IBM Research Report

A Critical Note on Information Theory and Statistical Mechanics

Benoit Mandelbrot
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Thomas J. Watson Research Center, Yorktown Heights

A CRITICAL NOTE ON INFORMATION THEORY AND STATISTICAL MECHANICS*

by
Benoit Mandelbrot
4/16/62

Abstract

This is an examination of the central arguments of number of papers, which attempt to derive the canonical distribution of energy (due to Gibbs) from a principle of maximization of Shannon's information. We stress that there are many other concepts of information, so that the idea of information maximization is as ambiguous as the other parts of the theory of inductive behavior. Besides, we stress that the "information" approach does not allow one to dispense with a postulate equivalent to the second principle of phenomenological thermodynamics.

[^0]
LIMITED DISTRIBUTION NOTRCE

This report has been submitted for publication elsewhere and has been issued as a Research Note for early dissemination of its contents. As a courtesy to the intended publisher, it should not be widely distributed until after the date of outside publication.

1. Introduction

Recent discussions of the relations between the concepts of entropy, "negentropy" and information, have revived the controversy and the isritation which seem always to accompany the discussion of the role of the observer in the structure of statistical thermodynamics. Among the authors who believe that information should play a role in thermodynamics, two main viewpoints can be distinguished:

Some authors consider that the structure of the "special" thermodynamical theory of equilibrium hes been well established without any reference to the concept of information. They use the latter ondy to extend the scope of thermodynamical arguments, not denying the axbitrariness which is introduced with the observer. This was the case of Szilard (IIb and IIc), who had earlier given his own set of thermodynamical foundations (1la). Similar attitudes can be found in the work of Bxillouin (l) and in our own (9a to 9d).

Other authors believe on the contrary that the concept of information should be used in the very foundation of even the most classical parts of thermodynamics. A particularly forceful and well-written exposition of this approach has been given by E. T. Jaynes (6); it was adopted to engineering instruction by M. Tribus (12) and was extended by R. Ingarden and K. Urbanik (5). In P. T. Landsberg's recent treatise (8), a similar set of calculation is reinterpreted in an "objective" way, but it does not play any centrad role in the development.

The primary purpose of the present Note is to examine what has come to be called "Jaynes' method" and to show that its formal simplicity and its seeming "obviousness" are both misleading.

First of and, Jaynes' approach seems so simple because it neglects to stress one of its fundamental axioms; although the concept of entropy is basic to his approach and serves to derive the canonical law, Jaynes' axioms are not sufficient to show that the temperature which occurs in the canonical law is the same as the integrating divisor of "heat". His method for proving this essential point is traditional in statistical mechamics and-as usual -he does not stress the assumption that the discrete "states" of a physical system are neither created nor destroyed when the external parameters are varied. (This is the simplest case of what is called generally the adiabatic invariance of the weight of degeneracyl. Of course, this conservation of "states" seems to be a most netural assumption"; but it only means that a well-chosen term can go a long way towards making a postulate look obvious while it is not. In statistical mechanics, one must prove that "state" is more than a word; in thermodynamics, one cen prove that "adiabatic invariance" is equivalent to the second principle of thermodynamics in Clausius' or Carathéodory's forms. If this additional principle is stressed, Jaynes' approach becomes much less simple.

Second, Jaynes' approach seems obvious because it relies upon Shannon's proof of the unicity of his concept of "information". Fowever, the circumstances encountered in physics destroy this unicity and special (less intuitive) arguments are necessery in order to show, for example, that "information" is not the concept bearing the same name which was introduced in 1925 by R. A. Fisher, or the concept of informetion of Wald-Kullback-Leibler, or perhaps some other version of the general concept of information introduced by M. P. Schutzenberger (10a and lob). Hence, the
method based upon a maximization of Shanon's information caricarry no more conviction than a host of other more or less arbitrary inductive procedures.

Note also that Jaynes' approach is too successful in explaining what is "the" entropy. That concept has "so many faces" to use a phrase of H. Grad (4), that it camnot be represented -even in the case of equilibriumby any single mathematical formula.

We shall say no more about the questions related to the second principle, and shall rather give more details about information-maximization, which turns out to be related to the zeroeth principle. We shall make no pretemse of being a disinterested party and shall frequently refer to (lla and 11b) and to (9a to 9d).

It should be stressed that we have no quarrel with either of the two well-known intexpretations of thermodynamics; the subjectivistic one-of which Jaynes gives a good if somewhat extreme exposition-and the objective istic one-which is used by Landsberg. We think 组at it is most desirable that a foundation for thermodynamics be interpretable in both ways.

2. The Canonical Distribution and Baltzmann's Dexivation

A central point of statistical thermodynamics is the canonical distribution of Gibbs, which we shall write as follows:

$$
\begin{aligned}
& \operatorname{Pr}\{\operatorname{any} \text { state of energy } u\}=\exp (-\beta u) / Z(\beta), \\
& \operatorname{Pr}(u \leq \operatorname{encrgy} \leq u+d u)=d G(u) \exp (-\beta u) / Z(\beta),
\end{aligned}
$$

where G is the number of states of energy not greater than u.
One of the basic derivations of this distribution is a generalization by Einstein of an argument ciue to Boltzmann.

After many approximations, one shows the following: $p(x)$ being the probability of encountering a partial system S_{m} in the state Q_{r}, one shoudd
expect an isolated system $S=\Sigma S_{m}$, of enezgy u, to be in the state in which one attains the maximum of

$$
-\Sigma p(x) \log p(r), \text { given } \Sigma_{p}(r)=1 \text { and } \sum_{p}(r)_{u_{r}}=u .
$$

(This property is derived by Gibbs as a theorem concerning the canonical distribution).

Unforturately, this characterization involves a succession of approximations, the scope of which is difficult to evalutte. In paxticular, the expression- $\Sigma p(r)$ log $p(r)$ plays such a central role in the theory, that one would like to derive it more directly. Moreover, in carrying out the maximization of $m p(r)$ log $p(r)$, one must replace u by $\mathbb{E}(U)$; this operation is usually performed too casually, as we have stressedin (9), and it may be preferable to motivate directly both the idea of maximazation and the choice of quantity to maximize.

3. Use of the Axiomatics of Shannon's Information

The striking formal anelogy between the entropy and Shamon's information has suggested two kinds of reinterpretations of the operation

$$
\text { maximize }-\Sigma p(r) \log p(r), \text { given } \Sigma p(r)=1 \text { and } \Sigma p(r) u(r)=E(U) \text {. }
$$

Objective Approach: Step One

The concept of entropy is borrowed from non-statistical thermodynamics and it is assumed thet, at equilibrium, it attains the maximum compatible with all the other constraints.

Step Two
One assumes that entropy must a priori satisfy certain axioms, Which turn out to be also true of Shannom'sinformation. Then, accordingto a theorem of shannon, entropy must be represented by the expression

"- $\sum p(r)$ log $p(r)$ " which must be maximum in the state of equilibrium.

Subjective Approach: Step One

The concept of the "least-prejudiced" inductive procedure is introduced as beimg the best way of behaving in the presence of uncertainty.

Step Two

One assumes that 'prejudice" must a priori satisfy certain axioms, which turn out to be also true of Shannon's information. Then, according to a theorem of Shannon, prejucice must be measured by information, and ${ }^{\prime t}-\Sigma p(r) \log p(r)$ ' must again be maximized.

4. A Critique of Step One

We have, of course, nothing against the process of maxincization, which-once the foundations of the theory have been laid-frequemtly prom vides the most direct way of going further. ${ }^{1}$ Eut, in our opinion, maximization is inacceptable in the foundations, for the following reasons.

In the objectivistic interpretation, it postulates that nom-statistical thermodynamics has already been established, and that one wants to generalize its principles to obtain fuller, statistical, description. As a matter of fact, in order to base the statistical thermodymamics of equilibrium, this procedure requires a definition of entropy so general, that it applies to mon-eguidibrium situations as well. Under these conditions, one cannot fulfill one of the aims of the statistical theory: to derive the nonstatistical approach as a theory of expected behaviors. This unsatisfactory

[^1]situation becomes quite untolerable if one's ambitions are increased, and if-following (11) or (9)-one wishes to have a foundation of thermodynamics that is immediately both phenomenological and statistical.

In its subjectivistic interpretation, the approach based upon maximization stands or falls with a certain method of inductive behavior, which happens not to have benefited so far from the energetic discussion to which statisticians usually subject proposals of this kind. [The only discussion that we can mention here is due to the physicist Cox (2)]. Of course, the statisticians' fashions are not to be followed blindly. But, in view of their well-known inadequacies, ever the 'best'" methods of induction cannot be welcomed in the foundations of thermodymamics. The situation becomes-again-untolerable when one notes that the canonical distribution of Gibbs also happens to be "optimal" from the viewpoints of a host of other inductive procedures. As a metter of fact, we saw in (9a) that "Gibbs' law" is a synonym for the statisticians: "distribution of the exponential type" and that it has the property of "statistical sufficiency" that makes it optimal from the viewpoint of almost every inductive procedure. Since sufficiency can be interpreted subjectively, the stress upon any special inductive procedure is conceptually misleading. Under the circumstances, one cannot put any trust in an argument that singles out the method based upon information maximization.
[However, it is clear that the arguments using "statistical sufficiency" are far less obvious than those based upon entropy maximization. Hence, from the viewpoint of pedagogy, there may be advantege in the following roundabout procedure: A) Argue that-in order for statistical sufficiency to hold-it is necessary that any specific procedure-such as maximum likelihood estimation of maximum information behavior-depend only upon the total energy of an isolated system. B) Derive the canonical law in this way. C) Verify a posteriori that the canonical law is logically sufficient as well as necessary for statistical sufficiency to hold.]

Actually, the information-theoretical approach ayain yields more than the canonical distribution, because it defines entropy for all moncanonical distributions. This procedure may be necessary in non-equilib. rium thermodynamics; but this is still a most questionable field and it seerms to be poor pedagogy, to require it in order to dexive the wholly unquestioned equilibrium theory.
5. ACritique of Step Two

Many professional statisticians expuessed surprise at Smamnon's axiomatic of informetion, since they had long before used another concept, due to R. A. Fisher, which was also based upon an \{informel\} axiomatic of the common idea of "informetion". Wald [see (7)] uses still

2

On p. 47 of essay mumber 26 of (3), Fisher writes: ". . The amoumt of information is calculable... In introducing the concept of quantity of information we do not want merely to be giving an arbitredry name to a calculable quantity, but must be prepared to justify the term employed, in relation to what common sense requires, if the termis to be appropriate, and serviceable as tool for thinking. The mathematical consecuences of identifying, as I propose, the intrinsic accuracy of the eqror curve, with the emount of information extracted, may themefore be summarized specificelly in order that we mey judge by our pre-mathematical common sense whether they are the properties it ought to have.

First, then, when the probabilities of the different kinds of observation which can be made are all independent of a paricular parameter, the observations will supply no information about the parameter. Once we heve fixed zero we can in the second placefix totality. In certain cases estimates are shown to exist such thet, when they are given, the distributions of all other estimates are independent of the parameter required. Such estimates which aze called sufficient, contain, even from fintte samples, the whole of the information supplied by the data. Thirdly, the information extracted by an estimate can mever exceed the total quantity present in the data. And, fourthly, statistically independent observations supply amounts of information which are additive. One could, thexefore, develop a mathematical procedure. It is perhaps, only a personal preference that I am more inclined to examine the quantity as it emerges from mathematical investigations, and to judge of its utility by the free use of common sense, rather than to impose it by a formal definition!'.
another concept of information, which has also corne to play a big role in the work of the Russian school of probability. The confusion was increased by Wiener's easual remark that the Shannom-Wiener information can be substituted to that of Fisher. Finally, Various students of inuman organizations and of inductive behavior have used still other concepts of the same name, semantic or otherwise.

There is, therefore, surely no concensus of opinion about the identification of physical entropy with Shannon's information. As a matter offact, Fisher found a relation between entropy and his information. ${ }^{3}$

This forces a re-examination of the exiomatics of Shamon's information, and one sees indeed that these axioms are not necessaxily relevant to physics. (For example, in order to give a physical mearing to the axiom referring to equiprobable events, it is necessary to consider systems of fixed energy, having $d G(u)$ equi-probably "states". But, if two such systems are put together into one, $G(u)=\int G^{\prime}\left\langle u^{\prime}\right) d G^{\prime \prime}\left(u-u^{\prime}\right)$ so that the information $\log (d G)$ of the whole is not the sum of the informations $\log \left(d G^{\prime}\right)$ and $\log \left(d G^{\prime \prime}\right)$ of the two parts; hence, the axiom of additivity refers to a physically non-realizable situation).

A more fundemental question is the following: Shannon's derivation assumes that $P(r)$ does not depend upon any extraneous parameter. But-after the expression for information has been derived-it is immediately

3

The quotation of footnote (Z) continues as follows: .. ""As a mathematical quantity information is strikingly similar to entropy in the mathematical theory of thermodynamics. You will notice especially that reversible processes, changes of notation, anthematical transformations if singlevalued, tramslation of the data into foreign languages, or rewriting therr in code, cannot be accompanied by loss of infoxmation; but that the irreversible processes involved in statistical estimation, where we cannot reconstruct the origimal data from the estimate we calculate from it, may be accompaniedby a loss, but never by a gain!".
applied to the derivation of a distribution parametrized by temperature. Actualiy, if one puts the parameter in at the beginning, and if one uses a somewhat more general set of axioms, due to M. P. Schutzenberger (10), one may obtain any one of the expressions

$$
-\Sigma p(x \mid \theta) L\{\log [p(x \mid \theta)\}\},
$$

where L is some linear operator. For example, Wald's information corresponds to the shift operator relative to a parameter, that is to $L[G(\theta)]=$ $G(\theta)-G\left(\theta^{*}\right)$; Fisher's information corresponds to $L[G(\theta)]=\left(\partial^{2} / \partial \theta^{2}\right) G(\theta)$; and Sinannon's information corresponds to $L[G(\theta)]=$ constant. $G(\theta)$.

As a result, Shannon'sinformation becomes again unique if one adds the condition that there are no outside parameters. Alternatively, one may add as an axiom an innocuous-looking condition of normalization. In other Words, in order to make Shannon's information unique, one must: a) either make the axiomatic more stringent than that of Schutzenberger (some of the axioms will then be of misleading inocuity); b) or take account of the fact that, in the "special" cese of canonical systems, the concept of entropy can be introduced on the basis of phenomenological statistical principles that do not suffer from undeterminate inference; therefore, an information-theoretical generalization of entropy must coincide with the ordinary concept for canonical systems, and this determines information as being Shannon's.

Very similar observations have long ago been made in the original context of Shannon's information, namely the theory of the trensmission of digital data. The main fact there is the existence of inequalities in which one side is the something interpreted as "information". The axiomatic approach is only a dressing that makes certain words palatable; it has turned out to be a mistake to overnemphasize it.

6. Conclusion

Even if a foolproof axiomatic of "entropy-information" were available, the argument using this concept has none of the obviousness that it seems to enjoy. Of course, the ultimate criterion inh this whole question is one of pedagogy; but-if one insists upon using information-the best is to introduce it heuristically and not to skim it too muck.

REFERENCES

Brillouin, Leon: Science and Information Theory. New York, Academic Press (1956), (Second Edition, 1961).
2. Cox, Richard T.: The Algebra of Probable Inference, Baltimore: The Johns Hopkins Press (1961).
3. Fisher, R. A.: Contributions to Mathematical Statistics, New York,
Wiley (1950).
4. Grad, Farold: "The Many Faces of Entropy", Comm. Pure and Appl. Math. 14 (1961), 323-354.
5. Ingarden, Roman S. and Urbanik, K.: 'Quantum Informational Thermodynamics", Acta Physica Polonica, Vol. 21 (1962) 281 -304.
6. Jaynes, E. T.: "Information Theory and Statistical Mechanics", The Physical Review, Vol, 106 (1957), 620-230 and Vol. 108 (1957), 171-190.
7. Kullback, Solomon: Information Theory and Statistics, New York,
Wiley (1959).
8. Landsberg, T. T.: Thermodynamics, New York, Intersicence (1961).
9. Mandelbrot, Benoit: "The Role of Sufficiency and of Estimation in Thermodynamics", Annals of Mathematical Statistics, 33 (1962); b) "Derivation of Statistical Thermodynamics from Purely Phenomenological Principles", LBM Research Report NC-106; c) "Exhaustivite de I'Energie Totale d'un Systeme, Pour l'Estimation de sa Temperature", Comptes Rerdus de I'Academie des Sciences de Paris, Vol. 243 (1956), 1835-1838; d) "An Outline of a Purely Phenomenological Theory of Statistical Thermodynamics",

Institute of Radio Engineers（IRE）Transactions on Information Theory，Vol．IT－2（Sept．1956），190－203．

10．Schutzenbergex，M．P．：a）＂Sur les Rapports Entre la Quantite d＇Information au Sens de Fisher et au Sens de Wiemer＇，Comptes Rendus de l＇Academie des Sciences de Paris，Vol． 232 （1951）， Information Theory Measures of Information Usedin Statistics＂ Cherry）New York，Academic Press（1956），18－25．

11．Szidari，Leo：＂Uber die Ausdehnung der Phánomenologischen Thermo－ dynamik auf die Schwankungserscheinungen＇＂，Z．Phys．Vol， 32 （1925）， 753－788；b）＂Uber die Entropievexminderung in Einem Thermody－ mamischen System bei Eingxiff Intelligenter Wesen＂，Z．Phys．Vol． 53 （1929），840－856．

12．Tribus，Myron：Thermostatistics and Thermodynamics，Princeton，
van Nostrand（ 1962 ）．

[^0]: F
 This work was partly supported by the Office of Naval Research, under contract number Nomr-3775(00), NR-047040.

[^1]: ${ }^{1}$ Note that our comments conceraing maximization of information do not apply to our work on the statistical properties of wordcounts. In that cese, information is not maximized because it has certain axiomatic properties, but because it is a central concept in the theory of coding of messages. See the end of Section 5 .

