
RA 220 July 16, 2003
Computer Science

IBM Research Report

Proceedings of the First European Workshop on Object
Orientation and Web Services

Editors:

Giacomo Piccinelli
Department of Computer Science

University College London
United Kingdom

G.Piccinelli@cs.ucl.ac.uk

Sanjiva Weerawarana
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
and

University of Moratuwa
Sri Lanka

sanjiva@us.ibm.com

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

First European Workshop on
Object Orientation and Web Services

Held at ECOOP ’03, Darmstadt, Germany
July 21, 2003

Organizers

 Anthony Finkelstein1, Winfried Lamerdorf2, Frank Leyman3,
Giacomo Piccinelli1, and Sanjiva Weerawarana4

1Department of Computer Science, University College London, United Kingdom
{A.Finkelstein, G.Piccinelli}@cs.ucl.ac.uk

2Department of Computer Science, University of Hamburg, Germany
Lamersd@informatik.uni-hamburg.de

3IBM Software Group Germany and University of Stuttgart, Germany
LEY1@de.ibm.com

4IBM T. J. Watson Research Centre and University of Moratuwa, Sri Lanka
Sanjiva@us.ibm.com

Themes and Objectives

Web Services are evolving beyond their SOAP, WSDL, and UDDI roots toward
being able to solve significant real-world integration problems. Developers of Web
Services systems are currently working on new generations systems that incorporate
security, transactions, orchestration and choreography, grid computing capabilities,
business documents and processes, and simplified integration with existing middle-
ware systems. Current economic issues continue to force consolidation and reduction
in enterprise computing resources, which is resulting in developers discovering that
Web Services can provide the foundation engineering and realisation of complex
computing systems.

The question of how Web Services could and should change system and solution
development is very much open. Are Web Services just about standards, or do they

1

imply a new conceptual framework for engineering and development? Similarly open
is the question of how requirements coming from system and solution development
could and should make Web Services evolve. In particular, methodologies as well as
technologies based on the object-oriented conceptual framework are an established
reality. How do Web Services and object-orientation relate? How can Web Services
leverage the experience built into current object-oriented practices?

The overall theme of the workshop is the relation between Web Services and ob-
ject orientation. Such relation can be explored from different perspectives, ranging
from system modelling and engineering to system development, management, main-
tenance, and evolution. Aspects of particular interest are the modularisation of a sys-
tem into components and the (possibly cross-domain) composition and orchestration
of different modules. Components and composition are closely connected with the
issue of reuse, and an important thread of discussion within the workshop will ad-
dress the way in which Web Services impact reuse.

The objective of the workshop is twofold: assessing the current work on Web Ser-
vices, and discussing lines of development and possible cooperation. Current work
includes research activities as well as practical experiences. The assessment covers an
analysis of driving factors and a retrospective on lessons learned. The identification
and prioritisation of new lines of research and activity is a key outcome of the work-
shop. In particular, the intention is to foster future cooperation among the partici-
pants.

2

Table of Contents

Services and Objects: Open issues.
V. D'Andrea and M. Aiello ………………………………………………………

4

Agile modelling and design of component- and service-oriented architec-
ture.
Z. Stojanovic and A. Dahanayake ………………………………………………

10

Web services and seamless interoperability.
J.P.A. Almeida, L.F. Pires, and M.J. van Sinderen……………………………

14

Modularising Web services management with AOP.
M.A. Cibran and B. Verheecke……………………………………………………

23

A classification framework for approaches and methodologies to make Web
services compositions reliable.
M.F. Kaleem…………………………………………………………………………

30

UML Modeling of Automated Business Processes with a mapping to
BPEL4WS.
T. Gardner……………………………………………………………………………

35

Requestor friendly Web services.
R. Konuru and N. Mukhi……………………………………………………………

43

enTish: an approach to service description and composition.
S. Ambrosz-
kiewicz……………………………………………………………………

49

Using Web services in the European Grid of Solar Observations.
S. Martin and D. Pike………………………………………………………………

54

A brokerage system for data grid implemented using Web services.
I. Pompili, C, Zunino, A. Sanna……………………………………………………

64

3

Web Services and Seamless Interoperability

João Paulo A. Almeida, Luís Ferreira Pires, Marten J. van Sinderen

Centre for Telematics and Information Technology, University of Twente
PO Box 217, 7500 AE Enschede, The Netherlands

almeida@cs.utwente.nl, pires@cs.utwente.nl,
sinderen@ctit.utwente.nl

Abstract. Web Services technologies are often proposed as a means to integrate
applications that are developed in different middleware platforms and
implementation environments. Ideally, application developers and integrators
should be shielded from the existence of different middleware platforms and
programming language abstractions. This characterizes seamless
interoperability, in which a set of consistent constructs is manipulated to
integrate both the applications or services that are located both in the same and
in different technology domains. In this paper, we argue that Web Services are
not sufficient to facilitate seamless interoperability. We also outline some
developments that may be used in a systematic approach to seamless
interoperability within the context of the Model-Driven Architecture.

1 Introduction

The generalized term Web Services does not currently describe a coherent or
necessarily consistent set of technologies, architectures, or even visions [18]. It is
often used loosely to denote a collection of related technologies, which include:
SOAP [17], Web Services Description Language (WSDL) [21] and Universal
Description, Discovery and Integration (UDDI) [16].

Web Services technologies are built upon widely supported Internet standards,
including XML standards, HTTP, SMTP, FTP, etc. and stem from the Internet
community. These technologies have gained strong industry momentum and are
supported by a large number of organizations, such as IBM, Microsoft and Sun
Microsystems.

Web Services technologies are based on concepts that include strict separation
between interface and implementation and adequate level of coupling (often loose
coupling for application integration). With respect to these concepts, Web Services do
not introduce significant novelties or enhancements. These concepts are derived from
and largely identical to the ones adopted in more mature middleware or integration
technologies, such as CORBA, Java RMI, DCOM and Enterprise Application
Integration in general [11].

Nevertheless, with respect to standardization, Web Services only require
agreement with respect to the protocols used to realize interactions between
application parts. This leads to a significant difference between Web Services and
traditional middleware, such as, e.g., CORBA/CCM and EJB, in which interfaces to

4

access the run-time infrastructure are also standardized. In the case of Web Services,
these interfaces are, in general, proprietary or defined within the scope of a particular
technology domain, i.e., implementation environment and/or middleware platforms
such as, e.g., J2EE [12], .NET [1] or CORBA/CCM [4].

In this paper, we do not intend to criticize Web Services standards or consider
specific technical issues related to Web Services implementation support. We rather
aim at questioning Web Services in its merits as an architecture to support seamless
interoperability of applications developed in different technology domains. Ideally, an
application developer should manipulate a set of consistent constructs to integrate
both the applications that are located within the same technology domain and
applications or services that are implemented in other technology domains. We
outline some developments that may be used in a systematic approach to seamless
interoperability within the context of the Model-Driven Architecture (MDA) [7].

2 Web Services Abstractions

There is no consensus yet on a precise vocabulary and conceptual model for Web
Services [18]. Both a “Web Services Reference Architecture” and a new version
WSDL (WSDL 1.2) ([18, 22]) are work-in-progress within the context of the World
Wide Web Consortium (W3C). Therefore, we provide some concepts and definitions
for the purpose of precision and clarity within the scope of this paper.

A web service provider is a software entity that offers web services. A web service
is a set of endpoints that operate on SOAP messages conveyed by Internet protocols,
such as HTTP, FTP and SMTP. Each endpoint is identified by a Uniform Resource
Identifier (URI). A web service and its endpoints may be described in WSDL. WSDL
allows one to define the message types and message exchange patterns manipulated
by web service endpoints, as well as the concrete means to interact with the web
service endpoints, entailing concrete protocols for message exchange and the URIs
that identify the web service endpoints. While WSDL descriptions are recommended
for interoperability of web services descriptions, WSDL is not the only means to
describe a web service. Descriptions in WSDL may be augmented with descriptions
in other languages, such as Web Service Choreography Interface (WSCI) [19] and
Business Process Execution Language for Web Services (BPEL4WS) [14].

Figure 1 shows a service requester and a web service provider that interact through
the exchange of SOAP messages. A web service provider may also assume the role of
service requester with respect to another web service provider.

Service
Requester

SOAP messages Web Service
Provider

endpoints
described in
WSDL

Fig. 1. Service requester and a web service provider interact through SOAP messages

5

In order to interact with a web service provider, a service requester must be able to
find descriptions of the web service that define the concrete means to interact with the
web service endpoints. A web service description does not prescribe a particular
means to find the web service. A web service description may be found through a
local file system, an FTP site, a standardized service registry such as UDDI registries
[16], etc.

3 Middleware Platforms and Implementation Environments

Web services are not implemented in a green-field situation. This means developers
of web services requesters and providers have to cope with the re-use of legacy
applications and infrastructures that have been deployed and that are still being
deployed successfully. Examples of these (legacy) implementation infrastructures on
top of which web services requesters and providers are implemented are: middleware
platforms, such as DCOM, CORBA, Java RMI and JMS; and programming languages
such as Java, COBOL, Visual Basic and the .NET languages. Figure 2 shows the
resulting structure of the integration of applications implemented in different
technology domains with web services technologies.

Legacy implementation infrastructures are specified and implemented with
abstractions that differ from the abstractions manipulated for the specification and
implementation of web services. Examples of divergences can be seen in the
definition of data types (Java datatypes versus XML Schema Data Types [13]), the
failure semantics of RPC invocations, the abstractions for object references, etc.
Therefore, there must be some support to accommodate the differences in the
abstractions manipulated, in order to (i) provide abstractions that are suitable and
intuitive for application developers that develop and maintain applications in different
technology domains, and in order to (ii) re-use a larger number of specifications and
components defined in terms of the abstractions of particular technology domains.

.NET

EJB

EAI

CCM

SOAP

Utilities
(UDDI)

Intra-domain
abstractions

Inter-domain
abstractions WSDL

Fig. 1. Web services for inter-domain interoperation

6

4 Seamless Interoperability

In order to enable the cooperation of distributed applications, Web Services must
accommodate the heterogeneity of middleware platforms, programming languages
and other technologies in which these applications are realized. Not only
interoperability may be hindered by the heterogeneity of platforms, but also
application portability and the provision of transparency for the application
developer. Ideally, application developers should be shielded from the existence of
different middleware platforms and programming language abstractions, manipulating
a set of consistent higher-level constructs to access both the services that are located
within the same technology domain and services that are implemented in other
technology domains.

In this sense, Web Services technologies can only offer a solution if they are
adopted for all future intra-domain development. This would mean that the
abstractions manipulated in Web Services languages and protocols should be used as
a starting point for development of applications at the first place. Given the proposed
use of Web Services as a technology for the integration of applications and services
implemented on top of different middleware platforms, it is unlikely that Web
Services will replace existing middleware platforms. This is corroborated with the
fact that some of these platforms are flourishing now and have strong Web Services
support such as the J2EE and .NET platforms. If Web Services are confined to inter-
domain interoperation, abstractions manipulated by intra-domain middleware
platforms will indeed diverge from abstractions manipulated across technology
domains, and there will always be a “seam” between the abstractions manipulated in a
technology domain and abstractions used in inter-domain interoperation. As a
consequence, a large effort in the development of web services is concentrated on the
(manual) coding of wrappers to existing applications.

The lack of seamless interoperation can be observed in different attempts to
provide mappings between Web Services abstractions and abstractions supported by
different middleware platforms, such as, e.g., the mappings from and to Java in the
JAX-RPC specification [13], the mappings from and to .NET’s Common Type
System [2] and the upcoming mappings from and to CORBA IDL [5, 6]. These
mappings are not sufficient to overcome the intrinsic conceptual differences of the
abstractions adopted. For example, a Java developer that is used to passing remote
object references as parameters in J2EE is not able to do so if an object is to be
exposed as a web service endpoint [13]. This is because the concept of remote object
references is not directly supported in a standardized way in SOAP and WSDL, and
hence this abstraction has no direct counterpart. Several other examples of mismatch
can be identified when considering these mappings, in terms of fault semantics, type
mappings, etc. This is a recurring pattern that we have seen earlier in the development
of mappings to and from OMG Interface Definition Language (IDL) to Java, C, C++,
Ada, Smalltalk, etc. [3].

Abstractions of particular domains are not the only obstacles for seamless
interoperation. For applications to achieve meaningful interaction, they must agree on
the application protocols they use. These protocols have been called application
choreographies [11] in the context of web services, and refer to the behavioural or
dynamic aspects of an application or application parts that cooperate. Behaviour

7

complements static aspects of a system, such as interface signatures, data structures
and deployment descriptors. Divergences in the behaviour of components of different
technology domains offer challenges to transparent inter-domain interoperability. For
example, the use of the Naming Service in a CORBA platform to retrieve object
references requires clients to be able to locate the Root Naming Context and request
the resolution of the names that refer to the objects they are interested in. Even if the
mapping from SOAP/IIOP were transparent, web services requesters would be
directly exposed to the use of the Naming Service, and would not be able to locate a
service if they were not able to use the Naming Service properly. The rule of thumb
often considered in this case is to avoid exposing such internal aspects of a
technology domain in a web services definition.

This approach, however, is severely limited for non-trivial web services, since it is
based on the assumption that the interface of a service can be simplified regardless of
intrinsic complexities of service requester - service provider interactions. An example
of potentially harmful simplification is the replacing of callback invocations to
request/response polling invocations, such as in the Parlay Web Services
standardization activities [15], implying in limitations to the scalability of the service.

5 Outlook

We expect that a more systematic approach to accommodate the divergences in
abstractions may be defined in a model-driven approach to application development,
such as proposed in the context of the Model-Driven Architecture by the Object
Management Group (OMG) [7]. In such an approach, mappings between Web
Services abstractions and abstractions of other implementation infrastructures would
be facilitated through the use of platform-independent models, meta-modelling
techniques and model transformation tools.

There is on-going standardization activity in mapping platform-independent
models to Web Services artefacts: an OMG Request For Proposal (RFP) has been
issued [9] to request for a mapping from the EDOC-Component Collaboration
Architecture UML Profile to XML-Schema, WSDL 1.1 and SOAP. An initial
submission [10] is available, and a revised submission is expected in August 2003.
These efforts, however, should be revisited with the adoption of UML 2.0 [8].

With respect to the application choreographies, the behavioural aspects of a web
service may be specified in Web Services specific languages, such as e.g., WSCI [19]
and BPEL4WS [14]. These languages are being considered in the W3C Web Services
Choreography Working Group [20] as an input for a W3C recommendation for a Web
Services specific behaviour modelling language. We will work on the incorporation
of these Web Services behavioural descriptions into a systematic model-driven
approach, by defining transformations from behavioural descriptions in UML (or
specialized UML profiles) to these languages and vice-versa. This would allow
seamless interoperability to be considered at platform-independent level through
platform-independent models that include the behavioural aspects of a system and its
components. These platform-independent models are ultimately reflected at platform-
specific level through model transformations.

8

Acknowledgements

We are currently working on these issues in the context of the MODA-TEL IST
project (http://www.modatel.org), supported by the European Commission, and the
WASP project (http://www.freeband.nl/projecten/wasp/ENindex.html), supported by
the ‘Telematica Instituut’ in the Dutch Freeband Programme.

References

1. Microsoft Corporation. .NET Development. Available at
http://msdn.microsoft.com/library/en-us/dnanchor/html/netdevanchor.asp

2. Microsoft Corporation. Data Types Supported by XML Web Services Created Using
ASP.NET. Available at http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpcondatatypessupportedbywebservices.asp

3. Object Management Group. Catalog of OMG IDL / Language Mappings Specifications.
Available at http://www.omg.org/technology/documents/idl2x_spec_catalog.htm

4. Object Management Group. Common Object Request Broker Architecture: Core
Specification, Version 3.0, formal/02-12-06, Dec. 2002.

5. Object Management Group. CORBA-WSDL/SOAP specification, ptc/03-01-14, Jan. 2003.
6. Object Management Group. Joint Revised Submission to the WSDL-SOAP to CORBA

Interworking RFP, mars/03-03-03, March 2003.
7. Object Management Group. Model Driven Architecture, ormsc/01-07-01, July 2001.
8. Object Management Group. UML 2.0 Superstructure RFP, ad/00-09-02, Sept. 2000.
9. Object Management Group. Web Services for Enterprise Collaboration (WSEC) RFP,

mars/2002-06-06, June 2002.
10. Object Management Group. Web Services for Enterprise Collaboration (WSEC), mars/02-

10-11 October 2002.
11. Schmidt, D. and Vinoski, S. Object Interconnections: CORBA and XML – Part 3: SOAP

and Web Services, C/C++ Users Journal C++ Experts Forum, Sept 2001.
12. Sun Microsystems. Java 2 Platform Enterprise Edition Specification, v1.4, April 15, 2003.
13. Sun Microsystems. Java API for XML-Based RPC Specification 1.0, June 2002.
14. Thatte, S (ed.). Business Process Execution Language for Web Services, Version 1.0, July

2002. Available at http://www.ibm.com/developerworks/library/ws-bpel/
15. The Parlay Group. Parlay Web Services Architecture Comparison, October 2002. Available

at http://www.parlay.org/specs/ParlayWebServices-ArchitectureComparison1_0.pdf
16. Universal Description, Discovery and Integration (UDDI) project. UDDI: Specifications.

Available at http://www.uddi.org/specification.html
17. World Wide Web Consortium. SOAP Version 1.2, May 2003. Available at

http://www.w3.org/TR/soap12-part1/
18. World Wide Web Consortium. Web Services Architecture Working Draft, Nov. 2002.

Available at http://www.w3.org/TR/ws-arch/
19. World Wide Web Consortium. Web Service Choreography Interface 1.0, August 2002.

Available at http://www.w3.org/TR/wsci/
20. World Wide Web Consortium. Web Services Choreography Working Group Charter.

Available at http://www.w3.org/2003/01/wscwg-charter
21. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1, March

2001. Available at http://www.w3.org/TR/wsdl
22. World Wide Web Consortium. Web Services Description Language (WSDL) 1.2 Working

Draft, March 2003. Available at http://www.w3.org/TR/wsdl12/

9

enTish: an Approach to Service Description and
Composition

Stanislaw Ambroszkiewicz
�����

�

Institute of Informatics, University of Podlasie,
al. Sienkiewicza 51, PL-08-110 Siedlce, Poland

�

Institute of Computer Science, Polish Academy of Sciences,
al. Ordona 21, PL-01-237 Warsaw,

sambrosz@ipipan.waw.pl; http://www.ipipan.waw.pl/mas/

Abstract. A technology for service description and composition in open and
distributed environment is proposed. The technology consists of description lan-
guage (called Entish) and composition protocol called entish 1.0. They are based
on software agent paradigm. The description language is the contents language
of the messages that are exchanged (between agents and services) according to
the composition protocol. The syntax of the language as well as the message
format are expressed in XML. The language and the protocol are merely spec-
ifications. To prove that the technology does work, the prototype implementa-
tion is provided available for use and evaluation via web interfaces starting with
www.ipipan.waw.pl/mas/ . Related work was done by WSDL + BPEL4WS +
(WS-Coordination) + (WS-Transactions), WSCI, BPML, DAML-S, SWORD,
XSRL, and SELF-SERV. Our technology is based on similar principles as XSRL,
however the proposed solution is different. The language Entish is fully declar-
ative. A task (expressed in Entish) describes the desired static situation to be
realized by the composition protocol.

1 Our approach to service composition

Generally, there are two approaches to service composition. The first one is based on
the assumption that services are composed, orchestrated, or choreographed in order to
create sophisticated business processes, whereas the second one assumes that services
are composed (typically on the fly) in order to realize clients’ requests. Most of the
existing technologies realize the first approach. The second approach is followed by
academic projects, e.g., SWORD, XSRL, and our own project enTish. It seems that the
service architecture corresponding to SOAP and WSDL is appropriate for the first ap-
proach. However, in our opinion, a different service architecture is required for realizing
the second approach. The reason is that clients’ requests are expressed in a declarative
way in a formal language, so that it is natural to propose a universal protocol for the
request realization. However, also in this case the service architecture based on SOAP
and WSDL may be applied as it is done in XSRL[4].
�

The work was supported partially by KBN project No. 7 T11C 040 20

10

We follow the idea of layered view of service architecture introduced in [2, 3]. Our
service architecture comprises the following three layers: Conversation layer, function-
ality layer, and database management (executive) layer. The database management layer
is the same as in [3], it influences the real world. However, the next two layers have dif-
ferent meaning. The functionality layer has exactly two interrelated components: Raw
application, and so called filter associated with the raw application. Raw application im-
plements a single operation, i.e., given input resources, it produces the output resource
according to the operation specification. Note, that operation has exactly one output,
although it may have several inputs. The associated filter works as follows. Given con-
strains on the output resource, it produces the constrains on the input resources. That is,
given a specification of the desired output, the filter replies with properties that must be
satisfied by the input in order to produce the desired output by the raw application. It is
clear that these constrains must be expressed in one common language. The conversa-
tion layer implements a conversation protocol to arrange raw application invocation, as
well as input / output resource passing to / from the raw application. The conversation
protocol specifies the order for message exchange. Message contents is expressed in the
common language.

Since our service architecture is different than the one that corresponds to WSDL
and UDDI, we must revise the concept of service description language as well as the
concept of service registry. It is natural that service description language should de-
scribe the types of service input / output resources as well as attributes of these types
to express constrains. Note, that the language is supposed merely to describe resource
types in terms of theirs attributes, not to construct data structures as it is done in WSDL.
It is also natural to describe What service does in the language, i.e., the type of the op-
eration the service performs. This type is expressed in terms of abstract function imple-
mented by the operation. Usually, What service does is described in UDDI. We include
this in our description language.

Since service has additional functionality performed by filter (i.e., a service may
be asked if it can produce output resources satisfying some properties), the description
language should be augmented with a possibility to formulate such questions as well as
answers. Moreover, the clients’ requests (tasks) should be expressed in the language.

We also want to describe some static properties of service composition process
such as intentions, and commitments; this corresponds to the functionality of WS-
Coordination.

The final requirement is that the language must be open and of distributed use. It
means that names for new resource types, their attributes, and names for new func-
tions, as well as for new relations can be introduced to the language by any user, and
these names are unique (e.g., URIs). This completes the requirements for the descrip-
tion language called Entish. Since our technology is supposed to realize the declarative
approach, we need a universal protocol for realizing the requests (tasks) specified in our
description language.

For simplicity (i.e., for avoiding reasoning) as well as for making the prototype
implementation feasible, we assume that the requests are extremely simple; in fact they
are expressed as formulas that represent abstract plans and initial situations. In the next
step of our project a distributed reasoning for plan generation will be implemented, so

11

that the requests will have a form of arbitrary formulas. The plan realization is done by
the protocol called entish 1.0.

To prove that the requirements for the service description language and composi-
tion protocol can be satisfied we provide the prototype implementation available from
http://www.ipipan.waw.pl/mas/ .

2 Walk-through example

The working example presented below constitutes an intuitive introduction to the de-
scription language and the composition protocol. The services described in the example
are implemented and are ready for testing via the www interfaces.

A client was going to book a flight from Warsaw to Geneva; the departure was
scheduled on Nov. 31, 2002. It wanted to arrange its request (task) by Nov. 15, 2002.
With the help of TaskManager (TM for short), the client expressed the task in a formal
language; suppose that it was the following formula:
phi =
”invoice for ticket (flight from Warsaw to Geneva, departure is Nov. 31, 2002) is deliv-
ered to TM by Nov. 15, 2002”

Then, the task formula (i.e., phi) was delegated to a software agent, say agent0.
The task became the goal of the agent0. The agent0 set the task formula as its first
intention, and was looking for a service that could realize it. First of all, the agent0
sent the query: ”agent0’s intention is phi” to a service registry called infoService in
our framework. Suppose that infoService replied that there was a travel agent called
FirstClass that could realize agent0’s intention. Then, the agent sent again the formula
”agent0’s intention is phi” however, this time to the FirstClass. Suppose that FirstClass
replied with the following commitment:
”FirstClass commits to realize phi,
if (order is delivered to FirstClass by Nov. 15, 2002 and
the order specifies the flight (i.e., from Warsaw to Geneva, departure Nov. 31,2002)
and one of the following additional specification of the order is satisfied:
(airline is Lufthansa and the price is 300 euro)
or (airline is Swissair and the price is 330 euro)
or (airline is LOT and the price is 280 euro))”

Let psi denote, the formula after ”if” inside (...) parentheses. The formula psi is the
precondition of the commitment. Once the agent0 received the info about the commit-
ment, the agent0 considered the intention phi as arranged to be realized by FirstClass,
and then the agent0 put the formula psi as its current intention, and looked for a ser-
vice that could realize it. Let us notice that the order specified in the formula psi could
be created only by the client via its TM, that is, the client had to decide which airline
(price) should be chosen, and the complete order was supposed to include details of a
credit card of the client. Hence, the agent0 sent the following message to TM: ”agent0’s
intention is psi” Suppose that TM replied to the agent: ”TM commits to realize psi, if
true ” The agent0 considered the intention psi as arranged to be realized by TM. Since
the precondition of the TM commitment was the formula ”true”, a workflow for real-
izing agent0’s task was already constructed. Once TM created the order and sent it to
FirstClass, the FirstClass would produce the invoice and send it to TM. It was supposed

12

(in the protocol) that once a service realized a commitment, it sent the confirmation to
the agent0. Once the agent0 received all confirmation, it got to know that the workflow
was executed successfully. In order to complete this distributed transaction, the agent
sent synchronously the final confirmation to the all services engaged in the workflow.
This completes the example. The complete enTish documentation is available at the
project web site http://www.ipipan.waw.pl/mas/

References

1. S. Ambroszkiewicz. Entish: a simple language for Web Service Description and Composi-
tion, In (eds.) W. Cellary and A. Iyengar. Internet Technologies, Applications and Societal
Impact. Kluwer Academic Publishers. pp. 289- 306, 2002.

2. Santhosh Kumaran and Prabir Nandi. Conversational Support for Web
Services: The next stage of Web services abstraction. http://www-
106.ibm.com/developerworks/webservices/library/ws- conver/?dwzone=webservices

3. F. Leymann and D. Roller.Workflow-based applications. IBM Systems Journal, Volume 36,
Number 1, 1997 Application Development http://researchweb.watson.ibm.com/journal
/sj/361/leymann.html

4. Mike Papazoglou, Marco Aiello, Marco Pistore, and Jian Yang. XSRL: A Request Language
for Web Services. http://eprints.biblio.unitn.it/archive/00000232/

13

Modularizing Web Services Management with AOP

María Agustina Cibrán, Bart Verheecke

System and Software Engineering Lab
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Europe

{Maria.Cibran, Bart.Verheecke}@vub.ac.be

Abstract. Web service technologi es accelerate application development by
allowing the selection and integration of third-party web services, achieving
high modularity, flexibility and configurability. However, current approaches to
integrate web services in client applications do not provide any management
support, which is fundamental for achieving robustness. In this paper we show
how Aspect Oriented Programming (AOP) can be used to modularize service
management issues in service oriented applications. To deal with the dynamic
nature of the service environment we suggest the use of a dynamic aspect-
oriented programming language called JAsCo. We encapsulate the management
code in aspects placed in an intermediate layer in between the application and
the world of web services, called Web Services Management Layer (WSML).

1. Introduction

Web services (WS) are modular applications that are described, published, localised
and invoked over a network. Web services technologies accelerate application
development by allowing the selection and integration of third-party web services,
achieving high modularity, flexibility and configurability. However, current
approaches only allow this integration by hard wiring the references to concrete web
services into the client applications. As stated in [1], this leads to unmanageable
applications that cannot adapt to changes in the business environment (e.g. a service
that is abandoned or changed, a new service that becomes available on the market,
etc). Moreover these approaches do not provide any management support, which is
fundamental for achieving robustness. To deal with these issues, code has to be
written manually and repeated for each service, resulting scattered in the application.
We observe the need for the application to be independent of specific services.

The focus of this paper is to show how the modularization of service management
issues can be enhanced by using dynamic Aspect Oriented Programming (AOP) [2]
[3]. To deal with the dynamic nature of the service environment we suggest the use of
a dynamic aspect-oriented programming language called JAsCo [4] [5]. We
encapsulate the management code in aspects placed in an intermediate layer in
between the application and the world of web services, called Web Services

14

2 María Agustina Cibrán, Bart Verheecke

Management Layer (WSML) [6]. In the next section we motivate the need for AOP
and introduce JAsCo. In section 3 we show how JAsCo is ideal to modularize the
management functionality of the WSML and provide some code examples. Finally,
we present our conclusions in section 4.

2. WS Integration and Management as Crosscutting Concerns

The web service architecture is the logical evolution of object-oriented principles in a
distributed context. Just as in object oriented approaches, the fundamental concepts of
web services are encapsulation, message passing, dynamic building, interface
description and querying. However, the distributed nature of web service applications
leads to the emergence of various management concerns that are difficult to
modularize using traditional software engineering methodologies.

First of all, we want to avoid hard wiring references to concrete services in the
applications achieve high flexibility in the selection of services. By decoupling web
services from the client application the concept of most suitable service is introduced.
With current approaches it would be the responsibility of the application to decide
which the most appropriate services are. This way, code for implementing service
selection would be written at each point where some service functionality is required,
resulting tangled and scattered in different places in the application. Thus, we need
support for encapsulating this crosscutting code separated from the application and
plug it in and out in a non-invasive way.

Moreover the selection of services also involves other management issues to be
considered at the moment the services are integrated in the applications. For instance,
services might need to control security, accounting, billing concerns at the time their
functionality is requested. This also results in crosscutting code since the application
developer would need to include this management code each time a service is
requested.

Therefore, to avoid tangling the application code with service related code we identify
the need for AOP. AOP states that some concerns of a system, such as
synchronisation and logging, cannot be cleanly modularized using current software
engineering methodologies, which leads to code duplication. To this end, AOP
approaches introduce a new concept that is able to modularize crosscutting concerns,
called an aspect. An aspect defines a set of join points in the target application where
the normal execution is altered.

Using aspects to express the selection and management concerns as part of the
WSML allows the application to remain independent of the service selection
infrastructure. Moreover, we also pursue dynamism in the management of services
and therefore an AOP technology that provides support for dynamic inclusion and
removal of aspects is required. For this reason we introduce an aspect-oriented
implementation language called JAsCo. JAsCo combines the expressive power of

15

Modularizing Web Services Management with AOP 3

AspectJ [7] with the aspect independency idea of Aspectual Components [8].
Originally JAsCo was designed to integrate aspect-oriented ideas into Component-
Based Software Development [9]. However, JAsCo has some characteristics that are
also useful in an object-oriented context:
• Aspects are described independently of a concrete context, making them highly

reusable.
• JAsCo allows easy application and removal of aspects at run time.
• JAsCo has extensive support for specifying aspect combinations.

JAsCo introduces two concepts:
• Aspect Beans: specify crosscutting behaviour by defining hooks which specify

when the normal execution of a method should be intercepted and what extra
behaviour should be executed.

• Connectors: apply the crosscutting behaviour of the Aspect Beans specifying
where the crosscutting behaviour should be deployed.

JAsCo enables the run-time plug in and out of connectors. This high flexibility and
configurability is exactly what is needed for the management of web services. For
more information about JAsCo we refer to [4], [5].

3. JAsCo Aspects in the WSML

3.1 Introducing WSML

In [6] we present an abstraction layer, called Web Services Management Layer
(WSML), which is placed between the application and the world of web services. It
realises the concept of just-in-time integration of services: multiple services or
compositions of services can be used to provide the same functionality.

Figure 1 illustrates the general architecture of the WSML. On the left side the core
application resides, and if necessary, web service requests are issued to the layer. The
WSML is responsible for choosing the most appropriate service or composition in a
completely transparent way. This is realised by the Selection Module by considering
different service properties. The collaboration with the Monitoring Module is
required for this purpose as several properties of services might need observation over
time.

Additional management functionality resides in the layer like traffic optimisation,
billing, accounting, security, transaction, etc. The WSML is reusable in new
applications and is completely configurable to avoid unnecessary overhead.

16

4 María Agustina Cibrán, Bart Verheecke

Fig. 1. General Architecture of WSML

The WSML has the following advantages:
• The application becomes more flexible as it can continuously adapt to the changing

business environment and communicate with new services.
• Extracting all web service related code from the core application facilitates future

maintenance of the code.
• Weakening the link between the application and the service enables hot swapping

of services.

In the remainder of this section generic management aspects to deal with the
crosscutting concerns will be presented.

3.2 Using Aspects for Service Redirection

Figure 2 shows how we implement the WSML using JAsCo aspect beans and
dynamic connectors. A bas ic requirement is that hard-wiring services should be
avoided. Therefore, service requests must be formulated in an abstract way at the left
side of the layer and the WSML will be responsible for making the translation to a
concrete service at the right side. The requests of the application are formulated in an
abstract way as specified in an Abstract Service Interface (ASI) . This can be seen as
a contract specified by the application towards the services. This way the syntactical
differences between semantically equivalent services can be hidden. In order to
enable this we introduce the concept of mapping schemas with sequence diagrams
that unambiguously describe how the service or service composition maps to the ASI.
An example of this mapping can be found in [6].

17

Modularizing Web Services Management with AOP 5

Fig. 2. Detailed Architecture of the WSML

To illustrate these ideas an example of a travel agency application is introduced. The
application offers the functionality to book holidays online and customers can make
reservations for both flights and hotels. To achieve this functionality the agency
application integrates different web services. Suppose HotelServiceA and
HotelServiceB are services that offer the same functionality for the online booking of
hotels. Each hotel service returns exactly the same results.

Assume in the client-application a list of hotels needs to be shown to the customer. A
HotelServiceInterface is defined with the following method for this purpose.
HotelList giveAvailableHotels(Date, Date, CityCode). At
deployment time or at runtime the following two services are available:
HotelServiceA provides the method: giveHotels (CityCode, Date,
Date,). HotelServiceB provides the method: listHotels (Date, Date,
CityName).

To make the mapping possible between the ASI and the concrete service interfaces ,
we make use of the aspect power of JAsCo and define an aspect in charge of
redirecting the generic requests to the concrete services that will provide the
functionality required. The redirection aspect defines the logic of intercepting the
application requests and replacing them by a concrete invocation on a specific web
service. Figure 3 shows the code for the redirection aspect. Note that this aspect is
generic and does not refer to any concrete web service. The mapping to concrete web

18

6 María Agustina Cibrán, Bart Verheecke

services is specified in the connectors that deploy the redirection aspect. Several
connectors can exist each in charge of deploying the redirection to a concrete web
service. Figure 4 illustrates the deployment of the redirection aspect. The connector
HotelServiceA specifies the mapping between the ASI giveAvailableHotels
(Date, Date, CityCode) and the particular way to invoke that functionality
on the web service HotelServiceA, that is invoking the method giveHotels
(CityCode, Date, Date,). To communicate with HotelServiceA the GLUE
library is used [10].

class getAvailableHotelsRedirection {
 hook RedirectionHook {
 RedirectionHook(method (Date d1,Date d2,CityCode
cc)){
 call(method);
 }

 replace() {
 specificMethod(d1, d2, cc);
 }
 abstract public List specificMethod(
 Date d1,Date d2,CityCode cc);
 }}

Fig. 3. The Redirection Aspect Bean for hotel retrieval

static connector getAvailableHotelsOfServiceA {
 HotelServiceAStub hotelServiceA = null;
 try {
 hotelServiceA = HotelServiceAHelper.bind();
 // the stub is instantiated by analysing the WSDL-
 // file of hotelServiceA by using the GLUE library
 }
 catch(Exception e) { }
 getAvailableHotelsRedirection.RedirectionHook rhook =
 new getAvailableHotelsRedirection.
 RedirectionHook(Application.
 giveAvailableHotels(Date, Date, CityCode){
 public List specificMethod(Date d1,Date d2,CityCode
cc){
 return hotelServiceA.giveHotels(cc, d1, d2));
 }
}}

Fig. 4. Connector that deploys redirection aspect

Each connector encapsulates the mapping between each generic request in the
application and the concrete manner to solve that request in a specific service. Thus,
there will be one connector for each different request that can be invoked by the

19

Modularizing Web Services Management with AOP 7

application. The WSML is responsible for the creation and management of these
connectors. JAsCo allows the creation of connectors to be done dynamically. This
characteristic enables the dynamic integration of new services. When the functionality
of a new service has to be integrated in the application, a connector realizing the
mapping for that service is created at run time. This is achieved transparently for the
application.

3.3 Using Aspects for Service Management

As mentioned above, the layer can also deal with other management issues that need
to be controlled at the application side. For instance, suppose the HotelServiceA
describes a strategy for billing its use and the application wants to locally control this
for auditing reasons. Suppose the service specifies that each time the method
giveHotels (CityCode, Date, Date) is invoked, an amount of 2 euros
has to be paid. We can achieve this in a non-invasive way by defining a new aspect
that abstracts the logic for a “pay per use” billing strategy. Figure 5 shows the
implementation of this aspect. Note that the redirection aspect is generic and can be
deployed and customised for other services that adopt this billing policy. This
deployment is specified as part of the connector shown in Figure 6. In this example,
the billing is done when getAvailableHotels is invoked in the application.
However, as connector getAvailableHotelsOfServiceA implements this
method as a call to HotelServiceA, the billing is only done when this concrete service
is used. Note that the hook can also be initialised with multiple functionalities
provided by a web service.

class BillingPerUse {
 hook BillingHook {
 private int total = 0;
 private int cost = 0;

 public void setCost(int aCost){
 cost = aCost;
 }
 private void pay(){
 total = total + cost;
 }
 BillingHook(method (Date d1,Date d2,CityCode cc)) {
 call(method);
 }
after() {
 pay();
 }
}
}

Fig. 5. Billing Aspect

20

8 María Agustina Cibrán, Bart Verheecke

static connector getAvailableHotelsOfServiceA {
…
BillingPerUse.BillingHook billPerUse =
 new BillingPerUse.BillingHook(List
 Application.giveAvailableHotels(Date, Date,
CityCode));
 billPerUse.setCost(2);
 rhook.replace();
 billPerUse.after();
}

Fig. 6. Billing connector

The aspect BillingPerUse defines a billing template that can be reused by different
services. Other more complex billing aspects can be formulated and implemented in a
similar way.

This simple example illustrates that a generic library of aspects can be created to
achieve high flexibility in the creation and manipulation aspects that implement other
management issues.

4. Conclusion

In this paper we show how the use of AOP is needed to fully decouple service
management concerns from the client applications. We propose to use a dynamic
AOP implementation language JAsCo to enable hot-swapping and runtime
management of services.

This approach has the advantage that applications become adaptable as they can
easily integrate new services and dynamically accommodate to management
requirements.

We are currently working on the definition of a library of reusable aspects that would
allow the application developer to dynamically instantiate and configure the needed
aspects to deal with different service management issues. We are also working on
realising the hot swapping mechanism in a more intelligent way by considering
service oriented rules. These rules are derived from the requirements the application
specifies and are based on the non-functional properties of services.

21

Modularizing Web Services Management with AOP 9

5. References

[1] J. Malhotra, Ph.D., Co-Founder & CEO interKeel Inc., “Challenges in Developing Web

Services-based e-Business Applications,” Whitepaper, interKeel Inc., 2001

[2] Aspect-Oriented Software Development. http://www.aosd.net/

[3] Communications of the ACM. Aspect-Oriented Software Development, October 2001.

[4] D. Suvée and W. Vanderperren. “JAsCo: an Aspect-Oriented approach tailored for

Component Based Software Development”. Proc. of 2nd Int. Conf. on AOSD, Boston, USA,
2003.

[5] W. Vanderperren, D. Suvée, B. Wydaeghe and V. Jonckers. “PacoSuite & JAsCo: A visual

component composition environment with advanced aspect separation features”. Proc. of
Int. Conf. on FASE, Warshaw, Poland, April 2003.

[6] B. Verheecke, M. A. Cibrán. “AOP for Dynamic Configuration and Management of Web

services in Client-Applications”. ICWS'03-Europe (submitted)

[7] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and W. G. Griswold. “An

overview of AspectJ”. In Proceedings European Conference on Object-Oriented
Programming, volume 2072 of Lecture Notes in Computer Science, pages 327--353, Berlin,
Heidelberg, and New York, 2001. Springer-Verlag.

[8] Lieberherr, K., Lorenz, D. and Mezini, M. Programming with Aspectual Components.

Technical Report, NU-CCS-99-01, March 1999. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/aspectual-comps.html.

[9] C. Szyperski. Component software: Beyond Object-oriented programming. Addison-

Wesley, 1998.

[10] The Mind Electric, “The Glue Platform,” 2003,

http://www.themindelectric.com/glue/index.html

22

Services and Objects: Open issues

Vincenzo D’Andrea and Marco Aiello

Department of Information and Telecommunication Technologies
University of Trento

Via Sommarive, 14 38050 Trento
Italy

{dandrea,aiellom}@dit.unitn.it

Abstract. One of the common metaphors used in textbooks on Object-
Oriented programming (OOP) is to view objects in terms of the services
they provide, describing them in “service oriented” terms. This opens
a number of interesting questions, moving away from the simple view
of OOP as an implementation tool for Web Services. First of all: if an
Object is a Service, can we also say that a Service is an Object?

While the short answers seems to be negative, there are several connec-
tions between the two concepts and it is possible to exploit the large
repository of methodological tools available in OOP. What are the coun-
terparts, in terms of services, of concepts like class or instance? Is it
possible to apply techniques as containment or inheritance to services?
What are interfaces, properties and methods for services? In this paper
we try to start building some connections, underlining the open issues
and the gray areas.

1 Introduction

One of the common metaphors used in textbooks on Object-Oriented program-
ming (OOP) is to view objects in terms of the services they provide, describing
them in “service oriented” terms (see for instance [3]). Building on abstraction
and encapsulation, the key idea is to hide programming details that provide
object functionalities. An interface describes these functionalities in terms of
methods and properties, providing a logical boundary between operations invo-
cations and their implementations. Then an object is just a “server” of its own
methods. If on the one hand, this view is useful for educational purposes, on the
other hand, it represents only a minor feature when compared to inheritance,
polymorphism, code sharing, and so on.

If the object oriented paradigm is already ‘service oriented’ why is it then
that we talk about a new computing paradigm with the advent of web services?
Objects in OOP are already described as services, so is it because of the gaining
momentum of web services that one describes this new trend as a shift in comput-
ing paradigm? To answer this let us consider more precisely what a web service
is and what we mean by service orientation. In [6], Curberra et al. describe a
web service in the following way:

23

A Web service is a networked application that is able to interact using
standard application-to-application Web protocols over well defined in-
terfaces, and which is described using a standard functional description
language.

The interfaces no longer hide units of code, but entire applications in a way closer
to components [12]. In addition, the network plays a major role, with the conse-
quences that web services have to deal with issues typical of distributed systems
[5], such as: heterogeneity, openness, security, scalability, failure handling, con-
currency, transparency. Web services are shifting perspective on programming
and are now calling for a new term for programming. There seems to be con-
sensus on the term service oriented computing (SOC). A definition of SOC is in
the “Service Oriented Computing Manifesto” [7].

Services are autonomous platform-independent computational elements
that can be described, published, discovered, orchestrated and programmed
using XML artifacts for the purpose of developing massively distributed
interoperable applications.

The SOC definition above generalizes the one of web services. One does not
distinguish anymore among applications or components, but simply deals with
computational elements. The find-bind-use model can summarize the idea of de-
scribing, publishing, discovering, orchestrating and programming the distributed
computational entities. Standardization is explicitly mentioned and referred to
XML-based languages.

In this position paper, we indicate some areas where web services may be
contaminated by concepts and ideas from the object-oriented paradigm. We will
base our analysis on abstract object-oriented concepts trying to avoid language
peculiarities and tricks.

2 Similarities and differences

To justify a call for a paradigm shift, there must be some significant differences
between object-oriented programming and service oriented computing. What we
consider to be the key differences, among the many ones over which much hype
has grown recently, are the following three:

OOP SOC

invoke vs. find-bind-use

shared context vs. multiple contexts

synchronous method invocation vs. asynchronous message passing

Find-bind-use is the heart of service orientation. A software entity that needs
a service from another entity first searches for available services, then decides

24

on the basis of some parameter among the available ones and only then binds
it in order to use it. On the other hand, in object-oriented programming there
is no search for service, but direct method invocation. The method must be
provided by an object running at invocation time. The find-bind-use model allows
for greater flexibility, especially in distributed environments, opening the road
for the choice of services based on non-functional requirements, such as those
ensuring quality of services.

In OOP the execution context is typically shared among all objects. Usually,
objects are written in the same language, run on the same memory space and
live for the execution span of the same program. Recent extensions allow for the
objects to be distributed (e.g., Java RMI) and to be written in different languages
(e.g., CORBA). These extensions go in the direction of service orientation, where
everything is distributed and services live in heterogeneous multiple contexts.
The operating systems in which web services live, the languages in which they are
written, the middleware used for interoperation is completely transparent in the
SOC model therefore we speak of multiple contexts of execution for interactive
web service.

Finally, the interaction between objects through method invocation, which
can be seen as a message passing mechanism, is synchronous. In open distributed
environments a more flexible communication mechanism is often necessary, that
is, the asynchronous communication among the software entities contributing to
a computation. An example of asynchronicity is when one interacts with a web
service by including an appropriate XML request inside an email.

If the above are the key mechanisms that differentiate between OOP and
SOC, one may wonder at what is the different forms of abstractions that one
considers when looking at SOC. In [3], Budd indicates how OOP realizes various
forms of abstractions. Let us compare these with the SOC case.

Composition is a central issue in service oriented computing. A large amount
of effort in research and industry is devoted to service composition. Some define
ways to design the composition of service (e.g., [4, 13]) while others define how
semantically annotated services can be automatically composed (e.g., [10]).

In Object Oriented systems, composition is a design activity and it is mainly
a problem of statically designing the proper architecture of the system. The situ-
ation in Service Oriented computing is radically different: a service can build its
functionalities upon others, for instance an e-commerce purchase service could
include the actual purchase service, the shipping service and the insurance ser-
vice. The composed services are not statically designed, the services and the
supporting infrastructure are designed in terms of dynamically discovering the
other services they need to include. In other words, the service paradigm pro-
vides the capabilities for dynamic, run-time composition rather than requesting
a statically planned architecture.

The dynamic nature of composition has several consequences. Negotiation
and contractual agreements cannot be accomplished off-line, they have to be
dealt with at run-time. The role of catalogs and the discovery mechanism have
no counterpart in the world of objects and components.

25

Services demand a transition from static binding between objects or com-
ponents that are to be integrated to the dynamic binding of services. From the
point of view of the design there is the need of a transition from designing an
architecture to designing the enabling medium, that is, the infrastructure for
runtime composition.

In object oriented systems, the term inheritance is used to describe the
mechanism allowing the derivation of a class from another one. One may even
distinguish between several forms of inheritance. The most common form is
specialization; a class is defined in terms of specialization of a second one –
this is expressed by the is a relationships (a TextWindow is a Window, i.e., the
TextWindow has all the properties and behaviors of the Window). Specialization
implies a semantic coherence between the two classes, one class is called a subtype
of the other. Otherwise it is just a subclass, where the meanings attached to the
interface can change. It is obvious that while a subclass must have at least
some code differences with respect to the original class, a class that inherits
in the sense of subtype can leave untouched the implementation details of the
inherited class. In other words, the subclass requires a syntactical match, while
the subtype implies also a semantical match between the involved classes.

The concept of subtyping is also related to a common distinction made be-
tween what is sometime referred to as “true” inheritance versus interface inher-
itance. The former is used when a class presents the same external interface and
has access to the code of the inherited class, that is, the subclass is a subtype
unless it overrides the behavior of the inherited one. The term interface is used
when a class has the same external interface of the inherited one, but it has
no direct access to its code. In this case, it became a subtype only when the
behavior of the inherited class is reproduced with the same semantics.

In terms of implementation, a simplifying model is to view inheritance as
a special form of composition. Composition generally implies wrapping the in-
terface of the included classes, and filtering the communication between these
classes and the external world. Inheritance can be described as if the inheriting
class incorporates (composes with) the inherited one, but without filtering the
communication; the inherited class can be accessed directly. An object of the
inheriting class responds to the same invocations as an object of the inherited
class. If the subclass is also a subtype, the results will also be the same.

To think at inheritance (subtyping) as a form of composition which maintains
the interface (behavior) of the composed object, makes it easier to reason about
similar concepts in the service world.

In OOP, polymorphism indicates an operation that can take operands of
different type, i.e., objects of different classes. There are various kinds of poly-
morphism: parametric, inclusion, overloading and coercion.

Subtyping induces inclusion polymorphism. For instance, consider a class
shape which has a method draw. The circle class, which subtypes the shape
class, then also has a draw method. This allows to use a circle or a square object
with the shape operations. One can then design a system relying only on the

26

methods of the inherited class; run-time binding mechanism will then call into
use the proper object.

A similar concept is that of overloading. A symbol is overloaded when it is
used for operations that have different semantics depending on the class of the
operands (e.g., the ‘+’ operator in Java which adds integers and concatenates
strings).

In the service oriented architecture is hard to find equivalent notions, because
a formal concept of typing and inheritance is missing.

Design patterns [8] are often connected with OO methodologies, especially
for describing the interactions between the objects in a system. A Design Pattern
is a well understood and proved solution to a design problem, such as creating
a wrapper around an object or defining the interface between a client and a
server. A pattern differs from an algorithm because it includes both procedures
and architecture, described in a way resembling more a case study than a precise
prescription.

This approach is quite effective and can be relevant for designing and devel-
oping individual services, but its application is more related to software engi-
neering methodology while Service Oriented Computing appears to be more an
information system engineering issue.

Other typical object oriented abstraction items to be found in [3] are (1)
division into parts, encapsulation, interface and implementation, which directly
map to SOC abstraction principles; (2) the service view which is exactly where
the SOC emphasis lies; and (3) layers of specialization, history of abstraction,
frameworks, which are not relevant in this first comparison between OOP and
SOC.

3 Is a service an object?

We have so far seen that connections between objects and services are not at all
new. Some references draw explicit links between the two concepts, e.g., “As a
very rough approximation, one web service can be compared to one method in
more traditional software context” [11]. Other connections are less evident; for
instance in [1] the authors describe a methodology for defining what they call
a “Compatible Service”, that is an abstract description of a class of services,
derived from concrete services description. While this generalization mechanism
seems the opposite of creating an instance from a prototypical description, the
concepts involved are quite similar.

In general, it is not immediate to identify in the world of services an analogy
for the concepts of class and object. In OOP, a class is a category that represents
a set of objects having the same characteristics, and an object is a concrete real-
ization of a class – an instance of a class. While classes are stateless an instance
of a class has a state which depends on the sequence of operations undergone
by it. The object behavior in response to an external request is determined by
the class. All the object derived from a class will respond in the same way in

27

response to the same invocation, provided they are in the same state, or the
response does not depend on the state.

Are we now in the position to answer the question of whether a service is an
object? We propose a negative answer to this question, but the analysis provided
so far brings evidence to the fact that many similarities connect OOP and SOC.
More object related concepts can move into the service oriented world in order to
enhance the technology and, perhaps, clarify the role and scope of web services.
Here are the most immediate example of concept migration:

Inheritance. Of the two concepts of inheritance for OOP, the interface in-
heritance seems to be the most immediate to apply to web services. Consider
a payment service which could be subtyped in a service with acknowledgment
of receipt. In a workflow, the former could be substituted by the latter as it is
guaranteed that the same port types are implemented in the subtyped service.

Inheritance enables service substitution, service composition and it induces
a notion of inheritance on entire compositions of services. Consider a workflow
A built on a generic service and another one B with the same data and control
links, but built on services which subtype the services of A. Could we say that
B inherits from A or that B is a specialization of A?

Polymorphism. Both inclusion polymorphism and overloading can be ex-
tended to the service paradigm. A composition operation in a workflow may
have different meanings depending on the type of the composed services. For
example, composing a payment and a delivery service may have a semantics for
which the two services run in parallel; on the other hand, the composition of two
subtyped services in which the payment must be acknowledged by the payers
bank and the delivery must include the payment transaction identifier have the
semantics of a sequencing the execution of the services.

Composition. A formal and accepted notion of composition is currently
missing in the SOC domain and, as just proposed, inheritance and polymorphism
could induce such precise notions of composition over services. Could this help
dissolve the fog around the meaning of composition for web services? Could
this bring together “syntacticians” which claim that nothing can be composed if
not by design with “semanticians” which claim that anything can be composed
automatically? Perhaps not, but it could fill some of the gaps left by standards
which do not have a clear semantics, most notably, BPEL [2] which is proposing
itself as the standard for expressing aggregations of web services.

Statefullness. Finally, the difference between stateless class definitions and
statefull objects in OOP can impact web services technology where services are
stateless entities. Web services resemble more to class definitions, but the notion
of an existing instance of a service with its state is paramount. Software entities
need to access each others state in order to fully interoperate. Here the paral-
lel is with the history of HTML pages. When first introduced HTTP/HTML
interactions were stateless, but this limited by far the client-server communica-
tion. It did not take long before the introduction of statefull interactions via the
invention of ‘cookies’ [9].

28

The object oriented paradigm has a solid formal background and is a well-
established reality of today’s computer science. Service oriented computing is,
on the other hand, a new emerging field, which tryies to realize global inter-
operability between independent services. To meet this goal, service oriented
technology will need to solve a number of challenging issues, such as how to
manage precise service semantics. One way to attack this problems is by ‘bor-
rowing’ concepts from the object oriented world. In this paper we presented a
parallel between objects and services that might be somewhat arguable, but one
cannot dispute that services exhibit a number of object-like behaviors. Our fo-
cus has been on inheritance and polymorphism for composition semantics and
we have also stressed the need of state information for services, but we do be-
lieve that there is space for even further contamination between object oriented
methodologies and service oriented computing.

References

1. V. De Antonellis, M. Melchiori, B. Pernici, and P. Plebani. A methodology for
e-Service substitutability in a virtual district environment. In J. Eder and M. Mis-
sikoff, editors, CAiSE 2003, pages 552–567, 2003.

2. BEA, IBM, Microsoft, SAP AG, and Siebel. Business Process Execution Language
for Web Services, 2003. http://www-106.ibm.com/developerworks/library/ws-
bpel/.

3. T. Budd. An Introduction to Object-Oriented Programming. Addison Wesley, 2002.
(3rd edition).

4. F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan. eFlow: a plat-
form for developing and managing composite e-services. Technical report, Hewlett
Packard, 2000.

5. G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and
Design. Addison Wesley, 2001. (3rd edition).

6. F. Curbera, W. Nagy, and S. Weerawarana. Web services: Why and how. In
Workshop on Obejcet Orientation and Web Services OOWS2001, 2001.

7. M. Papazoglou et al. SOC: Service Oriented Computing manifesto, 2003. Working
draft available at http://www.eusoc.net.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable ObjectOriented Software. Addison-Wesley, 1995.

9. D. Kristol. HTTP cookies: Standards, privacy, and politics. ACM Transactions
on Internet Technology (TOIT), 1(2):151–198, 2001.

10. S. McIlraith and T. Son. Adapting Golog for composition of semantic web services.
In Proc. of the Int. Conf. on Knowledge Representation and Reasoning (KR2002),
pages 482–493, 2002.

11. G. Piccinelli, A. Finkelstein, and C. Nentwich. Web service need consistency. In
Workshop on Obejcet Orientation and Web Services OOWS2002, 2002.

12. C. Szyperski. Component software: beyond object-oriented programming. Addison-
Wesley, ACM, 1998.

13. J. Yang and M. Papazoglou. Web component: A substrate for web service reuse
and composition. In CAiSE, pages 21–36, 2002.

29

UML Modelling of Automated Business
Processes with a Mapping to BPEL4WS

Tracy Gardner

IBM UK Laboratories, Hursley Park, Winchester, SO21 2JN, UK
tgardner@uk.ibm.com

Abstract. The Business Process Execution Language for Web Services
(BPEL4WS) provides an XML notation and semantics for specifying
business process behaviour based on Web Services. A BPEL4WS pro-
cess is defined in terms of its interactions with partners. A partner may
provide services to the process, require services from the process, or par-
ticipate in a two-way interaction with the process.
The Unified Modeling Language� (UML�) is a language, with a visual
notation, for modeling software systems. The UML is an OMG� standard
and is widely supported by tools. UML can be customized for use in
a particular modeling context through a ‘UML profile’. We describe a
UML Profile for Automated Business Processes which allows BPEL4WS
processes to be modeled using an existing UML tool. We also describe a
mapping to BPEL4WS which can be automated to generate web services
artifacts (BPEL, WSDL, XSD) from a UML model meeting the profile.

1 Introduction

As service-oriented technology gains in popularity, it will be increasingly nec-
essary to be able to design large-scale solutions that incorporate web services.
The Unified Modeling Langauge� (UML�) is widely used in the development
of object-oriented software and has also been used, with customizations, for
component-based software, business process modelling and systems design. UML
provides a visual modeling notation which is valuable for solution design and
comprehension. UML can be customized to support the modelling of systems
that will be completely or partially deployed to a web services infrastructure.
This enables the considerable body of UML experience to be applied to the
maturing web services technologies. This paper introduces a UML profile (a cus-
tomization of UML) which supports modelling with a set of semantic constructs
that correspond to those in the Business Process Execution Language for Web
Services1 (BPEL4WS)[1].

Using UML primarily as a documentation tool has a real but limited benefit,
and it is recognized that UML models developed for this purpose may not be
maintained when a project is under severe time pressure. The value of UML-
modelling of systems has the potential to increase significantly through the emer-
gence of initiatives such as model-driven development and architected RAD [3]
1 The current version of the profile is based on BPEL4WS version 1.0.

30

which enable executable systems to be generated automatically from detailed
models. This approach is employed here to provide a mapping from models
conforming to the UML profile for automated business processes to executable
BPEL processes.

2 The UML Profile for Automated Business Processes

This section introduces a subset of the UML profile through an example that de-
fines a simple purchase order process. A complete specification of the profile can
be found in [2]. The example used here is taken from the BPEL 1.0 specification:

“On receiving the purchase order from a customer, the process initiates three
tasks in parallel: calculating the final price for the order, selecting a shipper, and
scheduling the production and shipment for the order. While some of the pro-
cessing can proceed in parallel, there are control and data dependencies between
the three tasks. In particular, the shipping price is required to finalize the price
calculation, and the shipping date is required for the complete fulfillment sched-
ule. When the three tasks are completed, invoice processing can proceed and the
invoice is sent to the customer.”

BPEL processes are stateful and have instances so in BPEL this scenario is
implemented as a PurchaseOrder process which would have an instance for each
actual purchase order being processed. Each instance has its own state which is
captured in BPEL variables. In the UML profile, a process is represented as a
class with the stereotype <<Process>>. The attributes of the class correspond
to the state of the process (its containers in BPEL4WS 1.0 terminology). The
UML class representing the purchase order process is shown in Figure 1.

Fig. 1. A UML class used to model a BPEL process

The behaviour of the class is described using an activity graph. The activity
graph for the purchase order process is shown in Figure 2. The partners with
which the process communicates are represented by the UML partitions (also
known as swimlanes): customer, invoiceProvider, shippingProvider and schedul-
ingProvider. Activities that involve a message send or receive operation to a
partner appear in the corresponding partition. The arrows indicate the order in
which the process performs the activities.

31

Fig. 2. Activity graph for the purchase order process with detail elided

The purchase order process begins by receiving a purchase order request from
a customer. The initiatePriceCalculation, initialiseShippingRequest and request-
ProductionScheduling activities begin executing, triggering further activities as
they complete. The arrows on the graph indicate control links, an activity starts
when all of its preceding activities have completed. Note that the requestShip-
ping activity requires that both the initialiseShippingRequest and sendShipping-
Price activities have taken place before it begins. The returnInvoice activity re-
turns a response back to the customer. Each activity has a descriptive name and
an entry action detailing the work performed by the activity. Note that in Figure
2, the detail of the actions is hidden on the diagram due to space constraints.
For a full explanation of the detailed expression of actions please refer to [2].

3 Mapping to BPEL4WS

The UML profile for automated business processes is sufficiently expressive that
complete executable BPEL4WS artifacts can be generated from UML models.
Table 1 shows an overview of the mapping from the profile to BPEL4WS (version
1.0) covering the subset of the profile introduced in this paper.

A cutdown version of the BPEL document that would be generated from the
purchase order example in this paper is shown in Figure 3 (much of the detail
is omitted here due to space constraints).

32

Table 1. UML to BPEL4WS mapping overview.

<<Process>> class BPEL process definition

Activity graph on a <<process>> class BPEL activity hierarchy

<<process>> class attributes BPEL containers

Hierarchical structure and control flow BPEL sequence and flow activities

<<receive>>, <<reply>>, <<invoke>> activities BPEL receive, reply, invoke activities

<process name="purchaseOrderProcess" ...>

<containers>

<container name="PO" messageType="lns:POMessage"/>

<container name="Invoice" messageType="lns:InvMessage"/>

...

</containers>

...

<sequence>

<receive partner="customer"

portType="lns:purchaseOrderPT"

operation="sendPurchaseOrder"

container="PO">

</receive>

...

<reply partner="customer" portType="lns:purchasePT"

operation="sendPurchaseOrder"

container="Invoice"/>

</sequence>

</process>

Fig. 3. BPEL extract corresponding to the purchase order process.

4 Proof of Concept Demonstrator

A technology demonstrator supporting an end-to-end scenario from a UML tool
(such as Rational� XDE�) through to a BPEL4WS runtime (BPWS4J) is avail-
able from IBM� alphaWorks� as part of the Emerging Technologies Toolkit [4].
The mapping implementation is built using the Eclipse Modeling Framework
(EMF) and takes the industry standard file format for exchange of UML models
(XMI) as input. BPEL4WS artifacts along with the required WSDL and XSD
artifacts are generated.

5 Conclusion

This paper has introduced a UML profile for automated business processes with a
mapping to BPEL4WS. This approach enables service-oriented BPEL4WS com-
ponents to be incorporated into an overall system design utilizing existing soft-

33

ware engineering practices. Additionally, the mapping from UML to BPEL4WS
permits a model-driven development approach in which BPEL4WS executable
processes can be automatically generated from UML models. A proof of concept
demonstrator for the mapping is available. Future work includes the implementa-
tion of a reverse mapping to support the import of existing BPEL4WS artifacts
and the synchronization of UML models and BPEL4WS artifacts with changes
in either being reflected in the other. The profile and mapping currently sup-
port the 1.0 version of the BPEL4WS specification, support for BPEL4WS 1.1
is planned.

Acknowlegements

Thanks to Gary Flood and Keith Mantell for comments on this paper.

References

1. BEA Systems, IBM, Microsoft: Business Process Execution Language for Web
Services, Version 1.0. IBM developerWorks (2002). Available from http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel1/

2. Gardner, T et al.: Draft UML 1.4 Profile for Automated Business Processes
with a mapping to the BPEL 1.0. IBM alphaWorks (2003). Available from
http://dwdemos.alphaworks.ibm.com/wstk/common/wstkdoc/services/demos/
uml2bpel/README.htm.

3. Selic, B: The Pragmatics of Model-Driven Development. IEEE Software special issue
on Model-Driven Architecture (2003). (To be published.)

4. Emerging Technologies Toolkit. IBM alphaWorks (2003). Available from
http://www.alphaworks.ibm.com/tech/ettk/

OMG, UML and Unified Modeling Language are registered trademarks or trade-
marks of Object Management Group, Inc. in the United States and/or other
countries.
Rational and XDE are registered trademarks or trademarks of International
Business Machines Corporation and Rational Software Corporation in the United
States and/or other countries.
IBM and alphaWorks are registered trademarks or trademarks of International
Business Machines Corporation in the United States and/or other countries.

34

A Classification Framework for Approaches and
Methodologies to make Web Services Compositions

Reliable

Muhammad F. Kaleem

Technical University Hamburg-Harburg
m.kaleem@tuhh.de

Abstract: Individual web services can be composed together to form composite
services representing business process workflows. The value of such workflows
is directly influenced by the reliability of the composite services. There is
considerable research concerned with reliability of web services compositions.
There is, however, no clear definition of reliability that establishes its scope in
the context of a composite service. We propose a definition of composite
service reliability in this paper that takes into account different aspects affecting
reliability of a composite service. We also put this definition to use as the basis
of a framework that can be used for classification of approaches and associated
methodologies for making composite services reliable. The framework can be
used to identify which aspect of composite service reliability is addressed by a
particular approach. We will also reference some selected methodologies to
classify them according to the aspect of reliability they address. A definition of
composite service reliability and its use to classify methodologies for composite
service reliability as described in this paper will prove useful for comparing and
evaluating methodologies for making composite services reliable, and will also
have a bearing on the quality of service aspects of architectural styles and
methodologies of software solutions based on web services compositions.

Introduction

Web services represent autonomous services with clear service definitions.
Interaction with web services is possible through their service definitions, which can
be made available in WSDL [1]. Individual service definitions may represent limited
business functionality. However, it is possible to compose functionality offered by
different individual services, likely from different service providers, into a composite
service representing a complete business process. A number of standards exist for
composition of autonomous, individual web services into a composite service
representing a workflow [2-5].

Given that a composite service will most likely comprise of a number of
autonomous web services, the reliability of the workflow represented by the
composite service becomes significant. Reliability of composite services is the subject
of much research. There is, however, no clear definition of reliability that establishes
its scope in the context of a composite service. Also, there is diversity of research in

35

this area, but different research approaches for ensuring reliability of composite
services cater to a definition of reliability peculiar to that approach.
In this paper we present a definition that identifies main areas of composite service
reliability, and lists the reliability aspects related to these areas. We will use this
definition as the basis of a framework that can be used to classify different approaches
that may be used to address the reliability aspects identified in the definition. We will
also reference some selected methodologies complementing these approaches,
gleaned from research and industry proposals, and classify them using the framework
according to the aspect of composite service they address.

Definition and its use as a classification framework

We present a definition of composite service reliability that is split into two parts,
so as to identify two main areas of composite service reliability. We also list the
reliability aspects related to these areas. We will then provide more details about these
aspects in the next sections, when we use the definition as a framework for
classification of methodologies for composite service reliability. To this effect, we
will first describe the approaches that may be taken to address each aspect of
reliability, and then reference some selected solutions that provide methodologies
complementing these approaches. We reference solutions from research and industry,
and in this way classify the methodology according to the particular aspect of
composite service reliability it addresses. With the help of the definition and using it
as a basis of a classification framework, it is therefore possible to classify a solution
according to the aspect of composite service reliability it addresses.

The two main areas of composite service reliability, and the reliability aspects
related to these, are:
1. Reliability of composition

− that the composite service is correctly specified
This aspect requires that the notation for specifying a web services composition is
correct, and that the composite service specification, when put into execution,
translates to correct process flow which it represents.
• Approaches

A number of standards exist for composition of web services, as we mentioned
previously. These standards describe how individual web services can be
composed together to form an executable business process. For the composite
service to reliably represent a business process, it is important that the composite
service specification is correct. However, correct notation for specifying the
composite service alone is not sufficient to guarantee reliability. It is also important
that the specification representing the web services composition translates into an
error-free process flow when the composite service executes. It is important to
address both of these points.
• Possible Solutions

Specifying a web services composition according to a composition standard can
be a complex task. This can, however, be facilitated by tools typically provided by
implementers of web services composition standards. An additional advantage

36

such tools can provide is checking whether the specification notation is correct,
and thereby identify potential sources of error. As an example, we may mention the
commercial implementation [6] of the web services composition standard [2],
which provides graphical tools to visually compose a composite service definition.

Once the composite service has been specified, it can be checked whether the
specification will translate into correct process flow on execution. A possible
solution for this activity is described in [7], which uses model checking techniques
to verify the workflow specification created according to a particular web services
composition standard. Another technique for verification of composite e-services is
described in [8]. Even though the work described in [8] is not directly related to
web services compositions, the methodology described can be useful for further
work into composite service reliability.

− that the composite service consists of functional interface definitions
This aspect deals with the requirement that all individual web services making up
the composite service are available and functional according to their interface
definitions, which may have been obtained from an online registry or resource.
• Approaches

A composite service may be composed dynamically, with requisite web services
being added as they are needed. The information about a service’s interface may
come from a registry, or any other online resource. However, it is possible that the
requisite service itself does not exist any more. This aspect of reliability is also
relevant if we take into account the fact that a composite service may exist for a
long period of time, during which time a service may go offline, or the service
provider may not offer it anymore. The composite service should be able to handle
such a situation. The approach should be to address this aspect at composition
time, so that the composite service consists of functional individual services, and
errors during the execution of the composite service due to unavailability of
individual services are prevented. However, the problem represented by this aspect
is relevant during composite service execution as well, when an individual service
may go down (due to software or hardware failure, for example), and an approach
for addressing this aspect of reliability has to take this factor into account as well.
• Possible Solutions

Implementers of web services composition standards could provide tools for
checking whether all individual web services making up the composite service are
functional. Similarly, the implementations of the standards could provide a test
framework that checks the availability of the web services implementation at
composition time. The advantage of doing this at composition time is to avoid
potential sources of error during composite service execution. However, even
during composite service execution, the breakdown of an individual service will
present a problem. This can be dealt with methodologies explained later when we
go over the aspects related to execution of the composite service.

− that the composite service specification is conformant to the specification of
individual web services

This aspect requires conformance between the process flow requirements
represented by the composite service and the constraints expected by the
component web services.

37

• Approaches
A composite service could comprise of individual web services from different

service providers, and each individual service may have its own business service
policy that drives its interaction with its users. This implies that used individually,
the service may be able to impose constraints on its usage. As part of a larger
composition, the constraints expected by the individual services may conflict with
the business service policy of the business process represented by the composite
service. It is important to avoid this for the reliability of the web services
composition. Similarly, but seen from a different viewpoint, individual web
services should conform to the business policy represented by the composite
service so that that this aspect of reliability is addressed.
• Possible Solutions

The web services composition standards can allow specifying constraints on the
usage patterns of individual web services that are commensurate with their
business service policies, so that there are no inconsistencies between the
composite service and the individual services it is composed of. For example, the
composition standard [2] has the notion of abstract and executable processes,
where abstract processes may be used to capture behavioural aspects of services. It
is also possible to address this aspect of composite service reliability at a level
other than that of the composition standard. [9] suggests an experimental
methodology that is relevant in this regard. However, similar methodologies will
have to be refined and enhanced in scope before they can be applied to making
composite services reliable. It is also possible to allow a web service to specify its
policies and characteristics with respect to the interface it exposes to the outside
world, so that these policies are taken into account during the web service
composition process. We are working on a framework that allows a web service to
specify its policies with respect to its participation in a composite service using the
set of standards [10-12]. The framework also allows a web service composition
provider and the web service provider to negotiate participation in the composite
service through an enrolment process. The enrolment process also helps cover the
reliability aspect mentioned in the previous section, related to functional interface
definitions.

− that the composite service can handle interface definition changes within
individual services gracefully

This reliability aspect deals with the ability of the composite service to handle
interface changes within individual services without producing unexpected errors.
• Approaches

As was mentioned previously, a composite service may be in operation for a
long period of time. Given the autonomous nature of service providers, it is
possible that a service provider may change the interface of a service that is part of
the composite service. This should not cause the breakdown of the business
process represented by the composite web service, or lead to unexpected errors.
Therefore ability to deal with such interface definition changes, called graceful
handling in the definition, is important for the reliability of the composite service.
Possible approaches could be extensions in the web services composition standards
to allow for graceful handling of interface changes within individual services in the

38

composite service, or providing a layer of functionality on top of the composition
layer, which takes care of interface changes.
• Possible Solutions

It is possible to build a layer of functionality on top of the composition
standards implementation to address this issue, as described in [13]. This approach
uses a conversational model of interaction between web services for graceful
handling of interface changes in individual web services. Another solution could be
facilitated by negotiated enrolment of the individual web service in the composite
service (as mentioned in the previous section), where, for example, the web service
may be bound by contract not to change its service interface.

2. Reliability of execution
− that the composite service execution is consistent with the business process flow

it represents, and there are appropriate fault-handling mechanisms in place
This aspect covers the reliability issues that are relevant when there is mutual
interaction between a composite service (also within services of which the
composite service is composed of) and external users and services as part of a
business process flow scenario.
• Approaches

Fault-handling mechanisms can deal with errors that may occur during the
execution of the composite service in an appropriate manner. The appropriate
manner would depend on the kind of the error and its effect on the composite
service execution. For a simple error, the fault-handling approach may just be to
log the error, but for an error that can lead to data corruption, for example, a fault-
handling mechanism may have to restore the state of the data to the one before the
error, and may have to take compensatory actions to achieve this. A general
approach to handle such requirements is to use transactional mechanisms.
Furthermore, since interactions between participants in a web services composition
are expected to represent long-running transactions, where application of
traditional rollback mechanisms is not possible, compensatory actions to reverse
the effect of an activity that has already completed play an important role in fault-
handling for composite services.
• Possible Solutions

Due to the loosely-coupled interaction between web services, and the autonomy
of service providers, requirements for transaction management in a web services
environment are different from traditional transaction management requirements.
Therefore traditional transactional mechanisms cannot be applied directly to web
services. There are standards available [14, 15] that can be used to enable
transactions over web services. These standards are the result of industry efforts.
From among these, [14] is closely related to a web services composition
standard [2], and therefore provides a ready model for using transactional
behaviour to address reliability aspects during composite service execution.
However, the standards for transactions over web services are quite new, and there
is still some way to go for easy applicability of these standards to practical
situations. An interesting comparison of these standards is presented in [16].

There are research proposals [17, 18] catering to this area of reliability as
well. [17] proposes a framework for building transactional compositions of web

39

services. With respect to the definition of composite service reliability that we
presented, the scope of this framework relates to the reliability of composite
service execution. [18] seeks the same objective as [17], that being building
reliable web services compositions on top of autonomous web services, however
the approach it takes is different. The framework proposed by [18] consists of a
multi-layered architecture and a transaction model for building reliable composite
services, and in general covers a wider spectrum of reliability issues related to
compositions of web services.

Using compensation to reverse the effect of completed activities has a bearing
on reliability of execution, and hence the overall reliability of the composite
service. Compensation is, however, a complex task, and requires coordination
between all participants in a composite service, in the form of correct specification
of compensatory activities in the composite service on part of the composite
service provider, and the provision of compensatory activities on part of the web
service provider.

− that the messages flowing between web services are reliably delivered
• Approaches
Reliable delivery of messages flowing between web services is an important factor
that influences correct execution of the composite service, thereby having a bearing
on the overall reliability of the composite service. The approach for reliable
message delivery should be to ensure that messages from a sender should reach the
intended recipient despite any software and hardware failures along the way.
• Possible Solutions
There have been a number of efforts into reliability of message delivery between
web services. We will not list these here, except for a recent industry proposal in
the form of a set of web services standards [19] that provide for reliable message
delivery. Among these standards is [20], which specifies a model that provides the
guarantee that messages sent by the initial sender will be delivered to the ultimate
receiver.

Conclusion

In this paper we presented a definition of composite service reliability that
modularises reliability concerns into two main areas and identifies different aspects
affecting reliability related to these areas. This definition is incipient, and as part of
our research, we plan a systematic evaluation of this definition, so as to substantiate
and further refine it, as well as to verify and possibly enhance its scope. Similarly, we
plan to evaluate the classification framework presented in this paper as well, so as to
enhance it, and verify its usefulness. We also described some possible approaches to
address these aspects of composite service reliability, and then referenced selected
works that propose methodologies complementing the approaches. This was done to
demonstrate how the definition may be used as a classification framework, and it was
shown how a particular methodology could be classified according to the aspect of
reliability it addresses.

40

We believe a comprehensive definition of composite service reliability, and the
classification of approaches and methodologies according to the aspect of composite
service reliability they address is important for further research into this subject. A
definition and classification framework can help with the comparison and evaluation
of different methodologies for composite service reliability, based on the aspect(s) of
reliability they address. Given that there are at present different standards for web
services composition, and different approaches for ensuring reliability of composite
services, such comparison and evaluation is essential.

The selected methodologies that we presented deal with reliability of composite
services. However, through the use of the definition and classification framework
presented in this paper, it can be seen that these address particular aspects of
composite service reliability. The definition and classification framework as presented
in this paper should help establish the context in which research work on composite
service reliability is performed.

Another important use of the definition of composite service reliability relates to
the view of web services as components, and composite services as orchestrations of
components. Since components and their composition touches upon the issue of re-
use, a comprehensive definition of composite service reliability can help identify
issues that could affect reliability when reusing web services components.

References

1. Web Services Description language (WSDL).
http://www.w3.org/TR/wsdl

2. Business Process Execution Language for Web Services, version 1.1.
http://dev2dev.bea.com/technologies/webservices/BPEL4WS.jsp

3. Business Process Modelling Language.
http://www.bpmi.org/bpml-spec.esp

4. Web Service Choreography Interface (WSCI).
http://www.w3.org/TR/wsci/

5. XML Process Definition Language.
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf

6. Collaxa Inc. Collaxa BPEL Orchestration Server.
http://www.collaxa.com

7. Shin Nakajima. Model-Checking Verification for Reliable Web Service. OOPSLA 2002
Workshop on Object-Oriented Web Services. 2002.

8. Xiang Fu, Tevfik Bultan, and Jianwen Su. Formal Verification of E-Services and
Workflows. Workshop on "Web Services, e-Business, and the Semantic Web (WES):
Foundations, Models, Architecture, Engineering and Applications". 2002.

9. Giacomo Piccinelli, Anthony Finkelstein, and Christian Nentwich. Web Services Need
Consistency. OOPSLA 2002 Workshop on Object-Oriented Web Services. 2002.

10. Web Services Policy Framework (WSPolicy), version 1.1.
http://www-106.ibm.com/developerworks/library/ws-polfram/

11. Web Services Policy Assertions Language (WS-PolicyAssertions), version 1.1.
http://www-106.ibm.com/developerworks/library/ws-polas/

12. Web Services Policy Attachment (WSPolicyAttachment), version 1.1.
http://www-106.ibm.com/developerworks/library/ws-polatt/

41

13. Santhosh Kumaran and Prabir Nandi. Conversation Support for Web Services. Accessed
on: 15 June 2003.
http://www-106.ibm.com/developerworks/webservices/library/ws-conver/

14. Web Services Transaction (WS-Transaction).
http://www-106.ibm.com/developerworks/webservices/library/ws-transpec/

15. OASIS Business Transaction Protocol (BTP).
 http:/ www.oasis-open.org/committees/business-transactions/

16. Roger Sessions. Shootout At The Transaction Corral; BTP Versus WS-T. Accessed on: 15
June 2003.
http://www.objectwatch.com/issue_41.htm

17. Thomas Mikalsen, Stefan Tai, and Isabelle Rouvello. Transactional Attitudes:Reliable
Composition of Autonomous Web Services. International Conference on Dependable
Systems and Networks (DSN 2002). 2002.

18. Paulo F. Pires, Marta Mattoso, and Mário Benevides. Building Reliable Web Services
Compositions. NET.Object Days Conference (WS-RDS'02). 2002.

19. IBM and Microsoft. Reliable Message Delivery in a Web Services World: A Proposed
Architecture and Roadmap. Accessed on: 15 June 2003.
ftp://www6.software.ibm.com/software/developer/library/ws-rm-exec-summary.pdf

20. Web Services Reliable Messaging Protocol (WS-ReliableMessaging).
http://dev2dev.bea.com/technologies/webservices/ws-reliablemessaging.jsp

42

Requestor Friendly Web Services

Ravi Konuru and Nirmal Mukhi

IBM Research,
19 Skyline Drive, Hawthorne, NY 10591, USA

Email: {rkonuru, nmukhi}@us.ibm.com

Abstract. Web service providers rely on the Web Service Description
Language (WSDL) as the way to communicate information about an available
service to a service requestor. This description or meta-data of the service is
used by a service requestor to inspect the available interfaces and to access the
service. In this paper, we argue that publishing a WSDL with a functional
description of a service alone is not requestor friendly, i.e., it does not allow the
requestor any flexibility in improving the end-to-end responsiveness and
customize the Web Service behavior. We present some scenarios to back this
argument and also outline a spectrum of solution approaches.

1 Introduction

Web services efforts, to a large extent, are being driven by the industry to solve
business problems. Business needs demand seamless integration of information
within and across enterprises to improve operational efficiency in terms of time and
resources used. Information flow and updates must happen in a composite context of
security, transactionality, processes, workflow, etc. Efforts are underway to specify
and create new generation of systems based on Web services standards that abstract
these concepts and incorporate security, transactions, orchestration and choreography,
grid computing capabilities, business documents and processes, simplified integration
and mapping to existing middleware systems and application assets. In other words,
the Web services framework is defining a unified architecture and software
infrastructure that can support the transformation of existing IT assets into services
which businesses can use and integrate to perform effectively and efficiently in a
heterogeneous, dynamic, distributed, multi-domain environment.

Service metadata is a core concept in the Web services framework. This metadata is
used by service providers to generate partial service implementations and configure
supporting middleware and by service requestors to generate the necessary client
paraphernalia to communicate with a service. Traditional distributed object systems
such as CORBA [1] rely on interface descriptions as being sufficient descriptions of a
distributed object. Web services framework implementations have consciously or
unconsciously adopted this notion for services and as a result rely on a WSDL [2]
document as being an adequate rendition of the service for requestors to use.

43

The primary purpose and contribution of this paper is to motivate the need for giving
service requestors access to a more complete metadata description of a Web service,
covering aspects beyond the interfaces and protocols. This can allow service
requestors to reason about a Web service and make smarter decisions when it comes
to using it, resulting in improved responsiveness and customization. We describe
various scenarios where detailed service metadata can provide superior value. Finally,
we outline our thoughts on a spectrum of approaches to address this issue.

2 Scenarios

Currently, given a WSDL description, a client side tool or infrastructure is able to
either generate a proxy or act as a universal proxy that can communicate with the web
service. The advantage of this approach it simplifies service development by
completely factoring out the infrastructure available at a service requestor’s end from
the service provider. This method of using a web service from a client must always be
supported. However, the argument here is that it this isolation between the provider
and the requestor comes with certain costs:
 Since the proxy has no knowledge of the service beyond the service description,

every call to the web service must necessarily perform a round trip to the provider.
As a result, the proxy cannot leverage local resources (locally known Web services
that provides better quality of service, available CPU cycles, etc.) when acting on
behalf of the service.

 Since all requestors are provided with the same coarse-grained view of the service,
there is no direct support for customization of the service based on an individual
requestor’s execution context and its requirements.

In this section, we present scenarios where giving the service requestor prominence in
the definition of the service metadata as well as service infrastructure can result in
new levels of functionality and performance.

2.1 Responsiveness

Consider a web service that is being used to interactively query and update a
catalog. The query interface is via an interactive forms interface where the user can
enter input and select various criteria. A form submit translates to conceptually a new
query or update on the catalog. In addition to the types of individual inputs, the
catalog update and query governed by several rules that express the relationship
among the inputs. For example, one rule might be if the value for the material input is
Gore-tex then the product-type-list must contain one or more values from the set
{Clothing, Shoes}. As another example, another rule might be that the value entered
for a Suede jacket must always be greater than that of a Denim jacket of the same
size. In other words, there is some validation that needs to be performed before the
request is processed and it cannot be handled in the context of the basic type system.

44

With current Web services infrastructure, this validation can potentially result in
several wasted roundtrips to the server, increasing load on the server and frustration
levels at the requestor’s end. There should be a standard mechanism by which a web
service can provide either extra semantics about its data model or provide validation
logic that can be used by the requestor to reduce round trips to the server.

The main point to take away from this scenario is that the issue of providing
responsiveness exists in today’s web application domain and is being addressed in a
variety of ways (which we cover in the next section of this paper) all assuming some
functional capability of the client endpoint. With web services as a normalization
concept, there is a need to address the problem at a level above the technologies and
languages and provide the right abstractions and mappings/bindings to a widely
agreed upon set of technologies and lower-level standards.

While the above scenario describes a user-facing application, it can also be
mapped to automated application-to-application interactions. The Web services
standards already build on XML schema to define data types. This allows the
requestor end to validate requests for prior to sending them on the wire. Providing a
more complete model of the data, with additional semantics such as in XFORMs is
another step in that direction.

2.2 Customization

Consider the scenario where an application is interacting with a Call Center Web
service, that itself uses multiple services to perform its function: a customer lookup
service, a mailer service, a spell checker service, and a problem report service. By
default the spell checker service used is the Webster spell checker service. When the
requestor creates in a problem statement in a particular technical domain, the
requestor application would like intelligent prompts and spell checks. In the case
where the service composition details are completely hidden from the client, the
Webster service returns a highlighted text via the composing Call Center service
indicating what it thinks are incorrect words. However, if the Call Center service
exposed aspects of its composition in a well-defined manner along with the defaults,
it would enable the requestor application to dynamically indicate which particular
spell checker service to use based on the current problem. In fact, the new spell
checker might be a native application that is part of the software infrastructure
available at the requestor’s end that can offer better response and integrates better
with the eventual application.
This scenario has some aspects that are indirectly related to efforts in the industry
related to Web service composition, coordination and orchestration (BPEL4WS [3],
WS-C, W3C Choreography, …) and in particular to the notion of abstract definition
of web service interfaces, relationships, flow and binding them to implementations at
a later time. However, this scenario has a much simpler need, the ability for a service
to simply export its dependent services and default bindings in a standard manner and
the ability for a client to over-ride the default bindings.

45

3 Related Work

There is an enormous body of work in both research and industry that is relevant to
support requestor friendliness as described in this paper, some of which we describe
below. Research in distributed object systems that supports mobility and disconnected
operation is another source towards a generic solution. The attempt of this section is
not to be complete, but the main point to take away is that there is a lot of work that
we can leverage and attempt to normalize at the level of web services without any
bias towards a particular set of technologies.
The problem of frequent round tripping to the server is recognized in the web
application domain where programmers resort to using JavaScript to perform not only
just validation but also several other functions such as sorting and simple
computations that do not go back to the server. XFORMs specification [4] also
addresses this problem supporting the definition of data models and corresponding
constraints. An XFORMs compliant browser, on receiving an XFORM document,
can perform a great deal of validation including at the level of instance values without
requiring any code from the server or round trips to the server.
Caching of data on the requestor’s end is a well known approach to improving
responsiveness of distributed applications. Mowbray and Malveau [5] illustrate the
use of such smart client stubs in their “Fine Grained Framework”.
WSRP [6] proposes a way for user-facing Web services to be plugged into portals. It
also allows expression of cache policies so that presentation data for the service can
be stored locally on the client. Our approach advocates a similar expression of
suitable policies and other metadata, going beyond the realm of presentation data
alone.
The BPEL4WS specification [3] defines abstract compositions of Web services. It
allows the actual service instances used in a composition to be configured separately,
possibly at runtime. This plays directly into our requirement for a Web service to
expose its dependent services in a standard manner.

4 Towards a Solution

A key challenge in proposing requestor-friendly services and designing a
supporting software infrastructure is that we need to be able to leverage existing open
standards, in keeping with the philosophy behind the definition of the Web services
platform. So much as XML Schema has become part of the Web services vocabulary,
we can leverage higher level data models such as XFORMs. Another challenge is to
be able to support existing methods of accessing Web services, while at the same time
taking advantage of more metadata if that is available.

The abstract approach that we are experimenting with is based on the classic MVC
paradigm with a little twist. Specifically, in this approach, a Web Service
conceptually consists of one or more of the following elements:

• A data model that represents the business data of the service along with all
its constraints.

46

• A presentation model, separated from the data model since the policies
associated with its use are often unique.

• Execution model that operates on the data and can provide information about
constraints on interaction with the service. The execution model can be a
platform independent description such as WSDL and BPEL4WS documents
or may correspond to java byte code.

• A connection model or a plug-in model that specifies the services/service
interfaces that the service depends on and the additional requirements
imposed on larger compositions due to the presence of such dependencies.

The basic idea is that we provide a means for a Web service to export the above
models and in addition what is required on the requestor to interpret/execute those
models. Then a model-aware requestor in conjunction with the service can make
decisions the amount of processing to be performed on the requestor versus the
provider end. All this has to be done in a secure and seamless manner especially
when code deployment is involved on the requestor’s end.

In the first phase of this work we have begun to design a model-aware service
invocation framework based on WSIF [7] and hope that it eventually results in the
definition of a more requestor-friendly metadata stack for Web services..

5 Summary

We motivated the need to extend Web services vocabulary and usage patterns to
better support and exploit service requestors. Several solutions are possible but we
believe that it can be completely transparent to application code by encapsulating this
new function within a generic requestor framework. An application is not required to
use this new functionality; existing application independent proxy generators can still
be used. This work will leverage similar research in web applications and traditional
distributed systems, and augment Web service descriptions and policies with existing
standard ways of defining data and execution constraints wherever possible.

Acknowledgements

We thank Francisco Curbera and Sanjiva Weerawarana for their comments on this paper.

References

1. CORBA (Common Object Request Broker Architecture) 3.0, published on the
World Wide Web by OMG, July 2002, http://cgi.omg.org/docs/formal/02-06-33.pdf

2. Christensen, E., Curbera, F., Meredith, G. and Weerawarana., S. Web
Services Description Language (WSDL) 1.1. W3C, Note 15, 2001,
www.w3.org/TR/wsdl

47

3. Andrews, T., Curbera, F. et. Al. Business Process Execution Language for Web
Services (BPEL4WS) Version 1.1,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel11.pdf

4. Dubinko, M., Klotz, L. et. al. XFORMS 1.0, published on the World Wide Web by
W3C, http://www.w3.org/TR/xforms/

5. Mowbray, T. and Malveau, R., “CORBA Design Patterns”, published by John Wiley
and Sons.

6. Diaz, A., F., Peter, WS-RP (Web Services for Remote Portlets) published on the
World Wide Web by IBM, January 2002, http://www-
106.ibm.com/developerworks/web/library/ws-wsrp/?dwzone=web

7. Duftler, M., Mukhi, N. et. al. Web Services Invocation Framework (WSIF),
OOPSLA Workshop on Object Oriented Web Services, October 2001.

48

Using Web services in the European Grid of Solar
Observations (EGSO)

Simon Martin and Dave Pike

Space Science and Technology Department, Rutherford Appleton Laboratory, Chilton,
OX11 0QX, UK

{simon.martin, c.d.pike}@rl.ac.uk

Abstract. The European Grid of Solar Observations (EGSO) [1] is employing
Grid computing concepts to federate heterogeneous solar data archives into a
single ‘virtual’ archive, allowing scientists to easily locate and retrieve
particular data sets from multiple sources. EGSO will also offer facilities for the
processing of data within the Grid, reducing the volume of data to be
transferred to the user. In this paper, we examine the use of Web services in
EGSO as a means of communicating between the various roles in the system.

1 Introduction

To understand the Sun, solar physicists need access to data from a variety of
instruments scattered across the globe. Data are stored in archives with varying
degrees of accessibility. Even if easily accessible via the Internet, these archives are
heterogeneous, with the metadata catalogues describing the data varying widely
between archives [1]; hence obtaining the desired data can often be difficult.
Additionally, the volumes of data involved are very large. Current archives may have
accumulated as much as 1TB of data, whilst future missions may produce this
quantity of data in a day. As well as the problems associated with searching large
archives, transferring vast amounts of data across networks is undesirable.

EGSO is a Grid test-bed whose main aim is to improve access to solar data. This
will be achieved by federating distributed data archives, creating standardised meta-
data catalogues of the data available and providing users with tools to search these
catalogues for specific data sets and retrieve them, whilst insulating the user from the
details of data access [2]. EGSO will reduce the amount of data transfer required by
providing data processing facilities (e.g. to calibrate datasets) within the Grid; hence
EGSO is both a data and service Grid [3].

In this paper we briefly outline the EGSO functional architecture (section 2) and
describe how Web services are being employed in the current phase of the EGSO
project (section 3). Section 4 assesses the suitability of Web services for this purpose.

49

2 The EGSO Functional Architecture

The functional architecture for EGSO defines three separate roles [4]: consumers,
providers and brokers (an organisation may play multiple roles). In simple terms, a
consumer represents the user interaction with EGSO, and interacts initially with a
broker to discover which provider(s) may hold the desired data (or service). The
consumer then contacts the relevant provider(s) to obtain the requested data (or
service). Providers are usually linked to data centres and offer data access facilities,
but may offer services such as data processing. Brokers collect information from
providers, such as metadata catalogues or details of their services, which can then be
used by consumers to perform data searches; the system has multiple brokers which
can behave as a single ‘virtual broker’, although this multiplicity is invisible to
consumers. Typical information to be exchanged between roles includes data files,
images, fragments of metadata catalogues, and details such as authentication data or
session IDs.

Roles interact with each exclusively via an external interaction subsystem, which
must support passing messages of the types listed above, whilst being loosely coupled
to the rest of the role to allow possible replacement as Grid technologies mature. The
subsystem contains components which allow the consumer to interact with the broker
and provider, the provider to interact with the broker and consumer, and the broker to
interact not only with consumers and providers, but also with other brokers.

3 Using Web services in EGSO

Web services represent a service-oriented approach to distributed computing, with
services accessed via XML messaging over Internet-based protocols for platform-
independence [5]. Standards [6] such as XML and SOAP ensure interoperability,
whilst UDDI and WSDL allow the discovery and description of Web services.
Although Grid middleware is available (e.g. the Globus toolkit [7]), at this time we
have decided to use Web services for inter-role communications (i.e. in the external
interaction subsystem) in EGSO for several reasons. Web services are compliant with
direction of W3C and industry, they are platform independent, they are lightweight,
and can be easily replaced and deployed on systems. They are also loosely coupled,
and enable remote procedure call (RPC) and document exchange type Web services
to be implemented, synchronously and asynchronously [8]. Furthermore, the Globus
toolkit is starting to implement the Open Grid Services Architecture (OGSA) [9],
which integrates Web services and Grid technologies and concepts; OGSA is not yet a
mature technology, but we are then well positioned to implement it if necessary in
place of Web services.

3.1 Implementation

Document exchange and RPC-type Web services were investigated to determine their
suitability for use in EGSO. Sun’s Java Web Services Developers Pack (JWSDP) v1.1

50

[10] was used to implement both types of Web services. RPC-type Web services were
also developed using Apache Axis, a SOAP implementation [11].

To develop RPC-type Web services and clients, the JWSDP provides the Java API
for XML-based RPC (JAX-RPC); the current Reference Implementation uses SOAP
as the application protocol and HTTP as the communication protocol. The API hides
much of the complexity from the developer, representing method calls and responses
as SOAP messages. On the server side, the developer specifies remote procedures by
defining these methods in a Java interface, and codes the relevant classes that
implement those methods. On the client side, the remote method is called on a stub
object, which acts as a proxy for the remote service. The JWSDP tools create any
required classes (e.g. stubs) and deploy the Web service in a Web container (Tomcat).

Axis can create Web services in a similar manner, but also allows for very simple
deployment of RPC-type Web services; Java classes with public methods can be
exposed as Web services by simply placing them in a target directory. Clients can
then be created using a simple Axis API to access the service. Both Axis and JAX-
RPC also allow the use of dynamic proxies or dynamic invocation interfaces to access
Web services whose WSDL descriptions are only known at runtime, although this
method was not tested.

Document exchange-type Web services were developed with the JWSDP using the
Java API for XML Messaging (JAXM) and SOAP with Attachments API for Java
(SAAJ). JAXM provides classes and interfaces for creating a special type of servlet
(JAXMServlet) which can send and receive SOAP messages, and for using messaging
providers, discussed below. SAAJ is used for creating SOAP messages (with optional
attachments) and sending them synchronously without using a provider. XML
messages can be sent between applications with or without the use of a messaging
provider. In the former case, a standalone JAXM client can run independently, or
within a Web container. It sends a SOAP message synchronously over a connection to
a listening JAXM servlet; this is known as request-response messaging.

Alternatively, JAXM applications can use messaging providers (they are then
peers). A messaging provider is a service hidden from the developer that handles the
transmission and routing of messages. Very simply, the client sends the SOAP
message to its messaging provider with the details of the recipient(s) in the SOAP
Header. The messaging provider then forwards the message to the servlet’s provider,
which then sends the SOAP message to the servlet. There are several advantages to
using messaging providers including the fact that they are continuously active, and so
a JAXM application can close its connections after sending a message and the
provider will still send the message; the provider can also be configured to resend
messages until they are successfully delivered, and will store incoming messages for
the application ready for delivery upon reconnection. A significant advantage of
messaging providers in the context of EGSO is the ability to send a message to
multiple intermediate destinations before the message is delivered to its final
recipient. The intermediate destinations, or actors, are specified in the header of the
SOAP message. Providers can also incorporate profiles which are implemented on top
of SOAP; these are specifications that tell providers how to route messages.

51

4 Assessment of Web services for use in EGSO

In developing both types of Web service, the largest barrier to progress was found to
be incomplete documentation. RPC-type Web services were quite easy to deploy
using JAX-RPC and Axis, with Axis being the simpler of the two. Document
exchange Web services were also found to be easy to employ using JAXM; creating
and sending simple SOAP messages synchronously was quite straightforward.
However, the real strengths of using JAXM were found to be the ability to add
attachments of any type (e.g. images, text files) to the SOAP message, and the ability
to use messaging providers to not only ensure delivery of messages, but to send the
message to multiple recipients.

There are several issues to be considered before committing to use Web services in
such a large scale project. Security is a prime concern when using Web services e.g.
[13]; issues include authentication (verifying the identity of the message sender),
authorisation (determining whether the sender has permission to perform the
requested operation), integrity (verifying that the message received is unmodified),
and confidentiality (keeping the message private from unauthorised users).

There are also several quality of service (QoS) and performance issues which need
to be addressed [14]. In terms of reliability, SOAP messages are transmitted using
HTTP; hence there is no guarantee of packets being delivered to their destination. In
terms of RPC and synchronous document exchange services, this is a problem as the
SOAP message will need to be resent. However, this can be overcome with JAXM
since messaging providers will re-send a message until it is delivered. The use of
SOAP (XML) can cause performance problems, both in terms of applications parsing
the XML and the fact that XML messages tend to be substantially larger than
equivalent binary data, increasing bandwidth usage. Furthermore, network latency,
web server/container performance under load and back end systems can also affect
performance. However, given the vast amounts of data which need to be searched in
order to locate a particular data set for a user, along with processing of this data, then
many of these performance issues may be inconsequential.

5 Conclusions

Web services are relatively easy to develop and deploy. RPC-type Web services can
easily implement simple method calls, or could be used to initiate more complex tasks
through a composition of method calls. Document exchange using JAXM appears to
be very well suited to use in EGSO, with its ability to send messages reliably, to
multiple recipients, and to send non-XML content as attachments.

Some further investigations need to be carried out regarding issues such as
scalability, optimisations, and security, although these are not barriers to
implementing Web services in EGSO. Web services appear to be a viable method for
communicating between the roles in EGSO, particularly in the early stages of
production to allow integration testing of various components under relatively light
load levels. The lightweight nature and loose coupling of Web services means that it

52

should be relatively easy to add new roles into EGSO, and the external interaction
subsystem can also be easily replaced with Grid middleware if required.

References

1. http://www.egso.org
2. Csillaghy, A., Zarro, D. M., and Freeland, S. L.: Steps towards a virtual solar observatory.

IEEE Signal Processing Magazine, N.18/2 (2001) 41-48
3. Foster, I., and Kesselman, C. (eds.): The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers (1999)
4. Piccinelli, G. (ed.): EGSO Architecture. EGSO Report EGSO-WP1-D4 (2003)
5. Vasudevan, V.: A Web Services Primer

http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html (April 2001)
6. http://www.webservices.org/index.php/article/archive/3/
7. http://www.globus.org
8. Chappell, D. A., and Jewell, T.: Java Web Services. O’Reilly and Associates (March 2002)
9. Foster, I., Kesselman, C., Nick, J. M., and Tuecke, S.: The Physiology of the Grid: An Open

Grid Services Architecture for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum (June 22, 2002)

10. http://java.sun.com/webservices/webservicespack.html
11. http://ws.apache.org/axis/
13. Deitel, H. M., Deitel, P. J., Gadzik, J. P., Lomelí, K., Santry, S. E., and Zhang, S.: Java Web

Services for Experienced Programmers. Prentice Hall (2003).
14. Mani, A., and Nagarajan, A.: Understanding quality of service for Web services. IBM

Developer Works, http://www-106.ibm.com/developerworks/library/ws-quality.html,
(January 2002)

53

Agile Modeling and Design of Service-Oriented
Component Architecture

Zoran Stojanovic, Ajantha Dahanayake, Henk Sol

Systems Engineering Group, Faculty of Technology, Policy and Management,
Delft University of Technology,

Jaffalaan 5, 2628 BX Delft, The Netherlands
{Z.Stojanovic, A.Dahanayake, H.G.Sol}@tbm.tudelft.nl

Abstract. Component-Based Development (CBD) and Web Services (WS)
have been proposed as ways of building high quality and flexible enterprise-
scale e-business solutions that fulfill business goals within a short time-to-
market. However, current achievements in these areas at the level of modeling
and design are much behind the technology ones. This paper presents how
component-based modeling and design principles can be used as a basis for
modeling a Service-Oriented Architecture (SOA). Proposed design approach is
basically model-driven, but incorporates several agile development principles
and practices that provide its flexibility and agility in today’s ever-changing
business and IT environments.

1 Introduction

During the last years first Component-Based Development (CBD) [1] and then Web
Services (WS) [4] have been introduced as paradigms for building complex Web-
based systems and providing effective inter- and intra-enterprise application integra-
tion. Besides technology developments, there is a need to architect component-based
and service-oriented enterprise-scale software systems. Service-Oriented Architecture
(SOA) is an approach to distributed computing that considers software resources as
services available on the network that in collaboration provide comprehensive and
flexible system solutions. CBD and WS technology platforms are naturally the ways
of implementing SOA. However, developers and system architects cannot just start
using technology such as EJB or .NET or standards such as XML and SOAP in real-
izing the SOA. Effective methods for modeling and design of such a complex
architectural model are required. Among the other benefits, SOA design should
provide a necessary support in deciding:

• what component of the system can be exposed as a service, that can be potentially
used in intra- or inter-organization settings, offering a business value to the con-
sumer, and at the same time being as much as possible decoupled from the rest of
the system.

54

• what part of the system logical architecture can be realized by invoking a particu-
lar service over the Web, and how that part should interface with the existing or-
ganization’s system solution.

The SOA modeling and design approach should provide a way of capturing given
business requirements in the platform-independent system architecture that can be
further mapped into the particular implementation solution, providing effective bi-
directional traceability between business concepts and implementation assets. This is
the main idea behind the current Object Management Group’s (OMG) Model Driven
Architecture (MDA) [5]. On the other hand, due to ever-changing business, principles
and practices of another development paradigm called Agile Development (AD) must
be considered as well [3]. While both AD and MDA provide solutions for building
flexible solutions under the high change rates and within short time-to-market, their
targets and proposed mechanisms are quite dissimilar. Therefore the balance between
the two must be made in order to use the benefits of both paradigms.

The aim of the paper is to propose a service-oriented component modeling and de-
sign approach organized around the concepts of services and components in the Ser-
vice-Oriented Architecture. The approach provides a paradigm shift from components
as objects to components as service managers that makes component concepts capa-
ble for modeling the architecture of collaborating and coordinating loose-coupled
business-valued services. The approach is flexible and agile, providing the way of
balancing business and IT concerns, and adopting changes from both sides.

2 Related Work

SOA is an evolutionary, rather than revolutionary concept. A basis of SOA is the
concept of a service as a functional representation of a real-world business activity
meaningful to the end user and encapsulated in a software solution. Using the analogy
between the concept of service and a business process, SOA provides that loosely
coupled services are orchestrated into business processes that support organization’s
business goals. Components and services modeled in implementation-independent
way represent an abstraction layer between business and technology. Business goals,
rules, concepts and processes are captured by components and services at the specifi-
cation level that are further mapped to technology artifacts providing effective bi-
directional traceability between business and technology. The representation of the
building blocks of SOA in a conceptual way provides the level of communication and
understanding that is above the level of XML-based languages such as Web Services
Description Language (WSDL) [8]. This is particularly important for providing com-
mon understanding and effective communication among the project stakeholders.

The natural starting points for SOA modeling and design are component-based and
interface-based concepts and techniques, as well as the standard UML as a modeling
notation. The current version of the UML (version 1.5) still treats components mainly
as implementation units, rather than the main building blocks of the logical system
architecture (although there are some improvements in that direction from the version

55

1.3) [6]. An improved support for components has been promised for the next major
revision of the UML (version 2.0) scheduled for this year.

On the other hand, classical CBD methods do not provide thorough support for
business-level concepts and services within the SOA [1]. Their focus is mainly on
finer-grained components that closely map the underlying entities such as Customer,
Order, and Product, rather than on larger-grained, business value added services and
components as required by SOA. By treating components as binary-code packaging
artifacts during implementation and deployment and as larger-grained business ob-
jects during analysis and design, these methods are not well equipped for modeling
loosely coupled coarse-grained service-based components that offer business mean-
ingful services organized in the SOA. Moreover, by defining a number of modeling
artifacts as well as a complex and prescriptive way of using them proposed methods
are often heavyweight and not flexible and adaptable enough to fit into agile business
environments of today. A SOA modeling approach must be business service-driven
rather than data-driven with strong requirements for modeling service interaction,
coordination and dependencies at different levels of granularity. The collaboration
and coordination of service components become as important as components them-
selves.

Therefore a SOA modeling and design approach should be naturally based on
standard practices of component-based and object-oriented (OO) paradigms inte-
grated with business process and workflow design concept and techniques. Business
and system modeling and design are, more than ever before, integrated around the
same set of service concepts and solutions.

3 Service-Based Component Concepts

Components were first introduced at the level of implementation and deployment
through the component implementation models such as CORBA Components, Sun’s
Enterprise Java Beans, and Microsoft COM+/.NET. They have been defined as pack-
ages of binary and/or source code that can be deployed over the network nodes. Just
recently components have become important analysis and design artifacts in creating
logical system architecture.

On the other hand, Web services are self-contained self-describing, modular units
providing location independent business or technical services that can be published,
located and invoked across the Web. They are natural extension of component think-
ing. From a technical perspective the web service is essentially an extended and en-
hanced component interface constructs. Web services, as components, represent
black-box functionality that can be reused without worrying about how the service is
implemented.

While the component technology has been rather proprietary (divided basically
into two camps - Microsoft and Java-community), Web services have provided stan-
dards and protocols for interoperability of loose-coupled software constructs across
the Internet. Although these technology achievements such as XML, SOAP and
UDDI are necessary for enabling true interoperability, the way of designing a system
has not been changed. The basic design philosophy is still founded around compo-

56

nent-based design techniques such as interface-based design, black-box modeling,
design patterns, design by contract, dependency modeling etc. Therefore the compo-
nent design concepts are a solid foundation of an approach for designing service-
oriented architecture. While the classical objects in Object-Orientation are at too low
level of granularity to be considered as a basis for defining Web services, larger-
grained service-based business components represent a perfect mechanism for design-
ing services in a SOA.

For the purpose of modeling the main building blocks of SOA we introduce the
concept of service component. A service component is a self-contained service-based
building block. It delivers services to its environment through the contract-like inter-
face that abstracts its internal realization. Services can differ in granularity (coarse or
fine-grained) and nature (provides a transformation, computation or information).
Component collaborates with other service components in the single application
space or across the Internet to provide a higher-level goal.

The service component meta-model can be divided into two parts. First part de-
fines the basic concepts describing the very nature of a service component. At first
place a component can be defined through the three basic aspects:

• Context (environment) inside which the component exists.
• Contract that is defined according to the component role in the context and that

the component guaranties to fulfill.
• Content (interior) of the component that represents a realization of the compo-

nent contract.

A component does not exist in isolation; it fulfils a particular role in a given con-
text and actively communicates with it. A component participates in a composition
with other components to form a higher-level component. At the same time every
component can be represented as a composition of lower-level components. A com-
ponent must collaborate and coordinate its activities with other components in a com-
position to achieve a higher-level goal. Well-defined behavioral dependencies and the
coordination in time between components are of a great importance in achieving the
goal.

The second part of the component meta-model defines the basic elements of the
component contract as the main aspect of a service component. Component contract
concepts represent the complete information about the component necessary for its
consumer to use it without knowing its interior. This is an enriched and enhanced
basic interface construct that now contains all the information about the component
(or service) that must be known by its context in order to make use of it. In this way a
component interface goes beyond simple operations’ signatures to become a real
business contract between a component as a service provider and the context as a
service consumer. The following are the contractual concepts of a component:

• Component identification
- Unique name in the naming space or identifier, the goal and purpose of a com-

ponent (service).
• Component behavior

- Operations (actions) provided and required,

57

- Pre-conditions and post-conditions defined on these operations,
- Events published and subscribed,
- Coordination of operations and/or events to provide a higher-level behavior.

• Component information
- Information types that the component uses or handles (not necessarily stores)

mostly as parameters for services and operations the component provides and
requires,

- Invariants and constraints on these information objects.
• Configuration parameters

- Parameters defined by the component that can adapt its contract to fit into pos-
sibly new requirements coming from the context, such as required Quality of
Service (QoS), location in space, location in time, consumer profiles, etc.

• Non-functional parameters
- Parameters that characterize the “quality” of component behavior in the con-

text, such as performance, reliability, fault tolerance, priority, security etc.

The component contract can be fully specified using different mechanisms, from
natural language to formal specification language and to XML-based language if we
want a machine-readable specification of a component. On the other hand the compo-
nent contract can be implemented using different implementation tools and tech-
niques to provide the life of the component in the world of bits.

4 SOA Modeling Approach

Complexity of distributed enterprise systems raises the need for using the separation
of concerns in specifying system architecture. Therefore, we use as underlying
frameworks both OMG’s MDA and ISO standard Reference Model of Open Distrib-
uted Processing (RM-ODP) [7] for defining the three architectural models that repre-
sent logical layers of our service-oriented component architecture:

• Business Architecture Model (BAM) – a model of the system as collaboration of
components and services that offer business value.

• Application Architecture Model (AAM) – a model of the system that shows how
business components and services are realized by the collaboration of finer-
grained components and services.

• Implementation Architecture Model (IAM) – a model of the system that shows
how business and application components and services can be realized using a
particular implementation platform.

The BAM roughly corresponds to ODP Enterprise Viewpoint, AAM to ODP Com-
putational Viewpoint, and IAM to Technology Viewpoint. Distribution concerns in
the ODP described by the Engineering Viewpoint, and information semantics and
dynamics in the ODP described by the Information Viewpoint are not treated sepa-
rately in our application framework then integrated throughout all three architectural
models. Thus distribution can be considered as business components distribution
(virtual enterprises, legacy assets, web services), application distribution (logical

58

distribution tiers) and implementation distribution (support by the particular middle-
ware). Similar to this, a conceptual information model is defined in the BAM, a speci-
fication information model is fully specified in the AAM, and the ways of permanent
data storage are considered in the IAM. The Figure 5 shows our architectural model-
ing framework.

Fig. 1. Architecture Modeling Framework

The BAM and AAM actually represents two levels of abstraction of a service-
oriented MDA’s Platform-Independent Model (PIM), while the IAM describes a
service-oriented Platform Specific Model (PSM) for a particular technology platform.
By focusing on two basic component stereotypes – Business Service Component and
Application Service Component, we can define two levels of a Platform Independent
Model. The first PIM level defines how business process is supported through con-
tractual collaboration and coordination of service-based business components. The
second level “opens” black-box business components and defines how their interior
design is realized through collaboration and coordination of finer-grained application
components and services. By defining all three models in a consistent manner, the
whole system is specified and ready for implementation. The best result is achieved
using constant iteration and small increments during design, as suggested by agile
development principles.

The main goal of the BAM is to specify the behavior of the system in the context
of the business for which it is implemented in terms of collaborating and coordinating
chunks of business functionality represented as business service components. BAM
starts with the following models: activity model that shows the flow of activities in

59

the system, use case model and domain information object model. Based on use cases
that fulfill business user goals (i.e. that correspond to Elementary Business Processes
[2]) we define business services that system should provide, as well domain informa-
tion objects used by these services. For each use case (and a service that supports it)
the use cases that precede it, follow it, perform in parallel with it or be synchronized
in other way with it should be defined, Figure 2. Furthermore, for each use case its
superordinate and subordinate use cases should be defined providing a hierarchy of
use cases, i.e. business goals. This can be illustrated using an activity diagram with
use cases as action states of the diagram, or a sequence diagram enriched to express
the action semantics (sequence, selection, loop, fork/join, etc.) with the use cases on
the horizontal axis of the diagram. Domain information types are cross-referenced
with the use cases defining, for each use case, what information types are needed for
its performance.

Find a Product Pay a BillSend an Order

<<precede>> <<precede>>

Fig. 2. The example of the relation <<precede>> between use cases

Services that support given use cases can be specified in two ways:

• in an agile-like manner using Service-Responsibility-Coordination (SRC) cards,
Figure 3, as a variant of a CRC (Class-Responsibility-Collaborator) cards,

• by using more formal specification mechanisms derived from the use case speci-
fication template [2].

Fig. 3. Service-Responsibility-Coordination (SRC) Card

Main elements of the SRC card are:

• Service – its name reflecting its goal, purpose and scope.
• Responsibility – description of its behavior preferably through lower-level ser-

vices or activity steps it provides together with information objects that should be
used by the service as some kind of parameters.

• Coordination – what services (events) precede or trigger this one, what services
should follow this one, or what events should be emitted; furthermore what are
eventual subordinate services and a superordinate service of this one.

By using the set of different business and technical criteria, such as semantic cohe-
siveness, shared data objects, market value, reusability potential, existing assets, etc.,

60

identified services are allocated to Service Cluster Units, which represent blueprints
for business service components of the system. Again, business service components
can be specified in a more formal contract-based manner, or, if the nature of the pro-
ject suggests, in more agile way using Component-Responsibility-Collaborator-
Coordination (CRCC) cards as another variant of classical CRC cards. Collaboration
and coordination of business service components that form the system can be repre-
sented using the component stereotype of the sequence diagram enriched to express
control flow mechanisms. Information about that is derived from the relationships
among use cases that particular business service components support. The relations
among the concepts of business components, services and business goal-oriented use
cases are shown in Figure 4.

Use CaseBusiness Com ponent Service

1..*+supports 1..*1..*+provides 1..*

Fig. 4. Conceptual relations between business components, services (operations) and use cases

The goal of the AAM is to define how interior of business service components is
realized in terms of collaboration of lower-level application components and services
that do not provide a direct business value. There can be different types of application
service components:

• Services that communicate with the business service component consumers by
transferring their requests to the form understandable to the business logic and
back. They should hide potentially different service consumers from business
service logic.

• Services that provide some computation or data transformation logic;
• Services that represent contact points for information about business entities used

by the given business component.
• Data access and data handler service components that hide variety of data storage

formats from the business service logic.
• Service components that support included and extended use cases of the use

case(s) realized by the given business service component;
• Coordination manager that coordinates other application service components

inside the business component;
• Event manager component that manages the event subscription and notification

mechanisms in an event-driven environment;
• Business rule manager component that handles business rules captured by the

given business service component and maps these rules to pre-conditions, post-
conditions, invariants, coordination conditions and other constraints defined on
the component behavior and structure.

The result of the AAM is complete, fully specified, component-oriented platform-
independent model that should be further considered for implementation on a particu-
lar technology platform. Functionality offered by a Business Component can be ex-
posed as both inter- and intra-enterprise Web service in a SOA. On the other the

61

services offered by an Application Component can be also used as Web services, but
mainly internally to the enterprise.

IAM uses the complete business-driven component-based distributed system archi-
tecture specified through the previous models, and translates them to platform-
specific models according to the chosen target implementation platform. To provide
further flexibility of the architecture models we propose a technique called compo-
nent refactoring which aims at reallocating and rearranging sub-components or sub-
services of the component being addressed, while preserving its contractual behavior,
analog to code refactoring used in agile development [3]. Application components are
normally implemented using implementation components, language objects/classes or
other programming constructs. Application Components can be directly or indirectly
instantiated (addressable) depending on their granularity. On the other hand, Business
Components are implemented as a composition of software constructs that realize
their sub-components (in which case they are indirectly instantiated), or can be used
as already built third-party software units, such as wrapped legacy assets, Web ser-
vices or COTS components (in which case they are directly addressable in a general
sense).

5 Conclusion

The SOA modeling arises certain requirements on top of the standard OO and CBD
modeling methods. Therefore, straightforward applying of existing UML and CBD
concepts for the purpose of modeling the SOA, although a good starting point, is not
a feasible approach. The UML component concept as a natural basis for SOA model-
ing is still mainly implementation-related, while popular CBD methods are mainly
focused on finer-grained entity-driven components. Due to the business-driven char-
acter of SOA, a proper modeling approach should combine component-based and
object-oriented (OO) modeling concepts on one side with activity and workflow
modeling mechanisms on the other side.

This paper presents a business-driven agile approach for modeling component- and
service-oriented architecture. The approach provides a paradigm shift from compo-
nents as objects to components as service managers. In this way the approach is capa-
ble of modeling the system architecture representing a contract-based collaboration
and coordination of components and services. Since components and services are
identified based on business requirements, goals and rules, then fully specified inside
the logical system architecture and implemented using advanced CBD and WS tech-
nology, the approach provides bi-directional traceability between business concepts
and implementation artifacts. The approach is basically model-driven but incorporates
certain agile development concepts, principles and practice (e.g. cards, refactoring,
user involvement) making an effective combination between the two in order to
achieve the goals of adaptable process and solution, high-quality and on-time devel-
opment products that closely reflect business goals and needs. The approach makes
use of standards OMG MDA and RM-ODP to provide iterative and incremental ar-
chitectural modeling and design through different architecture abstraction levels pro-

62

viding complete specification of the system ready for implementation in chosen plat-
form.

References

1. D’Souza, D.F. and Wills, A.C.: Objects, Components, and Frameworks with UML: the
Catalysis Approach. Addison-Wesley, (1999)

2. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2001)
3. Cockburn, A.: Agile Software Development. Addison-Wesley, Boston MA (2002)
4. IBM Web Services, http://www.ibm/com/webservices.
5. OMG Object Management Group, MDA- Model Driven Architecture, information available

at http://www.omg.org/mda/
6. OMG Object Management Group, UML- Unified Modeling Langauge, information available

at http://www.omg.org/uml/
7. ODP, International Standard Organization (ISO), Reference model of Open Distributed

Processing: Overview, Foundation, Architecture and Architecture semantics, ISO/IEC
JTC1/SC07, 10746-1 to 4, ITU-T Recommendations X.901 to 904, 1996.

8. W3C. World-Wide-Web Consortium, WSDL (Web Services Description Language). Avail-
able: http://www.w3.org/TR/wsdl

63

A Web Services based system for data grid

Irene Pompili1, Claudio Zunino1, Andrea Sanna1, and Giacomo Piccinelli2

1 Department of Computer Science
Politecnico di Torino

C.so Duca Abruzzi, Torino I-10129, Italy
irenella@tin.it,

{claudio.zunino,andrea.sanna}@polito.it

2 Department of Computer Science
 University College London

Gower Street, London WC1E 6BT, UK
g.piccinelli@cs.ucl.ac.uk

Abstract. In this paper an architecture for a data brokerage service will be
proposed. The brokerage service is a part of the system that is being
implemented within the European Grid for Solar Observations (EGSO) to
provide a high-performance infrastructure for solar applications. A broker
interacts with providers and consumers in order to build a profile of both
parties. In particular, the broker interacts with providers in order to gather
information on the data potentially available to consumers, and with the
consumers in order to identify the set of providers that are most likely to satisfy
specific data needs.

Introduction

Nowadays, Web Services are especially known as a way to improve business systems;
in this paper, they will be exploited for the implementation of data grid services. The
main aim of the proposed brokerage architecture is to collect information from
providers and allow users to search data over a grid. For this purpose, the broker
receives from providers a meta-catalogue that contains coarse granularity
information. Brokers also act as access points for EGSO and allow data searches in
the grid.
Brokers offer Web Services interfaces to consumers (i.c. the users) and data
providers. In particular, brokers supply a mechanism to allow consumers to perform
data searches, select the providers that can satisfy a specific request and forward the
query. Finally, brokers collect query results and send them back to the consumer.
The content of this paper is organized as follows: in Section Background a brief
background on Web Services is presented; while Section Framework describes in
detail the proposed architecture. Conclusive remarks and future work are presented in
Section Conclusion.

64

Background

Over the past few years, applications have interacted using ad hoc approaches. At the
present moment, Web Services[1][2] are emerging as a framework for application-
application interaction, based on existing Web protocols and based on open XML
standards.
Web Services are essentially rely upon three technologies: Web Services Description
Language (WSDL)[3]; Universal Description, Discovery and Integration (UDDI)[4];
and Simple Object Access Protocol (SOAP)[5].
WSDL is a specific XML format that can be used to describe Web Services
interfaces. A WSDL specification provides a description of the service and the
specific protocol that users have to follow to access the service itself.
On the contrary, UDDI is an industry-standard centralized directory service that can
be used to advertise and locate Web services. UDDI allows users to search for Web
services using various search criteria, including company name, category, and type of
Web service.
Finally, SOAP is a protocol for exchanging XML data and provides the basic
mechanism for Web Services communication. It can uses a textual format, as opposed
to binary formats such as in CORBA[6] or Java RMI[7].
Various examples of Web services-based architectures can be found in literature. For
instance, in [8] a Web Services-based system was proposed to integrate ad-hoc mobile
applications with the Bluetooth and Wi-Fi technologies.
Web Services have also been used in [9] for the implementation of a biomedical
portal. The proposed architecture consists of a grid portal for the management of
biomedical images in a distributed environment.

The framework

The core of the proposed architecture is constituted by the broker, which offers a set
of Web Services to both consumers and providers. The main broker interfaces are the
connection, the provider data update and the data search interface. Core component
of the proposed system is a two layer search engine. Each provider has a catalogue
and periodically sends updates to a broker. The broker receives them and generates a
version of this information which is inserted in this in the local database. This
summarized catalogue (referred to as meta-catalogue) is obtained by using a set of
parameters (e-y time, wavelength, spatial coordinate positions), in order to collapse
sets of rows in the original catalogue to a limited number of rows in the meta-
catalogue. For instance, if in the original provider catalogue ten rows are used to
describe data related to a specific day, and the granularity of the time parameter is set
to one day, then, the meta-catalogue will contain just one row. Therefore, the meta-
catalogue allows the broker to immediately discard providers that certainly need not
to be searched for a resource given, but cannot tell the broker if a provider actually
posses a given resource. For instance, if a consumer searches data related to a specific
hour, and the time parameter is used to generate the meta-catalogue with granularity
equal to one day, then the broker by querying the meta-catalogue, can immediately

65

identify which providers can potentially satisfy the query; however, the selected
providers will still need to be directly interrogated. In order to perform searches
efficiently the meta-catalogue on the broker has to be constantly updated.
Moreover, after receiving an update from a provider, brokers have to propagate this
information to other brokers in the network. To this aim, the following procedure is
used:

Procedure propagate_updates
B1àB2 (all neighboring brokers,
duplicates are discarded)

updates in XML format + time_stamp

The time stamp is used in order to allow brokers to select only new records.
In Fig. 1 a search session is shown. The network is composed by the broker, a
consumer and three providers. The session starts when a consumer submits a query.
The search session consists of the following phases:

1) The consumer submits a query to the broker.
2) The broker search engine queries the local database to obtain the list of

potential providers that can answer the consumer’s query. The local database
contains the summarized version of catalogue (i.e. the meta-catalogue).

Fig. 2. A typical search session.

3) The broker forwards the query to all the providers that may satisfy the query
(in this case the Provider 3 is excluded).

4) Each provider sends back results to the broker.
5) The broker collects and sends to the consumer the results obtained by each

provider.
It has to be noticed that each consumer query is managed by a specific thread; in this
way, the consumer, is not blocked. Only after that all results have been collected, the
broker sends them to the consumer.
Finally, the consumer directly contacts the provider to retrieve the data.

66

The interface of the query procedure is the following:
Procedure query
CàB Query
BàC The broker returns a query_ID
BàC The broker sends to the consumer, in asynchronous

mode, query results in XML

Conclusion and future work

In this paper a brokerage architecture dedicated to information retrieval and metadata
management is proposed. Metadata mainly consist of catalogues of solar data that are
produced and maintained by various providers. A local database in the broker allows
a faster search.
The proposed architecture can be possibly improved by using a distributed version of
the broker meta-catalogue. In the case of a distributed meta-catalogue, the
propagate_updates procedure still needs to be used since the information has to be
replicated on a certain number of brokers selected by an ad-hoc algorithm to ensure
fault-tolerance. Moreover, a new procedure to propagate consumer queries to other
brokers has to be included. In fact, a broker is no longer able to immediately identify
the providers that can possess requested data if the meta-catalogue is distributed
among brokers. A broker will thus propagate queries to neighbouring brokers to
receive information about the meta-catalogue. The broker that starts will receive
results from the other brokers in XML and merge them in order to select a set of
providers to be interrogated, as in the current architecture.

References

[1] Curbera, F., Duftler, M., Khalaf, R., Mukhi, N., Nagy, W., Weerawarana, S.
“Unraveling the Web Services Web - An Introduction to SOAP, WSDL, and UDDI”,
IEEE Internet Computing, Vol.6 Issue 2, March-April 2002, pp.86-93.

[2] Roy, J. Ramanujan, A. “Understanding Web services”, IT Professional,Vol. 3 Issue 6,
Nov/Dec 2001, pp. 69-73.

[3] http://www.w3.org/TR/wsdl.html
[4] http://www.uddi.org/
[5] http://www.w3.org/TR/SOAP/
[6] http://www.corba.org/
[7] http://java.sun.com/products/jdk/rmi/
[8] Steele, R., “A web services-based system for ad-hoc mobile application integration”,

Proceedings. ITCC 2003. International Conference on , April 28-30, 2003, Page(s):
248-252

[9] Aloisio, G.; Blasi, E.; Cafaro, M.; Fiore, S.; Lezzi, D.; Mirto, M., “Web services for
biomedical imaging portal”, Proceedings. ITCC 2003. International Conference on ,
April 28-30, 2003 Page(s): 432 -436

67

