
Survey of Software Fault Localization

Nimit Singhania
IBM India Research Laboratory

New Delhi, 110070, India
nimising@in.ibm.com

Abstract

I present a survey of automated techniques for software
fault localization. Fault localization or localizing the root
cause of failure is one of the most difficult processes in
software debugging. Hence, many automated techniques
have emerged to help in this process. Most of these tech-
niques are based on the principles used in real life for fault
diagnosis. I have used these principles to classify fault lo-
calization techniques

1 Introduction

Software debugging is one of the most time consuming
process in software development and finding root cause of
a failure is one of the most difficult process in debugging.
So, many techniques have emerged to automatically
localize fault in software. In this survey, I cover the
major techniques explored for automatic software fault
localization.

Software fault localization is not much different from
fault localization in any other domain. Instead, we apply
the same principles to diagnose software as in any other
system. Some of these principles can be outlined as fol-
lows:

1. Anomalous Behavior: Faulty systems show many
anomalies apart from the actual failing output. They
tend to show behavior much different from the stan-
dard correct behavior. Thus, identifying such anoma-
lies in the system behavior can help us gain better
insight into the fault.

2. Experimentation: Experimenting with a system can
help gain information about the fault.

3. Dependence Analysis: Systems have cause-effect
chains. These cause effect chains can be traversed to
find regions containing fault. For example, the fault
has to be in the cause chain of a failing output and
hence, we can restrict search for fault in the cause
chain of the statement.

4. Logical Deduction: Given some information about
a fault, many logical inferences can be derived about
it, which may be useful to detect fault.

5. Knowledge Reuse: Previous knowledge about a sys-
tem can be useful to locate the fault. This knowl-
edge could be in various forms, like earlier experi-
ence with resolving faults or learning system specific
properties etc.

Further, during any fault localization process, we
perform the following steps. First, we look for clues or
facts available about the fault in the system. Then based
on these facts, we make some inferences about the fault.
If the inferences lead to localization of fault, we are done.
Otherwise, based on the inferences from previous steps,
we try to gain new information from the system. This
process repeats till we localize the fault.

I use the principles described above to organize the
techniques explored for software fault localization.

1

2 Problem

Given a software that contains one or more faults, the
objective of software fault localization is to localize code
region that is most likely to contain fault. Here, some
information about the bug may be initially present like
a failing execution of the software, source code of the
software, feedback from user about type of fault that
occurs etc. Different techniques use different information
about the fault. Given such information, the techniques
pinpoint code regions that contain or are likely to contain
the fault.

I would like to clarify some terminologies used here.
Failure represents a condition where the software either
crashes or produces incorrect output in an execution of
the software. Afault / bugrepresents code in the software
that is the source of failure and thus needs to be modi-
fied. Failing outputrepresents the location in the source
code where failure is finally observed by the user. Hence,
the aim of software fault localization is to locate code re-
gion that is likely to contain fault, given a failure or failing
output. Anexecution trace represents the sequence of
statements executed in the corresponding execution of the
software. Afailing trace corresponds to execution trace
in an execution with failure andcorrect / passing trace
represents an execution that is correct and does not show
failure.

3 Techniques

I have divided the techniques for software fault localiza-
tion into following categories, based on the principles de-
scribed earlier.

3.1 Anomalous behavior

The principle used here is that a system shows anomalous
or unusual behavior when it has a fault. Hence, apart from
the actual failing output, the system also has other anoma-
lies which can be used to detect the source of failure.

This is useful in software fault localization too. Hence,
many automated techniques try to locate anomalies in the
failing executions. How do we identify such anomalies?

An anomaly in a failing execution is a feature of the fail-
ing execution that is rarely or never found in correct exe-
cutions. Hence, the failing execution is compared with the
correct executions to find such features and these features
are reported back to the user.

Different techniques take into account different aspects
of these executions, like set of statements executed, or the
paths taken etc and use these to compare the executions.
Hence, given an execution, this information is abstracted
from the executions and is known asprogram spectrum
[19].

In [14] and [15], authors give statistical techniques to
find features that correlate highly with bugs or faults. [14]
focuses mainly on fault localization in software with sin-
gle faults. [15] extends [14] to handle large software con-
taining multiple faults. Both the techniques focus on lo-
cating bugs in deployed software. Here, the code is first
instrumented with numerous assertions or predicates and
the values returned for these assertions in an execution
form the program spectrum. The assertions include values
of the branch predicates, sign of return values of func-
tions, boundary checks on scalar variables etc and thus
represent features of program execution. They are intro-
duced into the software code either manually or automat-
ically by compiler transformations. These assertions are
then sampled during the executions of deployed software
by users. However, sampling all assertions from an execu-
tion adds a lot of overhead and may impact performance
of the software. So, as numerous executions of code occur
by its users, the load of sampling assertions is distributed
among users and only a small number of assertions are
sampled in any execution. The sampling needs to be sta-
tistically fair and each assertion should have fair chance to
be sampled in an execution. Hence, source code is further
augmented to ensure this.

In [14], for deterministic bugs (bugs for which some as-
sertions exist that are always true when the failure occurs),
assertions predicting the bugs are found by eliminating
the false assertions. For non-deterministic bugs (bugs that
are not deterministic with respect to any assertion), it is a
statistical problem of finding features of program spectra
that best predict failing executions. This is equivalent to
a machine learning problem of learning a binary classifier
using as few input features as possible and is solved by
statistical logistic regression.

2

In [15], the above technique does not work because,
logistic regression tries to find least number of asser-
tions that best describeall the failing executions, and not
just ones that occur due to specific bugs. Hence, asser-
tions that predict multiple bugs (super bug predictors) or
ones that predict some specific cases of failure of a bug
(sub predictors) get dominance. This problem is solved
as follows. The authors define a probabilistic measure
Increase(P)1, for each assertionP , which determines
the failure predicting power of the assertion. It is found
that assertions with negative values ofIncrease() do not
predict failure and thus are eliminated. Now, the asser-
tions that can expose bugs need to be found. Assertions
that have highIncrease() values, correlate very well with
failure. However, they may predict only a small set of fail-
ing executions (sub bug predictors) and hence, may not
lead us to the bug. But, assertions that predict large num-
ber of failing executions (super bug predictors) are not
specific to any bug and are not useful. We need a balance
between failure predictive power (Increase()) and num-
ber of failing executions predicted. Hence, the assertions
that have a good balance of both of these properties are
found to predict bugs and are reported to the user.

Similar to above, given a set of passing and failing
executions, [11] uses statistical techniques to present
fault information visually in the source code. Here, set
of statements in the source code executed in a program
represent the program spectrum. The statements are
colored by a color in the range red to green according to
their probability of being executed in failing executions
as compared to that in successful executions. Thus
red statements are more likely to contain faults as they
are frequently found in failing executions but rarely in
successful executions and vice versa. Also, brightness
of the statements is in proportion with the percentage of
failing or passing test cases in which they are executed,
whichever is higher. This highlights statements that are
executed in majority of failing or passing executions.

In above techniques, all failing and passing executions
are compared directly. However, many of these failures

1Increase(P) = Failure(P) - Context(P) where
Failure(P) = Prob(program fails| P is observed to be true)
Context(P) = Prob(program fails| P is observed)
Increase(P) basically represents the increase in probability of failure
when P is observed true.

occur due to different bugs and thus, when software has
multiple bugs, problems similar to [15] occurs. Even
though [15] reduces these problems by using an appropri-
ate ranking scheme, they are not completely eliminated.
Hence, we now discuss a few techniques that take one
failing execution at a time and compare it with correct ex-
ecutions to find anomalies. Here, first a model of correct
behavior of the executions is built from the passing exe-
cutions. Then, the failing executions are compared with
this model and anomalies are reported to the user.

[23] uses time spectra to represent program executions
and tries to catch regions of code that take unusual amount
of time in the failing executions. By time spectrum, we
mean information about time spent by an execution in dif-
ferent regions of the source code. This information is col-
lected at the granularity of functions. As stated above, it
first builds acorrect behavior model for the program us-
ing the time spectra of passing executions. It builds a be-
havior model for each function in the program. For each
function in the program, it collects the distribution of time
spent in the body and functions called within, from the
passing executions. Then, it builds a statistical model on
this data to get the required behavior model. Now, given
a failing execution, for each method invocation, the time
spectrum is computed and mapped to the corresponding
function model. The invocations whose spectra are least
likely to be found in correct program executions accord-
ing to the model are reported back to the user.

[9] tries to find anomalies in the values of expressions
in a program (values of expressions in a program rep-
resent the program spectra here). It maintains dynamic
invariants (correct model) for expressions at different
program points. An invariant captures the set of values
that are allowed for an expression in a correct program
execution. All the expression values are first reduced to
integers. Then, invariant is represented by two bits for
each bit position in an integer. One bit stores the initial
value of this bit and other stores if different values are
allowed for this bit. In this way, it maintains precise
information in the invariant when it accepts a small set
of values, and only approximate information for larger
sets. Given a set of correct and failing executions, these
invariants are generated from the correct executions and
then for each failing execution, the expressions whose
invariants are violated are reported to the user.

3

[19] uses comparison of failing executions with
successful executions that are verysimilar to the
failing ones, rather than comparing them with arbitrary
successful executions and hence executions that are
irrelevant to the error. This may provide better results if a
close enough successful execution is found for the failing
execution. This technique definesdissimilarity or
distance between executions using size of the difference
in sets of statements executed by the executions. Using
this distance measure, it finds a successful execution that
hasminimum distance from given failing execution and
reports the difference between them. [7] uses a different
distance metric based on control flow. It firstaligns
the statements in two different executions, so that every
statement instance in one execution has a corresponding
equivalent statement in the other execution. The distance
metric is given by the set of branch statement instances
which are aligned and have different outcomes in the
executions.

[20] provides a technique to find the year 2000 bugs
in program. This was one of the first techniques to use
comparison of executions to point out regions containing
fault. Here, set of intra-procedural loop free paths
executed in the program execution are used as spectra.
Given an input for which the program fails for a post
2000 execution, [20] returns paths that are executed in
post 2000 execution but not in pre 2000 execution. The
shortest distinguishing prefixes of such paths potentially
contain the date dependent computation and hence the
fault.

A few model checking techniques, use the idea of com-
paring executions to find source of failures in counterex-
amples produced by these tools. Model checking tools are
used to verify certain properties of systems and whether
these properties hold for all possible executions of the
program. If not, they produce counterexamples which
represents a possible execution that violates the given
property. These counterexamples are generally lengthy
and difficult to understand. Hence, additional information
is needed to understand the cause of failure. An essen-
tial feature of these techniques is that information about
all the executions of the program, is present in the model
checking framework and hence, they have access to all
possible executions of the program.

[2] reports a set of failing traces, each of which
correspond to an errorcause. An errorcauseis defined
as a control flow transition that is found in a failing
trace, but in none of the correct traces. Given a program,
[2] first finds a failing trace in the program. If one is
found, it finds control flow transitions in this trace that
never occurs in the correct traces (This information is
obtained from the model checking framework). It reports
them along with the trace. Now, it searches for failing
traces due to other cause transitions. For this, already
found failure causing transitions are first blocked. Then,
new failing traces are generated by model checking tool
and their causes are reported. This process repeats till
no new failing traces are found. [5] extends the idea
of [19] to also report a successful trace closest to the
failing trace (counterexample). Similarly, [6] produces
multiple positive and negative traces that are related to
the same error cause and then apply above techniques of
comparing failing and successful executions to find faulty
code regions.

The techniques in this domain have some limita-
tions. The results of a technique in this domain are
highly dependent on the type of spectra used, the type of
comparison made between passing and failing executions
: statistical ([15], [14], [11], [23], [9]) or distance based
([19]), and the type of fault present. There exist no
general technique that works best with all types of faults.
Instead, a fault, that can be caught by a technique in
this domain, is best captured by a specific spectra and
comparison type. If a coarser spectra is used, it may not
show up as an anomaly. Similarly if a finer spectra is
used, many false anomalies may show up along with the
actual anomaly exposing the fault. Hence, given a failure,
it is not possible to know whether a program spectra
technique can catch the fault or what type of spectra and
comparison of spectra should be used to catch it, unless
we know some details about the type of fault present in
the software.

3.2 Experimentation/Mutation based tech-
niques

These techniques experiment with the system in order to
find faulty regions. An example used in real life can ex-

4

plain the idea better. Consider a flashlight that is not
working and we wish to locate the fault. One of causes
of failure could be zero charge in batteries. To test this,
we try replacing batteries with new ones or ones contain-
ing charge. If the flashlight starts working, it implies that
batteries must have discharged. If not, we now know that
the fault is in other parts of the flashlight. Now, either
the bulb might have blown out or the problem is in the
circuitry of the flashlight. To test this, we further try re-
placing the bulb and the process goes on till we reach the
source of error. In this way, by replacing parts of the flash-
light with correct components, we can locate the source of
failure.

The basic idea here is thatremoving the source of
failure from the system shall remove failure as well.
However, at all times, changes to the system should be
valid, and should not introduce new errors into the system.

Delta debugging[25] was one of the first few tech-
niques to exploit this idea. It uses this idea to locate faults
in GCC(GNU C Compiler). Given a failure producing in-
put, it experiments changes in the input, so as to isolate
the error into smallest possible region of the input. It does
so by experimentally removing components of input and
check if that removes failure. If yes, then the correspond-
ing removed components contain the fault otherwise the
remaining components of the input contain the fault. It
recursively applies this technique to reach the smallest in-
put component that induces failure. Also, it gives a failing
and passing input (let them bef ′ andp′ respectively), one
containing failure inducing component and other not. It
uses divide and conquer process to ensure that the num-
ber of experiments is at most quadratic in size of input
program.

Once, a minimal input is found, it experiments changes
to program states in GCC execution onf ′ andp′. Given a
program point where the program states of passing and
failing executions are similar, it tries replacing compo-
nents of failing execution state with corresponding com-
ponents from passing execution state to find components
in the failing execution state that lead to failure. This is
done at different program points and failure inducing pro-
gram state components at different program points are re-
ported to the user.

[17] improves upon [25] by taking hierarchal structure
of input into account, while finding minimal failure

inducing input. It applies technique in [25] first at the
highest level in the hierarchy to induce failure inducing
components at this level. Then, it moves to the next level
of hierarchy of these failure inducing components and
applies this technique. This goes on till we reach the
lowest level. This technique ensures that all intermediate
inputs are syntactically valid. Further, it also leads to
fewer experiments as compared to [25] and hence is
scalable to larger inputs.

Now, we look at a technique that experiments with the
control flow path executed in a program execution, so
as to obtain a path that removes failure. Given a failing
execution of a program, [26] modifies the execution by
switching predicate outcomes at branches and forcing
the execution along alternate branch. It switches only
one predicate outcome at a time and hence ensures that
number of new executions produced are linear in number
of branches in the failing execution. Last executed predi-
cates before the failing output, are switched first. Further,
priority is given to predicates that have dependences
with the failing output and these are further prioritized
according to their dependence distance from the failing
output. This ensures that the number of switchings
are least possible before we get a successful execution.
Now, predicate whose outcome was switched to create
a successful execution or led to removal of failure, is
reported to the user. Further, statements that could effect
the value of this predicate are also reported.

[3] experiments with the values of expressions in the
program executions and tries to find expressions that are
likely to contain fault. First, it tries to find expressions,for
which some alternate values in failing executions leads
them to pass. These are called repair candidates. After
this, it eliminates repair candidates that are inflexible, or
do not allow change in their value in some passing execu-
tion as it would break otherwise. This is because changes
to an expression in a program lead to changes in value of
the expression in most of its executions. Hence, after a
faulty expression is fixed, passing executions are likely to
get a different value for the expression. If a passing execu-
tion does not allow alternate value for an expression, then
such an expression cannot be changed and hence cannot
be a repair candidate. Thus, such expressions are elimi-
nated. It finally reports all the remaining repair candidates

5

to the user.
In both these processes, it tries to find expressions

that allow an alternate value in the execution. For
this, it repeats the following process for different ex-
pressions and executions. Given an expression and
a program execution, the expression is replaced by a
symbolic variable, and then symbolic execution is used
to find values that lead to successful program execution
and are different from the original value of the expression.

This is a very useful technique that can give us a lot of
information about the fault. However, experiments need
to be conducted intelligently otherwise, it may happen
that very little or no information is gained about the fault,
even after numerous experiments.

3.3 Dependence Analysis

Systems, that have a sequence of events, have cause effect
chains. Hence, the cause effect chains can be transversed
to find more information about the error. For example, if
we know that execution of a statement always leads to
error, then the error is either in the cause or the effect
chain of the statement and hence only these statements
should be looked at to locate the fault. This idea is used
by static and dynamic analysis techniques to find faulty
code. We discuss here a few techniques in this domain .
Static andDynamic Slicing[1] are first few algorithms

in this domain. Abackward static slice of a variable is
the set of statements that can effect the value of variable at
this program point in some potential run of program. Sim-
ilarly a forward staticslice of a variable is the set of state-
ments that can be affected by the value of variable at this
program point. Dynamic Slicing takes into account a spe-
cific run of program while computing slices. Abackward
dynamic slice of a variable at a point in execution is the
set of statements in the execution that effect the value of
variable at this point. Similarly aforward dynamicslice is
defined. In general dynamic and static slices contain large
number of statements and are not always useful to locate
faulty code.

[8] integrates dynamic slicing and delta debugging [25]
to find code regions containing fault. First, it finds the
minimal failure inducing input using delta debugging.
Now, the error is bound to be in the forward dynamic
slice of this minimal input in the corresponding failing

run. Similarly, error has to be in the backward slice of
failing output variable. Hence, this technique computes
the above slices and finds the intersecting region. This
code region should contain the error and is output to the
user.

Dynamic slice cannot capture errors due to omission of
execution of some correct statements which happens be-
cause of incorrect outcome of the enclosing branch pred-
icate. In such cases, the branch predicate of the omitted
statements is not included in the dynamic slice and hence,
the cause of failure which is the cause of incorrect branch
outcome is not included in the dynamic slice. [27] ad-
dresses this by addingimplicit dependence edges to the
dependence graph (A dependence graph describes the di-
rect dependences among statements in a program trace).
A statementu is implicitly dependent on a branch predi-
catep , if on switching the predict outcome,p affects the
output at statementu i.e. in the new program run with
outcome ofp switched, eitheru is not executed, orp is in
the dynamic slice ofu.

[16] gives a static analysis technique to handle
typestate errors like NULL dereference etc. A typestate
of a variable or object is given its current state in a types-
tate automaton. As different operations are performed on
this object, its typestate changes according to the transi-
tions of the automaton. For example, the following figure
1 represents the typestate automaton for NULL derefer-
ence errors. Initially, all pointers are inuninit or unini-
tialized state. When an assignment occurs, their typestate
transitions tounsafe state. Then, a pointer dereference
takes the object toerror state and all variables or objects
in error state are likely to have NULL dereference error.

Figure 1: TypeState Specification for NULL Dereference
[16]

Given a program point where the failure occurs and the
type of error, [16] tries to locate the possible faulty state-
ments that could lead to failure. It tracks the typestate
information in backward direction. Given an object is

6

in error state, it tracks the typestate information in the
backwards direction to find statements, where the actual
error might have initiated. For example, in the case of
NULL dereference, it tries to locate statements, where the
initialization of NULL value to a pointer may have oc-
curred. It tracks the typestates backwards, and tries to
find statements, where transition fromuninit to unsafe

could have occurred. For this, it first reverses the types-
tate automaton. Then, it traverses the control flow graph
from the error location to find possible locations where
the error may have began.

[10] applies static analysis to a specific path in the pro-
gram. Given a control flow path in the program, it tries
to locate a subsequence of the path that is necessary for
the execution of the path i.e. the path can be executed
only if the subsequence is feasible. Such a subsequence
is known as path slice. Formally, a path slice is a sub-
sequence of the path such that if the slice is infeasible,
path cannot be executed in any execution of the program,
whereas, if it is feasible, the exact path may or may not be
feasible, but the target location of the path is reachable.
It is obtained by backward data-flow analysis, that takes
only those statements that can control the path to the tar-
get location. Details can be found in [10].
This is helpful in analyzing counterexamples produced by
many model checking and static analysis tools. It differs
from dynamic slice in the fact that the given path may not
be a feasible path and hence, not reproducible in any dy-
namic execution. Further, it is more specific than static
slice, as it takes into account only statements in the given
control flow path.

The strength of these techniques is that, in most cases,
the fault is guaranteed to be in the slice reported. How-
ever, the slice produced is generally quite large and hence,
may not be very useful.

3.4 Logical Deduction

The idea here is that many logical inferences about a
system can be made, given some information. This is
a process that is very important in any kind of problem
solving and hence software debugging as well. An
example (from [22]) will make the idea more clear.
Consider the following program :

1. func(x) {

2. if(x==1)
3. return 1;
4. else
5. return 0;
6. }

Suppose we know some correct set of (input, out-
put) possible for the above function are (0, 1) and (1, 0).
However, the program fails on both of these test cases.
Let us analyze the situation and try to understand possible
causes for failure. From the first input output set where 0
is input and 1 is output, we can conclude that statement
2 or 5 must contain the fault. This is same as the set
of statements in the backward dynamic slice of output.
Similarly from the second test case, we can conclude that
statement 2 or 3 must contain the error. However, from
these two conclusions, we can logically infer that, either
statement 2 is erroneous or statement 3 and 5 both are
erroneous. This is because, if statement 2 is faulty, both
the failures are explained. However, if statement 2 is not
faulty, then 3 and 5 both have to be erroneous in order to
explain the failures. Thus using logical inference we have
arrived at two possible conclusions about error, which
may not have been possible with other methods of fault
localization.

This idea of logical inference is used by [22] to report
sets of statements that can be erroneous. Given a program
showing failure, it first builds a logical model of the de-
pendencies in the program. For details about the model,
please refer [22]. Now, given a set of correct input out-
put pairs for which the execution fails (as in the above
example), it reports back set of diagnoses. A diagnosis
is a minimal set of statements, which if assumed to be
incorrect can explain failure in all failing executions and
represents a likely error. To find such diagnoses, it uses
Reiter’s theory([18]). First, it computes all possible con-
flict sets for the given input output pairs. A conflict set
is a set of statements such that at least one of these has
to be faulty in-order to explain the failure. For example,
the set of statements executed in a failing execution has to
be a conflict set. In the above example,{2,3} and{2,5}
form conflict sets. Minimal hitting sets of these conflict
sets are the required diagnosis and are reported to user. A
hitting set of the conflict sets is set which has a non-empty
intersection with each conflict set(in above example,{2},
{2,3}, {2,5}, {3,5} and{2,3,5} are possible hitting sets).

7

A minimal hittingset is a hitting set such that none of its
subsets are hitting sets ({2} and{3,5} are only such sets
in the above example). These are computed using tech-
niques described in [18].

It has been proved that finding minimal hitting sets is an
NP-Complete problem. Hence, techniques in this domain
do not have a polynomial time algorithm and are quite
expensive to use.

3.5 Knowledge Reuse

Here, the idea is that history of software maintainance
and development contains a lot of information that can be
used to debug software. We discuss a few techniques in
this domain.

Bugs repeat in software. So, many of the bugs are
known bugs and have been previously resolved in soft-
ware. Hence, we can leverage previous bug fix informa-
tion, and save effort in trying to debug the same bug again.
The difficult task here is to identify previous bugs that
match the current bug.

[12]2 uses software change history for this. It first
builds a bug database, from the software changes in his-
tory that correspond to bugs. In any bug fix change, the
deleted code chunk (bug chunk) is the one that contains
bug and we can extract information about the bug from
it. To extract this information, the bug chunk is parsed to
get abstract syntax tree of the chunk which is then broken
into components. Then, these components are processed
to remove unnecessary and local information in the code.
Language constructs like keywords and basic data types
are removed. Local variables are replaced by their data
types. To prevent name collisions, data-type is appended
to the name of the variables. Field names are prepended
with structure types. After this, the components that con-
tain no useful information are discarded. These are then
populated into a database. Now, given a source code con-
taining bugs, it is first processed to obtain components as
above, and then bug chunks with matching components
are reported back to the user along with corresponding fix
code chunks.

In [24], system call sequences made during an execu-
tion containing bug are used to identify it and match it
with known bugs. First sequence of system calls made
during a failing execution are traced. Then, this sequence

is compared with traces from known bugs to see if it
matches with any of them and the corresponding bugs are
reported as possible causes.

Previously written code can be used to learn implicit
programming rules (for example, a lock should be fol-
lowed by unlock, and many such software specific rules
not documented anywhere) and hence detect bugs due to
violation of such rules. [13]2 uses this idea and provides
a data mining technique to extract such implicit rules and
the corresponding violations in the program. The func-
tions in a software are converted into a set of items, each
item representing unique elements in the functions like
function calls, object references. The items are processed,
similar to [12], so as to retain only items that contain
unique information. Then, frequent item-set mining is ap-
plied on these function sets to obtain programming rules.
Given sets of items, frequent item-set mining, tries to find
subsets of items that are contained in many of these sets.
The intuition is items that are found together frequently
are likely to contain a programming rule. Thus, these
item-sets are likely to contain rules. These rules (exa ⇒ b

if b should occur whenevera occurs) are extracted from
frequent item-sets by finding association among items and
code regions that violate these rules are reported to the
user

[21]2 uses a similar idea to learn rules for accessing
objects in programs. Here, first the object access pattern
in each function is extracted from their source code
as object usage models (transition graphs representing
possible sequence of instructions using the object). Then,
these models are converted into item-sets and frequent
item-set mining is applied similar to [13].

4 Conclusion

We have seen different principles for fault localization and
their application in various software techniques used for
automatic fault localization. These principles are orthog-
onal to each other and cover different aspects of fault lo-

2These techniques are more focussed towards finding bugs rather
than locating root cause of failure. However, these could behelpful in
fault localization as well. Further they elaborate the ideaof knowledge
reuse.

8

calization. Hence, we can explore combining these princi-
ples to build techniques that provide better fault diagnosis
for software.

References

[1] Hiralal Agrawal. Towards automatic debugging of
computer programs. PhD thesis, West Lafayette, IN,
USA, 1992.

[2] Thomas Ball, Mayur Naik, and Sriram K. Raja-
mani. From symptom to cause: localizing errors in
counterexample traces. InProceedings of the 30th
ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’03, pages 97–
105, New York, NY, USA, 2003. ACM.

[3] Satish Chandra, Emina Torlak, Shaon Barman, and
Rastislav Bodik. Angelic debugging. InProceed-
ings of the 33rd International Conference on Soft-
ware Engineering, ICSE ’11, pages 121–130, New
York, NY, USA, 2011. ACM.

[4] Holger Cleve and Andreas Zeller. Locating causes
of program failures. InICSE ’05: Proceedings of the
27th international conference on Software engineer-
ing, pages 342–351, New York, NY, USA, 2005.
ACM.

[5] Alex Groce, Sagar Chaki, Daniel Kroening, and
Ofer Strichman. Error explanation with distance
metrics.Int. J. Softw. Tools Technol. Transf., 8:229–
247, June 2006.

[6] Alex Groce and Willem Visser. What went wrong:
Explaining counterexamples. In Thomas Ball and
Sriram Rajamani, editors,Model Checking Soft-
ware, volume 2648 ofLecture Notes in Computer
Science, pages 121–136. Springer Berlin / Heidel-
berg, 2003.

[7] Liang Guo, Abhik Roychoudhury, and Tao Wang.
Accurately choosing execution runs for software
fault localization. InIn CC, pages 80–95, 2006.

[8] Neelam Gupta, Haifeng He, Xiangyu Zhang, and
Rajiv Gupta. Locating faulty code using failure-
inducing chops. InASE ’05: Proceedings of the

20th IEEE/ACM international Conference on Auto-
mated software engineering, pages 263–272, New
York, NY, USA, 2005. ACM.

[9] Sudheendra Hangal and Monica S. Lam. Tracking
down software bugs using automatic anomaly detec-
tion. Software Engineering, International Confer-
ence on, 0:291, 2002.

[10] Ranjit Jhala and Rupak Majumdar. Path slicing.
SIGPLAN Not., 40(6):38–47, 2005.

[11] James A. Jones, Mary Jean Harrold, and John
Stasko. Visualization of test information to assist
fault localization. In ICSE ’02: Proceedings of
the 24th International Conference on Software En-
gineering, pages 467–477, New York, NY, USA,
2002. ACM.

[12] Sunghun Kim, Kai Pan, and E. E. James Whitehead,
Jr. Memories of bug fixes. InSIGSOFT ’06/FSE-
14: Proceedings of the 14th ACM SIGSOFT inter-
national symposium on Foundations of software en-
gineering, pages 35–45, New York, NY, USA, 2006.
ACM.

[13] Zhenmin Li and Yuanyuan Zhou. Pr-miner: au-
tomatically extracting implicit programming rules
and detecting violations in large software code. In
ESEC/FSE-13: Proceedings of the 10th European
software engineering conference held jointly with
13th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 306–
315, New York, NY, USA, 2005. ACM.

[14] Ben Liblit, Alex Aiken, Alice X. Zheng, and
Michael I. Jordan. Bug isolation via remote pro-
gram sampling. InIn Proceedings of the ACM SIG-
PLAN 2003 Conference on Programming Language
Design and Implementation, pages 141–154. ACM
Press, 2003.

[15] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex
Aiken, and Michael I. Jordan. Scalable statistical
bug isolation.

[16] Roman Manevich, Manu Sridharan, Stephen
Adams, Manuvir Das, and Zhe Yang. Pse: explain-
ing program failures via postmortem static analysis.
SIGSOFT Softw. Eng. Notes, 29(6):63–72, 2004.

9

[17] Ghassan Misherghi and Zhendong Su. Hdd: hier-
archical delta debugging. InICSE ’06: Proceed-
ings of the 28th international conference on Soft-
ware engineering, pages 142–151, New York, NY,
USA, 2006. ACM.

[18] R Reiter. A theory of diagnosis from first principles.
Artif. Intell., 32(1):57–95, 1987.

[19] Manos Renieris and Steven P. Reiss. Fault localiza-
tion with nearest neighbor queries, 2003.

[20] Thomas Reps, Thomas Ball, Manuvir Das, and
James Larus. The use of program profiling for soft-
ware maintenance with applications to the year 2000
problem. InESEC ’97/FSE-5: Proceedings of the
6th European SOFTWARE ENGINEERING confer-
ence held jointly with the 5th ACM SIGSOFT in-
ternational symposium on Foundations of software
engineering, pages 432–449, New York, NY, USA,
1997. Springer-Verlag New York, Inc.

[21] Andrzej Wasylkowski, Andreas Zeller, and Chris-
tian Lindig. Detecting object usage anomalies. In
ESEC-FSE ’07: Proceedings of the the 6th joint
meeting of the European software engineering con-
ference and the ACM SIGSOFT symposium on The
foundations of software engineering, pages 35–44,
New York, NY, USA, 2007. ACM.

[22] Franz Wotawa, Markus Stumptner, and Wolfgang
Mayer. Model-based debugging or how to diagnose
programs automatically. InIEA/AIE ’02: Proceed-
ings of the 15th international conference on Indus-
trial and engineering applications of artificial intel-
ligence and expert systems, pages 746–757, London,
UK, 2002. Springer-Verlag.

[23] Cemal Yilmaz, Amit Paradkar, and Clay Williams.
Time will tell: fault localization using time spectra.
In ICSE ’08: Proceedings of the 30th international
conference on Software engineering, pages 81–90,
New York, NY, USA, 2008. ACM.

[24] Chun Yuan, Ni Lao, Ji-Rong Wen, Jiwei Li, Zheng
Zhang, Yi-Min Wang, and Wei-Ying Ma. Auto-
mated known problem diagnosis with event traces.
SIGOPS Oper. Syst. Rev., 40(4):375–388, 2006.

[25] Andreas Zeller. Isolating cause-effect chains from
computer programs. InSIGSOFT ’02/FSE-10: Pro-
ceedings of the 10th ACM SIGSOFT symposium on
Foundations of software engineering, pages 1–10,
New York, NY, USA, 2002. ACM.

[26] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta.
Locating faults through automated predicate switch-
ing. In ICSE ’06: Proceedings of the 28th inter-
national conference on Software engineering, pages
272–281, New York, NY, USA, 2006. ACM.

[27] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta,
and Rajiv Gupta. Towards locating execution omis-
sion errors.SIGPLAN Not., 42(6):415–424, 2007.

10

