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Design Exploration through Model Checking

Shoham Ben-David, Anna Gringauze, Sharon Keidar, Baruch Sterin, Yaron Wolfsthal

IBM Research Laboratory in Haifa

Abstract. In recent years, the technique of symbolic model checking has proven itself to
be extremely useful in the verification of hardware. However, after almost a decade, the
use of model-checking techniques is still considered complicated, and is usually left for
the experts. In this paper we address the question of how model-checking techniques can
be made more accessible to the hardware designer community. We introduce the concept
of exploration through model-checking, and demonstrate how, when differently tuned, the
known techniques can be used to easily obtain interesting traces out of the model, rather than
used for the discovery of hard-to-find bugs. We present a set of algorithms, which support
the exploration flavor of model checking.

1 Introduction

The application of model checking in industrial settings requires a high level of user expertise to
be able to withstand the state-space explosion problem. [2, 13, 10, 11]. The main reason is that
many of the methods used for overcoming the size problem are not completely automated. Rather,
these methods frequently draw on the insight and experience of the user for their success. User
expertise is also required to model input behavior. In this activity, the user must work carefully to
avoid false negative and false positive results when restricting input behavior to avoid state-space
explosion. These application challenges, together with the need to master formal languages (in
particular temporal languages), have established industrial model checking as a domain where a
high level of expertise is required.

A significant number of methods have been proposed to withstand the state explosion problem
[2, 3, 16, 17]. Some of these methods, however, required an even higher degree of expertise from
users, as well as significant insights into the algorithmic nature of these methods. This has made
model checking accessible only to trained verification engineers, thus limiting prospects for
wide-scale deployment of model checking.

In this paper we take a different direction. Our investigation focuses on making model
checking (and the associated benefits and impact) accessible to the non-expert user. Specifically,
we aimed our efforts at reaching the community of design engineers, and providing them with a
methodology and tools to develop and debug freshly-written HDL code; currently, no adequate
cost-effective means exist for this purpose. Indeed, contemporary hardware design methodologies
involve the creation of relatively small design blocks, which are only subjected to verification
at the unit level (unit is an ensemble of blocks). Block level verification is typically tedious and
costly, and is thus generally skipped or reduced to a minimum; this has a detrimental impact on
time-to-market and overall design quality.

To address the above problems, we propose the paradigm of Design Exploration through model
checking. This paradigm provides a means for the designer to explore, debug and gain insight into
the behaviors of the design at a very early stage of the implementation—before verification has



even started. In this paradigm, the design engineer specifies a behavior of interest. The exploration
tool then uses model checking techniques to find one or more execution sequences compliant with
the specified behavior. When presented with such an execution sequence ("trace"), the designer
is essentially furnished with an insight into the design behavior, and specifically with a concrete
scenario in which the behavior of interest occurs. This scenario can then be closely inspected,
refined, or abandoned in favor of another scenario. Using model checking for exploration provides
two important advantages over traditional simulation. These are (1) the ability to specify scenarios
of interest without specifying the inputs sequences required to reach them, and (2) the ability to
reason about multiple executions in parallel, rather than one at a time.

The exploration paradigm presents some new challenges which were not raised in traditional
model checking. First, as design exploration is geared for use by non-experts, it is important to
hide the difficult parts of the technique, namely, the need to learn new languages and the need
to accurately describe input behavior. Second, the model checker should be tuned to algorithmi-
cally support design exploration—in order for the new paradigm to be applicable and accepted,
the underlying tool should quickly and easily provide as much information as possible to the
design engineer exploring the hardware design. We present several algorithms which support the
exploration paradigm. These include the generation of disjoint multiple traces, the production of
maximal partial trace when no full trace exists, the interactive mode, where new requests can be
made after all calculations ended, and the integration with a simulator.

Note that the size problem is not addressed in this paper. The struggle with size is minimized
by restricting the application of exploration to small hardware models (which is consistent with
the purpose of design exploration to serve as a block-level 1 design tool).

The problem of making model checking easier to access has been addressed before. Fisler
in [12] and Amla et al in [1] discuss the usage of timing diagrams for specification, as those are
a commonly used and visually appealing specification method for hardware designers. Winters
and Hu [18] propose the approach of automatic source-level optimizations, to make models
written by novices more efficiently processed by the model checker Mur

�
. De Palma et al [9]

have approached the usability problem by restricting the specification repertoire to a finite set of
graphical, intuitive templates.

The rest of this paper is organized as follows: Section 2 describes the concept of design
exploration. Section 3 presents the key algorithms required to support the design exploration
paradigm. A summary of our experience with the deployment of an experimental exploration
system is given in Section 4, and in Section 5 we conclude and point to directions for future
research.

2 Design Exploration - Basic Principles

The exploration paradigm presents new challenges to the model checking techniques in terms
of both ease-of-use and performance. In this section, we describe how the difficult parts of
using model checking can be hidden from the design engineer engaged in exploration (herein
abbreviated as "the user"). In section 2.1, we describe how the need for learning new languages
can be avoided by using a simple graphical specification formalism, which provides a natural way
for designers to state their intent. In section 2.2 we describe how control over input behavior can

1 Blocks are small models of about 100 state variables
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be easily achieved. In section 2.3 we link exploration with the known model-checking techniques,
and outline the fundamental Design Exploration algorithm which relies on on-the-fly verification
of RCTL formulas [5]. A set of new Model Checking algorithms which help implement design
exploration are described in section 3.

2.1 The Visual Specification Formalism

In the Design Exploration paradigm, a design behavior is specified as a path, or a sequence
of events. To specify a behavior of interest, the designer creates a graphical representation of
an ordered sequence of events. For each event the user specifies the Boolean expression which
defines the event. Thus, no temporal logic is required, nor are temporal formulas written to specify
the behavior of interest.

As a simple example, consider a state machine "machine(0:3)", with 16 possible values.
Suppose the designer is interested in seeing the state machine pass through states 4 and 6 and then
reach state 1—not necessarily in consecutive cycles. The way it is expressed is by a graphical
path description as shown in Figure 1 below. The translation of this path specification into a CTL

� machine(0:3) = 1�machine(0:3) = 4 machine(0:3) = 6

Fig. 1. Simple Path Specification

query [8] is given in formula 1 in section 2.3 below. This path specification drives the model
checker to look for a trace with a state where machine(0:3) has the value of 4, then in a later
state the value is 6, and on the final state of the trace, machine(0:3) has the value of 1. Although
restrictive, we feel this path specification formalism is expressive enough to describe behaviors
of interest. 2

In order to find a compliant trace for the specified path, input behavior should also be supplied,
as discussed in the next section.

2.2 Controlling Input Behavior

In the design exploration paradigm, the user should be able to produce first traces with minimal
effort. Input signals should therefore have a default environment, to save the effort of assigning
a behavior to each of them. We chose this default to be a "free" behavior, that is, a full non-
deterministic behavior. Thus, even with no prior knowledge in formal methods, and with minimal
effort, the user is able to generate initial traces. Generally, the first traces may exhibit illegal
behavior due to the unrestricted behavior. The user then moves to restrict input behavior as

2 We extended the notion of events to the more expressive notion of phases, which may last any number of
cycles. However, this is beyond the scope of this paper.
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needed. The more the user is willing to invest in this process the more accurate the input behavior
will get.

In our experimental system described in section 4, the user is given a variety of ways to
restrict input signal behavior. These include the ability to describe a deterministic behavior
through a graphical editor, and the use of predefined state machines. Unless a very complicated
input behavior is needed, in which case it should be modeled using HDL with non-deterministic
extension, the user can easily define the desired behavior through graphical means.

2.3 The Mechanics of Design Exploration: The Link to Model Checking

In order to find a compliant trace to a given path specification, the design exploration algorithm
translates the given path into an existential formula

�
and send together with the model � to an

underlying model checker. For example, the path specification given in Figure 1 is translated into
CTL [8] as follows (For the sake of readability, we use the term ��� instead of machine(0:3)):

��� �	��
� 4 ��	� � 4 � ������� �	��
� 6 ���� � 6 � ������� ����
� 1 ��	� � 1 ����� (1)

Note that path specifications can be translated into RCTL formulas [5]. Since such formulas are
very efficiently processed by on-the-fly model checking [5, 14], we base design exploration on the
on-the-fly verification algorithm. When an RCTL formula

�
is given, we use the algorithm given

in [5] to translate it into a Sugar [6] regular expression. For example, formulas 1 is translated into
Sugar as follows:

� �	��
� 4
��� ������� � 4 � �	��
� 6

��� ������� � 6 �!����
� 1
��� ������� � 1 "$# false % (2)

As described in [5] we automatically build out of
�

an automaton &(' , and a new
�*) #,+-'.%

type formula, such that

�0/� �21�3 �54	& ' / � �*) #�+ ' %
where � is the model under test. The automaton built for formula 2 is given in Figure 2
below, written in the SMV [15] language. The automaton is accompanied by an

�*) #,+ ' % type

VAR aut: 6 0, 1, 2, 3, 4, 5, 6 7 ;
ASSIGN

init(aut) := 6 1, 2 7 ;
next(aut) :=
case

aut = 1 8 ma 9: 4 : 6 2, 1 7 ;
aut = 2 8 ma : 4 : 6 4, 3 7 ;
aut = 3 8 ma 9: 6 : 6 4, 3 7 ;
aut = 4 8 ma : 6 : 6 6, 5 7 ;
aut = 5 8 ma 9: 1 : 6 6, 5 7 ;
1 : 0;

esac;

Fig. 2. A Non-Deterministic Automaton in the SMV Language
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specification, which is presented in Equation 3.

�*) #;#<�.=?> � 6 %@��#<�	� � 1 %;% (3)

As mentioned above, this formula is then verified on-the-fly, while computing the reachable
states space. The basic on-the-fly model-checking and trace generation algorithms are given
below in Figure 3. We use the term found to indicate the BDD [7] representing +A' . The on-the-fly
algorithm saves the new sets of states, which are computed in every iteration of reachability
analysis, as B 0 CDCEC B-F (line 4). This is done to make trace generation more efficient. These new
sets are sometimes called doughnuts. In the sequel, we use the on-the-fly algorithm to present our
enhanced algorithms for exploration.

1 reachable = new = initialStates;
2 i = 0;
3 while ((new 9:�G )&&(new H found = G )) 6
4 IKJ = new;
5 i = i+1;
6 next = nextStateImage(new);
7 new = next L reachable;
8 reachable = reachable M next;
9 7
10 if (new :�G ) 6
11 print “No trace exists for this path”;
12 return;
13 7
14 k = i;
15 print “Trace found on cycle k”;
16 good = new H found;
17 while (i>=0) 6
18 Tr J = choose one state from good;
19 if (i>0) good=pred(Tr J ) HNIKJPO 1 ;
20 i = i-1;
21 7
22 print “Trace is:” Tr0 QRQ�Q Tr S ;

Fig. 3. On-the-fly Model Checking, Including Trace Generation

3 Tuning Model Checking to Design Exploration

One of the challenges in the concept of exploration is to provide the user with as much information
as possible, so that it is quick and easy to access. In this section we describe how to tune model
checking so as to meet those challenges. The algorithmic features we describe include:

– The ability to provide a maximal partial trace (3.1), in the case a full trace for the specified
path does not exist.

– An algorithm to produce disjoint multiple traces (3.2), different from each other for each
path. This gives the user more insight about the design.
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– An interactive mode (3.3) of the model checker, providing the user with the ability to obtain
more immediate information about the model.

– The integration with simulation (3.4), which, when used for exploration purposes, is important
for the success of the concept.

3.1 Maximal Partial Trace

When using model-checking techniques as a means for design exploration, the user always
expects to get a trace as a result of the search. Traditional model checking algorithms will only
produce a trace when such exists for the entire path that was specified. In case only part of the
specified path exists in the model, no trace will be provided for the user. We show how to produce
a maximal partial trace (in terms of events encountered), when no full trace exists for the given
path.

For this purpose, we introduce auxiliary formulas, called event formulas, to help determine
which events have been encountered at each iteration of the reachability search. An event formula
is generated for each event, apart from the final one. We use the special structure of the path
specification and the automaton built for it to derive the event formulas.

As described in [5], the automaton is built in such a way, that a move from one state to another
is conditioned by a Boolean condition T . For every state U with condition T , which does not have
a self loop, we produce a formula

�*) #<UV��T*% .
For example, consider again the path specification given in Figure 1 and its automaton shown

in Figure 2. In addition to the formula
�*) #;#<�.=.> � 6 %.��#<�	� � 1 %;% which specifies the full path,

we generate the following formulas:

1.
�W) #�#R�N=?> � 2 %@��#R��� � 4 %�% and

2.
�W) #�#R�N=?> � 4 %@��#R��� � 6 %�%

These formulas state that event 1 has been reached and event 2 has been reached respectively.
The auxiliary formulas are checked on-the-fly, while searching the reachable state space.

Thus, when the model-checker determines that a full trace does not exist for the specified path,
it produces the maximal partial trace available in the model. The enhanced algorithm is given in
Figure 4 below. The terms ef1..efF represent the BDDs [7] of the event formulas.

Progress Indication. Even when design exploration is applied to relatively small blocks, the
search for a trace may take a long time, during which the user has very little information
about the progress of the search. In model checkers such as SMV [15] and RuleBase [4], progress
information is given in terms of iteration, which tells very little to the non-expert user. Information
in terms of events specified would be of better value to such users.

Lines 9–13 in the Partial Trace algorithm described in Figure 4, show how event formulas are
checked on-the-fly. When an event is found, the user is notified about it, as shown in line 12.

Taking this one step further, the user is granted the opportunity to interrupt the search,
and be presented with the maximal partial trace currently available. Note that a partial trace
produced during the search, is not necessarily a prefix of the full trace produced for the given
path specification. In fact, it may be the case that the partial trace can not be extended to a full
trace.
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1 reachable = new = initialStates;
2 i = 0; maxe = 0
3 while ((new 9:�G )&&(new H found = G )) 6
4 IKJ = new;
5 i = i+1;
6 next = nextStateImage(new);
7 new = next L reachable;
8 reachable = reachable M next;
9 for (j = n downto maxe+1) do 6
10 if (new H ef X@9:�G ) 6
11 maxe = j; doughnut = i;
12 print “Event "maxe" encountered on cycle "doughnut"“
13 break; (from ‘for‘ loop)
14 7
15 7
16 if (new :�G && maxe = 0) 6
17 print “No trace exists for this path“;
18 return;
19 7
20 else if (new :�G ) 6 maxe > 0
21 print “No full trace exists. Producing trace until event "maxe"”;
22 found = ef YAZR[�\ ; k = doughnut;
23 7
24 else 6
25 k = i-1;
26 print “Trace found on cycle k”;
27 7
28 good = I]SDH found;
29 while (k>=0) 6
30 Tr S = choose one state from good;
31 if (k>0) good=pred(Tr S ) H.I S�O 1 ;
32 k = k-1;
33 7
34 print “Trace is:” Tr0 QRQ�Q Tr S ;

Fig. 4. On-the-fly Model Checking, with Partial Trace Generation

3.2 Disjoint Multiple Traces

In the exploration paradigm, the user would benefit from being presented with many possible
instances of the specified path. Moreover, the produced traces should be made as different from
one another as possible, in order to provide the user with as much information as possible. In
traditional model checking, a single trace is produced for each specification. In this section we
demonstrate how to produce many traces (the number of traces can be specified by the user),
while maintaining many variations. Lines 16–22 in Figure 3, give the single trace production
algorithm.

The Disjoint Multiple Traces algorithm presented here is hueristic, and therefore is not
guaranteed to find disjoint traces, However, our practical experience shows that it almost always
does.

For this algorithm, we define the distance between a state U and a set of states ^ , to be the
average of the Hamming distances between U and each of the states in ^ . Given two sets of states_

and ^ , our algorithm looks for a state Ua` _
which is as far as possible (has the biggest

distance) from ^ .
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Let B 0 �Eb�b�b�� B@c be the list of "new" sets, as appear in Figure 3. For each B-d , we keep a BDD
^ , of all states from B-d , already given in a produced trace. Given a BDD of a set of states

_
(A

subset of B d ) from which a state should be chosen, we replace line 18 in Figure 3 by choosing a
state from

_
as far as possible form ^ , if such a state exists. The heuristic algorithm for finding

a far state is given in Figure 5.
Briefly, the algorithm works as follows: if egfDh$fDei# _ %kjlegfDh$fDei#R^*% , we recursively find a far

state in the left hand side of
_

, and in the right hand side of
_

. We then compare their distance
from ^ , and return the farther state, extended with the appropriate value of the current level. If
egfDh$fDei#<^W%*jmegfDh$fDei# _ % , we recursively find a state in

_
which is far from the left side of ^ and

a state which is far from right side. We return as above. If enfEhKfEei# _ % � enfEhKfEei#R^*% , we compute
^*^ � ^2opegfEq?>sr�^to5u]vgw.x.> and recursively find a state in

_ opegfDq.> and in
_ opu]vnwNx?>

which are far from ^*^ . If both sides return zero (no different state was found), we recursively
find a state in

_ opegfDq?> which is far from ^2oyenfEq?> , and a state in
_ ozu]vgw.x.> which is far

from
_ o{u]vnwNx?> . We return as above. We then add the chosen state to ^ by a disjunction of the

BDDs.
The complexity of the algorithm is |}#<~ 2 �

2 �(% , where ~ is the size of the BDDs, and � is
the number of BDD levels.

3.3 Interactive Design Exploration

The main purpose of this feature is to let the user gain additional information about the design
block as quickly as possible. In interactive mode the model checker does not terminate after
finding the desired traces. It saves all information in memory (list of doughnuts, reachable state
set, provided traces etc.), and interactively serves new requests coming from the user, thereby
providing the user with new information as desired. The primary types of user requests supported
by our experimental exploration system are presented below.

Additional Cycles. This type of request specifies the number, ~ , of additional cycles required
by the user as an extension of the current trace. The algorithm then performs ~ forward steps
from the final state of each previously produced trace. This is possible as the traces and transition
relation are stored in the model checker. When performing forward steps, we apply the same
algorithm as in section 3.2 to choose the new states different from the previous, and thus more
interesting to the user.

Additional Traces. This type of request allows the user to ask for ~ more traces, different from
all the others already produced. Since all previously produced traces for the current path are saved
inside the model checker, we simply apply the algorithm given in 3.2 ~ times to produce the
desired traces.

Longer Trace. This type of request allows the user to ask the model checker to search for a
longer trace than those already produced. Recall that in an on-the-fly algorithm, we are given an�*) #�+A% type formula, and we search for the first state in which + holds. Thus, the trace produced
is the shortest available. In order to provide a longer one, we delete the set of good states from the
doughnut in which it was first found, and continue reachability analysis, searching for the next
time + holds.
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1 function � d FN� � d �E� ���������;���-�����$6
2 if ( �����E�����n�!�-�������E�������!� ) 6
3 (state0, dist0) = � d FN� � d �E� �R�����i�����-�g�������R�D��� ;
4 (state1, dist1) = � d FN� � d �E� �R�����i�����-�g����� d���� �i� ;
5 if ( dist0 � dist1 )
6 return ( F �R� � ��� �n���R�E�;���g�!� , state0, �-�!�!  ), dist0 );
7 else
8 return ( F �R� � ��� �n���R�E�;���g�!� , �-�!�!  state1), dist1 );
9 7
10 7
11 if ( �����E�����n�!� � �����E�������!� ) 6
12 (state0, dist0) = � d FN� � d �E� �R�����i�������¡���R�D�R�<��� ;
13 if dist0 � 0 dist0 ++;
14 (state1, dist1) = � d FN� � d �E� �R�����i��������� d���� �R�R�!� ;
15 if dist1 � 0 dist1 ++;
16 if ( dist0 � dist1 ) 6
17 return ( F �R� � ��� �n���R�E�;�����!� , state0 , �-���!  ), dist0 );
18 else
19 return ( F �R� � ��� �n���R�E�;�����!� , �-���!  , state1), dist1 );
20 7
21 7
22 if ( �����E�����n�!� : �����E�������!� ) 6
23 �@� :�¢ � � ��� ���������R�D�R�g���£� d��¤� ��� ;
24 (state0, dist0) = � d FN� � d �E� �R�����i�����@�-�g���������E��� ;
25 (state1, dist1) = � d FN� � d �E� �R�����i�����@�-�g����� d,��� ��� ;
26 if (dist0 : 0 � F.� dist1 = 0) 6
27 (state0 , dist0) = � d F.� � d �D� �R�i���������}�����R�D�R�R�������R�D��� ;
28 (state1 , dist1) = � d F.� � d �D� �R�i���������}�¥� d���� �R�<����� d��¤� ��� ;
29 7
30 if ( dist0 � dist1 ) 6
31 return ( F �R� � ��� �n���R�E�;�����!� , state0 , �-���!  ), dist0 );
32 else
33 return ( F �R� � ��� �n���R�E�;�����!� , �-���!  , state1), dist1 );
34 7
35 7
36 7

Fig. 5. Choosing a state in BDD ¦ which is far from all states in BDD §

3.4 Reconstruction and Simulation

Contemporary model checking tools apply reduction algorithms [4] before model checking search
starts. This is done to reduce the size of model to be actually model-checked, and is an efficient and
important step for industrial model checkers. In many cases, this phase may reduce a large portion
of the design, leaving the model checker with a much smaller task. The reduction algorithms
usually applied are safe ones. That is, the reduced variables are indeed redundant, and are not
needed for the evaluation of the specification. However, once a trace is produced, the reduced
variables are often needed for the analysis of the trace. Specifically this is true when the tool is
used by non-experts, as done in the exploration paradigm.

In order to solve this problem, we need to reconstruct the behavior of the reduced variables.
To do so, we integrate a simulator with the model checker. When a trace is produced, it is first
sent together with the original design and environment to the simulator. The simulator uses the
values of the signals in the trace to calculate the values of all other signals. Thus, when the trace
is presented to the user, all signals values are available and can be viewed.
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A very useful feature of the simulation engine underlying our experimental system is that
it allows direct manipulation of signal values: once a trace is produced and displayed, the user
can edit input variables in the trace, and explore the different scenarios made possible by the
introduction of these changes.

4 Experience

The methodology and algorithms described in this paper have been implemented in PathFinder,
a tool which has been used by IBM designers in the past year. Initial experiments reveal designer
acceptance at a significantly higher level than that observed with traditional application of model
checking, and even higher than that observed with simulation tools for block-level testing.
Typically, PathFinder is used on a freshly written logic of a few hundred state variables for 3–4
days, and finds 10–15 bugs.

While PathFinder hides most of the difficult parts of model checking, the user still must learn
new concepts which are different from those of simulation. The ability to specify events over
output and internal signals, and allow the tool to automatically find the right input behavior, is
a new concept that people need to become accustomed to. The concept of non-determinism is
also confusing at first. Experience shows though, that two hours of education and one day of
supervision are sufficient for a designer to be able to efficiently use the tool.

5 Conclusion and Future Directions

In this paper we presented design exploration through model checking techniques. We have given
several algorithms and features to support the new concept, searching for ways to improve the
facilities provided by the mode checking tool, rather than attacking the inherent size problem of
these methods. We believe that the exploration flavor of model checking techniques will open
up new directions, making model checking accessible to a larger community, and bringing new
interest in model checking techniques.

We believe the interactive mode described in section 3.3 to be a promising method. In order
to provide the user with further insight, other options can be developed. For example, allowing
the user control over the chosen traces, not just making them as different as possible, but letting
the user direct the choice. Another is improving the ability to provide a longer trace, beyond the
current reachable-states search iterations.

In the future, we plan to address the problem of regression. Currently the user must analyze
every trace manually to determine if the behavior demonstrated is legal. A way to store and verify
expected results in future runs could help extend the use of the exploration tool.
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