
RI 11019 November, 2011 Computer Science

IBM Research Report
High Performance Distributed Co-clustering and Collaborative

Filtering

Ankur Narang, Abhinav Srivastava

IBM Research Division
IBM India Research Lab

4, Block C, Institutional Area, Vasant Kunj
New Delhi - 110070. India.

Naga Praveen Kumar Katta
Department of Computer Science

Princeton University
35 Olden Street,Princeton
New Jersey - 08540. USA.

IBM Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be
copyrighted is accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view
of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained
copies of the article (e.g., payment of royalties). Copies may be requested from IBM T.J. Watson Research Center, Publications,
P.O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at
http://domino.watson.ibm.com/library/CyberDig.nsf/home

High Performance Distributed Co-clustering and Collaborative
Filtering

Ankur Narang, Abhinav Srivastava
{annarang, abhin122}@in.ibm.com

IBM India Research Laboratory, New Delhi, INDIA

Naga Praveen Kumar Katta
nkatta@cs.princeton.edu

Princeton University, New Jersey, USA

Abstract

Petascale Analytics is a hot research area both in academia and industry. It envisages processing massive amounts
of data at extremely high rates and generating new scientific insights along with positive impact (for both users and
providers) of industries such as E-commerce, Telecom, Finance, Life Sciences and so forth. We consider Collabo-
rative filtering (CF) and Clustering algorithms that are key fundamental analytic kernels that help in achieving these
aims. Real-time CF and co-clustering on highly sparse massive datasets, while achieving a high prediction accu-
racy, is a computationally challenging problem. In this report, we present the novel designs for soft real-time (less
than 1 min.) distributed co-clustering based Collaborative Filtering algorithm. Our distributed algorithms have been
optimized for multi-core cluster architectures. Theoretical analysis of the time complexity of our algorithms prove
the efficacy of our approach. Using Netflix [4] (900M training ratings with replication) as well as the Yahoo KDD
Cup 1 (4.6B training ratings with replication) datasets , we demonstrate the performance and scalability of our flat
and hierarchial algorithm on a 1024 & 4096-node multi-core cluster architecture respectively. Our hybrid distributed
flat algorithm performs 2.1× better than the previous flat algorithms on 1024 nodes of BlueGene/P while our batch
mode hierarchical distributed algorithm (implemented using OpenMP with MPI) demonstrates around 4× better per-
formance (on Blue Gene/P) as compared to the our hybrid distributed flat algorithm [best prior (flat MPI+OMP based
algorithm) work [21]], along with high accuracy (26± 4 RMSE for Yahoo KDD Cup data and 87± 0.02 for Netflix
data). For online execution, we demonstrate around 3× gain vs the online baseline MPI algorithm. To the best of our
knowledge, these are the best known performance results for collaborative filtering, at high prediction accuracy, for
multi-core cluster architectures.

1 Introduction
Petascale Analytics is a hot research area both in academia and industry. It aims at processing massive amounts
(petabytes) of data at extremely high rates and generating new scientific insights in areas such as Theoretical Physics,
Astronomy and Life Sciences; along with positive impact (for both users and providers) of industries such as E-
commerce, Telecom, Finance, Life Sciences and so forth. Specifically, Collaborative filtering (CF) and Clustering
algorithms are key fundamental kernels that help in achieving these aims. Their wide applicability in multitude of
application domains has made it imperative for them to be considered for distributed optimizations at Petascale levels.

Collaborative filtering (CF) is a subfield of machine learning that aims at creating algorithms to predict user pref-
erences based on past user behavior in purchasing or rating of items [23], [26]. Here, the input is a set of known item
preferences per user, typically in the form of a user-item ratings matrix. This (user ∗ item) ratings matrix is typically
very sparse. The Collaborative Filtering problem is to find the unknown preferences of a user for a specific item,
i.e. an unknown entry in the ratings matrix, using the underlying collaborative behavior of the user-item preferences.
Collaborative Filtering based recommender systems are very important in e-commerce applications. They help people
find more easily, items that they would like to purchase [27]. This enhances the users’ experience which typically lead

1http://kddcup.yahoo.com/

2

to improvements in sales and revenue. Further, scientific disciplines such as Computational Biology and Personalized
medicine (risk stratification) stand to gain immensely from CF [22], [14]. CF systems are also increasingly important
in dealing with information overload since they can lead users to information that others like them have found useful.
With massive amounts of data (terabytes to petabytes) and high data rates in Telecom (around 6B Call Data Records
per day for large Telco providers), Finance and other industries, there is a strong need to deliver soft real-time training
for CF as it will lead to further increase in customer experience and revenue generation. Hence, soft real-time CF
(with less than 1 min.) based recommender systems are very useful.

Typical approaches for CF include matrix factorization based techniques, correlation based techniques , co-
clustering based techniques, and concept decomposition based techniques [1]. Matrix factorization [28] and corre-
lation [6] based techniques are computationally expensive hence cannot deliver soft real-time CF. Further, in matrix
factorization based approaches, updates to the input ratings matrix leads to non-local changes which leads to higher
computational cost for online CF. Co-clustering based techniques [12], [8] have better scalability but have not been
optimized to deliver high throughput on massive data sets. Daruru et.al [8] presented dataflow parallelism based
co-clustering implementation which did not scale beyond 8 cores due to cache miss and in-memory lookup overheads.
CF over highly sparse data sets leads to lower compute utilization due to load imbalance. For large scale distributed
/ cluster environment (256 nodes and beyond), load imbalance can dominate the overall performance and the com-
munication cost becomes worse with increasing size of the cluster, leading to performance degradation. Thus, high
computational demand, low parallel efficiency (due to cache misses and low compute utilization) and communica-
tion overheads are the key challenges that need to be addressed to achieve high throughput distributed Collaborative
Filtering on highly sparse massive data sets.

In order to optimize the parallel performance, achieve high parallel efficiency and give soft-real time (1̃min) guar-
antees on massive datasets, we designed a novel hydrid flat approach for distributed co-clustering. We optimized our
distributed algorithm using pipelined parallelism, compute communication overlap and communication optimizations
(including topology mapping, steiner node for communication time reduction) for massively parallel multi-core cluster
architectures such as Blue Gene/P 2. In order to maintain high parallel efficiency, our algorithm makes compute vs.
communication trade-offs at various phases of the algorithm. Analytical parallel time complexity analysis proves the
scalability provided by our performance optimizations as compared to the naive MPI based approach that has been
used in all prior implementations. We evaluated our parallel CF algorithm on the prestigious Netflix Prize data set [4].

To further optimize the parallel efficiency, we have designed a novel hierarchical algorithm for co-clustering. The
hierarchical design of the algorithm helps to reduce the computation and communication performed in the algorithm;
while maintaining nearly the same quality of output (RMSE). The hierarchical approach in clustering also provide
opportunity for parameter free clustering [17]. Analytical parallel time complexity analysis proves the scalability
provided of our algorithm as compared to the flat OpenMP+MPI based approach that is the best available in prior
implementations. We evaluated our parallel CF algorithm on the following real datasets: (a) Prestigious Netflix Prize
data set [4] (Training ratings: 100M , Validation ratings: 1.5M),and (b) Yahoo KDD Cup dataset (Track 1 - Training
ratings: 252M , Validation ratings: 4M) 3. Using replication of these datasets, we have evaluated our algorithm on
900M ratings of the Netflix data and 4.6B ratings from the Yahoo KDD Cup dataset.

Specifically, this paper makes the following key contributions:

• We present the design of a novel distributed co-clustering based Collaborative Filtering algorithm for soft real-
time (less than 10 sec.) performance over highly sparse massive data sets on multi-core cluster architectures.
Our algorithm involves performance optimizations such as pipelined parallelism, computation communication
overlap and communication optimizations (including topology mapping and steiner nodes for communication
cost reduction)

• Analytical parallel time complexity analysis, theoretically establishes the improvement in performance and scal-
ability using our algorithm.

• We demonstrate soft real-time distributed CF using the Netflix Prize dataset on a 1024-node Blue Gene/P system.
We achieved a training time of around 6s with the full Netflix dataset and prediction time of 2.5s on 1.4M ratings
with RMSE (Root Mean Square Error) of 0.87±0.02. Our algorithm also demonstrates high scalability for large
number of nodes on MPP architectures.

2www.research.ibm.com/bluegene
3http://kddcup.yahoo.com/datasets.php

3

• We present the design of a novel distributed hierarchical co-clustering algorithm for soft real-time CF over
highly sparse massive data sets on multi-core cluster architectures. Further, a novel load balancing approach has
been formulated for the hierarchical algorithm.

• Analytical parallel time complexity analysis, establishes theoretically that our hierarchical design leads to im-
provement in performance (O(log(π)) better where, π is the number of partitions of rows and columns of the
input matrix) and scalability as compared to the flat MPI+OpenMP based algorithm [21].

• We demonstrate soft real-time parallel CF on the Netflix Prize and Yahoo KDD Cup datasets using a 4096-
node multi-core cluster architecture (Blue Gene/P 4). We achieved a training time (using I-divergence and C6,
Section 3) of around 9.38s with the full Netflix dataset and prediction time of 2.8s on 1.4M ratings with RMSE
(Root Mean Square Error) of 0.87±0.02. This is around 4× better than the best prior distributed algorithm [21]
for the same dataset. To the best of our knowledge, this is the highest known parallel performance at such high
accuracy. Further, we have shown soft real-time performance for over 900M ratings from the Netflix dataset
(with high accuracy) and 4.6B ratings from the Yahoo KDD Cup dataset (with high accuracy of 26± 4 RMSE).
Our algorithm demonstrates strong, weak and data scalability for large number of nodes on multi-core cluster
architectures.

2 Related Work
Co-clustering and Collaborative Filtering (CF) are fundamental data-mining kernels used in many application domains
such as Information Retrieval [18], Telecom [9], Financial markets, Life Sciences [22]. [14] evaluates the context of
a specific clinical challenge, i.e., risk stratification following acute coronary syndrome (ACS). On over 4,500 patients,
this research shows that CF outperforms traditional classification methods such as logistic regression (LR) and support
vector machines (SVMs) for predicting both sudden cardiac death and recurrent myocardial infarction within one year
of the index event. [2] considers multiway-clustering of a single tensor or a group of tensors over heterogeneous re-
lational data, using Bregman (Bregman divergence models a broad family of information loss functions that includes
squared Euclidean distance, KL-divergence, I-divergence) co-clustering based alternate minimization algorithm and
shows its advantages in the domains of social networks, e-commerce using movie recommendation data as well as
newsgroup articles. We optimize the Bregman co-clustering algorithm [3] (based on alternate minimization) for dis-
tributed systems. Our novel hierarchical approach will also improve the distributed performance of the multi-way
clustering algorithm over heterogeneous relational tensor data.

Typical CF techniques are based on correlation criteria [6] and matrix factorization [28]. The correlation-based
techniques use similarity measures such as Pearson correlation and cosine similarity to determine a neighborhood
of like-minded users for each user and then predict the user’s rating for a product as a weighted average of ratings
of the neighbors. Correlation-based techniques are computationally very expensive as the correlation between every
pair of users needs to be computed during the training phase. Further, they have much reduced coverage since they
cannot detect item synonymy. The matrix factorization approaches include Singular Value Decomposition (SVD [25])
and Non-Negative Matrix Factorization (NNMF) based [28] filtering techniques. They predict the unknown ratings
based on a low rank approximation of the original ratings matrix. The missing values in the original matrix are filled
using average values of the rows or columns. However, the training component of these techniques is computationally
intensive, which makes them impractical to have frequent re-training. Incremental versions of SVD based on folding-
in and exact rank-1 updates [5] partially alleviate this problem. But, since the effects of small updates are not localized,
the update operations are not very efficient.

[12] studies a special case of the weighted Bregman co-clustering algorithm. The co-clustering problem is for-
mulated as a matrix approximation problem with non-uniform weights on the input matrix elements. As in the case of
SVD and NNMF, the co-clustering algorithm also optimizes the approximation error of a low parameter reconstruc-
tion of the ratings matrix. However, unlike SVD and NNMF, the effects of changes in the ratings matrix are localized
which makes it possible to have efficient incremental updates. [12] presents parallel algorithm design based on co-
clustering. It compares the performance of the algorithm against matrix factorization and correlation based approaches
on the MovieLens 5 and BookCrossing dataset [29] (269392 explicit rating(1-10) from 47034 users on 133438 books).

4www.ibm.com/bluegene
5http://www.grouplens.org/data/. 100K ratings(1-5) 943 users, 1682 movies

4

[8] uses a dataflow parallelism based framework (in Java) to study performance vs. accuracy trade-offs of co-
clustering based CF. However, it doesn’t consider re-training time for incremental input changes. Further, the parallel
implementation does not scale well beyond 8 cores due to cache miss and in-memory lookup overheads. We demon-
strate parallel scalable performance on 1024 nodes of Blue Gene/P and 7× to 10× better training time and better
prediction time along with high prediction accuracy (0.87± 0.02 RMSE). Further, while none of the prior work aims
at massive scale performance, we provide theoretical and empirical analysis to demonstrate this scale of performance
of our distributed algorithm. [24] uses jointly derived neighbourhood interpolation weight instead of ”global effect”
for partitioning datasets into k clusters. Though the RMSE presented by their algorithm is better than Netlfix prize
winners, they were only able to achieve 0.89 RMSE while our hierarchical algorithm was able to perform at RMSE
of 0.87 for same Netflix datasets. [15] studies IO scalable co-clustering by mapping a significant fraction of compu-
tations performed by the Bregman co-clustering algorithm to an on-line analytical processing (OLAP) engine. [19]
studies the scalability of basic MPI based implementation of co-clustering. We deliver more than one order of mag-
nitude higher performance compared to this work, by performing communication and load balancing optimizations
along with novel hierarchical design for multi-core clusters.

[1] presents results of collaborative filtering using Concept decomposition based approach. It has been empirically
established [10] that the approximation power (when measured using the Frobenius norm) of concept decompositions
is comparable to the best possible approximations by truncated SVDs [13]. However, [1] presents the results of a
sequential concept decomposition based algorithm that takes 13.5mins. training time for the full Netflix data, which
is very high when looking at soft real-time performance. [20] presents a parallel CF algorithm using concept decom-
position on 32-code SMP architecture. It achieves 64s total training time for Netflix data. Using multi-core clusters,
we deliver around two order of magnitude improvement in training time compared to the sequential concept decom-
position technique [1] and around one of magnitude improvement compared to the parallel concept decomposition
technique [20]. Our design presents a flat distributed co-clustering algorithm where all the processors in the system
participate in one iteration of the co-clustering algorithm, and both OpenMP and MPI (hybrid approach) are used to
exploit both intra-node and inter-node parallelism available in Blue Gene/P. It also presents theoretical parallel time
complexity analysis of this flat and hybrid algorithm. Using Netflix dataset (100M ratings), it demonstrates the per-
formance and scalability of the algorithm on 1024-node Blue Gene/P system: with training time of around 6s on the
full Netflix dataset and prediction time of 2.5s on 1.4M ratings (1.78µs per rating prediction). We also bring up a
novel hierarchical approach for distributed co-clustering along with load balancing optimizations leading to around
2× improvement in performance as compared to flat algorithm [21]. Theoretical analysis of our hierarchical algorithm
firmly establishes the performance gain of O(log(π)) (where, π is the number of partitions of rows and columns of the
input matrix) as compared to the flat algorithm in [21]. Further, we present detailed performance comparisons with
much larger data, around 4.6B Yahoo KDD Cup ratings (as compared to 252B in [21]) and on 4096 Blue Gene/P
system (as compared to 1024 in [21]).

3 Background and Notation
In this paper, we deal with partitional co-clustering where all the rows and columns are partitioned into disjoint row
and column clusters respectively. We consider a general framework for addressing this problem that considerably ex-
pands the scope and applicability of the co-clustering methodology. As part of this generalization, we view partitional
co-clustering as a lossy data compression problem [3] where, given a specified number of rows and column clusters,
one attempts to retain as much information as possible about the original data matrix in terms of statistics based on
the co-clustering [16]. The main idea is that a reconstruction based on co-clustering should result in the same set of
user-specified statistics as the original matrix. There are two key components in formulating a co-clustering problem:
(i) choosing a set of critical co-clustering-based statistics of the original data matrix that need to be preserved, and (ii)
selecting an appropriate measure to quantify the information loss or the discrepancy between the original data matrix
and the compressed representation provided by the co-clustering. For example, in the work of Cheng [7], the row
and column averages of each co-cluster are preserved and the discrepancy between the original and the compressed
representation is measured in terms of the sum of element-wise squared deviation. In contrast, information-theoretic
co-clustering [16], which is applicable to data matrices representing joint probability distributions, preserves a differ-
ent set of summary statistics, that is, the row and column averages and the co-cluster averages. Further, the quality of
the compressed representation is measured in terms of the sum of element-wise I-divergence.

5

In this section, we explain the Bregmann divergence based partitional co-clustering algorithm [3] and the matrix
approximation strategy.

We start by defining Bregman divergences (Bregman, 1967; Censor and Zenios, 1998), which form a large class
of well-behaved loss functions with a number of desirable properties.

Definition Let ϕ be a real-valued convex function of Legendre type (Rockafellar, 1970; Banerjee et al, 2005b) defined
on the convex set S ≡ dom(ϕ)(⊆ Rd). The Bregman divergence dϕ : S × ri(S) 7−→ R+ is defined as

dϕ(z1, z2) = ϕ(z1)− ϕ(z2)− ⟨z1 − z2,∇ϕ(z2)⟩

where ∇ϕ is the gradient of ϕ.

A k ∗ l partitional co-clustering is defined as a pair of functions:
ρ : 1, . . . ,m 7−→ 1, ..., k; and, γ : 1, . . . , n 7−→ 1, ..., l. Let Û and V̂ be random variables that take values in
1, ..., k and 1, ..., l such that Û = ρ(U) and V̂ = γ(V). Let, Ẑ = [ẑuv] ∈ Sm×n be an approximation of the data
matrix Z such that Ẑ depends only upon a given co-clustering (ρ, γ) and certain summary statistics derived from co-
clustering. Let Ẑ be a (U,V)-measurable random variable that takes values in this approximate matrix Ẑ following w,
i.e., p(Ẑ(U, V) = ẑuv) = wuv . Then, the goodness of the underlying co-clustering can be measured in terms of the
expected distortion between Z and Ẑ, that is,

E[dϕ(Z, Ẑ)] =

m∑
u=1

n∑
v=1

wuvdϕ(zuv, ẑuv) = dΦw(Z, Ẑ) (1)

where Φw : Sm×n 7−→ R is a is a separable convex function induced on the matrices such that the Bregman divergence
(dΦ()) between any pair of matrices is the weighted sum of the element-wise Bregman divergences corresponding to
the convex function ϕ. From the matrix approximation viewpoint, the above quantity is simply the weighted element-
wise distortion between the given matrix Z and the approximation Ẑ. The co-clustering problem is then to find (ρ, γ)
such that (1) is minimized.

Now we consider two important convex functions that satisfy the Bregman divergence criteria and are hence stud-
ied in this paper.
(I-Divergence) : Given z ∈ R+, let ϕ(z) = zlogz − z. For z1, z2 ∈ R, dϕ(z1, z2) = z1log(z1/z2)− (z1 − z2).

(Squared Euclidean distance) : Given z ∈ R, let ϕ(z) = z2. For z1, z2 ∈ R, dϕ(z1, z2) = (z1 − z2)
2.

3.1 Coclustering bases
Given a co-clustering (ρ, γ), Modha et al. discuss six co-clustering bases where each co-clustering basis preserves
certain summary statistics on the original matrix. More precisely their definition of a co-clustering basis is of the
form:

Definition A co-clustering basis C is a set of elements of Γ2, that is, an element of the power set 2Γ2 , which satisfies
the following two conditions:
(a) There exist η1, η2 ∈ C (with η1 possible the same as η2) such that Û ∈ η1 and V̂ ∈ η2
(b) There do not exist η1, η2 ∈ C, η1 ̸= η2 such that η2 is a sub-σ-algebra of η1.

where

Γ2 =
{
{Uϕ, Vϕ} ,

{
Uϕ, V̂

}
, {Uϕ, V } ,

{
Û , Vϕ

}
,
{
Û , V̂

}}
∪
{{

Û , V
}
, {U, Vϕ} ,

{
U, V̂

}
, {U, V }

}
Γ2 determines the set of all summary statistics that one may be interested in preserving. A particular choice of an
element of Γ2 such as

{
Û , V̂

}
, leads to an approximation scheme where the reconstruction matrix preserves all the

6

corresponding co-cluster means. In the above definition for a coclustering basis, condition (a) ensures that the approx-
imation depends on the co-clustering while condition (b) ensures that for any pair η1, η2, the conditional expectation
E[Z|η2] cannot be obtained from E[Z|η1]. Then they show that there are only six possible co-clustering bases, each
of which leads to a distinct matrix approximation scheme which are as follows: C1 = {{Û}, {V̂ }},
C2 = {{Û , V̂ }},
C3 = {{U}, {Û , V̂ }},
C4 = {{V }, {Û , V̂ }},
C5 = {{U}, {V }, {Û , V̂ }},
C6 = {U, V̂ }, {Û , V }}
Now given the choice of a particular basis (i.e, the statistics to be reserved by the approximation matrix), we need to
decide on the “best” reconstruction Ẑ for a given co-clustering (ρ, γ). Then the general co-clustering problem will
effectively reduce to one of finding an optimal co-clustering (ρ∗, γ∗) whose reconstruction has the lowest approxi-
mation error with respect to the original Z. It also proves that the possible co-clustering bases (C1 . . . C6) form a
hierarchical order in the number of cluster summary statistics they preserve. The co-clustering basis C6 preserves
all the summaries preserved by the other co-clustering bases and hence is considered the most general among the
bases. In this paper we discuss the partitioning co-cluster algorithms for the basis C6. For co-clustering basis C6
and Euclidean-divergence objective, the matrix approximation is given by: Âij = ACOC

gh + (ACC
ih − ARC

gj), where,

ARC
gj =

SRC
gj

WRC
gj

=
∑

i′|ρ(i′)=g Ai′j∑
i′|ρ(i′)=g Wi′j

; ACC
ih =

SCC
ih

WCC
ih

=
∑

j′|γ(j′)=h Aij′∑
j′|γ(j′)=h Wij′

and

ACOC
gh =

SCOC
gh

WCOC
gh

=
∑

i′|ρ(i′)=g

∑
j′|γ(j′)=h Ai′j′∑

i′|ρ(i′)=g

∑
j′|γ(j′)=h Wi′j′

.

The sequential update algorithm for the basis C6 is as shown in Algorithm 1 where the approximation matrix
Â for various co-clustering bases can be obtained from [3]. For Euclidean divergence, Step 2b. and 2c. of Algo-
rithm 1 use dϕ(Aij , Âij) = (Aij − Âij)

2. For I-divergence, Step 2b. and 2c. of Algorithm 1 use dϕ(Aij , Âij) =

Aij ∗ log(Âij/Aij)−Aij + Âij

4 Distributed Flat Coclustering Algorithm

Algorithm 1 Sequential Static Training via Co-Clustering
Input: Ratings Matrix A, Non-zeros matrix W , No. of row clusters l, No. of column clusters k.
Output: Locally optimal co-clustering (ρ,γ) and averages ACOC ,ARC ,ACC ,AR and AC .
Method:
1. Randomly initialize (ρ,γ)
while RMSE value is converging do

2a. Compute averages ACOC ,ARC
gj ,ACC

ih ,AR and AC .
2b. Update row cluster assignments
ρ(i) = argmin

1≤g≤k

∑n
j=1 Wijdϕ(Aij , Âij), 1 ≤ i ≤ m

2c. Update column cluster assignments
γ(i) = argmin

1≤h≤l

∑m
i=1 Wijdϕ(Aij , Âij), 1 ≤ j ≤ n

end

In the above sequential algorithm (Algorithm 1), we notice two important steps - a) Calculating the matrix aver-
ages, and, b) updating the row and column cluster assignments. Further, given the matrix averages, row and column
cluster updates can be done independently, and row updates themselves can be done in parallel.

The following distributed algorithm 2 leverages this inherent data parallelism. In algorithm 2 each node of the
cluster gets equal number of rows and columns. (i.e, the corresponding submatrices are stored in sparse-row, sparse
column format in the node’s memory). In step 3., the row and column averages of all the rows/columns are available
with every node before hand. In Step 5., all the nodes exchange their local row/column assignments with all the
other nodes. And then each node calculates the k Row-cluster and l column cluster averages by itself. Then all the
nodes communicate the k × l global cocluster averages to each other. As one can see, this algorithm needs three

7

Algorithm 2 Distributed (MPI) Static Training via Co-Clustering (C6 Basis)
Input: Ratings Matrix A, Non-zeros matrix W , No. of row clusters l, No. of column clusters k.
Output: Locally optimal co-clustering (ρ,γ) and averages ACOC ,ARC ,ACC ,AR and AC .
Method:
1. Node p gets mp rows (i.e, a mp ×n submatrix Arp) and np columns (i.e, a m×np submatrix Acp) where mp = m

p
and np = n

p .
2. Randomly initialize (ρp,γp)
3. Gather all the row and column sums/weights SR

i , SC
j , WR

i , WC
j ∀i, j from the other nodes using MPI Allgather.

4. Each node calculates all row and column averages AR
i =

SR
i

WR
i

and AC
j .

while RMSE value is converging, Each node does the following do
5. Gather the global Row-cluster and column-cluster memberships (ρ,γ) by concatenating (ρp,γp) using
MPI Allgather.
6a. Calculate the contribution of the local rows and columns to the Row-cluster and Col-cluster sums/weights i.e,
SRC
gj , WRC

gj , SCC
ih and WCC

ih .
6b. Do an All reduce on above contributions and get the global Row-Cluster and Column-Cluster Averages
ARC

gj ,ACC
ih .

7. Calculate the contribution of the local rows and columns to the co-cluster sums/weights i.e, SCOC
p and WCOC

p .
8. Do an All reduce on above contributions and get the global co-cluster sums/weights SCOC , WCOC . Subse-
quently calculate ACOC using them.
2a. Compute averages ACOC ,ARC ,ACC ,AR and AC .
9a. Update all the local row cluster assignments ρp

ρp(i) = argmin
1≤g≤k

∑n
j=1 wijdϕ(Aij , Âij), i ∈ Arp

9b. Update all the local column cluster assignments γp

γp(i) = argmin
1≤h≤l

∑m
i=1 wijdϕ(Aij , Âij), j ∈ Acp

end

MPI communication calls: 1) To communicate Row/Column memberships, 2) To communicate Row/Column cluster
averages and 3) To communicate cocluster averages. Since, the input ratings matrix is uniformly partitioned across all
available processors, the algorithm can support very large matrices and hence has strong memory scalability. However,
as the number of processor increases the collectives across all the processors can become a bottleneck to the strong
scalability for performance. Hence, we have designed performance optimizations to reduce these communication time
bottlenecks on multi-core cluster architectures.

4.1 Time Complexity Analysis for Flat Algorithm
In this section, we establish theoretically, the performance and scalability advantage of our optimized distributed flat
algorithm. Refer notation given in Table 1. The flat algorithm described in section 1 has I iterations. In each iteration
the rows are assigned to row clusters and columns are assigned to column clusters. Each iteration has multiple phases.
In the first phase, all nodes communicate using all-reduce operation to aggregate row to row-cluster mapping informa-
tion. This communication time is given by: O(S0 + (m/B0) ∗ log(P0)).
In the second phase, one core in each node is involved in all-reduce communication with the all other nodes to aggre-
gate column to column-cluster mapping information. This communication time is given by: O(S0+(n/B0)∗log(P0)).
Simultaneoulsy, the remaining three cores in each node compute the row-cluster average for all the row-clusters. This
compute time is given by: O(m/(Pc − 1)). Due to the compute-communication overlap in the second phase, the time
for the second phase is given by: max[O(S0 + (n/B0) ∗ log(P0)), O(m/(Pc − 1)].
In the third phase, each node computes the column cluster average for all column clusters and also computes its con-
tribution to all co-cluster averages. The time for this phase is given by: O((n/Pc) +mns/(P0 ∗ Pc)). In the fourth
phase, one core per node performs all-reduce operation with all other nodes, to aggregate and determine the co-cluster
average over all co-clusters. This communication time is given by: O(S0+(kl/B0)∗ log(P0)). Simultaneously, three
cores per node compute the partial values required for making the decision about the assignment of the rows (that node
contains) to the row-clusters and the assignment of the columns (that node contains) to the column clusters. The com-

8

Node QNode P

Initialize row and

column clusters

Initialize row and

column clusters

Calculate Row ,Column

Sun and Weight

Calculate Row ,Column

Sun and Weight

MPI_Allgather Row &

Column Sums &Weights

MPI_Allgather Row & Column

Cluster Membership

Calculate Local COC

sum & weight

Calculate Local COC

sum & weight

MPI_Allreduce on COC Sum

& Weight

Update Row & Column

Assignment

Update Row & Column

Assignment

if (RMSE > eps)
if (RMSE > eps)

Yes Yes

Calculate Row & Column

Cluster avgs

Calculate Row & Column

Cluster avgs

Node QNode P

Initialize row and

column clusters

Initialize row and

column clusters

Calculate Row ,Column

Sun and Weight

Calculate Row ,Column

Sun and Weight

MPI_Allgather Row &

Column Sums &Weights

MPI_Allgather Row & Column

Cluster Membership

Calculate Local COC

sum & weight

Calculate Local COC

sum & weight

MPI_Allreduce on COC Sum

& Weight

Update Row & Column

Assignment

Update Row & Column

Assignment

if (RMSE > eps)
if (RMSE > eps)

Yes Yes

Calculate Row & Column

Cluster avgs

Calculate Row & Column

Cluster avgs

Figure 1: Flat Coclustering - MPI

putation cost varies depending on the divergence function - Euclidean, I-divergence or general Bregmann divergence.
For each row assignment, any of the divergence functions involve computations over all populated columns, ns, per
row and checking assignment to all possible k row clusters. Same applies for column cluster assignments. Hence, the
compute time is given by: O((mns/(P0· (Pc − 1))) ∗ (k + l))). Due to compute communication overlap, the time in
the fourth phase is given by: max[(S0 + (kl/B0) ∗ log(P0)), ((mns/(P0· (Pc − 1))) ∗ (k + l))]. In the fifth and the
final phase per iteration, all four cores within a node compute the final row cluster assignments and the column cluster
assignments for the rows and columns in that node. The time required is given by: O((mns/(P0·Pc)) ∗ (k+ l)). The
overall time for the parallel flat co-clustering algorithm , with I iterations, is given by:

T (m,n, P0) = O(I ∗ ((S0 + (n/B0) ∗ log(P0))+

max[O(S0 + (n/B0) ∗ log(P0)), O(m/(Pc − 1)]+

(n/Pc) +mns/(P0 ∗ Pc)+

max[(S0 + (kl/B0) ∗ log(P0)),

((mns/(P0· (Pc − 1))) ∗ (k + l))]+

((mns/(P0·Pc)) ∗ (k + l))

(2)

Based on whether the compute cost or the communication cost dominates per iteration, we consider the followin two
cases. In the first case, when the compute cost dominates, the parallel flat co-cluster time complexity is given by:

T (m,n, P0) = O(I ∗ ((S0 + (n/B0) ∗ log(P0))+

(m+ n)

Pc
+

mns(k + l)

P0Pc
))

(3)

9

Table 1: Notation
Symbol Definition

P0 Total number of nodes for computation
Pc Number of threads (cores) per node

(m,n) Number of rows and columns in the input matrix
s Sparsity factor of the matrix

(k, l) Number of row and column clusters
(m/k) Average number of rows per row cluster
n/l Average number of columns per column cluster
πr Number of partitions of the rows
πc Number of partitions of the columns
G0 Number of nodes per partition
B0 Interconnect Bandwidth for AllReduce/Allgather
S0 Setup cost for AllReduce/Allgather

In the second case, when the communication cost dominates per iteration, then the parallel flat algorithm time com-
plexity is given by:

T (m,n, P0) = O(I ∗ (S0 +
(m+ n+ kl) log(P0)

B0
+

n

Pc
+

mns(k + l)

P0Pc
))

(4)

4.2 Optimized Distributed Co-clustering Algorithm
For multi-core cluster architectures, one can utilize the available intra-node parallelism along with inter-node paral-
lelism to get highly scalable distributed co-clustering algorithm as given in algorithm 3. Let, c be the number of cores
(threads) per node in the distributed architecture, referred to as T1 . . . Tc. These cores (threads) per node can be used to
obtain computation communication overlap as well pipelining across the iterations in the distributed algorithm. This
can significantly reduce the communication bottlenecks of the algorithm. Algorithm 3 presents the distributed algo-
rithm with these performance optimizations. The while loop executes iterations until the RMSE value converges to
within a given error bound. Within each iteration the following steps (Step5..Step10) get executed. In Step 5., threads
(T2 . . . Tc) compute the partial contribution to row-cluster averages, ARC

gj ; while simultaneously, thread T1, performs
MPI Allgather to get the column-cluster membership (γ). Thus, (intra-iteration) computation communication over-
lap is achieved which leads to improved performance. Similarly, computation communication overlap is achieved
in the following steps. In Step 6., threads (T2 . . . Tc) compute the partial contribution to column-cluster averages,
ACC

ih ; while simultaneously, thread T1, performs MPI Allreduce to compute the row-cluster averages ARC
gj . In Step

7., threads (T2 . . . Tc) compute the partial contribution to co-cluster averages, ACOC
gh ; while simultaneously, thread

T1, performs MPI Allreduce to compute the column-cluster averages ACC
ih . In Step 8., threads (T2 . . . Tc) compute

the partial Âij values using ACC
ih and ARC

gj ; while simultaneously, thread T1, performs MPI Allreduce to compute the
co-cluster averages ACOC

gh . In Step 9., all threads (T1 . . . Tc) in a node, compute final row-cluster memberships for
all the rows that are owned by that node. In Step 10., threads (T2 . . . Tc) compute final column-cluster memberships
while simultaneously, thread T1, performs MPI Allgather to get the row-cluster memberships from all other nodes.

4.3 Time Complexity Analysis for Flat Hybrid Algorithm
The distributed algorithm described in section 3 takes a certain number of iterations, say I . In each iteration, rows
are assigned to row clusters and columns to column clusters. Each iteration has multiple steps. In Step 5., the thread
T1 of all nodes communicate using all-gather operation to aggregate column to column-cluster mapping information.
This communication time is given by: O(S0 + (n/B0) ∗ log(P0)). Simultaneously, threads T2 . . . Tc of each node
compute partial contributions of each node towards ARC

gj . This computation time is O(mn/(P0.c)). The overall time
for Step 5. is given by max(O(S0 + (n/B0) ∗ log(P0)),mn/(P0.c)). Assuming, that compute time dominates, the
time complexity for Step 5. can be approximated by O(mn/(P0 ∗ c)).

In Step 6., the thread T1 of all nodes communicate using all-reduce operation to compute the row-cluster averages
ARC

gj . This communication time is given by: O(S0 + (mn/B0) ∗ log(P0)). Simultaneously, threads T2 . . . Tc of

10

Algorithm 3 Distributed hybrid Co-Clustering algorithm
Input: Ratings Matrix A, Non-zeros matrix W , No. of row clusters l, No. of column clusters k.
Output: Locally optimal co-clustering (ρ,γ) and averages ACOC ,ARC ,ACC ,AR and AC .
Method: (Each node now has 4 threads - {T0 . . . T3})
1. T0 . . . T3 of node p each get mp′ rows (i.e, a mp′ × n submatrix Arp′

) and n4p columns (i.e, a m× np′ submatrix
Acp′

) where m′
p = m

p′ and n′
p = n

p′ and p′ × 4.
2. each Ti : Randomly iniatalize (ρpi ,γp

i)
3. T0 : Gather all the row and column sums/weights SR

i , SC
j , WR

i , WC
j ∀i, j from the other nodes using

MPI Allgather.
4. T0 . . . T3 : Calculate all row and column averages AR

i =
SR
i

WR
i

and AC
j .

(Please note that Step 3 and Step 4 can be pipelined)
5. T0: Gather the global Row-cluster membership (ρ) by concatenating (ρp) using MPI Allgather.
while RMSE value is converging, Each thread in a node does the following do

6. T1, T2, T3 : Calculate the global Row-Cluster Averages ARC

T0 : Gather the global Column-cluster membership (γ) by concatenating (γp) using MPI Allgather.

7. T0 . . . T3 : Calculate the global Column-Cluster Averages ACC

8. T0 . . . T3 : Calculate the contribution of the local rows and columns to the Cocluster sums/weights i.e, SCOC
p

and WCOC
p .

9. T0:Do an All reduce on above contributions and get the global CoCluster sums/weights SCOC , WCOC

and caluclate ACOC .
{T1, T2, T3} : Partially compute ÂR(i, j, g), ÂC(i, j, h) the local row cluster and column cluster assignment steps
for each choice of assignment g,h

10. T0 . . . T3 : Update all the local row cluster assignments ρp by first updating ÂR(i, j, g) with the cocluster
averages to generate Âij

ρp(i) = argmin
1≤g≤k

∑n
j=1 wijdϕ(Aij , Âij), i ∈ Arp

11. T0 : Gather the global Row-cluster membership (ρ) by concatenating (ρp) using MPI Allgather.
T1 . . . T3: Update all the local column cluster assignments γp by first updating ÂC(i, j, h) with the cocluster
averages to generate Âij

γp(i) = argmin
1≤h≤l

∑m
i=1 wijdϕ(Aij , Âij), j ∈ Acp

end

each node compute partial contributions of each node towards ACC
ih . This computation time is O(mn/(P0.c)). Thus,

the overall time for Step 6. is given by max(O(S0 + (mn/B0) ∗ log(P0)),mn/(P0.c)). Assuming, that the com-
munication time dominates, the time complexity for Step 6. can be approximated by O(S0 + (mn/B0) ∗ log(P0)).
Similarly, the time complexity for Step 7. can be approximated by O(S0 + (mn/B0) ∗ log(P0)). In Step 7., the
thread T1 of all nodes communicate using all-reduce operation to compute the column-cluster averages ACC

ih . This
communication time is given by: O(S0 + (mn/B0) ∗ log(P0)). Simultaneously, threads T2 . . . Tc of each node com-
pute partial contributions of each node towards co-cluster averages ACOC

gh . This computation time is O(mns/(P0.c)).
Thus, the overall time for Step 7. is given by max(O(S0 + (mn/B0) ∗ log(P0)),mns/(P0.c)). Assuming that the
communication time dominates, the time complexity for Step 7. can be approximated by O(S0+(mn/B0)∗ log(P0)).

In Step 8., the thread T1 of all nodes communicate using all-reduce operation to compute the co-cluster averages
ACOC

gh . This communication time is given by: O(S0 + (kl/B0) ∗ log(P0)). Simultaneously, threads T2 . . . Tc of
each node compute partial values for assignment of each row (and column) to k possible row-clusters (and l possible
column-clusters). This computation time is O(mns ∗ (k + l)/(P0.c)). Thus, the overall time for Step 8. is given
by max(O(S0 + (kl/B0) ∗ log(P0)),mns ∗ (k + l)/(P0.c)). Assuming that the compute time dominates, the time

11

complexity for Step 8. can be approximated by O(mns ∗ (k + l)/(P0.c)). In a similar fashion, the compute time
for Step 9. is O(mns ∗ (k + l)/(P0 ∗ c)). In Step 9., all threads, T1 . . . Tc at a node p, compute the row-cluster
membership for each row that the node p owns. This computation cost varies depending on the divergence function -
Euclidean, I-divergence or general Bregmann divergence. For each row assignment, any of the divergence functions
involve computations over all populated columns, ns, per row and checking assignment to all possible k row clus-
ters. Hence, the compute time is given by: O(mns ∗ (k + l)/(P0 ∗ c)). Assuming that the compute time dominates
Step 10., its time complexity can be approximated by O(mns ∗ (k + l)/(P0 ∗ c)). In Step 10., the thread T1 of
all nodes communicate using all-gather operation to get row-cluster membership for all rows. This communication
time is given by: O(S0 + (m/B0) ∗ log(P0)). Simultaneously, threads T2 . . . Tc of each node compute the column
membership for the column it owns.. This computation cost varies depending on the divergence function - Euclidean,
I-divergence or general Bregmann divergence. For each column assignment, any of the divergence functions involve
computations over all populated rows, ms, per column and checking assignment to all possible l column clusters.
Hence, the compute time is given by: O(mns ∗ (k + l)/(P0 ∗ c)). Thus, the overall time for Step 10. is given by
max(O(S0 + (m/B0) ∗ log(P0)),mns ∗ (k + l)/(P0.c)). Assuming that the compute time dominates the time com-
plexity for Step 10. can be approximated by O(mns ∗ (k + l)/(P0 ∗ c)).

. Thus, the overall time complexity for the flat hybrid distributed co-clustering algorithm, per iteration, is given
by:

Th(m,n,P0, k, l) = mn/P0 ∗ c+ 2 ∗ (mn/B0) ∗ log(P0)

+ S0 + 3 ∗mns ∗ (k + l)/(P0 ∗ c))
(5)

4.3.1 Optimum Thread Distribution

In a general case, one can optimize the communication by providing more than one thread for communication. We
study this general communication optimization technique in this section and determine the optimum number of threads
to achieve best performance.

Let r be the number of threads (cores) that are devoted to computation per step, while the remaining (c − r)
threads (cores), perform communication per step. When, multiple threads are used for communication, we assume
that it takes x steps to complete one communication task across all nodes. In this case, the time complexity of the
hybrid distributed co-clustering algorithm is given by:

Th(m,n, r, P0) = O((mn/P0 ∗ r) + (S0 + (mn/B0) ∗ log(P0)) ∗ (2x/(c− r))+

3mns ∗ (k + l)/(P0 ∗ r))
(6)

Differentiating the above expression for Th(m,n, r, P0) with respect to r, and setting it to zero, we can determine the
optimum number of threads to be used for computation per node. We get the following quadratic equation to determine
the optimum r:

2xP0 ∗ (S0 +mn/B0 ∗ log(P0)) ∗ r2 = (mn+ 3mns ∗ (k + l)) ∗ (c2 + r2 − 2cr) (7)

Solving, the optimum value of r is given by:

r∗ =

√
(4c2Z2 + 8c2xP0Y)− 2cZ

2 ∗ (2xP0Y − Z)
,where,

Y = S0 +mn/B0 ∗ log(P0), and, Z = mn+ 3mns(k + l)

(8)

4.4 Flat Load Balancing Algorithm
In the distributed flat algorithm, we need to ensure that each processor has equal compute load based on the rows and
columns assigned to that processor. Formally, this problem is related to the k-partition problem that is known to be
NP-hard.

We use the following notation. Let, S(ri) denote the number of populated entries in the row, ri, i ∈ [1..M], and
S(cj) denote the number of populated entries in the column, cj , j ∈ [1..N]. For the distributed flat algorithm, let,

12

variable, xi,p denote that the row, ri is assigned to processor/node p. Similarly, variable, yj,p, denote that the column,
cj is assigned to processor/node p. Further, the compute load on a processor, CLp is given by:

CLp = G ∗ [
∑
i

S(ri) ∗ xi,p +
∑
j

S(cj) ∗ yj,p] (9)

In the above equation, G is a proportionality constant. The load imbalance across two processors is given by
∆CLp,p′ = |CLp − CLp′ |. The load imbalance across all processors in the system, is given by, max(p,p′) ∆CLp,p′ .
The load balancing ILP problem for the flat distributed algorithm is as follows:

Objective: minimize Y
Constraints:

∀p, p′ ∈ P, p ̸= p′ :Y ≥ ∆CLp,p′

∀i :
∑
p

xi,p ≥ 1

∀j :
∑
p

yj,p ≥ 1

∀i, p :xi,p ∈ [0, 1]

∀j, p :yj,p ∈ [0, 1]

(10)

The above ILP is NP-hard by reduction from the 3-partition [11] problem. However, approximation algorithms can be
used obtain a good load balanced data distribution for the flat distributed CF algorithm. We employed greedy row and
column movement heuristic to ensure good balancing for the flat algorithm. The flat load balancing algorithm works
in iterations. In each iteration the total row and column load on each processor, CLp is computed and using all-reduce
this information is obtained at each processor. Then, a matching is computed between processors with heavy loads and
processors with light load. After this, the processor with high load sends a certain number of heavy rows and columns
to its matched processor with low load. The selection of rows and columns to send is made to ensure that these two
matched processors end up with similar load after their communication. These iterations are repeated till the overall
load imbalance in the system is below a certain threshold.

5 Hierarchical Coclustering Algorithm

5.1 Batch Mode
In this section, we present the detailed algorithmic design of our novel hierarchical co-clustering algorithm. The
original input (users*items) ratings matrix is divided into certain number of row and column partitions. Each partition
is assigned to a set of nodes in the cluster architecture. The hierarchical algorithm runs from bottom to top along
a computation tree (Fig. 3) as follows. First, flat parallel co-clustering is run in each partition independently. The
number of row and column clusters chosen is smaller compared to that specified in the input. Then, for each partition,
the row and column clusters generated are merged with the adjacent partition. This gives the next level row and column
clusters. At this higher level, flat parallel co-clustering is then run independently in each partition. Then again, the
resulting row and column clusters at this level are merged to generate the next higher level row and column clusters.
This forms a computation tree (Fig. 3) of execution. The alternate flat co-clustering and row/column cluster merge
continue up the computation tree until the full matrix is obtained as a single partition (at the highest level in the tree)
and finally flat parallel co-clustering is run here with the number of row and column clusters as specified in the input.

This hierarchical design helps in improving the overall time of the co-clustering algorithm without loss in accuracy
of CF. At the lower levels of the computation tree, faster co-clustering iterations with smaller number of row and
column clusters take place. This reduces the computation time. Moreover, MPI collectives like MPI Allreduce and
MPI Allgather are usually costly in nature when used over large number of nodes in the system (as in the flat algorithm,
Algorithm 2). However, in the hierarchical algorithm, these collectives occur in smaller subsets of nodes (smaller
communication topologies) and hence the communication cost is reduced. Thus, the hierarchical design results in
lower computation as well as communication time. Further, row and column clusters as one level, after merge, result
in good quality seed clusters for co-clustering at the next level. So, in the same number of iterations as a pure flat

13

Algorithm 4 Distributed Hierarchical Co-Clustering
Input: Ratings Matrix A, Non-zeros matrix W , No. of row clusters l, No. of column clusters k.
Output: Locally optimal co-clustering (ρ,γ) and averages ACOC ,ARC ,ACC ,AR and AC .
Method:
Let A be divided into πr row partitions and πc column partitions. Then the hierarchical algorithm proceeds with
log(πr) row folds first and then with log(πc) column folds. Initialize x = 0 and y = 0.
while (x++) < (log(πr)) do

1. In the current iteration, each partition Πx
i,j reads only the m/2x

πr
× n

πc
submatrix Ax

i,j of A where 0 ≤ i < πr

2x

and 0 ≤ j < πc.
2. Each partition Πx

i,j iteratively calculates a (k.2x/πr, l/πc) locally optimum coclustering (ρxi,j ,γx
i,j) for the

submatrix Ax
i,j

3. Fold along rows: Partition Πx
2i,j merges with partition Πx

2i+1,j in the following manner to form Πx+1
i,j .

1a. ρx2i,j and ρx2i+1,j together form k.2x+1/πr new row clusters ρx+1
i,j

1b. γx
2i,j and γx

2i+1,j merge using maximum bi-partite matching to form l/πc new column clusters γx+1
i,j

end
while (y++) < (log(πc)) do

1. In the current iteration, each partition Πy
i,j reads only the m × n.2y

πc
submatrix Ay

i,j of A where i = 0 and
0 ≤ j < πc

2y .
2. Each partition Πy

i,j iteratively calculates a (k, l.2y/πc) locally optimum coclustering (ρyi,j ,γy
i,j) for the

submatrix Ay
i,j

3. Fold along columns: Partition Πy
i,2j merges with partition Πy

i,2j+1 in the following manner to form Πy+1
i,j .

1a. ρyi,2j and ρyi,2j+1 merge using maximum weight bi-partite matching form k new row clusters ρy+1
i,j

1b. γy
i,2j and γy

i,2j+1 together form l.2y+1/πc new column clusters γy+1
i,j

end

co-clustering algorithm (Algorithm 2), one can converge to similar high quality co-clustering for the hierarchical
algorithm. Hence, the hierarchical algorithm provides a better trade-off point for speed vs accuracy as compared to
the flat algorithm.

Each partition has M/4

Rows, N/4 Columns & P/16

Nodes

Flat Co-clustering

in each partition

Merging Along Rows

Each cell has M/2 Rows,

N/4 Columns & P/8 Nodes

Flat Co-clustering

in each partition

Merging Along Rows

Each cell has M Rows, N/4

Columns & P/4 Nodes

Flat Co-clustering

in each partition

Merging Along Columns

Each cell has M Rows, N/2

Columns & P/42Nodes

Flat Co clustering

in each partition

Merging Along Columns
Each cell has M Rows, N

Columns & P Nodes

A0
1,1

A4
1,1 A3

1,2
A3

1,1

A2
1,1

A1
1,2A1

1,1 A1
1,3 A1

1,4

A1
2,1 A1

2,2 A1
2,3 A1

2,4

A0
2,1

A0
1,2 A0

1,3 A0
1,4

A0
3,1

A0
4,1 A0

4,2

A0
2,4

A0
2,3

A0
3,4A0

3,3

A0
2,2

A0
3,2

A0
4,3 A0

4,4

A2
1,2

A2
1,3

A2
1,4

Each partition has M/4

Rows, N/4 Columns & P/16

Nodes

Flat Co-clustering

in each partition

Merging Along Rows

Each cell has M/2 Rows,

N/4 Columns & P/8 Nodes

Flat Co-clustering

in each partition

Merging Along Rows

Each cell has M Rows, N/4

Columns & P/4 Nodes

Flat Co-clustering

in each partition

Merging Along Columns

Each cell has M Rows, N/2

Columns & P/42Nodes

Flat Co clustering

in each partition

Merging Along Columns
Each cell has M Rows, N

Columns & P Nodes

A0
1,1

A4
1,1 A3

1,2
A3

1,1

A2
1,1

A1
1,2A1

1,1 A1
1,3 A1

1,4

A1
2,1 A1

2,2 A1
2,3 A1

2,4

A0
2,1

A0
1,2 A0

1,3 A0
1,4

A0
3,1

A0
4,1 A0

4,2

A0
2,4

A0
2,3

A0
3,4A0

3,3

A0
2,2

A0
3,2

A0
4,3 A0

4,4

A2
1,2

A2
1,3

A2
1,4

Figure 2: Hierarchical Co-clustering: Matrix Row/Column Folding

Fig. 2 and Fig. 3 illustrate the hierarchical algorithm in detail. Here, the input ratings matrix A is partitioned into
4 ∗ 4 = 16 partitions (πr = 4, πc = 4). At level 0 (leaf level of the computation tree, Fig. 3), first each partition, Π0

i,j

(1 ≤ i ≤ 4, 1 ≤ j ≤ 4), performs a certain number of flat co-clustering iterations on its corresponding sub-matrix,

14

Figure 3: Hierarchical Co-clustering - Computation Tree

A0
i,j , independently and in parallel using the G0 processors allocated to it. Each partition generates, k/4 row clusters

and l/4 column clusters. Then, pairs of adjacent partitions (for instance partition Π0
1,1 and partition Π0

2,1), merge
their row and column clusters respectively, to generate k/2 row clusters and l/4 column clusters at level 1. Since, the
underlying sub-matrices of the adjacent partitions are concatenated along the rows, this step is called as row folding
step (See Fig. 2 and Step 3 in Algorithm 4). Then, at level 1, each partition, Π1

i,j (with 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4),
independently runs flat co-clustering iterations on the sub-matrix, A0

i,j , with k/2 row clusters and l/4 column clusters.
The updated row and column clusters of adjacent partitions are merged to generate k row clusters and l/4 column
clusters at the next level 2 (another row fold step). These two row fold steps for the corresponding sub-matrices are
illustrated in Fig. 2. These are followed by two column fold steps. At level 2, each partition, Π2

i,j (i == 1, 1 ≤ j ≤ 4)
independently runs flat co-clustering iterations on the sub-matrix, A2

i,j , to update the k row clusters and l/4 column
clusters. Then, each pair of adjacent partitions merges the row and column clusters to generate k new row clusters and
l/2 column clusters. These, form the seed row and column clusters for level 3. After, the flat co-clustering iterations
at level 3, the k row clusters and l/2 column clusters of the two partitions at this level, are merged to generate k row
clusters and l column clusters at level 4. These clusters are then refined by final set of flat co-clustering iterations. This
gives us the full matrix with k row and l column clusters. For exact details refer Algorithm 4.

While merging row and column clusters of one level to generate row and column clusters of the next level, one
needs ensure low merge compute and communication time while at the same time generating good quality starting seed
clusters for the next level. In order to achieve this, we use maximum weight bi-partite matching across two sets of
clusters. During row folds, the number of row clusters simply doubles hence, no merge is required. While, the number
of column clusters remains the same at the next level. Hence, using the number of overlapping columns as the weight
of the edge connecting two column clusters, we perform maximum weight bi-partite matching algorithm to quickly
merge the column clusters. This merging operation requires an additional MPI Allreduce operation to communicate
the cluster memberships from one partition to the other.

The row and column merging (folding) usually happens alternatively to reduce the bias towards row or column
clusters. However, to minimize data transfer volume for mitigating load imbalance, one might choose a particular
sequence of row or column folds/merge. We leave a detailed study of this effect to future work.

5.2 Online Mode
Algorithm 5 presents the hierarchical online distributed co-clustering algorithm. In the online algorithm, the row and
column clusters at various levels are updated on the hierarchical computation tree, as a collection of row/column up-
dates in the input matrix come along. The clusters at the top most level and the corresponding averagesACOC

gh ,ARC
gj ,ACC

ih

at that level are hence maintained which can be used for the purpose of prediction later. The key challenge in the online
hierarchical algorithm, is to calculate the changed co-clustering for the partition Πi,j

y+1 at level y+1, using the updates
at the level y in an efficient manner along the hierarchical computation tree. In order to acheive this, the changes in
clusters at level y are propagated to level y+1 while utilizing the history of the previous clustering at level y+1. This
reduces the number of cluster assignment iterations to reach an optimal co-clustering at level y + 1.

The propagation of changes from level y to level y + 1 is done in the following manner (refer Algorithm 5. Let us
assume we have the optimal local clustering for the partitions at level y. We need to propagate the information in this
changed assignment of row clusters (say Ky) to the old row clusters at level y + 1, Ky+1. Now, we take each row r

15

Algorithm 5 Hierarchical Online Distributed Coclustering update algorithm
Input: Original Matrix A, Updated Ratings Matrix U , Previous Hierarchical Co-clusters (ρi,jy ,γi,j

y) for each partition
Πi,j

y (1 ≤ y ≤ Y0, 1 ≤ i ≤ m1, 1 ≤ j ≤ n1) and averages ACOC
gh ,ARC

gj ,ACC
ih at level Y0

Output: Updated optimal co-clustering (ρi,jy ,γi,j
y) and averages ACOC

gh ,ARC
gj ,ACC

ih at level Y0.
Method:
1. Before starting the iterations, update the m × n matrix A with changes from U . 2. Following the hierarchical
structure, at level y, Partition Πi,j

y (1 ≤ i ≤ m1, 1 ≤ j ≤ n1), as shown in the figure gets m
m1

rows (i.e, a m
m1

× n

submatrix AR
i) and n

n1
columns (i.e, a m× n

n1
submatrix AC

j) where m1 = 2⌊
y
2 ⌋ and n1 = 2⌈

y
2 ⌉.

Each node p in this partition gets m
m1∗G0

rows and n
G0∗n1

columns where G0 is the number of nodes in the partition.
At any level y, to each partition Πi,j

y only the m
m1

× n
n1

submatrix Ai,j is visible/read by the nodes in the partition.
This matrix is coclustered into k

m1
row clusters and l

n1
column clusters.

while (y ++) ≤ Y0 do
3. Update the locally optimum coclustering (ρi,jy ,γi,j

y) for the updated submatrix Ai,j at each partition Πi,j
y

4. If y is odd,
Fold along rows: Partition Π2i,j

y merges with partition Π2i+1,j
y in the following manner to form Πi,j

y+1.
1a. Each row r that updated its cluster in ρ2i,jy or ρ2i+1,j

y at level y does a maximal match of that cluster with one
of the old clusters ρi,jy+1 at level y + 1 and joins it, eventually leading to k1 changed Row clusters ρi,jy+1.
1b. Each column c that updates its cluster in γ2i,j

y or γ2i+1,j
y at level y does a maximal match of that cluster with

one of the old clusters γi,j
y+1 at level y + 1 and joins it, eventually leading to l1 changed Column clusters γi,j

y+1 .
1c. Some flat row and column update iterations are run if y < H before proceeding to the next level and making
m1 = m1

2
else If y is even,
Fold along Columns: Partition Πi,2j

y merges with partition Πi,2j+1
y in the following manner to form Πi,j

y+1.
1a. Each row r that updated its cluster in ρi,2jy or ρi,2j+1

y at level y does a maximal match of that cluster with one
of the old clusters ρi,jy+1 at level y + 1 and joins it, eventually leading to k1 changed Row clusters ρi,jy+1.
1b. Each column c that updates its cluster in γi,2j

y or γi,2j+1
y at level y does a maximal match of that cluster with

one of the old clusters γi,j
y+1 at level y + 1 and joins it, eventually leading to l1 changed Column clusters γi,j

y+1 .
1c. Some flat row and column update iterations are run y < H before proceeding to the next level and making
n1 = 1

2

end

at level y that is affected by the updates to the ratings in that partition and hence changed to a cluster Ry in Ky . Now,
the assignment of r in Ky+1 is determined as follows. Find that cluster Ry+1 ∈ Ky+1 such that Ry has a maximal
match with Ry+1 (in terms of number of rows assigned to them), more than any other row cluster in Ky+1. Now at
level y+1, the row r is assigned to this row cluster Ry+1 initially. In this fashion, one round of initial row assignment
updates is done for all the changed rows in the partition Πi,j

y+1 by propagating the changes from the previous level while
using the history at this level. Then, a few rounds of flat row cluster assignment update iterations (refer section 4.2) are
run to reduce the error in the divergence function chosen. For reducing the run time further, these iterations at lower
levels of the hierarchical tree (closer to the leaves) can be skipped, since the number of changes within a partition at a
lower level maybe so less that just a reassignment of clusters by propagating the cluster updates is enough to maintain
the clusters and ensure good accuracy. In this case, we will significantly reduce the algorithm execution time while
not loosing much on the accuracy of cluster assignments at lower levels. Further, successive chunks (collections) of
updates can proceed in parallel by carefully, allocating and multiplexing the cores in each node to process a chunk
(collection) of updates. Thus, at any point of time, multiple updates can proceed in parallel up (from leaf to the root)
along the hierarchical computation tree in a pipelined fashion. This pipelined parallelism leads to soft real-time online
CF performance by enabling higher utilization of the underlying compute nodes in the system.

16

5.3 Time Complexity Analysis for Hierarchical Algorithm
For the parallel hierarchical co-clustering algorithm, we consider 2 way merge at each level, i.e. a binary tree (for
sake of simplicity) with Z levels of computation. In case of the binary tree, the base level, l0, has 2Z partitions each
of size G0 nodes (processors) such that G0 = P0/(mn). At each level, lz , z ∈ [0..Z − 1], the k′ row clusters and
l′ column clusters from two previous level partitions are merged to form a new initial set of k′′ row clusters and l′′

column clusters for the next level partition. In the hierarchical computation, first the row to row cluster assignment and
the column to column cluster assignment iterations are performed at a level, lz . The time required for these iterations
depends upon the size of the sub-matrix handled by each partition at that level, the number of clusters k′ and l′, as
well as the number of nodes in the partition at that level. The total number of levels in the binary tree of hierarchical
computations is given by:

Z = log(πr) + log(πc) (11)

We consider separately, the cost for iterations at each level and the merge overhead to go from one level to the next.
For sake of simplicity, we assume that all row-folds (with levels referred to as x, x ∈ [0.. log(πr)− 1]) happen before
the col-folds (with levels referred to as y, y ∈ [0.. log(πc) − 1]). The cost of iterations during the row-fold at each
level,
T(flat)(m.2x/πr, n/πc, G0.2

x, kx, l/πc),

where, kx = k.2x/πr (flat hybrid equation). Similarly, the cost of iterations during col-fold at each level, referred
to here as,
T(flat)(m,n.2y/πc, P0.2

y/πc, k, ly), where P0 = G0 ∗ πr ∗ πc and ly = l.2y/πc. For merge compute and com-
munication cost, let us consider row-fold based merge between two partitions of level, x, to create a new partition
at level, x + 1, and its initial row and column clusters. Here, communication takes place between the nodes of
the two partitions at level x to share the row cluster and column cluster mapping. The time for this is given by :
O(S0 + 2(kx + lπc) ∗ log(2x.G0)/B0). Then the nodes perform maximum weight bipartite matching between row
clusters of the two partitions and also between column clusters of the two partitions. Since, this matching effort is
equally distributed across the nodes (and cores within the nodes) of the two partitions, this compute time is given
by: O((kx + l/πc)/(G0 ∗ c)). Once, the merge happens, the assignment of rows to the row clusters and columns to
the column clusters is done by each node. The time for this is given by : O((1/2G0.c) ∗ ((m.2x/πr) + n/πc)).
Let α = log(πr) and β = log(πc). The merge time for row based merge between two partitions at level,x,
0 ≤ x ≤ (log(πr)− 1), is given by (assuming compute time dominates):

T(r merge)(m.2x/πr,n/πc, G0.2
x) =

(kx + l/πc)

(G0 ∗ c)

+ (
1

2G0.c
∗ (m.2x

πr
+

n

πc
))

(12)

Similarly, the merge time for column based merge between two partitions at level,α+ y, 0 ≤ y ≤ (β− 1), is given by
(assuming compute time dominates):

T(c merge)(m,n.2y/πc, G0.πr.2
y) =

(k + ly)

(G0 ∗ πr.2y.c)
+

((1/2G0.πr, 2
y.c) ∗ (m+ (n.2y)/πc))

(13)

The total number of iterations in the parallel hierarchical algorithm is same as the flat algorithm, ie. I . However, in
case of the hierarchical algorithm, the I iterations are distributed across the Z = log(πr) + log(πc) levels. As the
levels increase from 0 to Z − 1, the number of iterations per level decrease by a factor of I/Z. The total time in the
hierarchical computation is given by the time for all row folds Trow fold plus the time for all column folds Tcol fold.

T(hier) = Trow fold + Tcol fold

Trow fold = O(

log(πr−1)∑
x=0

(
(k/πr.2

x + l/πc).m/πr.n/πc.2
x.s

P0.2x

πr.πc

))

Tcol fold = O(

log(πc−1)∑
x=0

(k +
l.2x

πc
).
m.n.s

P0
)

(14)

17

The total time over all row folds is given by:

Trow fold = O((
k.(πr − 1)

πr
+

l. log(πr)

πc
).
m.n.s

P0
) (15)

Similarly using Tcol fold can be written as:

Tcol fold = O(

log(πc−1)∑
x=0

(k +
l.2x

πc
).
m.n.s

P0
)

Tcol fold = O((k. log(πc) +
l.(πc − 1)

πc
).
m.n.s

P0
)

(16)

Substituting the expression for Trow fold, Tcol fold from equation (16), and simplifying equation (14), and assum-
ing the communication cost is low, we get:

Thier = O(((k. log(πc) +
l.(πc − 1)

πc
)

+ (
k.(πr − 1)

πr
+

l. log(πr)

πc
)).

m.n.s

P0
)

(17)

Now combining results from (17) & (11) and making k=l=C, πr=πc=π we get Thier as:

Thier = O(
(2.(1− C

π) + C.(log(π)π + 1)).m.n.s
P0

2. log(π)
)

Thier = O(
C.m.n.s

P0. log(π)
)

(18)

Hence by doing similar replacement in Tflat as above we get :

Tflat = O(
C.m.n.s

P0
)

Thier

Tflat
= O(

1

log(π)
)

(19)

Equation (19) demonstrates that the distributed hierarchical algorithm performs better than the distributed flat
algorithm. In real experiments, the compute and communication merge overheads lead to lesser gain. One can use the
above performance model (equation (17)) to compute the optimal values of πr, πc and Z. We skip this analysis for
brevity.

5.4 Hierarchical Load Balancing Algorithm
In the hierarchical algorithm one needs to ensure load balance across the partitions at each level of the computation
hierarchy. Performing this forward-looking load balancing for all levels in the beginning (at the leaf level) itself will
ensure high parallel efficiency at all levels of execution. This can be viewed as a Multi-level k-partitioning problem. At
each level, the problem is similar (with a small difference) to the flat case, i.e. k-partition problem). The Multi-level k-
partition problem is NP-hard since it a generalization of the k-partition problem. Further, our problem has additional
constraints which makes it computationally challenging. We provide an overview of this multi-level inter-partition
load balance problem below. Strictly speaking one also needs to consider intra-partition load balance for all partitions.
One can use flat load balancing type heuristics to ensure this. We skip this for brevity. Let, the partitions, at the leaf
level (l0), in the hierarchical algorithm be denoted by, π0

g,h, where g denotes the row-index for the partition and h

denotes the column index for partition. Let, variable, xi,g denote that row, ri is assigned to partition, π0
g,h, h ∈ [1..H],

and variable, yj,h denote that column, yj is assigned to partition, π0
g,h, g ∈ [1..G]. Let, Sgh(ri), denote the number of

populated entries in the part of the row, ri, that belong to the partition, π0
g,h. Similarly, let Sgh(cj), denote the number

18

of populated entries in the part of the column, cj that belong to the partition, π0
g,h. The compute load on the partition,

π0
g,h, is given as follows:

CL0(π0
g,h) = G0 ∗ [

∑
i

Sgh(ri) ∗ xi,g +
∑
j

Sgh(cj) ∗ yj,h] (20)

The inter-partition load imbalance across two partitions at leaf level, l0, is given by:

∆CL0(π0
g,h, π

0
g′,h′) = |CL0(π0

g,h)− CL0(π0
g′,h′)| (21)

The inter-partition load imbalance across all partitions in the system at level, l0, is given by : max(π0,π′0) ∆CL0(π0
g,h, π

0
g′,h′).

In a similar fashion one can define the load imbalance at higher levels of the hierarchy. We assume that it is known
apriori which partitions are merged to form the next level partitions. In general, the decision of whether to perform
row-based merge or column-based merge at a level can also be treated as an optimization problem, but we consider
this aspect later. For level, l1, let the partitions be denoted by π1

u,v . Let variable, xi,u = 1 if row ri is assigned to
partition π1

u,vv ∈ [1..V], and 0 otherwise. Similarly, let variable, yj,v = 1, if column, cj is assigned to partition
π1
u,vu ∈ [1..U],and 0 otherwise. The compute load on the partition, π1

u,v , can be defined as follows:

CL1(π1
u,v) = G1 ∗ [

∑
i

Suv(ri) ∗ xi,u +
∑
j

Suv(cj) ∗ yj,v] (22)

Similar to equation (21), one can define the load imbalance at level l1.

∆CL1(π1
u,v, π

1
u′,v′) =

∣∣CL1(π1
u,v)− CL1(π1

u′,v′)
∣∣ (23)

The inter-partition load imbalance across all partitions in the system at level, l1, is given by, max(π1,π′1) ∆CL1(π1
u,v, π

1
u′,v′).

The load balancing ILP problem for the hierarchical distributed algorithm (considering only levels l0 and l1 and as-
suming row-based merge), is as follows:
Objective: minimize (Y0 ∗ γ0 + Y1 ∗ γ1)
Constraints: Feasibility Constraints :

∀i :
∑
g

xi,g ≥ 1 and

∀j :
∑
h

yj,h ≥ 1 (24)

Maxima Constraints :

∀π0, π′0at level l0, π0 ̸= π′0 :Y0 ≥ ∆CL0
π0,π′0

∀π1, π′1at level l1, π1 ̸= π′1 :Y1 ≥ ∆CL1
π1,π′1

(25)

Inter-level Constraints :

∀i, u :xi,u = xi,g + xi,g′ (26)

(when πu,v is obtained from the merge of πg,h and πg′,h, h = v)

∀j, h, v and h = v :yj,h = yj,v
(27)

Variable Range Constraints :

∀i, g :xi,g ∈ [0, 1] and
∀j, h :yj,h ∈ [0, 1]

(28)

Here, γ0 and γ1 are factors that determine how much weightage to be given for load imbalance at level l0 and level l1
respectively. In a similar fashion one can write the ILP for hierarchical load balancing problem across all levels of the
hierarchy involving row-based merge. For column based merge, the constraints relating variables of successive levels
will denote relations amongst yj,∗ variables and xi,∗ variables will remain equal. We skip the full ILP formulation for
sake of brevity and clarity.

19

6 Results & Analysis

6.1 Flat Hybrid Algorithm results
The hybrid distributed algorithm was implemented using MPI and OpenMP, while the base distributed algorithm
was implemented using only MPI. The Netflix Prize dataset was used to evaluate and compare the performance and
scalability of these distributed co-clustering algorithms. The experiments were performed on the Blue gene/P (MPP)
architecture. Each node in Blue Gene/P is a quad-core chip with frequency of 850 MHz having 2 GB of DRAM
and 32 KB of L1 cache per core. Blue Gene/P has the following major interconnects:(a) 3D-Torus interconnect which
provides 3.4 Gbps per link on each of the 12 links per node (total 5.1 GBps per node), and, (b) Collective Network that
provides 6.8 Gbps per link. MPI was used across the nodes for communication, while within each node OpenMP was
used to parallelize the computation and communication amongst the four cores. For all the experiments, we obtained
RMSE in the range 0.87±0.02 on the data. Below, k refers to the number of row clusters generated while l refers to the
number of column clusters generated. Netflix data was used for evaluation of the distributed algorithms. For Netflix,
the number of rows, m, is around 480K; the number of columns, n, is 17, 770, and the sparsity factor, s is around
85. We present the strong, weak and data scalability analysis of the training phase for both Euclidean divergence and
I-divergence based co-clustering.

6.1.1 Strong Scalability

For strong scalability, we used the full Netflix data for each experiment, while increasing the number of nodes, from 64
to 1024. Fig. 4(a) illustrates that the hybrid algorithm (for Euclidean divergence) has consistently better performance
over the base algorithm: 5.1× better than the base when P0 = 32 and 2.1× better at P0 = 1024. Here, the hybrid
algorithm has more than (c = 4)× better performance than the base algorithm due to reduction in load-imbalance as
explained in Section 4.3. In the hybrid algorithm, as the number of nodes increases from 32 to 1024, the compute time
decreases by 26× while the communication time remains almost the same, this leads to overall 4× decrease in total
training time with 32× increase in the number of nodes(P0). Fig. 4(b) illustrates the performance gain of the hybrid
algorithm over the base algorithm for I-divergence. Here, the performance gain of hybrid vs base decreases from 3.2×
for P0 = 32 nodes to 1.25× for P0 = 1024 nodes. By using more efficient load balancing techniques, the performance
of the hybrid (MPI+OpenMP) algorithm can be improved further. Moreover, by using the optimum number of cores
for communication using the formula specified in the Section 4.3.1, one can get better overall performance. Further,
for I-divergence, the gain for the hybrid algorithm from the decrease in inter-node load-imbalance is offset by the loss
from intra-node load-imbalance amongst the threads. Hence, in case of I-divergence the gain of the hybrid algorithm
over the base algorithm is not as large as in the Euclidean divergence.

Strong Scalability (Euclidean Div.): k=16,l=16

12.3

118.69

68.5

23.5
34.8

15.7

6.11 5.97.34
10.2

14.2

23.3

0

20

40

60

80

100

120

140

32 64 128 256 512 1024

Number of Nodes

T
im

e(
s) Sscal-mpi

Sscal-mpi-omp

Strong Scalability (I-Divergence): k=16,l=16

90.57

246.83

144.7

459.63

797.84

64.8

250.23

144.09
99.09

66.1 51.853.140

100

200

300

400

500

600

700

800

900

32 64 128 256 512 1024

Number of Nodes

T
im

e(
s) Sscal-mpi

Sscal-mpi-omp

(a) (b)

Figure 4: Strong Scalability: (a) Euclidean divergence. (b) I-divergence

6.1.2 Weak Scalability

Fig. 5(a) displays the weak scalability for Euclidean distance based co-clustering as the number of nodes (P0) in-
creases from 32 to 1024 and the training data increases from 3.125% to 100% of the full Netflix dataset (with k = 16,
l = 16). Here, the hybrid algorithm performs consistently better compared to the base algorithm: 3.61× better at

20

P0 = 32 and 2.1× better at P0 = 1024. The total time for the hybrid algorithm increases by 8.67× as the number of
nodes increase from 32 to 1024. This is due to the compute time increase by 2.91× and also increase in load imbal-
ance. Fig. 5(b) illustrates the weak scalability of the hybrid algorithm for I-divergence: with 32× increase in the data
and number of nodes, the training time only increases by 6.13×. Further, the hybrid algorithm performs consistently
better than the base algorithm.

Weak Scalability (Euclidean Div.) : k=16,l=16

12.31

2.46 2.73

4.15
3.36

6.62

3.34

5.9

1.76
1.250.90.68

0

2

4

6

8

10

12

14

32 64 128 256 512 1024

Number of Nodes

T
im

e(
s) Wscal-mpi

Wscal-mpi-omp

Weak Scalability (I-Divergence): k=16,l=16

64.8

25.14
28.25

35.7630.99

46.34

26.2

51.88

16
12.05

9.01

8.46

0

10

20

30

40

50

60

70

32 64 128 256 512 1024

Number of Nodes

T
im

e(
s) Wscal-mpi

Wscal-mpi-omp

(a) (b)

Figure 5: Weak Scalability: (a) Euclidean divergence. (b) I-divergence

6.1.3 Data Scalability

Fig. 6(a) displays the data scalability for Euclidean distance based co-clustering as the training data increases from
6.25% to 100% of the full Netflix dataset, while P0 = 1024. The training time for the hybrid algorithm increases by
8.55× with 16× increase in data, while that for the base algorithm increases by 11.3×. Thus, the hybrid algorithm
shows better than linear data scalability and also better data scalability as compared to the base algorithm. The hybrid
algorithm also performs better than the base by 1.58× at P0 = 32 and 2.1× better at P0 = 1024. Fig. 6(b) illustrates
the data scalability for the hybrid algorithm with I-divergence as the training time increases only by 14.8× with 16×
increase in data, while the number of nodes is kept constant at P0 = 1024.

Data Scalability (Euclidean Div.) : k=16,l=16, P0 = 1024

12.31

3.36

6.68

1.88
1.09

0.69 1.14 1.95
3.32

5.9

0

2

4

6

8

10

12

14

6.25% 12.50% 25% 50% 100%

Percentage of full Netflix data

T
im

e(
s) Wscal-mpi

Wscal-mpi-omp

Data Scalability (I-Divergence): k=16,l=16

49.55

17.09

33.72

9.23
4.74

64.8

3.5 6.4
12.8

26.13

51.88

38.64

0

10

20

30

40

50

60

70

6.
25

%

12
.5

0%
25

%
50

%
75

%
10

0%

Percentage of Netflix Dataset

T
im

e(
s) Dscal-mpi

Dscal-mpi-omp

(a) (b)

Figure 6: Data Scalability: (a)Euclidean divergence. (b) I-divergence

6.2 Batch Hierarchical Algorithm results
The hybrid flat and hierarchical distributed algorithms were both implemented using MPI and OpenMP. The Netflix
Prize dataset (100M training ratings and 1.5M validation ratings over 480K users and 17K movies) , and, Yahoo KDD
Cup (252M training ratings and 4M validation ratings over 1M users and 624K songs) datasets were used to evaluate
and compare the performance and scalability of these distributed algorithms. The experiments were performed on the
Blue gene/P (MPP) architecture. MPI was used across the nodes for communication while within each node OpenMP
was used to parallelize the computation and communication amongst the four cores. For all the experiments, we
obtained RMSE in the range 0.87 ± 0.02 on the Netflix validation data and RMSE in the range 26 ± 4 on the Yahoo

21

Strong Scalability (Netflix, I-div) k=16, l=16

0

20

40

60

80

100

120

140

160

64 128 256 512 1024 2048 4096

Number of Nodes

T
ra

in
in

g
Ti

m
e

(s
)

Flat-hybrid

Hier-lb

Weak Scalability (Netflix, I-div) k=16, l=16

0

20

40

60

80

100

120

64 128 256 512 1024 2048 4096

Number of Nodes

T
ra

in
in

g
Ti

m
e

(s
)

Flat-hybrid

Hier-lb

Data Scalability (Netflix, I-Divergence): k=16,l=16

5.66

10.47

30.3

20.63

39.4

9.38
6.75

4.523.65
2.34

0

5

10

15

20

25

30

35

40

45

12.50% 25% 50% 75% 100%

Data Size: % of full Netflix

Ti
m

e(
s) Sscal-mpi

Sscal-hier-lb

(a) (b) (c)

Figure 7: Netflix (I-div/C6): (a) Strong Scalability. (b) Weak Scalability. (c) Data Scalability

Strong Scalability (Yahoo KDD Cup, Euclidean-
Div): k=20,l=20

0

50

100

150

200

250

300

64 128 256 512 1024 2048 4096

Number of Nodes

T
ra

in
in

g
 T

im
e(

s)

Flat-hybrid

Hier-lb

Weak Scalability (Yahoo KDD Cup, Euclidean-
Div): k=20,l=20

0

10

20

30

40

50

60

70

80

90

64 128 256 512 1024 2048 4096

Number of Nodes

T
ra

in
in

g
 T

im
e(

s)

Flat-hybrid

Hier-lb

Data Scalability (Yahoo KDD Cup, Euclidean-Div):
k=20,l=20

0

50

100

150

200

250

65M 130M 260M 520M 1B 2.3B 4.6B

Number of Ratings

Tr
ai

ni
ng

 T
im

e(
s)

Flat-hybrid

Hier-lb

(a) (b) (c)

Figure 8: Yahoo-KDD (Euclidean/C6): (a) Strong Scalability. (b) Weak Scalability. (c) Data Scalability

KDD Cup data. Below, k refers to the number of row clusters (k = 16 for Netflix, k = 20 for Yahoo KDD Cup)
generated while l refers to the number of column clusters (l = 16 for Netflix, l = 20 for Yahoo KDD Cup) generated.
For all the experiments we used the C6 constraints (refer section 3). We present the strong, weak and data scalability
analysis including the training phase and the prediction phase for I-divergence with Netflix dataset and for Euclidean
divergence with Yahoo KDD Cup dataset.

6.2.1 Strong Scalability

Fig. 7(a) compares the strong scalability curves of the hierarchical algorithm and the flat algorithm. The hierarchical
algorithm with load balancing (Hier-lb) has better performance of around 2× (77s vs 144s at 64 nodes) to 4× (9.38s
vs 38.2s at 4096 nodes) over the flat algorithm. This gap increases with increasing number of nodes as the hierarchical
algorithm has better load balance across the nodes along with lower communication time, while achieving the same
accuracy as flat (0.87 ± 0.02 RMSE). This is a very desirable property for massive scale analytics and comes from
the novel hierarchical design of our algorithm. This also demonstrates soft real-time training (9.38s) performance for
the full Netflix dataset even with the computationally expensive I-divergence objective. In the hierarchical algorithm,
as the number of nodes increases by 64×, from 64 to 4096, the time decreases by 8.2× (from 77s to 9.38s). The
prediction time was 0.7s for 1.4M ratings. This gives an average prediction time of 0.5µs per rating using 4K
nodes. Fig. 8(a) illustrates the performance gain of the hierarchical algorithm over the flat algorithm for Euclidean-
divergence with the Yahoo KDD Cup dataset. The hierarchical algorithm consistently performs better than the flat by
around 4× (61s vs 267s at 64 nodes and 11.85s vs 51s at 4096 nodes). This also demonstrates soft real-time training
performance (13.28s) for the full Yahoo KDD Cup data. Because of the fundamental advantage of lesser overall
compute requirement and lesser load imbalance and communication cost (while giving the same accuracy 26 ± 4
RMSE) as compared to the flat algorithm, the hierarchical algorithm achieves better performance and hence is ideally
suited for massive scale analytics. The prediction time was 3.2s for 4M ratings. This gives an average prediction time
of 0.8µs per rating. The parallel efficiency here is lower than the Netflix data since the Yahoo data has much higher
sparsity and hence load imbalance, but it can be further improved by fine tuning the load balance further as well as

22

Strong Scalability Comparison (Netflix, I-div): k=16,l=16

0

20

40

60

80

100

120

140

160

64 128 256 512 1024

Number of Nodes

T
ra

in
in

g
 T

im
e(

s)

Sscal-hier-lb

Sscal-flat-omp-
mpi

Sscal-flat-lb

Weak Scalability Comparison (Netflix, I-div): k=16,l=16

0

10

20

30

40

50

60

64 128 256 512 1024

Number of Nodes

Ti
m

e(
s)

Wscal-hier-lb

Wscal-flat-omp-
mpi

Wscal-flat-lb

Data Scalability Comparison (Netflix, I-div): k=16,l=16

0

10

20

30

40

50

60

70

12.50% 25% 50% 75% 100%

Data Size: % of full Netflix

Ti
m

e(
s)

Dscal-flat-mpi

Dscal-hier-lb

Dscal-flat-omp-
mpi
Dscal-flat-lb

(a) (b) (c)

Figure 9: Detailed Comparison(Netflix): (a) Strong Scalability. (b) Weak Scalability. (c) Data Scalability

optimizing the merge phase in the hierarchical algorithm.

6.2.2 Weak Scalability

Fig. 7(b) compares the weak scalability curves for hierarchical algorithm and the flat algorithm, using I-divergence
based co-clustering with C6 constraints. As the number of nodes (P0) increases from 64 to 4096 and the training data
increases from 6.25% to 400% (400M ratings) of the full Netflix dataset (with k = 16, l = 16), the total training
time for the hierarchical algorithm increases by around 8.7× (4.5s to 39s), while that for the flat algorithm increases
by 11.87× (9s to 107s), thus demonstrating better weak scalability. Further, the hierarchical algorithm performs
consistently better compared to the flat algorithm, around 2× (4.5s vs 9s) with 64 nodes and 2.7× (39s vs 107s) at
4096 nodes. Fig. 8(b) demonstrates the weak scalability of the hierarchical algorithm for Euclidean divergence with
Yahoo KDD Cup dataset: with 64× increase in the data (16.25M to 1B ratings) and number of nodes (64 to 4096),
the training time only increases by 3.5× (8.15s to 28.5). Further, the hybrid algorithm performs consistently better
than the flat algorithm, 3.9× (8.15s vs 32s) at 64 nodes and 2.9× (28.5s vs 82.4s) at 4096 nodes.

6.2.3 Data Scalability

Fig. 7(c) compares the data scalability curves of the hierarchical algorithm and the flat algorithm. As the training
data increases from 13M to 900M (using replication of Netflix dataset), while P0 = 4096, the training time for the
hierarchical algorithm increases by 34× (1.87s to 64s) which is much lesser than that of the flat algorithm increases by
48×. This demonstrates better than linear data scalability of the hierarchical algorithm and better data scalability over
the flat algorithm. Further, the hierarchical performs consistently better than the flat algorithm, 2.24× at 13M ratings
(1.87s vs 4.2s) and 3.2× at 900M ratings (64s vs 203s). Moreover, this gap increases with increasing input size of
the data, that makes the hierarchical algorithm attractive for massive scale data. Fig. 8(c) compares the data scalability
curves for the hierarchical and the flat algorithm on the Yahoo KDD Cup dataset (with P0 = 4096, Euclidean diver-
gence/C6). The hierarchical algorithm demonstrates better than linear data scalability (21× increase in time with 64×
increase in data from 65M ratings to 4.6B ratings). It performs better than the flat algorithm by 3.15× at 65M ratings
(3.8s vs 12s) and 2.4× at 4.6B ratings (80s vs 194s). On 1B as well as for 2.3B ratings, the hierarchical algorithm
achieves soft real-time performance, 25s and 47s respectively.

6.2.4 Detailed Scalability Comparison

In this section we present detailed comparison of the gains obtained by the hierarchical algorithm and load balancing.
Fig. 9(a) presents the curves for strong scalability for the flat hybrid algorithm, the hybrid flat load balanced algorithm
and the hierarchical load balanced algorithm. The hybrid flat load balanced algorithm performs around 2× better
than the flat hybrid algorithm and this gap increases with increasing number of nodes. This is because at P0 = 64,
the flat hybrid algorithm is able to utilize the 4 threads per node efficiently, while also being able to effectively
overlap computation with communication. However, at higher values of P0, the load imbalance problem dominates
its overall throughput. Hence, its performance degrades w.r.t the load balanced flat algorithm by 2× at P0 = 1024,
and its speedup is only 2.9× over 16× increase in the number of nodes. The hybrid flat load balanced algorithm
eliminates this problem by making sure that each node roughly processes the same number of entries. Hence, the
hybrid flat load balanced algorithm, achieves 3.6× speedup over 16× increase in the number of nodes. The hierarchical

23

algorithm further demonstrates an additional 2× performance over the flat load balanced algorithm at P0 = 1024 and
an improvement in speedup to 7.2× with 16× increase in the number of nodes.

Fig. 9(b) presents the comparison curves for weak scalability. Here, the hybrid flat algorithm incurs 5.6× increase
in time with 16× increase in data and number of nodes, and the flat load balanced algorithm incurs 3.95× increase
in time; while the hierarchical algorithm incurs only 2.6× increase in time. This can be attributed to better efficiency
in the hierarchical algorithm as compared to the flat algorithm even with load balance. Further, the hierarchical
algorithm has consistently superior performance over the hybrid flat load balanced algorithm by around 2× (at 1024
nodes); while the flat load balanced algorithm has around 2× performance over the flat hybrid algorithm owing to
its better work distribution amongst the nodes. Fig. 9(c) presents the comparison curves for data scalability. The
hybrid flat load balanced algorithm achieves gain to 1.8× at P0 = 64 and 2.15× at P0 = 1024 over the flat hybrid
algorithm. Further, the hybrid flat load balanced algorithm improves the overall data scalability over the flat hybrid
algorithm (6.6× increase in time overall vs 14.6× for flat hybrid). The hierarchical algorithm further improves the
data scalability by achieving only 3.2× overall increase in time with 16× increase in data size.

6.2.5 Performance vs Accuracy Trade-off

Fig. 10 illustrates the variation of RMSE and training time for the hierarchical algorithm with the increase in the
number of clusters, for the Yahoo KDD dataset with I-divergence. Here, as the number of clusters increases from 16 to
128, the time increases from 33s to 266s while the RMSE first goes down to the lowest value of 27.95 for 20 clusters
and then increases monotonically to 30.13 RMSE. Thus, the RMSE has a sweet spot with respect to the number of
clusters. This trade-off curve is better than for the flat hybrid algorithm since the time increase is higher for similar
behavior in RMSE change(the plot has been omitted for brevity).

Fig. 11 illustrates the variation of RMSE and training time for the hierarchical algorithm with the increase in the
number of iterations, for the Yahoo KDD dataset with I-divergence. Here, as the number of iterations increases from
12 to 20, the time increases from 62s to 86s while the RMSE decreases from 29.34 to 28.88.

Variation with Number of Clusters (Yahoo KDD/C6, I-
div)

0

50

100

150

200

250

300

16 20 28 36 44 64 128

Number of Clusters (k,l)

T
im

e
(s

)

26.5

27

27.5

28

28.5

29

29.5

30

30.5

R
M

S
E Time

RMSE

Figure 10: Variation with Number of Clusters (Yahoo KDD /I-div/ C6)

Variation with Number of Iterations (Yahoo KDD/C6,
I-div)

0

10

20

30

40

50

60

70

80

90

100

12 14 16 18 20

Number of Iterations

T
im

e
(s

)

28.6

28.7

28.8

28.9

29

29.1

29.2

29.3

29.4

R
M

S
E

Time

RMSE

Figure 11: Variation with Number of Iterations (Yahoo/I-div/ C6)

24

6.3 Online Hierarchical results

Strong Scalability (Online, Euclidean Div./C6)

2.81

62.95

3.1
4.015.43

8.83 10.24
15.33

38.07

23.446

0

10

20

30

40

50

60

70

64 128 256 512 1024

Number of Nodes

Ti
m

e
(s

)

hier

mpi-flat

Weak Scalability (Online, Euclidean Div./C6)

3.993.93.953.9

16.55

15.3714.67
15.72

0

2

4

6

8

10

12

14

16

18

12.5 25 50 100

% of Full Matrix Size
T

im
e

 (
s)

Hierarichal

Flat

Data Scalability (Online, Euclidean Div./C6)

3.9
3.4

2.77

1.92

8.9
6.218

7.486

8.369

0

1

2

3

4

5

6

7

8

9

10

60k 120k 240k 480k

Number of Rows

T
im

e
 (

s)

Hierarichal

Flat

(a) (b) (c)

Figure 12: Netflix Online(Euclidean/C6): (a) Strong Scalability. (b) Weak Scalability. (c) Data Scalability

6.3.1 Strong Scalability

Fig. 12(a) illustrates the performance gain of the hierarchical online algorithm over the baseline MPI online algorithm
for Euclidean-divergence with 4% change in data. The hierarchical online algorithm performs better than the baseline
by around 3.64× to 7×. This also demonstrates soft real-time online training performance (2.81s) of our algorithm.
The parallel efficiency can be further improved here, by having better load balance. Further, the hierarchical algorithm
involves node to node communication during the merge phase. This leads to increase in the communication time,
leading to decrease in parallel efficiency.

6.3.2 Weak Scalability

Fig. 12(b) illustrates the weak scalability of the online hierarchical algorithm for Euclidean divergence with 4% in-
cremental change in the Netflix dataset. Here, with 16× increase in the data (matrix size) and number of nodes, the
training time remains pretty much the same. Further, the hierarchical online algorithm performs consistently better
than the online baseline algorithm by around 4×.

6.3.3 Data Scalability

Fig. 12(c) compares the data scalability curves for the online hierarchical and the online baseline algorithm with
P0 = 1024, Euclidean divergence/C6 and 4% incremental change in the Netflix dataset. The online hierarchical
algorithm demonstrates linear data scalability (2× time increase with 8× increase in data (number of rows)) and
performs better than the baseline algorithm by around 2.3× to 3.24×.

6.3.4 RMSE vs Performance Trade-offs

In this section we present the trade-offs between RMSE and performance. Fig. 13 presents RMSE and training time
for the online mode hierarchical distributed algorithm using Euclidean divergence with C6 constraints and 4% change
in input data. The X-axis shows the height in the hierarchical computation tree at which the full iterations are started.
The height is measured from the leaf of the hierarchical computation tree. As expected, when the height increases
from 1 to 4, the online training time redudes from around 4s to 2s. Simultaneously, the RMSE also increases from
0.88 to 0.905. Thus, a 2× gain in performance comes at the cost of 0.02 increase in RMSE.

Fig. 14 presents the RMSE and training time for the online mode hierarchical distributed algorithm using I-
divergence with C6 constraints and 4% change in input data. The X-axis shows the height in the hierarchical compu-
tation tree at which the full co-clustering iterations are started. As expected, when the height increases from 1 to 4,
the online training time redudes from around 13.04s to 6.44s. Simultaneously, the RMSE also increases from 0.897
to 0.92. Thus, a 2× gain in performance comes at the cost of 0.023 increase in RMSE.

25

RMSE vs Performance Trade-off (Euclidean Div.)

3.42

2.8

2

3.99

0.894

0.905

0.88

0.892

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4

Height in Hier. Tree
Ti

m
e

(s
)

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91

RM
S

E Training Time

RMSE

Figure 13: RMSE vs Performance Trade-off(Euclidean Div./ C6)

RMSE vs Performance Trade-off (I-divergence)

11.01

9.17

6.44

13.04

0.9

0.8970.897

0.92

0

2

4

6

8

10

12

14

1 2 3 4

Height in Hier. Tree

T
im

e
(s

)

0.885

0.89

0.895

0.9

0.905

0.91

0.915

0.92

0.925

R
M

S
E Training Time

RMSE

Figure 14: RMSE vs. Performance Trade-off(I-divergence / C6)

7 Conclusions & Future Work
Soft real-time co-clustering and collaborative filtering with high prediction accuracy are computationally challenging
problems. We have presented novel performance optimizations for distributed co-clustering and a hierarchical algo-
rithm with soft real-time performance over highly sparse massive data sets. Using pipelined parallelism and compute
communication overlap optimizations our hierarchical algorithm outperforms all known prior results for collaborative
filtering while maintaining high accuracy. Theoretical time complexity analysis proves the efficacy of our approachs.
We demonstrated soft real-time parallel collaborative filtering using the Netflix Prize and Yahoo KDD Cup datasets
on a multi-core cluster architecture. We also demonstrated strong, weak and data scalability of our all approaches
for multi-core cluster architectures. We delivered the best known training time of 9.38s with I-div for the full Netflix
dataset and the best known prediction of 2us per rating for 1.4M ratings with high prediction accuracy, RMSE value
of 0.87 ± 0.02, using 4K nodes of BG/P. The I-div training time is 4× better than flat hybrid algorithm using same
number of nodes. Further, we demonstrate strong performance on 900M ratings from the Netflix dataset and 4.6B
ratings from the Yahoo KDD Cup dataset. In future, we intend to investigate theoretical analysis of convergence for
this hierarchical algorithm and to performance analysis using queuing theoretic models for large scale systems.

References
[1] Nicholas Ampazis. Collaborative filtering via concept decomposition on the netflix dataset. In ECAI, pages

143–175, 2008.

[2] Arindam Banerjee, Sugato Basu, and Srujana Merugu. Multi-way clustering on relation graphs. In SDM, 2007.

[3] Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, Srujana Merugu, and Dharmendra S. Modha. A generalized
maximum entropy approach to bregman co-clustering and matrix approximation. Journal of Machine Learning
Research, 8(1):1919 – 1986, Aug. 2007.

26

[4] J. Bennett and S. Lanning. The netflix prize. In KDD-Cup and Workshop at the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2007.

[5] M. Brand. Fast online svd revisions for lightweight recommender systems. In SIAM International Conference
on Data Mining, pages 37–48, 2003.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering.
In Fourteenth International Conference on Uncertainty in Artificial Intelligence, pages 43–52, 1998.

[7] Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings of the 8th International Conference
on Intelligent Systems for Molecular Biology, pages 93–103, 2000.

[8] S. Daruru, N. M. Marin, M. Walker, and J. Ghosh. Pervasive parallelism in data mining: dataflow solution
to co-clustering large and sparse netflix data. In 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1115–1124, 2009.

[9] Alexandre de Spindler, Moira C. Norrie, Michael Grossniklaus, and Beat Signer. Spatio-temporal proximity as a
basis for collaborative filtering in mobile environments. In UMICS, 2006.

[10] Inderjit S. Dhillon and Dharmendra S. Modha. Concept decompositions for large sparse text data using clustering.
In Machine Learning, pages 143–175, 1999.

[11] Michael R. Garey and David S. Johnson. Computers & Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[12] Thomas George and Srujana Merugu. A scalable collaborative filtering framework based on co-clustering. In
Fifth International Conference on Data Mining, pages 625–628, 2005.

[13] G. H. Golub and C. F. Van Loan. Matrix computations. The Johns Hopkins University Press, Baltimore, MD,
USA, 1996.

[14] Shahzaib Hassan and Zeeshan Syed. From netflix to heart attacks: collaborative filtering in medical datasets. In
International Health Informatics Symposium (IHI), pages 128–134, 2010.

[15] Kuo-Wei Hsu, Arindam Banerjee, and Jaideep Srivastava. I/o scalable bregman co-clustering. In Proceedings of
the 12th Pacific-Asia conference on Advances in knowledge discovery and data mining, pages 896–903, 2008.

[16] S. Mallela I. Dhillon and D. Modha. Information-theoretic co-clustering. In Proceedings of the 9th International
Conference on Knowledge Discovery and Data Mining, pages 89–98, 2003.

[17] Dino Ienco, Ruggero G. Pensa, and Rosa Meo. Parameter-free hierarchical co-clustering by n-ary splits. In
ECML/PKDD (1), pages 580–595, 2009.

[18] K. Kummamuru, A. Dhawale, and R. Krishnapuram. Fuzzy co-clustering of documents and keywords. In IEEE
International Conference on Fuzzy Systems, 2003.

[19] Bongjune Kwon and Hyuk Cho. Scalable co-clustering algorithms. Algorithms and Architectures for Parallel
Processing, Lecture Notes in Computer Science, 6081(10):32–43, 2010.

[20] A. Narang, R. Gupta, V.K. Garg, and A. Joshi. Highly scalable parallel collaborative filtering algorithm. In IEEE
International Conference on High Performance Computing, Goa, India, 2010.

[21] A. Narang, A. Srivastava, and P.K. Katta. Distributed scalable collaborative filtering algorithm. In EuroPar 2011,
France, 2011.

[22] Ruggero G. Pensa and Jean-François Boulicaut. Constrained co-clustering of gene expression data. In SDM,
pages 25–36, 2008.

[23] Paul Resnick and Hal R. Varian. Recommender systems - introduction to special section. Comm. ACM, 40(3):56–
58, 1997.

27

[24] R.M.Bell and Y Koren. Scalable collaborative filtering with jointly derived neighbourhood interpolation weights.
In ICDM, pages 43–52, 2007.

[25] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Application of dimensionality reduction in recommender sys-
tems: a case study. In WebKDD Workshop, 2000.

[26] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Analysis of recommendation algorithms
for e-commerce. In ACM Conference on Electronic Commerce, pages 158–167, 2000.

[27] J. Ben Schafer, Joseph A. Konstan, and John Riedi. Recommender systems in e-commerce. In ACM Conference
on Electronic Commerce, pages 158–166, 1999.

[28] N. Srebro and T. Jaakkola. Weighted low rank approximation. In Twentieth International Conference on Machine
Learning, pages 720–728, 2003.

[29] C. N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists through topic
diversification. In Fourteenth International World Wide Web Conference, 2005.

28

