furthermore, to assist with fixing
them can make a substantial reduction in the cost of developing and maintaining database-centric
programs.

1.1 Problem Context and Examples

Our specific focus is on SAP ERP systems, in which database-centric programming is carried out in
a proprietary language called ABAP. ABAP contains SQL-like commands, but it mixes imperative
code and SQL’s declarative syntax. We introduce the essential constructs of ABAP that are relevant
for this paper using a small example (Figure 1).

The meaning of this ABAP code segment is straightforward. At line 1, it reads all rows from a
database called OrderTab into an internal table called itab. The SORT statement sorts this internal table
by CstId, which is the key. The DEL statement at line 4 removes from itab those rows that match the
condition described in the statement. The LOOP at line 5 iterates over itab. When it encounters a new
CstId—that is when AT NEW at line 6 is true— it resets an accumulator called amount, and it prints the
accumulated amount when the last of that CstId has been visited; this is done when AT END on line 10
is true. (AT NEW and AT END help with key-wise aggregation akin to the SQL GROUP-BY construct.)

1 SELECT CstId Price Year from OrderTab INTO itab
2
3 SORT itab by CstId
4 DEL from itab where Year <= 2009 and Price > 5
5 LOOP AT itab INTO wa
6 AT NEW CstId
7 amount=0
8 ENDAT
9 amount = amount + wa .Price

10 AT END CstId
11 WRITE wa .CstId amount
12 ENDAT
13 ENDLOOP

Figure 1: A sample ABAP code segment.

2



CstID Price Year
1 20 2012 +
1 16 2011 +
1 12 2001 -
1 10 2002 -
1 15 2011 +

Continued on right . . .

CstID Price Year
2 7 2005 -
2 13 2007 -
2 15 2010 +
2 10 2011 +
3 4 2012 +
3 3 2009 +
3 9 2001 -

Table 1: A sample input to program in Figure 1. The last column with ‘+’/‘-’ is not a part of the input table.

Suppose the program in Figure 1 is run on the database in Table 1. The rows marked ‘+’ are
retained in itab after the DEL statement. The output of the program is, which unfortunately differs
from the expect output, also shown:

ID Amount Expected Amount
1 51 51
2 25 32
3 7 7

The bug arises from an error in the condition of the DEL statement, which causes one row for
CustId 2 to be incorrectly deleted (shown by a bold ‘-’).

We can think of the DEL statement as a (equivalent) SELECT statement: SELECT * FROM itab WHERE

Year > 2009 OR Price <= 5. We call such a defect a selection bug, because the bug is due to an incor-
rect WHERE condition in a SELECT statement. The problem is to find an alternate WHERE
condition for the faulty SELECT statement (whose location is assumed to be known), so that the
entire output, corresponding to each of the keys, is correct.

Selection bugs are commonplace in ABAP programs. In fact, many database statements in
ABAP program allow a selection condition, and therefore, are vulnerable to a selection bug. For
example, the ABAP READ statement matches rows based on a condition, but returns only the first
matched row (if any). Based on our experience working with practitioners in IBM Global Busi-
ness Services, about 25% of the ABAP code level defects have to do with selection. Therefore,
techniques that can help in fixing defective selection statements are of much value.

Note that in our setting of debugging ABAP programs, the process starts with the end user of
this software filing a bug report, citing a deviation of actual output from the expected output on
given input data. Thus, the expected output of the program is already known to the programmer (or
the maintainer). As we shall see, the challenge here is in determining the correct behavior of the
defective SELECT statement from the expected output of the entire program, and in determining
an alternate WHERE condition for the selection that would match the correct behavior.

1.2 Repair Based on Machine Learning

We assume, as is true in this example, that each row of the output depends on only one key. We
define passing keys as those keys for which the corresponding output is correct, and failing keys
for which the output is incorrect. In the example above, CstId 1 and 3 are passing keys, and CstId 2
is a failing key. We define passing rows as rows that correspond to a passing key, and failing rows
as rows that correspond to a failing key. Note that a passing row does not mean the row passed
the WHERE condition and appears in the immediate output of the SELECT; rather, it means the
decision taken by the WHERE condition is correct, whether it decided to select or not select the
row. The WHERE statement is assumed to take correct decisions for all passing rows. In rare

3



cases the final output may be coincidentally correct despite an incorrect decision by the WHERE
condition.

Our motivation for exploring machine learning based approach comes from the observation that
the defective WHERE condition does work correctly for the passing keys.

In machine learning, a common setting—known as supervised learning—is as follows. We are
given labeled training data, which means each element of a set of tuples is assigned a positive or a
negative label, based on some unknown function. The learner is supposed to discover a function—
a classifier—that produces the same labels on the training data, and moreover, can correctly assign
labels to test data given to it in the future. In Section 2, we provide background on some of the
pertinent machine learning constructs that we refer to in this paper.

Coming back to ABAP programs, whether or not the SELECT statement selected a row in the
table can be interpreted as assignment of a positive (‘+’) or a negative label (‘-’). Table 1 showed
such labels for the SELECT statement in the program shown in Figure 1. The rows corresponding
to the passing keys, along with their labels, is our training data.

Since our focus is on repairing the WHERE condition, the decision tree learning [20] method
from machine learning method is applicable. Specifically, the classifier learned from the labeled
samples is a decision tree, in which each node contains a predicate on some attribute, and leaf
nodes contain positive or negative signs. An as-yet-unlabeled row can be assigned a label based on
the decision tree.

In our setting, a WHERE condition—a formula corresponding to the decision tree—learned
solely on the basis of labeled training data is unlikely to assign correct labels to the test data, i.e.
the rows corresponding to the failing keys. In our example, a learner could learn the condition
Year > 2008 from the training data, but that condition is clearly incorrect for the test data. In
fact, the learner would be wholly justified in producing the same defective condition, because
that condition is the one that produced the labels for the passing rows! Intuitively, the defective
WHERE condition worked correctly on the passing rows because they did not exhibit a certain
corner case, which the failing rows did. Therefore, a necessary step in our approach is to figure
out the correct labels for the failing rows as well, before we can apply decision tree learning.

1.3 Overview of Our Approach

Our approach divides the problem into two phases. The first phase determines a correct labeling
for the failing rows. The second phase uses the complete and correct labeling of both passing and
failing rows (computed by the first phase) to determine the correct WHERE clause. See Figure 2.

1.3.1 Basic Approach

We first explain the basic approach, as shown in Figure 2(a), in which the correct label assignment
(Phase 1) is computed using symbolic execution, which amounts to a combinatorial search for the
missing labels.

Phase 1. For each failing key:
(a) Assign a symbolic label (a boolean) to each row of the failing key to indicate whether it is to
be retained or deleted.
(b) Execute the rest of the program symbolically up to the output statement.

4



Passing	  rows	  correctly	  labeled	  (+1/-‐1)	  
Failing	  rows	  unlabeled	  (0)	  

All	  rows,	  correctly	  labeled	  (+1/-‐1)	  

Passing	  rows	  correctly	  labeled	  (+1/-‐1)	  
Failing	  rows	  labeled	  (+1c/-‐1c)	  with	  

confidence	  measure	  

Label	  Predic,on	  

Suggested	  WHERE	  condiEon	  

Ph
as
e	  
1	  

Ph
as
e	  
2	  

Passing	  rows	  correctly	  labeled	  (+1/-‐1)	  
Failing	  rows	  unlabeled	  (0)	  

All	  rows,	  correctly	  labeled	  (+1/-‐1)	  

Correct	  Label	  Computa,on	  

Decision	  Tree	  Learning	  

Suggested	  WHERE	  condiEon	  

(a)	  Basic	   (b)	  Op,mized	  

Correct	  Label	  Computa,on	  

Decision	  Tree	  Learning	  

Figure 2: An overview of our approach

(c) Use the expected output to determine a correct labeling by constraint solving.
Phase 2. Use decision-tree learning algorithm such as ID3 to generate a suggested WHERE con-
dition.

As a quick illustration, in Phase 1, (a) the rows corresponding to CstId 2 will be assigned boolean
variables b0, b1, b2, and b3. (b) The constraint that would be generated is (b0 ? 7 : 0) + (b1 ? 13 :
0) + (b2 ? 15 : 0) + (b3 ? 10 : 0) = 32. (c) Upon constraint solving, b0, b1, and b3 are true and b2
false. The corrected labeling would be as shown in Table 1 but with the bold - replaced by a +.

Phase 2 starts with the corrected labeling. In decision-tree learning first it would realize that
partitioning the rows of the table on the basis of Year ≤ 2008 gives the maximum information
gain (see Section 2.1.) In the partition for which Year ≤ 2008, the maximum information gain is
obtained on the basis of Price ≤ 8, at which point, all positives are perfectly separated from the
negatives. In the partition for which Year > 2008, all rows are positive regardless of the price.
This decision tree is (written as conjuctions of clauses on paths from root to +ve leaf nodes, and
disjunction over such paths): Year > 2008 ∨ (Year ≤ 2008 ∧ Price ≤ 8). By DeMorgan’s laws,
this simplifies to the following condition: Year > 2008 ∨ Price ≤ 8

5



0	  

5	  

10	  

15	  

20	  

25	  

2000	   2002	   2004	   2006	   2008	   2010	   2012	   2014	  

Pr
ic
e	  

Year	  

Distribu.on	  of	  Posi.vely	  and	  Nega.vely	  Labeled	  Data	  

Pos	  

Neg	  

TBD	  

Figure 3: Distribution of data in Table 1

Comparing this to the previous incorrect WHERE condition, we see that while the learned
WHERE clause for Year is slightly but gratuitously different, for Price it is crucially different.

1.3.2 Optimized Approach

The basic approach has two problems. First, depending on the number of rows for failing keys,
the amount of symbolic state can be considerable, requiring more resources to come to a correct
labeling. Second, Phase 1 may have multiple solutions, and Phase 2 might not be able to generate
a good WHERE condition with an arbitrary one; this would require repeating Phase 2 with several
different correct labelings obtained from Phase 1.

Here we show a technique, again inspired by machine learning, to address both of these con-
cerns. Our idea is to learn from passing rows (which carry correct labels) likely—but not neces-
sarily perfect—labels for the failing rows. See Figure 2(b). Label learning is used as a pass before
correct label identification. Our approach rests on the observation that WHERE clauses are typ-
ically generic, and would act the same way for classes of tuples. Therefore, “closeby” tuples are
likely to be labeled similarly.

In Figure 3, data of passing keys in Table 1 is shown with diamonds for positively labeled data
and squares for negatively labeled data. For the failing key, CstId 2, data is shown with a triangle
(unlabeled). Assuming that points that are spatially close are likely to be labeled similarly, an

6



assignment of a positive label to the two unlabeled points on the right can be done with relatively
high confidence. The two unlabeled data points in the middle of the chart could go either way,
so an assignment of a negative label to the two points in the middle can be done only with low
confidence. Support vector machines (see Section 2.2) [24] can be used to assign such labels based
on a geometric notion of proximity. Table 2 shows a sample assignment of predicted labels to the
failing rows.

CstID Price Year Predicted Label Confidence
2 7 2005 - 0.3
2 13 2007 - 0.2
2 15 2010 + 0.9
2 10 2011 + 0.9

Table 2: Predicted label assignment for the failing rows

We can use this predicted labeling to reduce the amount of symbolic computation in the basic
algorithm. The combinatorial search for correct labels now works in an outer loop. In the first iter-
ation, we assume that the predicted labeling is correct, and attempt to validate it by executing the
rest of the program with no symbolic state. In this example, this validation fails. In the next itera-
tion, we remove the least confident label—which is for the tuple 13, 2007—and make it symbolic,
remaining labels are as in Table 2. In this case, b1 is the only symbolic variable. But the constraint
b1 ? 13 : 0+15+10 = 32 is still not satisfiable. In the next iteration, we select next least confident
label—which is for the tuple 7, 2005—and make it symbolic as well. This time, the constraint is
b0 ? 7 : 0 + b1 ? 13 : 0 + 15 + 10 = 32 for which the correct solution is found. It turns out that the
tuple 7, 2005 needs to be positively labeled, unlike the way it appear visually in Figure 3. Notice
that we needed at most two symbolic variables as opposed to four in the basic algorithm. For larger
problems, in which one failing key may have number of rows, this optimization could even make
the difference between being able to handle the symbolic part computationally or not.

To illustrate the second problem, consider a slightly different table that includes a weight col-
umn. Suppose Weight ≥ 30 is an additional necessary (but not sufficient) condition for a record
to be selected, and that a correct WHERE condition ought to have it. In all the passing key data,
all positively labeled rows respect this condition. The predicted labels for a failing key might be as
shown in Table 3; predications are based on all three attributes (price, year and weight).

CstID Price Year Weight Predicted Label Confidence
2 15 2010 20 + 0.4
2 15 2010 35 + 0.9
2 10 2011 40 + 0.9

Table 3: Predicted labels for the failing key, revised table

Suppose the correctness of output for failing key 2 requires Price to add up to 25. There are
two ways in which this can happen: either select the first and the third rows, or the second and
the third rows. Indeed, a constraint-solver implementing correct-label-computation would come
up with two possibilities.

If Phase 2 arbitrarily chooses the row (2,15,2010,20), in which weight is less than 30, the
decision tree learning algorithm—one that strives to correctly label all training data—would not be
able to add the Weight ≥ 30 clause in the condition compactly. This would lead to a more complex

7



than necessary condition, one which may be overfitted to this example. The correct choice would
have been (2, 15, 2010, 35).

This is where closeness helps again. Among the two possibilities of selecting either row 1 or
row 2, row 2 would be closer to the other positively labeled training data, and this reflects in the
confidence value of row 2 compared to that of row 1. The confidence values are again based on
geometric proximity, now in 3-d space.

This seemingly contrived situation is in fact common when selecting from a join of two tables
(see Section 3.4 and examples in Section 4.)

1.4 Contributions

Our contributions are the following:
1. We describe a new approach for repairing the WHERE condition of a SELECT statement in a
database program. The approach is based on the observation that standard decision-tree learning
can be used to arrive at a repair suggestion once the correct behavior of the WHERE is known for
the failing keys as well.
2. We give a new way of combining machine learning and combinatorial search in determining
the correct labels for the failing keys. The learning part takes advantage of the known behavior of
the passing keys, whereas, the combinatorial part makes up for cases in which the knowledge for
passing keys does not extend perfectly to the failing keys.
3. We present an evaluation of the proposed approach on a suite of programs drawn from an
industrial setting. These programs are excerpts of real programs, and the data sets we use come
from real data: this is crucial because the effective of our approach cannot be guaged based on
synthetic data, which may not be representative of distributions found in real data. Although
limited in its scope, the evaluation indicates promise in the approach.

2 Background

In this section, we provide the essential background on machine learning concepts that we use in
this work.

2.1 Decision Tree Learning

Given complete and correct labeling on rows of a table such as Table 1, we wish to learn a decision
tree which can accurately classify both the data already seen (training data) as well as new, unseen
data (test data). For the purpose of this brief introduction, we consider a slightly modified table as
below. Suppose Year is either high (H) or low (L), and Price is one of high (H), medium (M) or
low (L). The labels are as follows:

ID 1 1 1 1 1 2 2 2 2 3 3 3
Price H H H M H L M H M L L M
Year H H L L H L L H H H H L
Label + + - - + + - + + + + -

8



To build a compact decision tree, which attribute do we choose as the root of the tree: is it better
to first test for Year, or Price (or ID)? If we choose to decide first on the basis of Year, our decision
would split the data as follows (shown by double vertical line):

Year H H H H H H H L L L L L
ID 1 1 1 2 2 3 3 1 1 2 2 3

Price H H H H M L L H M L M M
Label + + + + + + + - - + - -

Whereas, if we choose to decide first on the basis of Price, our decision would split the data as
follows:

Price H H H H H M M M M L L L
ID 1 1 1 1 2 1 2 2 3 2 3 3

Year H H L H H L L H L L H H
Label + + - + + - - + - + + +

Intuitively, splitting first on the basis of Year seems to be advantageous, as Year = H directly
determines a large number of labels to be +. Information gain [20] formalizes this intuition:

Gain(S,A) = Entropy(S)−
∑

v∈Val(A)

|Sv|
S

Entropy(Sv)

where Entropy(S) = −p⊕ log2 p⊕−p	 log2 p	. Here, S is the collection of tuples,A is an attribute
(such as Year), Val(A) is the set of values in attribute A, Sv is the subset of S with tuples in which
attributeA is v. p⊕ is the fraction of positive samples in the set S, and p	 is the fraction of negative
samples in the set S. log 0 is assumed to be 0.

The entropy of the entire table is (based on 8 positive and 4 negative samples): − 8
12
log2(

8
12
)−

4
12
log2(

4
12
) = 0.92. Splitting on Year gives two sets SY=H and SY=L as shown above by the

double line column. After computing entropies of these smaller sets—note that the entropy of the
set SY=H is 0—and using the formula above, the gain works out to 0.62. The same computation
for Price gives 0.35.

The standard decision tree learning algorithm, ID3 [21], is a greedy algorithm that chooses the
attribute on which it is going to achieve the highest information gain. It proceeds recursively along
the subsets created by the split on the decision attribute, until it obtains sets with uniform labels.

In our example, the algorithm first chooses Year to split the set and then works recursively on
SY=H and SY=L, selecting the next attribute on which to decide. For SY=H , no further work is
necessary as labels are uniformly +. For the other set, Price = L gives the decisive next split. The
final decision tree is (+ leaf nodes):

Year = H ∨ (Year 6= H ∧ Price = L)

Since we often have continuous attributes rather than categorical ones, we use the standard
technique of finding boundaries at which target labeling changes. In the example of Table 1, if we
sort Price values in ascending order, 8 and 14 are two such boundaries. The information gain of
splitting at 14 would be higher so we could choose to have Price ≤ 14 and Price > 14 as two
categories; choosing three categories would also work fine.

Decision tree learning is a vast area, and significant literature exists on how to deal with such
problems as overfitting, and dealing with incomplete or noisy data. Discussion of these concerns
is outside the scope of this paper.

9



0	  

5	  

10	  

15	  

20	  

25	  

2000	   2002	   2004	   2006	   2008	   2010	   2012	   2014	  

Pr
ic
e	  

Year	  

Distribu.on	  of	  Posi.vely	  and	  Nega.vely	  Labeled	  Data	  

Pos	  

Neg	  

TBD	  

Figure 4: Figure 3 with separating lines

2.2 Support Vector Machines

Support Vector Machine (SVM) [24, 2] is a technique based on mathematical optimization. It
is based on the principle of finding the maximum-margin separating hyperplane that separates
positively labeled data from the negatively labeled data. We explain this intuitively using Figure 4,
which presents the same data as Figure 3. Lines labeled A and B both are “hyperplanes” that
separate positively labeled points from the negatively labeled points. Once such as separator is
found, an unlabeled point can be assigned the same label as the label of the points on its side of the
line. The notion of a separating line is a separating hyperplane in higher dimensions.

Clearly, neither of the two lines A and B are particularly satisfactory for the purpose of classify-
ing as yet unlabeled points; they would be prone to mislabeling. For example, a point immediately
left of line B would be classified negative, which is incorrect. The line C is the one that creates as
much margin as possible between lines A and B, and SVMs find such a line. It is expected that
such a line would have the best classification behavior, based on what can be inferred from the
training data. Lines A and B are called support vectors, which lend their name to the technique.

Mathematically, let w be a vector that is normal to the seperating hyperplane and let b be its
offset. For each posivitely labeled point xi, we require w.xi ≥ b+1 and for each negatively labeled
point xi, we require w.xi ≤ b− 1. The optimization problem is to minimize ‖w‖.

SVMs create a classifier based on a geometric interpretation of proximity of points in the space.

10



This may not always coincide with the domain-specific measure of proximity, which is outside the
purview of SVM (unless explicit captured by synthetic attributes.) In the example above, line D is
the one that creates the correct separating line, meaning that line would assign the correct labels
to the unlabeled points as per the requirements of the database program. D cannot be found by an
SVM based on the given training data.

Fortunately, SVMs provide a numerical measure of prediction confidence. Labels assigned to
points close to the separating hyperplane that an SVM discovers (i.e. line C in this example) would
be assigned a lower confidence, and labels assigned to points far from the separating hyperplane
would be assigned a higher confidence. As illustrated in the introductory example and Table 2,
our premise is that the higher confidence labels assigned on the basis of geometric proximity are
usually correct even in terms of the semantic proximity. This premise should be true if there is
sufficient amount of training data.

SVMs are considerably more general that what the above brief treatment reveals. It is not
necessary for the positively and negatively labeled training data to be perfectly linearly separa-
ble. Furthermore, SVMs can look for complex non-linear separators using kernels. Vast amount
of literature exists to how to make SVMs more efficient both in performance and in prediction
accuracy.

3 Details of Our Approach

In this section, we describe the details of the label learning component, the SAT-based label as-
signment, the decision tree component, and then finally how these components operated together
in our approach.

3.1 Label Assignment with SVM

Recall from Figure 2 that this component takes as input (correctly labeled) passing rows and assigns
labels to the failing rows, along with confidence measures.

To use an SVM, each passing row from the input tuples containing an n-dimensional tuple is
mapped to a point in n-dimensional space. It is assigned a positive or negative label depending
on which way the WHERE condition evaluates on that tuple. (Recall that the WHERE condi-
tion works correctly on passing rows, so these labels are correct.) This is the training data on
which SVM learns a classifier. Next, the classification capability of the SVM is used to compute
labels, with confidence measure, for each failing row mapped similarly to a point in n-dimensional
space. The output is a real number for each row, where the sign indicates the predicted label and
magnitude the confidence.

The application of SVMs to the problem at hand requires several steps of data conditioning.
The main issue is that SVMs prefer to view data as numerical values for the purpose of distance
computation. Relational database tables seldom contain data in this form. We discuss some of the
problems and our solutions.
Nominal Attributes The table could contain nominal attributes, which are compared for equality,
but not for order. For example, a State attribute 2-letter state abbreviation is a nominal attribute. For
nominal data, we introduce fresh columns, one for each distinct value of the nominal attribute that

11



appears in tables. For State, we might introduce boolean attributes such as State=AK to State=WY
and hide the original State attribute.

At other times, data that looks like non-numeric data might need to be treated numerically. For
example, if ranges over dates are significant, then dates have to be mapped to a numeric interval.
Key Attributes Keys are usually nominal data in that value-based proximity of two keys is not
meaningful. In joined tables created by Cartesian cross product, one will have two distinct key
attributes initially, one coming from each of the two tables. Since it would require too many
additional attribute to “de-nomimalize” both of these attributes, we instead include an additional
boolean attribute that denotes the equality of these two keys (as it is common to have key equality
comparison in SELECT statements for a natural join.)
Scaling It is typical in use of SVMs to scale data to a normalized [0.0,1.0] range for each attribute.
In case the range of data for a certain attribute is very large due a few outlier values, care is needed
to prevent lower values being scaled down to too close to zero.

We used SVM Light [12] in our experiments, with default parameters. We did not require non-
linear kernels in our experiments so far, but in general, the need could arise.

3.2 Label Computation Using SAT

Input to this component is a set of rows, a conservative estimate of which of the attributes may
contribute to the output, and the expected output. Typically, this set of rows corresponds to one
failing key at a time.

The output is one or more subsets of the set of rows given to the component. Each subset
respects the property that if the program is run from immediately after the select statement with
only those rows, the output for the corresponding key would be correct.

We use the Alloy tool-set [10] to model the data and control-flow of the ABAP code. Alloy
is a language to model and reason about systems using declarative first-order logic constraints on
sets and relations. It supports all set-based operations, including transitive closure of relations. It
comes with a model finder to find satisfying solutions.

Encoding of the data or state of an ABAP program in relational logic is done as follows. ABAP
types typically represent tuples of fields. These are represented as relations with arity equal to the
number of fields. Local variables are represented as singleton sets. Control-flow-graph is unrolled
a finite number of times to yield a DAG. The control flow from one statement to the other is
represented as relational implications while branch points are represented as disjunctions.

Suppose σ0S0;σ1S1; . . . Sk;σk, represents the execution of an ABAP program, where σ0 and σ1
are the states of the program before and after the execution of the (faulty) database statement S0,
and σk is the state after executing S0, . . . , Sk.

Given σ′k, the expected output, we use Alloy to compute σ′1 such that execution of the sequence
S1; . . . ;Sk on σ′1 produces the output σ′k. Since S0 is a SELECT statement, we have an additional
constraint that σ′1 ⊆ σ0. σ′1 gives the desired labeling.

Statements S1 . . . Sk could be either database or imperative statements. We illustrate the trans-
lation of a (correct) ABAP code fragment in Alloy. Here is the ABAP fragment:

1 SELECT Price Year from t where Year > 2010
2 LOOP AT t INTO wa
3 sum = sum + wa .Price
4 ENDLOOP
5 assert sum == 30

12



The following Alloy code models it. We assume a maximum of 3 rows with year > 2010.
1 sig Table { tuples : set Tuple }
2
3 sig Tuple { price : Int , year : Int }
4
5 pred Query (t : Table , result : Table ) {
6 result .tuples in t .tuples
7 all p : result .tuples | p .year > 2010
8 }
9

10 pred P (t : Table , result : Int ) {
11 lone x0 , x1 , x2 : t .tuples {
12 (result = 0 and no x0 and no x1 and no x2) or
13 (result = x0 .price and no x1 and no x2) or
14 (result = x0 .price + x1 .price and no x2) or
15 (result = x0 .price + x1 .price + x2 .price )
16 }
17 }
18
19 pred Q (t : Table ) {
20 some t1 :Table | Query [t , t1] && P [t1 , 30]
21 }

Running pred Q would yield a set of Tuples, t, wherein the sum of the price values for Tuples
where year > 2010 would be 30.

3.3 Decision Tree Learning

The input to this component is fully and correctly labeled rows and the output is a decision tree.
We created our own implementation of ID3 essentially following the description in Section 2.1.
Here are some of the implementation concerns.
Selecting Relevant Attributes The input tables of the buggy query typically have large number of
attributes, many of which are irrelevant. We select a subset of the these attributes that satisfies the
following conditions: (1) Contain all the attributes projected by the query (2) Attributes that have
been frequently used whenever this table has been used earlier in the code(such as key attributes).
(3) Attributes having the same data-type and overlapping values with the state variables at that
execution point.
Seeding Synthetic Attributes Decision-tree based algorithms are only equipped to learn clauses
that compare attribute values with constants. However, WHERE conditions conditions can contain
comparison of two attributes. We seed binary-valued equality predicates between attributes as extra
attributes into the learning algorithm. These predicates are seeded based on domain knowledge,
for instance, if two tables are being used in a query, a comparison of their key attributes is often a
part of the filtering condition. Similarly, attributes of the same data-type and having same range of
values may be compared to select records.

Note that the condition generated by the decision-tree learning is only a suggested repair. In
particular, it cannot express the condition naturally in terms of program variables (e.g. it would
discover netwr < const as opposed to netwr < var). Obviously, if some condition is not
exhibited by training data, the condition would not appear in the decision tree.

3.4 Putting it all together

In this subsection, we describe how the correct-label computation interacts both with label predic-
tion and with decision-tree learning.

13



First, we briefly describe the data set up. Identification of passing keys, and therefore passing
rows, and failing keys/rows is done on the basis of comparing key-wise actual final output with
expected final output. To determine the labels of passing rows, since we know that the WHERE
condition as written works correctly on the passing rows, we apply the condition per row.

3.4.1 Interaction of SAT with Label Predictions

Assume for the moment that no join is involved. The correct-label computation takes the predic-
tions for the failing rows, and ranks those predictions separately for each failing key. The process
described below is carried out separately for each failing key.
Step 1. Create three sets: definitely negative (dneg), definitely positive (dpos), and possibly positive
(ppos). Initially, dneg includes all rows for which label prediction is negative and dpos includes all
rows for which label prediction is positive. Initially, ppos is empty.

If label assignment as per dpos and dneg works for the rest of the program—we validate this
using the SAT infrastructure, though native execution would work—we have found a solution.
Step 2. Shrink dneg and/or dpos and move a row from them to ppos. We first move the row for
which the absolute value of the prediction confidence is the least.
Step 3. Use SAT-based process for obtaining a feasible solution for ppos. If we get unsat, go back
to Step 2.

When the above process terminates, rows in dneg are labeled negatively, rows in dpos positively,
and rows in the current ppos, as per the label assignment given by SAT. Note that if no label
predictions were available, we could use SAT for all the rows, i.e. assume all the rows are in ppos.
However, as we see in our experiments, this may time out if the number of rows in ppos is large.

Correct labelings for each failing key are assembled together with the known correct labeling
for the passing keys, and passed on to the decision tree learning.

Multiple Solutions When working with a failing key, for a given ppos, SAT may come up with
multiple ways of assigning labels to the set ppos. (This could be an issue regardless of whether we
used predications or not.) It is not necessary that each of these solutions (i.e. set of failing rows
to which we assign a positive label) would be a good input to decision-tree learning, and we may
wish to try them all. Since the labeled rows that handed over to decision-tree component collates
solutions for all the failing keys, this can be a problem. If there are f failing keys and (say) k
solutions per failing key, the number of distinct label assignments for the entire table would be kf .
Even though k is typically small, as a heuristic, for each failing key we choose the solution based
on the best prediction confidence among the rows that constitute that solution.

3.4.2 Dealing with Joined Tables

Consider the query: SELECT T1.K, T1.V from T1, T2 where T1.K = T2.K. Operationally, tables T1 and T2 are
joined, a selection is performed based on the WHERE condition on the joined table, and finally a
projection is performed on specific columns of T1. In the above query, the WHERE condition is
key equality, but it could be more general.

14



For decision-tree learning to be able to learn the WHERE condition it needs to observe the
selection performed on the joined table, because after projection (say) to columns of the first table,
the selection condition would typically not be observable from the selected and un-selected rows
of the first table.

Here we briefly explain label compututation in the case of joined tables. The label assignment
for the joined passing rows is determined simply by applying the given WHERE condition. How-
ever, additional constraints must be respected when determining labels for a set of (failing) rows
in a joined table.

Define a block in the joined table as a set of rows obtained from a single row of the first table by
cross producting it from all rows of the second table. At most one row from each block can appear
in the joined output table, because projection to the columns of the first table can retain only one
of them. Therefore, SAT may consider at most one joined row from each block to assign a positive
label.

Conceptually, SAT has to carry out two selections for each failing key:
Selection 1. Select one row from each block that pertains to that key; and, as before,
Selection 2. Select a subset from the rows selected in Selection 1 in a way that program correctness
is obtained. This is as described in Section 3.4.1.

The SAT problem is more complex—the number of rows in ppos is essentially multipled by the
number of rows in second table—and indeed, example Ex1 in Section 4 was too large for SAT for
this reason. Also, there are vastly more solutions to consider when passing them on to decision-tree
learning.

Label prediction comes to our rescue again. Instead of modeling Selection 1 in SAT, we simply
choose the row in each block that has the highest numeric prediction, resulting in just one set to
be passed to Selection 2. This is meaningful, because we are selecting the most likely row from
each block to be positively labeled in the complete labeling. It is a heuristic, because we rely on
sufficient training data for label predictions to be reasonably accurate.

4 Evaluation

This section first presents an experimental evaluation based on case-studies using a select set of
subject programs (Section 4.1). Next, it discusses some limitations of our approach as well as the
feasibility of applying a more straighforward, mutation-based approach for repairing the chosen
subjects (Section 4.2).

4.1 Case Studies

We selected seven subject programs, which are fragments of ABAP code from industrial applica-
tions running on real data sets. The bugs in these programs are actual bugs that occurred in the
past. In all cases we know the correct fix to the bug.

The objective of our experiments is to determine whether our technique is efficient and effective
in learning an ABAP query, which helps the developer fix the bug (even if the learnt query is
not exactly what a human would have manually created). The evaluation was performed on a
prototype implementation of our approach using the Alloy 4.2 tool-set (specifically, Forge, Kodkod

15



Subjects # Passing rows # Failing rows Label predictions Correct label computation Decision-tree learning
Basic (w/o predictions) Optimized (with predictions)

# correct labels time (min) # correct sols time (min) # correct sols time (min) correct cond?
Ex1 40129 10032 10029 TO NA 4 1 2 Yes
Ex2 16641 30 11 4 256 2 32 1 Yes
Ex3 316 12 12 1 1 1 1 0.16 Yes
Ex4 274 58 15 1.5 1 3 1 0.03 Yes*
Ex5 993 84 78 5,TO 1,NA 8 1 0.08 Yes
Ex6 90346 1816 1814 TO NA 5 1 5 Yes
Ex7 13911 2 0 0.5 1 2 1 25 Yes

Table 4: Summary of results. TO- time-out interval set to 15 mins.

and miniSAT), SVM Light in transductive learning mode, and a home-grown implementation of
the ID3 decision-tree learning algorithm.

4.1.1 Summary of results

Table 4 summarizes the results. The first column lists the seven subject programs. For every
candidate, # Passing rows and # Failing rows show the number of records corresponding to the
passing and failing keys for the respective bug. Label predictions column highlights the prediction
accuracy by showing the number of failing rows for which the labels were predicted correctly. We
present the results of using both our basic (Basic (w/o predictions)) and optimized (Optimized (with
predictions)) approaches to compute the correct labels. We tabulate the SAT solving times and the
number of correct solutions generated for both of these approaches (Note that in some cases the
basic approach would have sufficed). Finally, we present results on decision-tree learning.

In all the seven cases, our technique was able to find a correct WHERE condition which pro-
duces the expected output. Except in one case (Ex7), our overall technique takes less than 10 min-
utes to complete. The predictions were particularly useful in three cases (Ex1, Ex6, Ex5) where the
SAT solver timed out. In the first two cases where selections needed to be performed from a joined
table, the solver could not find any solution, while for Ex5, the solver timed out on 1 failing key.
We found that the predictions were not very effective in two cases (Ex4 and Ex7). The condition
learned was close to the intended one in all but one of the cases (Ex4).

4.1.2 Example application scenarios

Next, we describe details of applying our approach to four subjects to highlight some of its key
characteristics and how it handles different types of faults. The other examples are similar to these
and are not described here for brevity.
Scenario 1: Repair without predictions. For simplicity, we start with Ex3, which illustrates a
case in which just the basic approach for repair (without the use of predictions) can successfully
produce a valid repair suggestion.

Consider the following buggy SELECT statement in Ex3:
select ∗ from ekbe into table tab ekbe

where ( vgabe eq ’2 ’ or vgabe eq ’3 ’ )
/ / and ebeln in ebeln range Needed in the correct query

order by ebeln ebelp .

The WHERE clause is essentially missing two predicates in the form of a missing range-check
predicate for the field ebeln. This error results in 12 unexpected rows in the output of the program.

16



Correct Label Computation. The incorrect rows in the program output correspond to 12 failing
rows in the input ekbe table. SAT quickly finds that none of these records should get selected.

Although it is not required for this scenario, we did run SVM for predicting the labels for the 12
failing rows. The predictions were 100% accurate, and all the 12 records were assigned negative
prediction values. We ran SAT marking them as dneg and the labeling was deemed satisfiable
within a minute, i.e. not much savings in time over the basic approach.
Decision-tree learning. The condition learned was as given below and was correct in not selecting
exactly the 12 failing row.

vgabe = ’2’and
ebeln <= 4500000229

The generation of a comparison on ebeln conveys to the programmer that a
bound check is missing. Indeed, the source code defines the constant ebeln range

as [ebeln low, ebeln high], but the buggy query fails to use it.
The generated repair could not infer the lower bound on ebeln, nor it could generate an addi-

tional condition on vgabe, because such conditions were not warranted by this specific input data.
Nonetheless, the repair suggestion is useful in helping the programmer fix the problem. Our tech-
nique is intended to generate a useful repair suggestion for the programmer, as opposed to a perfect
replacement.
Scenario 2. Use of optimized approach to handle joins. This scenario illustrates the use of
predictions to reduce the search space when the buggy statement involves table joins.

The program (Ex1) creates a sales order report by calculating order amount and unbilled amount
for each sales order. It first creates a table called p i vbrp using the following query:
select vbeln posnr aubel aupos matnr netwr
from vbrp , p i vbap
into table p i vbrp
where aubel = p i vbap−vbeln
and aupos = p i vbap−posnr
/ / and netwr > 0 . Needed in the correct query

However, the missing netwr > 0 predicate from the WHERE condition causes incorrect p i vbrp

formation. For a failing key-value aupos=102, here are the computed and expected rows in p i vbrp:
Computed:
aubel aupos netwr
102 20 0.00
102 20 8000.00
102 30 0.00
102 30 11200.00

Expected:
aubel aupos netwr
102 20 8000.00
102 30 11200.00

The computation after the SELECT loops over the rows of the p i vbap table, and for each row,
it fetches a row from p i vbrp based on the read statement, which matches vbeln in p i vbap to aubel in
p i vbrp and posnr in p i vbap to aupos in p i vbrp. The corresponding netwr amounts of the rows read are
aggregated for each vbeln which contribute to the calculation of the final amount that appears in the
report.

The problem arises as the read statement reads only the first matching row, so for vbeln 102 it
ends up reading from the incorrect p i vbrp the rows (102, 20, 0) and (102, 30, 0) corresponding to
two posnr values 20 and 30, instead of (102, 20, 8000) and (102, 30, 11200), which it would have
read from the correct version of the table. This leads to wrong l billamt value and it shows up in
the incorrect output for the key 102. There are 20 failing keys with incorrect amounts in the output
report.
Correct Label Computation. This illustrates a case where the input space becomes too large for
SAT to handle due to the presence of joins, as explained in Section 3.4.2. Each failing key is

17



considered separately when invoking SAT to look for correct solutions. There are an average of 3
records corresponding to each failing key value of field aubel in vbrp. Each combination of <aubel,

aupos, netwr> in vbrp maps to a block of 227 records in the joined table. Hence the search space to
perform both Selections 1 and 2(Section 3.4.2) using SAT would be 2273 per failing key. SAT
times out without finding any solution when applying the basic approach without predictions.
Label Predictions-based reduction of search space. There were 40129 records in the joined table
corresponding to the passing keys that were labeled as per their outcome in the existing execution.
10032 failing rows were unlabeled. SVM attached a positive prediction to 19 unlabeled rows and
a negative prediction to the remaining.

As explained in the Subsection 3.4.2, Selection 1 was performed by choosing the record having
highest prediction from each block in the joined table.

We used the predictions of the selected subset of records to further reduce the state-space for
Selection 2. The initial labeling was based on sign of predications. All records whose absolute
value of prediction (confidence) is greater than a threshold of 0.0 are considered definitely positive,
while the others are marked definitely negative. We verified that this gave perfectly correct labeling
for all but three keys. For these three keys, we had to invoke the dpos and dneg shrinking process
to arrive at a correct solution. For example, for key 146, initially both rows were marked negative
(as shown below) leading to unsatisfiability.

aubel aupos netwr pred
146 10 0 -0.99972347
146 10 30 -0.39996994

After iteratively moving rows with low confidence to ppos, a correct
solution was found when records with confidence below 0.4 were moved
out of dneg set. For instance, for key 146, the second row was moved to
ppos. SAT assigned positive labels to these rows leading to satisfiable
solutions. In all, this process completed in 4 minutes as tabulated.

Decision-tree Learning. Decision-tree learning discovered the correct WHERE condition:

aubel = p_i_vbap-vbeln and
aupos = p_i_vbap-posnr
and netwr > 6

Note that our approach was able to learn the join condition. The con-
stant discovered is 6 rather than 0, due to the distribution of the data. But it
is a good repair suggestion since it points out an important missing clause.

One of the challenges in applying prediction in this example was the
large range of values of netwr column which required truncation of outlier

data points, so that the distribution of values did not get drowned out. Without this data condition-
ing, the accuracy of the results obtained by SVM was poor.

Scenario 3. Use of predictions to rank candidate solutions. This scenario highlights that our
repair algorithm is not restricted only to SELECT statements, and further illustrates a case where
predictions aid in reducing the space of candidate solutions on which decision-tree learning has to
be performed.

The buggy statement in this example (Ex2) is a DELETE statement, shown below.
DELETE ADJACENT DUPLICATES FROM db tab

COMPARING kunnr matnr
/ / arktx Needed in the correct query

The DELETE ADJACENT DUPLICATES statement deletes a row from the table that has same values in its
immediately previous row for the fields specified in COMPARING clause. This could be modeled as an
equivalent SELECT statement as shown next.

18



select ∗ from db tab rc as db tab1 , db tab rc as db tab2
where db tab 1 .rc = db tab 2 .rc+1 and
db tab 1 .kunnr = db tab 2 .kunnr and
db tab 1 .matnr = db tab 2 .matnr and

/ / db tab 1 .arktx = db tab 2 .arktx Needed in correct query

Where db tab rc has an extra column rc in addition to all the columns of db tab. It contains the
same records as db tab with the rc column populated with the row number.

This statement selects rows that would need to be deleted by the original statement. The code
after the DELETE statement, in a nutshell, aggregates the netwr amounts corresponding to every unique
values in monat field on db tab. The output report had incorrect amounts displayed for two monat

values – Sep2008 and Oct2008 (2 failing keys).
Correct Label Computation. The db tab had 10 records with monat as Sep2008 and 20 records with
Oct2008. Note that although the SELECT is over a join and every row of db tab rc maps to a block
of rows in the joined table, we know upfront the exact record that needs to be considered from
every block. The only record that can be selected in the block corresponding to every failing row
of db tab is the one where db tab1.rc = db tab2.rc+1 is satisfied as this predicate will be present in the
correct version of the query. Hence the input state space for SAT remains 10 and 20 respectively
for the two failing keys and it becomes feasible to apply the basic approach of label computation
without predictions.

SAT is invoked separately on the records for the 2 failing keys to determine the possible subsets
of the records that would sum up to the respective expected final amounts. There are 8 possible
subsets for Sep2008 and 32 possible subsets for Oct2008, leading to 256 possible correct labelings.
It would be inefficient to generate 256 possible WHERE clauses. This is where predictions aid in
heuristically selecting the solution that is most likely to yield the ideal WHERE clause. Note that
this displays a scenario wherein label predictions aid in reducing the state-space of decision-tree
generation even if the number of failing rows may be small enough for SAT to process.
Label Predictions-based solution ranking. There are only 80 positively labeled passing key records
compare to 12691 negatively labeled records in the joined table. Hence the prediction accuracy in
terms of the classification is low. However, the confidence of the incorrectly predicted labels were
lower than the correctly predicted ones. We used predication-value based ranking of the solutions
to selecting the desired solution for both for the two failing keys (comprising of 2 records and 17
records respectively).
Decision-tree Learning. The WHERE clause learnt for the SELECT statement was,

db_tab1.rc = db_tab2.rc + 1 and
db_tab1.kunnr = db_tab2.kunnr and
db_tab1.arktx = db_tab2.arktx

As can be observed, the condition on arktx that was missing in
the incorrect version is correctly discovered. However, the condi-
tion on matnr is missing from the learned clause. This is because
the matnr values are equal for all adjacent records in which the other
two conditions are also satisfied. This makes the learned WHERE

clause correct for the given input set.

Scenario 4. Impact of incorrect selection on passing keys. Ex4 displays an interesting sce-
nario which violates our assumption about the correctness of erroneous SELECT statement for
the passing keys. The final output corresponding to passing keys is still correct but the SELECT
acts incorrectly on some of them.

The erroneous SELECT statement given below leads to the inclusion of 58 extra records for

19



the failing keys in the actual output of the program, compared to the expected correct output.
select ebeln ebelp belnr buzei bewtp budat matnr

werks ernam
from ekbe
into table it ekbe
where
budat in s crdate

/ / AND vgabe = 1 Needed in the correct query

In this example, for the passing keys too, the erroneous SELECT statement selected some extra
rows, but subsequently they got deleted by a delete statement in the program. Consequently, these
passing keys yielded the correct final output anyway.
Correct Label Computation. The incorrect labeling for 16 passing key records where vgabe = 1

impacts the accuracy of predictions as seen from Table 4. Hence the approach of using predictions
to determine dpos and dneg record sets performed poorly. It passes through 4 rounds and produces
correct solution only when all records are put into the ppos set, which is equivalent to the basic
approach, i.e. without prediction.

belnr<=5000000236 OR
(budat = 61111) OR
(budat > 61111 AND
(ebeln = 4500000022))

Decision-tree Learning. The incorrect labeling of the passing key records im-
pacts the WHERE clause condition learned.

The condition is quite different from the one in the correct version of the
code. It leads to the expected final output on this data set, but this is not a
useful repair suggestion (marked by * in Table 4).

4.2 Discussion

4.2.1 Limitations

1. Our technique assumes that the incorrect selection criteria works correctly for keys that satisfy
the final output correctness criteria. Violation of this assumption (Ex4) impacts the quality of the
predictions and the WHERE condition learned.
2. Sufficient amount of representative passing data is required to make the learning effective. For
Ex7, the failing rows were all erroneously predicted to be negatively labeled. This is because only
10% of the passing key records were positively labeled. Moreover, only 2 out of 12890 records
reflected the condition vgabe = 3. SVM’s learning algorithm possibly considered these as outliers
and made predication based on the majority of records.
3. Attention must be paid to data conditioning, which currently uses heuristics. This was an issue
in several examples, and without proper data conditioning we did not get good label predictions.
4. The ID3 algorithm is designed to correctly label all training data. However, if the data in
the current execution is not representative enough, then the WHERE condition created may be
overfitted to the data (Ex4). Techniques to avoid overfitting [20] compromise the accurate labeling
of training data. Finding the right balance for our application is the subject of future work.
5. The learning algorithm strives to generate the most compact classifier for the given data. In
some cases, this could exclude clauses that would be in general necessary, but do not impact the
outcome for the given data. To reiterate, our technique generates useful repair suggestions and not
necessarily plug-and-play repairs.

20



4.2.2 Comparison with Mutation-based repair

In this section we discuss how a standard technique such as a simple repair algorithm based on
mutations would perform for the bugs under consideration. The method checks if the WHERE
condition could be corrected by either adding one clause, removing one existing clause, or replac-
ing an existing clause with a new one. Clauses of the form Field Operator Field, Field Operator Constant

and Field Operator Variable are considered as mutants.
In almost all the cases the search space of the number of mutants is very huge (in the order of

40,000) leading to a blow-up in the worst-case exploration time (in the order of 40 hours assuming
an average of 5 seconds to execute 1 mutant). The main reason being the large number of distinct
values that could be compared in the clauses of the form Field Operator Constant. An algorithm that
does not consider clauses that involve constants would work much faster, however it would be
unsuccessful in discovering the correct WHERE condition for Ex1, Ex3, and Ex7.

Compared to the worst-case time taken by mutation approach, decision tree based technique
is fast. Since the algorithm learns the rule from scratch, the time for discovering the correct
condition remains the same irrespective of the number of clauses missing or erroneous in the
buggy statement, whereas this has a much worse effect on the mutation technique. However, the
condition generated by a technique that looks to make minimal changes to the existing condition,
may be closer to the ideally correct version as against our technique which would learnt the most
compact clause that works for the given data.

5 Related Work

Recent years have seen much progress in techniques for automated debugging – both for fault
localization [15], i.e., finding the locations of (likely) faulty lines of code, as well as program
repair [26], i.e., correcting the faulty lines of code to fix the fault(s), which is the focus of this
paper.
Fault localization. The application of machine learning to debugging is largely confined to fault
localization. Decision tree generation algorithms, including C4.5, have been used in conjunction
with the fault localization tool Tarantula [14] to cluster failing tests in order to help developers
manually fix bugs in their code more effectively [14, 3]. Statistical debugging techniques [18, 11]
employ statistical analysis on the data collected from passing and failing program runs to determine
likely faulty statements.
Program repair. The problem of program repair has been the focus of a number of recent tech-
niques, including those based on evolutionary algorithms [26], specifications [6], program code
transformations [5], as well as program state mutations [4]. The key novelty of our technique with
respect to previous work is two-fold: (1) previous work has not considered repair of SQL state-
ments, in general, and ABAP programs, in particular; and (2) machine learning and systematic
search have not been integrated before for program repair.

Weimer et al. [26] introduced the idea of program repair using genetic programming, where
existing parts of code are used to patch faults in other parts of code and patching is restricted to
those parts that are relevant to the fault. Ackling et al. [1] repair a program by evolving patches
to fix it rather than evolving the fautly program itself, and argue that doing so simplifies the repair
problem. Wilkerson et al. [27] present a co-evolutionary approach where code and its tests are

21



co-evolved to improve the bug finding ability of tests as well as to improve the overall quality of
the code in order to provide an automated software correction system.

Chandra et al. [4] use changes to program states in a faulty program to approximate the be-
havior of a correct program with respect to a given set of passing and failing tests, and use these
state mutations to guide syntactic changes to code in order to repair it. Malik et al. [19] use a
search-based technique for data structure repair [16] as a basis of program repair. Specifically,
they use mutations done on program state to fix corrupt data structures as a basis of synthesizing
program statements that abstract those fixes using program variables. Gopinath et al. [6] consider
a similar setting of repairing programs that operate on structurally complex data but use a differ-
ent approach. They introduce nondeterminism in the program’s operations and use SAT solvers
to generate valid program states (with respect to given specifications), which are then abstracted
into program expressions that evaluate to those states and provide the fixes. Jobstmann et al. [13]
originally used this technique to replace faulty program expressions with unknowns and formed a
model checking problem in order to repair a faulty program with respect to its linear time logic
specification. Griesmayer et al. [7] map the problem or repairing boolean programs to finding
a memoryless, stackless strategy in a game and explore the game graph to find a repair for the
boolean program, and show how it can be used to repair a class of C programs.

Debroy et al. [5] introduced the idea of using mutations, i.e., syntactic transformations to the
faulty program as a basis of repair. The developed their technique in the context of the Tarantula
tool and spectrum-based fault localization using a given set of passing and failing tests to focus
mutations. While such code transformations can assist in debugging, the space of variations to
explore grows very quickly the feasibility of using such a technique for real applications requires
developing novel pruning techniques.

Wei et al. [25] attempt to combine specification-based and test-based repair. Boolean queries
are used to build an abstraction of the state, which forms the basis to represent contracts of the
class, fault profile of failing tests and a behavioral model based on passing tests. A comparison
between failing and passing profiles is performed for fault localization and a subsequent program
synthesis effort generates the repaired statements. This technique however only corrects violations
of simple assertions, which can be formulated using boolean methods already present in the class.
Program synthesis. A closely related area to program repair is program synthesis [9], where a
goal is to generate (parts of) a program independently of a given incorrect version. A number of
program synthesis techniques are based on specifications. Programming by sketching [23] employs
SAT solvers to generate missing parts of a given skeletal program with respect to another reference
program that serves as a specification. A SAT solver completes the implementation details by gen-
erating expressions to fill the “holes” of the skeletal program by exploring several of its variants.
Gulwani et al. [9] use the counterexample guided iterative synthesis paradigm together with SMT
solvers to synthesize loop-free programs with respect to given specifications of desired functional-
ity. Kuncak et al. [17] generalize decision procedures into synthesis procedures to synthesize code
snippets from specifications.

To alleviate the burden of writing detailed specifications, some recent techniques support syn-
thesis based on given concrete input/output examples. Gulwani [8] presents such a technique for
synthesizing string processing code for spreadsheets using examples of how a user processes sam-
ple strings. More recently, Singh et al. [22] integrate scenarios, which illustrate steps of modifying
specific data structure instances, with given code skeletons and inductive definitions to facilitate

22



program synthesis.
At present, techniques for synthesis have largely been developed independently of techniques

for repair.

6 Conclusion

We presented a novel approach to generate repair suggestions for defective database programs,
where the faults are in the WHERE condition of a SELECT statement. We use techniques from
machine learning to learn a decision tree from the correct behavior shown on the defect-free data as
well on correct behavior determined for defect-inducing data. The decision tree guides our repair
technique. Our key novelty is to determine the correct behavior of the defect-inducing data using
a combination of SAT-based search and prediction generated by support vector machines (SVMs).
Experiments using a prototype embodiment of our approach on a suite of real programs show the
promise it holds in automated debugging.

References

[1] T. Ackling, B. Alexander, and I. Grunert. Evolving patches for software repair. In GECCO,
pages 1427–1434, 2011.

[2] K. P. Bennett and C. Campbell. Support vector machines: hype or hallelujah? SIGKDD
Explor. Newsl., 2(2):1–13, Dec. 2000.

[3] L. C. Briand, Y. Labiche, and X. Liu. Using machine learning to support debugging with
Tarantula. In ISSRE, pages 137–146, 2007.

[4] S. Chandra, E. Torlak, S. Barman, and R. Bodik. Angelic debugging. In ICSE, pages 121–
130, 2011.

[5] V. Debroy and W. E. Wong. Using mutation to automatically suggest fixes for faulty pro-
grams. In ICST, pages 65–74, 2010.

[6] D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based program repair using SAT.
In TACAS, pages 173–188, Mar. 2011.

[7] A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean programs with an application to
C. In CAV, pages 358–371, 2006.

[8] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In
POPL, pages 317–330, 2011.

[9] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free programs. In PLDI,
pages 62–73, 2011.

[10] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2), Apr. 2002.

23



[11] L. Jiang and Z. Su. Context-aware statistical debugging: from bug predictors to faulty control
flow paths. In ASE, pages 184–193, 2007.

[12] T. Joachims. Making large-scale svm learning practical. Advances in Kernel Methods -
Support Vector Learning, 1999.

[13] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In CAV, 2005.

[14] J. A. Jones, J. F. Bowring, and M. J. Harrold. Debugging in parallel. In ISSTA, pages 16–26,
2007.

[15] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test information to assist fault
localization. In ICSE, pages 467–477, 2002.

[16] S. Khurshid, I. Garcı́a, and Y. L. Suen. Repairing structurally complex data. In SPIN, pages
123–138, 2005.

[17] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthesis. In PLDI, 2010.

[18] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug isolation.
In PLDI, pages 15–26, 2005.

[19] M. Z. Malik, K. Ghori, B. Elkarablieh, and S. Khurshid. A case for automated debugging
using data structure repair. In ASE, pages 615–619, Nov. 2009.

[20] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[21] R. Quinlan. Induction of decision trees. Machine Learning, 1(1), 1986.

[22] R. Singh and A. Solar-Lezama. SPT: Storyboard programming tool. In CAV, pages 738–743,
2012.

[23] A. Solar-Lezama. The sketching approach to program synthesis. In APLAS, pages 4–13,
2009.

[24] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, 1995.

[25] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and A. Zeller. Automated
fixing of programs with contracts. In ISSTA, pages 61–72, 2010.

[26] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically finding patches using
genetic programming. In ICSE, pages 364–374, 2009.

[27] J. L. Wilkerson and D. Tauritz. Coevolutionary automated software correction. In GECCO,
pages 1391–1392, 2010.

24


