RA221 (W0411-084) November 10, 2004
Conputer Science

IBM Research Report

ICSOC 2004 Proceedings - Short Papers

Sanjiva Weerawarana (editor)
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

="/"—="S= Research Division
i _=__=?=_ Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.

0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

Automatic Configuration of Services for Security,
Bandwidth, Throughput, and Availability

Garret Swart* Benjamin Aziz
University College Cork University College Cork
Cork, Ireland Cork, Ireland

g.swart@cs.ucc.ie b.aziz@cs.ucc.ie

ABSTRACT

The process of efficiently deploying a complex system of services
on a complex network of servers is tedious and error prone, with
many properties to check and many possibilities to examine.
Automated tools are needed to turn this into a humanly tractable
problem. We present a precise model of a service-oriented
computing system that allows many important configuration
properties to be defined and optimized for, including throughput,
network bandwidth, security and availability. We transform this
model into a system of constraints that can then be solved using
mathematical and constraint programming yielding an optimal
system configuration that meets all the stated requirements. We
have implemented this in OPL and have used it to generate
optimal configurations for realistic systems with tens of services
running on hundreds of servers communicating on multiple
subnets.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]: General — Security
and protection. C.2.3: Network Operations — Network
management, C.4.0: [Performance of Systems] Modeling
techniques, Performance attributes K.6.4: [Management of
Computing and Information Systems] System Management —
Quality assurance

General Terms
Management, Performance, Security.

Keywords

Automated Server Provisioning, Service-oriented Computation,
Automated Network Management, Autonomous Computing,
Quality of Service (QoS)

1. INTRODUCTION

The process of deploying complex systems of services on a
complex network of servers is fraught with peril for the systems
administrator. No one wants to be on the front page of the New
York Times when a multi-million dollar system becomes
inaccessible due to an unforeseen problem with an obscure
configuration setting. No one wants to be asked by the boss why
the network has to be upgraded when a simple reconfiguration
might be adequate. No one wants to spend days looking at ways
of making do with the current hardware because the budget is
used up but new applications are coming online. Good systems
configuration needs precise checking and exhaustive optimization,

This work in Copyright © 2004 by the authors. It may be reproduced for personal
and scholarly use only.

*This author’s current address is: IBM Almaden Research Center; 650 Harry
Road; San Jose, California 95120 gswart@almaden.ibm.org.

Simon Foley John Herbert
University College Cork University College Cork
Cork, Ireland Cork, Ireland

s.foley@cs.ucc.ie j-herbert@cs.ucc.ie

not just rules of thumb and heartfelt prayer.

We suggest solving this problem by the use of mathematical
modeling. Methods rooted in mathematics can result in
configurations that are provably optimal and correct. Methods
rooted in mathematics can be amenable to machine reasoning
rather than the more onerous and error prone human variety.
Using formal techniques we can translate engineering intuition
into mathematical constraints.

In this paper we define a precise model of a service-oriented
computing system. We argue that this model is close enough to
reality to be interesting. We then define various properties of the
model that correspond to important properties in real systems. The
properties that we define and optimize for are network security,
server throughput, service availability and network bandwidth.
All of these terms have been bandied about enough that they need
careful definitions, and we define them using our mathematical
model.

We then encode this model and properties into an Optimization
Programming Language (OPL) application so that a combination
of mathematical and constraint programming techniques that are
part of the OPL implementation can be brought to bear on this
problem to produce a set of optimal assignments of logical
components to physical resources. Using the facilities of OPL, we
write a system model that defines the data to be presented and its
constraints. This model can be instantiated to represent any
computing system that falls within the model. Once instantiated,
the model can be solved by OPL to find the optimal configuration
of resources that meets the requirements. This separation of the
model, its instantiation and solution technique allow such systems
to be used by systems administrators without a degree in
operations research.

Finally we show the results of this model when applied to a
realistic system containing 26 services and 240 servers on 5
subnets.

Novel aspects of this work include:

— The application of configuration modeling and optimization to
general service oriented computation. The service model that we
introduce and the complex relations that services can have with
each other allows us to model service-oriented systems “from the
phosphor to the oxide.”

— The simultaneous modeling of many configuration properties so
that the values of these properties can be played off against each
other, and a framework that allows even more properties to be
defined and modeled.

— The careful definition of quantifiable security properties that
correspond to properties that security experts attempt to optimize
for. Security is often thought of as a binary property but the use of
security metrics allows greater flexibility to the configuration
process.

Modeling and optimization, while at the core of automated
configuration, is not all that is needed. Other aspects of this
problem include:

— Model reverse engineering: Generating a model from a real
system is a huge task. System administrators need tools to
facilitate generation of system requirements from a real system
that is known to meet its requirements. The resulting model will
allow the search for cheaper configurations meeting the same
requirements or new configurations meeting adjusted requirement,
E.g. Build me a system that behaves just like my old system but
that handles twice the load at half the cost.

— Requirements understanding: A complex system may have
thousands of requirements. How can we ensure that all the
important requirements for the correct working of a system have
been captured? Missing a requirement may produce a system that,
while it meets all of the stated requirements, does not function.
The implications of security requirements are notoriously difficult
to understand but we want to ensure that whatever language is
used for these requirements supports the WISIWIM requirement:
“What I Said Is What I Meant.”

— Configuration deployment: Once a new configuration has been
determined, how can we reliably implement the change from the
current configuration to the new configuration? This may involve
rewiring network connections, reconfiguring routers, redeploying
services on different servers. Each task should be automated if
possible, and in any case checked for correct completion.

— Model refinement: Any abstract model is just that, a model. It is
meant to mirror reality and any place where the model does not
mirror reality should be flagged and fixed. For example, the
model may predict that adding a processor in a particular role will
improve performance by 20%. If deploying the change
unexpectedly results in a performance improvement of 10% or
50%, we want to adjust our model so that properties of future
configurations will be more accurately predicted. When many
changes are made simultaneously figuring out where the model
should be changed can be difficult.

— Adaptability: A static service configuration is unlikely to stay
unchanged for long. New services are being introduced and the
properties of existing services change based on market success,
developing usage patterns, and service implementation changes.
We want to find an optimal sequence of configurations from the
current optimum, based on one set of assumptions and
requirements, to a new optimum based on a new set of
assumptions and requirements.

In this paper we focus on the necessary first step: the modeling
and searching for static configurations; other aspects are left to
future work.

Service configuration modeling is important to designers of
services because it can impact the way they think of their services
and the information they need to specify about them. It is
important to vendors of service software because it allows
complex networks of service software to be installed by the users

themselves, rather than by teams of warring vendor consultants. It
is important to service-oriented middleware providers, as they will
need to provide the tools that provide the facilities listed above.
Finally, it is important to those who deploy services, as they will
be able to save money and avoid worry as they deploy their
service networks.

2. MODELING A SERVICE-ORIENTED
SYSTEM

The art of modeling lies in figuring out what to put in and what to
leave out. Putting too much in the model results in a model that
can be intractable for both humans and machines, while leaving
too much out of the model makes important questions impossible
to state. The goal of this paper is to leave enough in the model to
be able to do realistic network capacity planning, server capacity
planning, network security planning and service level availability
planning. Anything that is not required to meet those
requirements, we left out. In this section we define the
components of our model and the information a user of the system
has to provide about each component and the information that the
optimizer will produce. In the next section we describe how we
use this information to define properties of the system that meet
the planning needs of system administrators. A UML class
diagram showing the relationship between the components is
shown in Fig. 1.

Service. The fundamental system component in a service-oriented
architecture is, of course, the service. In this context we define a
service to be an entity that can perform a set of operations on
behalf of callers on a defined set of data. For example, Hertz may
offer a car rental booking service that allows clients to book its
cars. Avis may offer a distinct service that provides access to its
cars. Travelocity and LastMinute may each run a travel agency
that offers services that allow clients to book cars on either Hertz
or Avis. These form four distinct services.

Implicitly associated with a service is that service’s
implementation. This implementation, while invisible to the user
of the service will determine certain properties of the service, e.g.
the load caused by performing an operation or the set of services
called by this service.

We denote the set of all services being modeled as a set named
Services.

To specify the load generated by an invocation of a service, each
service must be provided with a per invocation load amount that
must be provided by the servers assigned to run this service. This
is the expected amount of load caused by handling a single call on
the service. The units of this cost might be Java Virtual Machine
instructions or any other reasonable unit of execution cost that
adequately represents the utilization of resources on a machine
running the service. As processor designers, compiler writers, or
even marketing directors will tell you, there is no one number that
can represent a server’s capacity or an application’s load, but for
this purpose we’ll assume that we have one that provides an
adequate estimate.

Formally we define a function /oadU that defines the expected
load units caused by a single invocation of the service.

loadU : Service — R*

Service Interface. Each service implements a certain protocol or
language to facilitate communication with it and other similar
services. We call this protocol the interface to the service. To
facilitate interoperability, many services may implement the same
interfaces. In a Web Services infrastructure an interface may be
specified as a WSDL object and identified by a URL. In a Corba
infrastructure, an interface may be specified by an IDL file and
identified by a UUID.

Formally we can represent this as a set Servicelnterface and an
implements function that represents the relationship between the
service interface and the services that implement it. Note that each
service implements only a single interface; we will see below that
the concept of a deployable unit, which represents an aggregation
of services, provides for the functionality of allowing multiple
interfaces to be implemented by a single service.

implements : Service — Servicelnterface .

We do not consider the process of how service interfaces may be
mapped to services using other services like LDAP or UDDI or
how interfaces might be discovered using an ontology.

Service dependencies. Services may be composed from other
services. For each service we assume we have a set of services
that are used in this service’s implementation and that we have
determined the expected number of invocations of those
subsidiary services for each invocation of the entry service. This
can sometimes be determined by code inspection and sometimes
by measurement. Even if service binding is done dynamically,
data can be collected on the long-term behavior of a particular
installation.

For example, Travelocity’s car rental service may invoke the
Hertz and Avis services an average of 1.4 times per invocation,
while LastMinute’s car rental service may invoke the Hertz
service 1.7 times and the Avis service 2.2 times per call.

As in this example, each subsidiary service may be used by any
number of layered service implementations. For simplicity, we
assume that there are no cycles in the service implementation
dependency directed graph. Since this information refers only to
direct dependency we call the function representing this
information dependencyl.

dependencyl : Service x Service — R*

For example, dependencyl(Travelocity, Avis) = 2.2 as each call
to Travelocity results in the Travelocity service calling the Avis
service an expected 2.2 times.

We use this information to estimate the complete dependency
matrix, the number of calls generated, directly or indirectly, by a
single call to a service on every other service. We estimate the
complete dependency matrix by computing the transitive closure
of the dependencyl matrix. We do this to allow for a concise
definition of the service dependency information and because
collecting multi-level information of this sort in a distributed
system is quite difficult. However if the complete graph has been
measured, it should certainly be used in preference to the estimate.

dependency : Service x Service — N*

This is the same approach used in gprof in estimating call graph
values [10].

1
Service |, Service : Service
Interface |1 * . | Dependency
1
1 1.*
1
Deployable
nit [Server
Routing <1I Subnet
* Rule . y

Fig 1: A UML Diagram of the Service Oriented Model

Client Service. We define a distinguished client service whose
function is to invoke the externally accessible services. The client
service makes the correct mix of requests that match the expected
calls from all the system’s clients. The client service is special in
that we do not attempt to model its internal behavior or allocate
resources to it. The distinguished client service gives us a single
row of the dependency matrix to concentrate on that defines the
expected call load that we are expecting for each service. Since
there are no calls to the client service, one should think of the
counts in the client row of the dependency matrix as representing
the number of calls on the indicated services by external clients
per unit time.

Formally, client is simply a distinguished element in Service.
client € Service

Harking back to our car rental example, we can define the client
service as making 400 calls per minute on the Travelocity service,
300 calls per minute on the LastMinute service, 100 calls per
minute on Hertz and no calls on Avis. Assuming that the Hertz
and Avis services make no service calls themselves, then taking
the five services in the order: client, Travelocity, LastMinute,
Hertz and Avis, we have a first level dependency matrix given as:

1 400 300 100 O
0 1 0 14 14
0 0 1 1.7 22
0 o0 0 1 0
0 o0 0 0 1

The ones on the diagonal can be thought of as meaning that a call
on a service results in one call on itself. We then take the
transitive closure of this matrix to estimate the full dependency
matrix. The top row of this dependency matrix gives us the
frequency count of invocations of the corresponding service
during the one-minute client interval:

(I 400 300 1170 1220).

These invocation counts can be combined with the preceding
service load units to define the total execution load on the system.
For example, if loadU(Travelocity) = 1000, loadU(LastMinute) =
1200, loadU(Hertz) = 6000, and loadU(Avis) = 7000, then the
execution resource needed to meet the throughput requirements on
the services are 400,000, 360,000, 7,020,000, and 8,540,000 units

per minute respectively, and the total execution rate in the system
is 16,320,000 units per minute.

In addition each service may have an availability requirement that
defines the minimum probability that this service must be up and
providing the needed service to the distinguished client service.
We can define this requirement as a function that specifies the
minimum probability that this service is allocated enough
resources to perform its function. If there is no availability
requirement on a particular service, the function may have value
0.

availableToClient : Service —[0,1]

Note that this function is used along with the dependency
information to generate the complete service availability function
in the next section.

Deployable unit. Each separate service is not typically
deployable on a server independently. A developer or
administrator will typically build or configure a set of services
into a deployable unit that can be installed on one or more
machines. The developer may decide services need to be
collocated in the same process or on the same machine to
maintain efficiency or to reduce development time. When
services are combined into a deployable unit, we do not model the
dependencies between these services, instead the load and
dependencies are rolled up into the services that is invoked
externally. The form a deployable unit takes depends on the
system being used. In J2EE a deployable unit might be
represented as a preconfigured WAR, or web application archive,
on Linux a deployable unit might take the form of a preconfigured
RPM [11] file. Unlike an unconfigured WAR or RPM file which
might contain a generic service implementation, a deployable unit
contains all information to configure the implementation to take
the role as a particular service, e.g., the data it will be accessing
and the other services that it may need to contact.

Formally, the deployable units are just a set Deployable with a
function deploys to represent the composition of a deployable unit
out of its constituent services.

deploys : Service — Deployable .

The composition of a deployable unit out of a set of services,
modeled by this function, could have been generalized to a many
to many relationship between services and deployable units,
allowing a single service to be implemented by many different
deployable units. In practice, practical engineering considerations
cause administrators to avoid running more than one
implementation of a single service, as this raises the probability of
a failure caused by unexpected interactions between different
deployable units running different implementations but
implementing the same service. However, a service interface is
typically implemented by many different services and thus
potentially many deployable units.

Server. A server is an entity on which services can be executed.
Servers are not referred to directly by applications; instead
applications reference services that are automatically mapped to
the servers on which they are deployed. Servers are typically
hardware components, though servers can be constructed logically
using virtual machine technology.

For each server we have a specified failure probability. This
specifies the minimum long-term probability that the server is
available and providing its full execution service. This is used in
the next section to compute the probability that a service is
available and providing service. =~ We specify the server
availability with a function:

serverAvailability : Server — [0,1] .

Associated with each server is a rate at which it can perform load
units, expressed in the same time units that were used for the
client counts in dependencyl and the same load unit that was used
for loadU. For example, a large multiprocessor server may be able
to perform 50,000 load units per minute while a small server may
only be able to support 1000 units per minute. We specify the
execution rate of a server with the function powerU:

powerlU : Server — R+

As stated earlier, a single power rating per server is a
simplification. A more careful model may allow for service
specific load ratings.

Resources on servers are assigned by the configuration system to
deployable units. A unit may not consume more resources on a
server than it is assigned. A single deployable unit may be
deployed on many different servers simultaneously, in which case
the load on the component services is divided among the servers,
according to the ratio of resources assigned by the server to the
deployable unit. We define the number of load units per unit time
allocated to a deployable unit on a server as:

allocU : Deployable x Server — R* .

Unlike the functions defined so far, this function is not defined by
the administrator, but is instead an output of the optimization
process. It specifies what services a server should run and the
amount of server resources that should be assigned to each
deployable unit. In the next section we develop constraints that
will ensure that the allocation of resources to deployable units
satisties the system requirements. The resulting allocation must
not overload the server, that is the following constraint must hold:

Vserv € Server,

Z allocU(d, serv) < powerlU ((serv).
VdeDeployable

Subnet. A subnet represents a portion of the network containing a
set of servers. Servers on the same subnet can communicate more
cheaply, but servers on different subnets can be protected from
each other by router based filtering and firewalls. We assume that
each server is assigned to exactly one subnet. The assignment of
servers to subnets will typically be an input to the configuration
optimization process, though in other circumstances the
assignment and creation of subnets might be an output of the
process. We also distinguish the subnet from which client
communications originate. This will typically represent the public
Internet.

Formally, a subnet is just a set of items, Subnet, and a function
subnet that assigns servers to subnets.

subnet : Server — Subnet

clientSubnet € Subnet

Routing rule. The filtering that can take place between subnets is
represented as a set of allowable service interfaces whose
messages may pass between the subnets. Typically a routing rule
will be assigned to a router or firewall to ensure that only the
required communication can be passed and that this required
communication is safe. Like the allocation of deployable units to
servers, the configuration optimization process produces the set of
subnet rules.

Formally the set of filter rules is a function, rules, from pairs of
subnets to a subset of allowable service interfaces whose
messages are allowed to pass from one subnet to the other.

rules : Subnet x Subnet — g(Servicelnterface)

3. PROPERTIES OF A SERVICE-
ORIENTED SYSTEM

One measure of the usefulness of a model of a system is whether
properties of the model can be defined that correspond to
properties of the original system. In this section we present some
interesting system properties that can be defined using our model
and argue for their relevance. One interesting property that we do
not define is latency. Reasoning about latency is a very tricky
issue and we do not attempt to deal with it here.

Service Availability Requirement. A service’s availability
requirement is the probability that a service responds to a given
request by one of its clients. A service’s clients may include the
distinguished client service as well as arbitrary other services that
use this service. For a service to be available, in addition to the
service itself being available all the service’s dependencies must
be available. Assuming that the availability of each request on
each service is independent, we use the following constraint to
define a serviceAvailability function that depends on the
administrator-provided availableToClient as well as the
dependencyl function.

availableToClient(s1)

< serviceAvailability(s1)

< H serviceAvailability(s2)

Vs2eService
dependencyl(sl,s2)>0

Informally this says that the service can be no more available than
its constituents, but that it must be at least as available as any
clients need it to be.

These constraints can be solved by starting with the services
called only by the distinguished client service. Such a service is
likely to have a nonzero value for the availableToClient function.
This value can be factored to determine availability requirements
for each of the services it calls. This process can be repeated until
service availability requirements are derived for all of the
services. As might be expected this process causes lower level
services to have higher availability requirements.

Availability with Throughput. We define execution throughput
and availability constraints simultaneously as for a service to be
properly configured the probability that the service is meeting its
throughput requirements must be as large as its availability
requirement. Disconnecting availability and throughput admits of
an implementation of a highly available system that while it may
be nominally available, failures may have degraded its throughput

so much that it may be considered dead by its users. One could
complicate matters by defining multiple levels of availability, e.g.
there is 99% probability that full throughput is available, but
99.99% probability that 50% throughput is available. But we do
not do so in this paper.

An acceptable configuration must assign enough resources to each
deployable unit so that with large enough probability all the
services that are part of the deployable unit are getting enough
execution resources to perform their function. We must also
assign the resources in such a way that we never exceed the
capacity of any server.

We can express the fact that a server may not be over allocated
with the predicate:

ZallocU(d, serv) < powerlU(serv)
YdeDeployable

Vserv € Server,

This specifies that for all servers, that the sum of the load units
allocated to each deployable is less than total load units provided
by the server.

To form a predicate that insists that the needed throughput be
provided with the required probability, consider a subset S of the
Server set that represents the set of servers that are available at a
moment in time. For each such subset S < Server there is a well
defined probability that exactly those servers are available.
Assuming that the availability of each server is independent, that
probability is given by:

setProbability(S) = H serverAvailability(serv)

VserveS

x H(l - serverAvailablilily(serv))

VserveServer—S

That is, the probability that exactly the set of servers S is available
is the probability that each server in S is available times the
probability that each server not in S is not available.

For each subset S, there is also an expression that represents the
number of load units among the servers in S that are assigned to a
given deployable unit, d € Deployable. We compute this as a

function allocSU:

allocSU(d,S) = ZallocU(d,serv) .

VserveS

For the set S to have adequate capacity to be classed as being
available for d, the number of load units allocated to the unit d
must be sufficient for performing the required load per unit time
on the services making up d. We can compute this for a unit d by:

reqLoadU(d) = Z dependency(client,s)loadU(s)

VseService
d=deploy(s)

that is, the sum, over all services that are part of the deployable
unit, of the number of invocations on that service per unit time
multiplied by the number of load units consumed by each
invocation. This gives us the load units required per unit time, the
same units as the allocation units for server resources assigned to
a deployable in allocSU.

The availability of a deployable unit 4 in a given configuration is
the sum over all subsets S of Server where the load units allocated
to the deployable unit is sufficient to meet the execution
requirements of the services that are part of the deployable unit, of
the probability that the server configuration S exists. We define:

ZSelProbability(S) .

VScServer
allocSU (d,S)=reqLoadU (d)

deployAvailable(d) =

If for each deployable unit this probability is larger than the
maximum service availability requirement of all the services in
the deployable unit, that is, when

Yd € Deployable, deployAvailable(d)
2 MAX g d—deploy(s) ServiceAvailability(s).

then the allocation of resources meets the availability and
throughput requirements.

Security Distance. One of the important security considerations
that must be taken into account when building a service
infrastructure is router and firewall configuration. There are some
services in which considerable skill and attention have been
lavished in making sure that the service is ready to withstand the
slings and arrows of outrageous hackers and other services which,
while nominally secure, had best not be accessible to outside
users. There are also services that store such sensitive data and
best practices dictate that they should be locked away behind
many levels of firewall.

One simple way of rating network service security is by the
minimum number of subnet hops needed to get from the attacker
to the target service. Each step along such a shortest path
represents a subnet that has to be traversed and presumably
hacked, in order to reach the target service. For example, in many
web application infrastructures the service network is divided into
5 successively deeper subnets as illustrated in Fig. 2: a content
subnet, a Ul subnet, a business logic subnet, a database subnet and
a SAN subnet. Each deeper level provides a lower level
abstraction with less fine grain access checking and often less
secure authentication. Accessing each successive subnet also
requires hacking a different set of systems, typically using a
different set of techniques. Note the NOC subnet, used for
monitoring and administration, has connectivity to all the other
subnets and if misconfigured can provide a shortcut access path
into the deepest levels of the system, e.g. if servers in the NOC
can be accessed from the Internet, sometimes allowed so that

Network Operations Center Subnet
SNMP/SSH/

FTP

juqng AXo1d/usiuo))

10UqNS 90BJISIU] JOS()

1ouqng 21307 ssaursng
jouqng aseqere

110P/ Oracle
SOAP Net8

Fig. 2: Typical Subnet Structure

administrators can work from home.

One way to increase the security level of a service to infinity is to
make it inaccessible to clients by only running the service on
servers that are on subnets with no direct or indirect path from the
client. This makes these services secure, but unfortunately, also
unavailable to the rest of the public.

When configuring routing rules it is important to allow
communication between subnets where it is needed, e.g. services
running on those subnets need direct communication, but at the
same time we want to insist that certain services be run on servers
that are deeply hidden from clients, that is there is a large security
distance between the service and the attacker.

Network subnet distance is a simplification of the security
restrictions one might contemplate, but it is a reasonable start and
it mirrors current best practices [16].

The constraint on the existence of rules allowing all needed
communication can be stated as:

Vsl,s2 € Service : dependencyl(sl,s2) > 0=

Vservl, serv2 € Server :

allocU (deploys(sl),servl) >0

(/\ allocU(deploys(s2),serv2) > OJ

= interface(s2) € rules(subnet(servl),subnet(serv2))

which states that for all pairs of services that communicate, and all
servers that are assigned to run those services, then the interface
those services use to communicate must be present in the rules set
of the router that connects the two subnets.

Given the rule above, the security distance between two services,
which we will denote as securityDistance(s1, s2), can be defined
by the following recurrence.

First we define a predicate connected that determines whether
there is a direct communications link between the two services,
that is, whether any of the servers assigned to the services are on
the same subnet.
connected(sl,s2) =
dservl, serv2 € Server :
allocU (deploys(sl),servl) >0
AallocU (deploys(s2),serv2) >0

A subnet(servl) = subnet(serv2)

Then we can define the security distance with the following
recurrence:

securityDistance(sl,s2) =

0, if connected(sl,s2)
1, if dependency(sl,s2)> 0 A —connected(sl,s2)
MiNy3cSepvice (SecurityDistance(s1, s3)

+ securityDistance(s3,s2)}, otherwise

The security distance computed in this way can be used in
constraints to insist that a sensitive service be a large distance
from the client subnet. This can be used to restrict the optimizer
from doing something silly like running a database service on the

network DMZ in order to take advantage of its lightly loaded
Servers.

Data Risk. In another paper by this paper’s authors [5], a security
metric based on the aggregate risk of having data from different
customers make use of the same device is defined. For example, a
storage service provider may decide to store data from a single
commercial bank on a storage unit and to accept a level of risk r
in making that assignment while adding an airline’s data to that
storage unit may increase the risk of the assignment by a small
amount but adding a competitive bank to the same unit may raise
the risk considerably.

In the service-oriented context, a similar measure of data risk can
be defined that quantifies the risk of placing deployable units on
the same server or on the same subnet. The risk depends on the
assurance level or trust we have in the server or the subnet’s
ability to keep the data separate and the risk associated with the
information being accessed from the dependent services.

This metric was not used in the OPL implementation described in
section 5, but was used in a separate OPL model described in [5].

Network Bandwidth. The network bandwidth used in a system
can sometimes be an important consideration in system design.
The internal switching inside a subnet is generally implemented
by high performance switching equipment that has been optimized
for network performance. Communication between subnets is
performed by routers that have been optimized for security and for
implementing many hundreds of complex filtering rules. Limiting
the load on these expensive routers can sometimes be an
important consideration.

To help express constraints or optimizer objective functions
dealing with bandwidth, we define a new traffic function. The
value traffic(snl, sn2, interface) reports the number of invocations
per unit time of the given interface that may travel between the
given subnets. If the subnets are equal, the function gives the
amount of intra-subnet traffic using the given interface. This
function can be used to define constraints or minimize the usage
of network traftic.

First we define the function runsin that computes the set of
subnets used for executing a given service:

Usubnet(serv)

VserveService:
allocU (deploys(s),serv)>0

runsin(s) =

Given this function we can define the traffic function as:
traffic(snl,sn2,i) =
Z dependency(client,s1) x dependencyl(sl,s2)

Vsl,s2eService:
i=implements(s2)
Asnlerunsin(sl)
Asn2erunsln(s2)

As can be seen this sums over all pairs of services where the
second service implements the given interface and the services
run on the given subnets. For each pair we look at the expected
number of service invocations of the given type that will be
requested per unit time. This is given by the expected number of
invocations from the client to service sl times the number of
invocations that s1 makes directly to s2.

4. OPTIMIZING A SERVICE-ORIENTED
SYSTEM

In the previous sections we have seen how to describe a service-
oriented system and how to define properties and constraints on a
service-oriented system; we can now look at optimizing a service-
oriented system. In mathematical programming, optimization is
driven by an objective function.

The difference between an objective function and a constraint is
that a constraint must hold in order to have a solution, while the
objective function is merely optimized from among the solutions
meeting all the constraints. While there can be many constraints in
a constraint satisfaction problem, there can only be one objective
function.

Some useful objective functions include those for:

— Minimizing the cost of the system. The cost of a system is
generally a linear formula involving the number and cost of each
server and perhaps the number of subnets. Meeting requirements
with the least cost is a common objective in optimization. In this
case the objective function may be the number of servers that
have not been allocated to any deployable unit. That is to
maximize:

|{serv € Server :¥d € Deployable : allocU (serv,d) = O}l

— Maximizing the security of a service. In addition to setting
minimum security distance constraints, the administrator may be
looking to maximize the minimum security distance from an
attacker subnet to a given set of services. That is, given a priority
set of services, Protected, we might want to maximize

min securityDistance(clientSubnet,s) .
seProtected

— Maximizing the capacity of a system. If the load on the services
may grow unexpectedly, the administrator may wish to build a
system out of an existing hardware base that can respond quickly
to unexpected spikes in demand by spreading any extra capacity
evenly throughout the service deployments. We can compute the
percentage of over capacity allocated to a service and attempt to
maximize the minimum level of over capacity over all the
deployable units by maximizing:

allocSU(d, Server)

deDeployable reqLoadU(d)

— Minimizing the number of routing rules. Routing rules consume
resources on a router and having too many rules can cause the
router to become overloaded, usually causing operators to ill
advisedly remove rules. If an organization’s routers are on the
edge, minimizing this objective function could be important:

max U rules(snl,sn2,i)| .
snl,sn2eSubnet _
ielnterface

There are many other objective functions that can be defined. This
list is just meant to be illustrative.

5. IMPLEMENTATION EXPERIENCE

The formulas given here can be entered nearly unchanged to build
an OPL, Optimization Programming Language, application. In

this section we describe a few changes that were made to facilitate
expressing these formulas in OPL and how we reduced the search
space to get faster results. We also describe a realistic example
that we used to test the feasibility of the approach.

5.1 OPL Model Changes

A first implementation of the OPL model was made that used the
functions as defined here directly. Unfortunately this model did
not scale to larger configurations. The primary problems were the
large solution space for the allocU function, the non-linearity in
the probability function setProbability and the difficulty in
entering the large amount of data for hundreds of nearly identical
Sservers.

To speed up the search and ease the data entry we made two
simplifications to the model given above:

— We assume that the allocation of load units to a deployable unit
is identical on all of the servers it is assigned to. This reduces the
search space considerably without removing too many interesting
solutions. This is an acceptable simplification as a big disparity
between allocations for the same deployable causes difficulties in
reaching availability goals as the failure of the server with the
largest allocation for a given deployable causes an undue loss for
that deployable, making achieving availability much more
difficult.

— We group the servers into server classes of identical servers; all
the servers in a class have the same availability, power units and
are on the same subnet. Each server class might correspond to a
rack of servers in a data center.

— We assign deployable units only to servers in the same server
class. This simplifies the computation of the runsin function
above, makes the security limits easier to reach, and reduces the
solution search space considerably, again without removing many
important configuration possibilities. Such a server assignment is
typical of service assignments inside a cluster in a single data
center. Services that are replicated across a WAN and logically
run on different subnets must be modeled as separate services
implementing the same service interface. In most cases this is
appropriate as, given WAN communication costs in general and
the costs of single copy serializablility in specific, the services are
not really identical and are assigned to data centers manually.

By making these changes we can greatly simplify the computation
of the products in the setProbability function by making use of the
binomial theorem. We can do this because each serverAvailability
probability used for a deployable is identical, so instead of
summing over the power set of servers available, we sum over the
number of servers available. Similarly the function allocSU is
simplified because the allocU function values are either identical
or zero for each server being used by a deployable unit.

For a particular deployable unit d that is assigned to deployU(d)
units on dent(d) servers all in a server class with availability avail,
the probability that the system is available with enough resources
is:

dent(d .
E eni()Javailw(l— avail) e (D-w
w
reqLoadU (d) <w<dent(d)
deployU(d) |~

5.2 OPL Implementation

An interesting feature of the OPL programming model is the six
different sub-languages it supports, five of which are used in this
application:

— A data declaration language that is used to define the form of
the input data, the intermediate data, and the search space of the
variable data.

— A sequential initialization language that is used to compute the
values for the intermediate data based on the input data.
Intermediate data so computed is considered to be ‘ground’ and
can be used in more contexts than the variable data. In our
application this is used to compute dependency from dependencyl
and to compute serviceAvailability based on dependencyl and
availableToClient. The former is straight forward, but the latter
involves spreading probabilities.

The approach taken is to consider each target service in an order
compatible with the dependencyl relation and assign that service
a computed availability. We do this by looking at all the up-level
services that the target service is used by and taking the maximum
availability requirement implied by each such up-level service. If
the up-level service has an availability requirement either
specified or computed, we then look at all of the subsidiary
services used by the up-level service. Some of those subsidiary
services may precede the target service in the ordering and thus
may already have a computed availability, these availabilities are
divided out of the target availability. The remaining probability is
spread evenly among those without specified availability by
taking the appropriate root of the availability.

— A data instantiation language that is used to provide the input
data and thus define a particular instance of the model to be
solved. Data items instantiated in this language are stored in a
separate file from the other items, facilitating using the same
model for many different similar problems.

— A first order logic based constraint language used to specity the
constraints relating the input data, the intermediate data and the
output data.

— A backtracking based search control language that is used to
control the search through the output space. This language is the
most problematic as this has to be modified when a new
optimization criterion is chosen. A subtle change in strategy can
make the difference between search that won’t end for many
lifetimes and a result that is generated in minutes.

The commented OPL application is available on the authors’ web
site [13].

5.3 Realistic Test Case

To test the usefulness of this approach we wanted to apply the
model to a realistic test case. The problem is NP-hard, so one can
certainly find problem instances which cannot be solved in a
reasonable amount of time. However we wanted to pick a test
case that might come up in practice and see how this approach
worked on this example.

In this test case we defined a configuration consisting of 26
services in 17 deployable units, with 8 different service interfaces,
deployed on 160 servers in 8 different server classes running on 5
subnets. The availability of the servers varied from 3 nines of
availability (i.e. 99.9%) to four nines. The service availability

Content1 Ul-1 BL1 —

w1 N §_bita >

o o K2
Ul-1 @ disk1

Content2 @

@ SAN2
RevProxy1 el
Coroxy1a
Corony 15 SAN3
RevProxy2 Gisk3
roxy2a

Fig. 3: Test Case Services, Deployables and Dependencies

requirements of the top-level services varied from three to four
nines. The derived service availabilities for the deeper services
went up to five nines and these deeper services were constrained
as needing a security distance from the client of at least 3. We set
the objective function to maximize the minimum level of over
capacity from among the 17 deployable units.

The services were designed to model a modern multi-tier web
based system consisting of client accessible static content and
reverse web proxy services fronting for an inner tier of application
services providing the application Ul control and page generation.
The UI services were then built on a tier of business logic
services. Unlike the other service layers the business logic
services are available both from the proxy layer and from the Ul
layer and they have a rich degree of interconnection that is
difficult to see in the diagram. The services have been factored to
remove any cycles from the dependency graph. The business logic
services in turn build on a set of file and database services, which
are in turn built on a set of virtual disk services implemented by a
storage area network. The services, their grouping into deployable
units and the dependencies are illustrated in Fig. 3.

Considerable tuning in the search procedure was needed to order
the configurations tested so that the progress towards a solution
progressed at a reasonable rate. At this point, OPL is able to find
acceptable solutions after running for several minutes on a single
1.5 GHz processor. Finding optimal solutions for nontrivial
objective functions is more elusive as the entire solution space
often has to be searched, taking over 10 hours for the sample
problem. For many uses this performance is adequate, for
example, in configuring an enterprise data center for a new
application or an application service provider for a new customer.
For other uses, such as online reconfiguration after a device
failure or configuring a dynamic grid computer, this performance
is not adequate.

Note that a numerical instability in the availability computations
currently limits the number of servers per server class to 21.

This result indicates that this approach to solving configuration
problems is promising; though much more work remains to be
done to show that it is practical and efficacious.

6. RELATED WORK

A modeling based approach to quality of service prediction is
standard fare in queuing theory, but the focus is generally on the
much more difficult measure of response time, a measure we

leave out of our analysis because of its complexity. However the
typical server graph used in queuing theory carries over to the
dependency graph used here.

Other attempts have been made to model quality of service
properties of distributed systems, most recently in the context of a
service grid [1], but many fewer properties are being optimized
for. Other current work on service grids is focused on mechanism
of configuration rather than the optimization of configurations.|2]

The most closely related work to this has been done in the area of
provisioning of storage in a storage network. Data storage and
services are closely related, and in fact one can think of data
access as a special case of service provisioning, where it happens
that the services allow for data access. Work done in this area
includes innovative work done at HP [2][3][9][15] in configuring
storage systems. The authors have made their own forays into
storage management in [5][12].

Other related work lies in network provisioning, where resources
needed to provide the required quality of service are reserved in
advance. In this work the model is more based on dynamic load
rather than the static load model used in this work. Examples
include [6][7].

A subset of the service provisioning problem being considered
here was addressed using constraint satisfaction in [8], but the
problem was simple enough that the big guns of constraint
satisfaction was not necessary for the solution.

The SmartFrog [9] system from HP provides tools for describing
and deploying configurations.

7. CONCLUSION AND FUTURE PLANS

The approach of producing an abstract model of a complex system
and reasoning about that abstract model is an oldie but a goodie.
In this paper we have applied this technique to the problem of
configuring services on a network of servers. We have shown how
to compute properties of the resulting network and to use those
properties to drive the automatic optimization of that network to
meet a set of requirements defined over those properties.

There have been advances in constraint systems and automated
reasoning in recent years and using these techniques to design and
maintain complex computing systems is an opportunity ready to
be grasped.

A necessary future step for this research is to experiment with
configuring real systems to verify that the promised gains are
actually achievable. This can also be used to determine if there are
constraints missing in our model that allow the production of
flawed configurations.

Another area for extension is the development of new types of
security measures. Here we explore a simple security distance
metric, but many other types of threat can be defined, e.g. the
information risk measure used in [5]. Our security distance metric
can be refined by allowing each routing rule to have a separate
breakage cost, instead of the unit cost used here. The attacker
would search for the lowest cost path to the inner systems. In
addition the rules can be arranged in a partial order to represent
which rules are implicitly broken when another rule is hacked.
This can be used to model the fact that once a successful attack on
a system is found, the same attack can be used against similar
systems with no additional cost.

In this paper we define availability as a service having enough
available resources to perform its function. This definition does
not mean that the service has those resources for a long enough
contiguous interval of time to actually perform its function. For
example, a diabolical highly available server with a very short
MTBF but an incredibly small MTTR, may provide high
availability using our definition, but unacceptable performance in
real situations. We would like to define service availability as the
probability that a given request is successfully processed however,
this doesn’t easily match up with the definition of availability for
a server, which is necessarily time based. We are looking into this
issue.

Incremental configuration, finding the minimal reconfiguration of
an existing system to adapt to a new set of requirements or a new
environmental condition, is also a focus for future work.

8. ACKNOWLEDGEMENTS

Thanks to Aad van Moorsel and the anonymous referees for their
insightful comments.

9. REFERENCES

[1] Rashid Al-Ali, Abdelhakim Hafid, Omer Ranal and David
Walker, An Approach for QoS Adaptation in Service-
Oriented Grids, Concurrency Computation: Practice and
Experience, 2004, 16(5)

[2] G.A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, AVeitch,
and J. Wilkes. Minerva: an automated resource provisioning
tool for large-scale storage systems. ACM Transactions on
Computer Systems, November 2001.

[3] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. “Hippodrome: Running Circles around
Storage Administration.” In Proceedings of the Conference
on File and Storage Technologies, January 2002.

[4] Argonne National Laboratory. The globus project. See Web
Site at: http://www.globus.org/

[5] B. Aziz, S. Foley, J. Herbert, and G. Swart. “Configuring
Storage Area Networks for Mandatory Security.” In
Proceedings of the IFIP WG 11.3 Working Conference on
Data and Application Security, July 25-28, 2004.

[6] R. Balter, L. Bellissard, F. Boyer, M. Riveill and J.Y. Vion-
Dury, “Architecting and Configuring Distributed

Applications with Olan”, In Proc. IFIP Int. Conf. on
Distributed Systems Platforms and Open Distributed
Processing (Middleware'98), The Lake District, 1518
September 1998.

[7] Shigang Chen and Klara Nahrstedt. An Overview of Quality-
of-Service Routing for the Next Generation High-Speed
Networks: Problems and Solutions, IEEE Network, Special
Issue on Transmission and Distribution of Digital Video,
Nov./Dec. 1998.

[8] O. Martin-Diaz, A. Ruiz-Cortés, A. Duran, D. Benavides and
M. Toro, “Automating the Procurement of Web Services” In
Proceeding ICSOC 2003. LNCS. Springer Verlag, 2003.

[9] Patrick Goldsack, Julio Guijarro, Antonio Lain, Guillaume
Mecheneau, Paul Murray, Peter Toft, “SmartFrog:
Configuration and Automatic Ignition of Distributed
Applications,” 2003 HP Openview University Association
conference, See http://www.hpl.hp.com/research/
lsmartfrog/papers.

[10] S.L.Graham, P. B. Kessler, M. K. McKusick, “gprof: A Call
Graph Execution Profiler” In Proceedings of the SIGPLAN
'82 Symposium on Compiler Construction; SIGPLAN
Notices; Vol. 17, No. 6, pp. 120-126, June 1982.

[11] RPM Package Manager. http://www.rpm.org.

[12] G. Swart, “Storage Management by Constraint Satisfaction,”
In Proceedings of the Workshop on the Immediate
Applications of Constraint Programming held as part of the
Ninth International Conference on Principles and Practice of
Constraint Programming (CP'03), 29 September 2003.

[13] G. Swart, “Backup material for Automatic Configuration of
Services.” http://www.cs.ucc.ie/~gsl/ServiceConfig.

[14] Pascal Van Henteryck. OPL; Optimization Programming
Language. The MIT Press, 1999.

[15] Julie Ward, Michael O’Sullivan, Troy Shahoumian and John
Wilkes, “Appia: automatic storage area network design.” In
Proceedings of the Conference on File and Storage
Technologies, January 2002.

[16] Elizabeth D. Zwicky, Simon Cooper, D. Brent Chapman
Building Internet Firewalls, O'Reilly & Associates; 2nd
edition (January 15, 2000)

Portlet usability model

Oscar Diaz
ONEKIN research group
Dpt. Of Computer Science
University of the Basque Country
(Spain)
34 943 01 8064
oscar@si.ehu.es

ABSTRACT

Emerging portlet standards (e.g. WSRP) promise to achieve true
portlet interoperability. This will certainly fuel portlet
syndication, and facilitate a market for portlets in the long run. As
with other component technologies, this requires the existence of
quality models that assist in ascertaining the provider that better
fits the consumer needs. Usability is one of the characteristics
defined in the ISO 9126 standard. This paper introduces a
usability model for portlets. The model identifies the distinct
subcharacteristics for portlet usability, and proposes distinct
attributes and metrics to assess these subcharacteristics.

Categories and Subject Descriptors
D.2.8 [Metrics]

D.2.9 [Management]: Software Quality Assurance

General Terms
Management, Measurement

Keywords

Portlet, usability model, metrics

1. INTRODUCTION

A portlet is a multi-step, user-facing application to be delivered
through a web application. They are very much like Windows
applications in a user desktop in the sense that a portlet renders
markup fragments that are surrounded by a decoration containing
controls. Portals as application-integration platforms have rapidly
embranced this technology, and they are currently the most
notable portlet consumers ([1])

So far however, the lack of a common model prevented portlet
interoperability. However, the recent delivery of the Web Services
for Remote Portlets (WSRP) specification ([20]) promises to
overcome this problem. This will certainly promote portlet
syndication, and facilitates a market for portlets in the long run.

As with other component technologies, a portlet market requires
the existence of quality models that assist in ascertaining the
portlet provider that better fits the consumer needs.

Portlets can be considered as the evolution of two main
movements in computing: componentware and distribution.

Coral Calero, Mario Piattini
ALARCOS research group
Dpt. Of Computer Science,
University of Castilla-La Mancha
(Spain)
34 926 29 5300
{Coral.Calero, Mario.Piattini}@uclm.es

Arantza Irastorza
ONEKIN research group
Dpt. Of Computer Science
University of the Basque Country
(Spain)

34 943 01 8064
jipirgoa@si.ehu.es

Different quality models have been proposed for components [2,
19, 16, 8, 3, 4, 18] and for distributed systems [7, 20, 5, 15]
however, there is not specific work developed for portlets.

Building a quality model is a complex undertaking ([6], [14]).
Normally, the software product quality is hierarchically
decomposed into characteristics and sub-characteristics which can
be used as a checklist. The ISO 9126 ([11]) quality model is a
case in point. The ISO/IEC9126 quality standard ([11]) states
some general quality characteristics, which are further refined into
sub-characteristics, which are decomposed into attributes. The
values of the attributes are computed using some metrics. As the
metrics are obtained for a specific quality sub-characteristic, this
model can then serve the user to assess the product that better fits
his/her quality preferences

This hierarchical model must be tailored to specific domains and
could be used in conjunction with the ISO/IEC 14598-4 for
software product evaluation ([10]). This norm sets the ground for
several models of quality for different products and software
processes.

This paper focuses on usability, one of the ISO 9126
characteristics. In our case, a product-based view is adopted ([9])
based on the opinion that the clearer we are about what to achieve
in terms of product quality, the easier will be to tune the process
accordingly ([6]). This view is also backed by ISO ([11]), when
stated that evaluating a product can provide feedback to improve
a process.

Usability measures software attributes which are related to its
operation, with regard to easiness of use and adaptation of new
operators ([11]). This definition should be particularized for the
portlet case. As portlets share features with web application and
components, usuability measures for these two areas are revised
and adapted for the portlet case. Specifically, the quality model
for web applications presented in [16], and the quality model for
components introduced in [19], are taking as the starting points.
Sub-characteristics are then introduced, replaced or eliminated to
better cater for the new usability considerations.

From a portlet viewpoint, two users can be considered, namely,
the portlet consumer (e.g. the portal master), and the end-user that
interacts with the portlet. This paper focuses on the portlet
consumer.

The next section presents a brief introduction to portlets. Section
3 introduces the portlet usability decomposition into sub

characteristics and attributes and the metrics proposed for each
sub characteristic. Section 4 summarizes and concludes this paper.

2. A BRIEF ON PORTLETS

A portlet is a multi-step, user-facing application to be
delivered through a Web application (e.g. a portal). Its
novelties could be better assessed by comparing portlets
with an already well-known technology as Java Servlets.
Similar to Servlets, Java portlets run in a portlet container,
a server container that provides portlets with a running
environment. Servlet generates HTML pages as a result of
a browser invocation. Likewise, a portlet also generates
XHTML fragments (or other markup language) to be
framed by the invoker.

There are however, two main differences. First, a Servlet
is a one-step process while a portlet comprises a multi-step
process. Unlike Servlets, portlets support complete, full-
fledged, web applications. Second, a Servlet can generate a
full page. By contrast, a portlet generates fragments to be
assembled with other portlets' fragments to build up the
final page. This fragment is then included within a portal
page, with very few changes to be made by the portal.
Hence, a portal page can contain a number of portlets that
users can arrange into columns and rows, and minimize,
maximize, or customise to suit their individual needs. They
are very much like Windows applications in a user desktop,
in the sense that a portlet renders markup fragments that are
surrounded by a decoration containing controls.

So far however, the lack of a common model prevents
portlet interoperability. This impedes a portlet developed
in, lets say, Oracle Portal, being deployed at a Plumtree
portal, and vice versa. However, the recent delivery (2003)
of the Web Services for Remote Portlets (WSRP)
specification ([20]) promises to overcome this problem.
WSRP uses WSDL for portlet specification. See [22] for an
introduction to Portlets.

3. THE PORTLET USABILITY
CHARACTERISTIC

From a portlet viewpoint, usability refers to the capability of the
portlet to be understood, learned or used (i.e. invoked) when
“used” under specified conditions. Here, it is important to notice
that two kinds of users can be considered: the portal administrator
and the end-user. This work focuses on the portal administrator
which should be referred as “the user” hereafter.

As indicated in [11], usability metrics should be able to measure
software attributes related to its operation, with regard to easiness
of use and adaptation of new operators. This definition influences
on the sub-characteristics we have identified for the portlet
usability.

Next subsections present the wusability sub-characteristics
considered together with the metrics proposed for each one. For
the definition of each characteristic, we have used indifferently
the terms presented in [11], [16] or [19].

3.1 Understandability

Understandability can be defined as the capability of the portlet to
enable the user to understand what the portlet is about. So, it
bears on the users’ effort for recognizing the logical concept and
its applicability.

Following [11], understandability metrics should be capable of
evaluating the behavior of users without previous knowledge on
software operation and measuring their difficulty on
understanding software functions, operation and concepts. On
doing this, it may be considered entities such as documentation
(in all available formats, as on-line or printed), software interface
and vocabulary.

Component metrics introduce the programmatic interface as part
of the documentation of the component. However, WSRP portlets
have a generic interface to achieve interoperability (similar to
Servlets). So, the interface as such does not give us any hint about
the aim of the portlet. The WSRP API includes two functions
getPortletDescription() and getPropertyDescription(), that give
some details about some configuration parameters (e.g. locales,
mime types, etc).

However this is not enough. Assessing the functionality of a
portlet requires more than the configuration options available. In
the component realm, additional information is provided through
documents. Here, this option is also available.

Moreover, portlets offer an additional mechanism, i.e. the modes.
A mode is way of behavior. Both the content and the activities
offered by a portlet depend on its current mode. For instance, in
the “view” mode, the portlet renders fragments which support its
functional purpose (e.g. booking a flight seat). This is what we
normally mean by interacting with a traditional Web Application.

Additionally, WSRP contemplates other modes. The one of
interest in this context is the wsrp.:help mode. When in this mode,
the portlet may provide help screens that explains the portlet and
its expected usage. Some portlets will provide context-sensitive
help based on the markup the end-user was viewing when
entering this mode. When in this mode, all interactions are aimed
at describing what the portlet is about. It does not achieve any
functional goal.

In table 1 the attributes and metrics proposed for
understandability are shown.

Table 1. Attributes and metrics proposed for

understandability
Attribute Definition Metric Metric
Domain
Interface language The portlet | Number of | Natural
interface supports | languages number
different supported by
languages the Interface
Help mode The portlet may | portlet help | Boolean
provide help | mode support
screens that
explain the portlet
and its expected
usage
View mode The portlet | Portlet view | Boolean
renders mode support
fragments

which support
its functional

Vendors support The portlet vendor | Vendor Boolean
gives support to | support

the user availability

purpose
Ad-hoc mode The portlet Ad-hoc mode | Boolean
supports other | support
modes
Documentation/Us The portlet vendor | Documentatio | List (0..4):
er manuals provides the | n degree nonexistent
portlet with , scarce,
documentation/us normal,
er manuals in complete,
paper very
complete

3.2 Learnability

Learnability is the capability of the portlet to enable the user to
learn how the portlet achieves its aim. Following [11],
learnability metrics should be capable of evaluating or drawing
the user curve of performance on software operation, from a start
point of no knowledge about the evaluated sofiware. An external
learnability metric should be able to measure such attribute as the
behavior of user who is learning how to use the sofiware.

Traditional predictability attributes [8] can be used here e.g. on-
line help, documentation, manuals and the like. However, the
point to be underline here, is the existence of the wsrp.:preview
mode. In wsrp:preview mode, a portlet provides a rendering of its
standard wsrp:view mode content, as a visual sample of how this
portlet will appear on the end-user’s page with the current
configuration. This serves for the user to get familiarized with
how the portlet achieves its aim.

3.3 Customizability

Customizability refers to the attributes of software that enable the
software to be customized by the user, to reduce the effort
required to use it and also to increase satisfaction with the
software.

Table 2. Attributes and metrics proposed for learnability

Attribute Definition Metric Metric
Domain
On-line help The portlet | On-line help Boolean
includes on-line
help for guiding
the user during the
portlet utilization
Documentation/Us The portlet vendor | Documentatio | List (0..4):
er manuals provides the | n degree nonexistent
portlet with s scarce,
documentation/us normal,
er manuals in complete,
paper very
complete
Predictability Portlet interface | Portlet List (0..4):
icons are easily | predictability too
related to the difficult,
actions the portlet difficult,
performs normal,
easy, too
easy
Preview mode The portlet may | Portlet Boolean
provide a | preview mode

A first concern to be considered is the context or environment in
which the software needs to be customized. Being a web
application, portlets inherit the context properties contemplated
for ubiquitous web application ([13]), namely,

e Location: This attribute copes with the need for mobile
computing and location-aware services to capture
information about the location from which an application is
accessed. This is also related to the notion of Localization.
Localization is the capacity to tailor one Web site to the
idiosyncrasies of a given culture and it is becoming an
increasing concern. The aspects of cultural diversity that
need specific support are not only limited to the language,
but to a range of topics from date and calendar issues to
letter written figures or telephone numbers. These aspects
known as locales, are normally arranged along two features,
namely, Language and country. Different standardization
efforts are being conducted to set the possible values, and
thus we have ISO3166 and ISO639-2 standards. As part of
its requirement list, the portlet should indicate the languages
and countries it is expected to support.

e Time. This attribute addresses how the application adapts to
certain timing constraints such as opening hours of shops or
timetables of public transportation.

e Device: This attribute discusses the demand of ubiquitous
web applications for any media, in terms of multi-channel
delivery, and it provides basic information about the
hardware and software capabilities of the device accessing
the application. This feature can in turn be split into
Markup Type (e.g. HTML, WML20, or VoiceXML), and
User_Agent (e.g. Netscape702, msie60, or nokia7650).

e Network: This attribute considers adaptation from the
network viewpoint, and whether network context
information e.g., bandwidth or package losses, affects the
application.

e User: This attribute regards the need for personalization, i.e.
how the user profile (e.g., demographic data, knowledge,
skills and capabilities, interests and preferences, goals and
plans) are considered by the application.

Additionally, a portlet should consider an additional context: the

application in which the portlet is going to be framed. According

to this context, new characteristics can be included:

e Window states. Web applications are designed for being
rendered in a full page. A page is the unit of delivery. By
contrast, portlets tend to be rendered together with other
portlets. The portlet markup (known as fragments) is
delivered together with other portlets in the same portal
page. This implies that the space available for portlet
rendering can be constrained by the consumer. The so-called
Window state characteristic gives a hint about the space
available for portlet rendering. Options contemplated by
WSRP include: normal, indicates the portlet is likely sharing
the aggregated page with other portlets, minimized, instructs

the portlet not to render visible markup, but lets it free to
include non-visible data such as JavaScript or hidden forms,
maximized, specifies that the portlet is likely the only one
being rendered in the aggregated page, or that the portlet has
more space compared to other portlets in the aggregated
page; and solo, denotes the portlet is the only portlet being
rendered in the aggregated page. This attribute measure how
many window states are considered by the portlet.

e (SS. The portal environment can include look-n-feel
guidelines. All portlets’ rendering should share some
aesthetic guidelines to preserve the identity of the portal. If
the fragments of the portlet cannot be altered then, no
customization to the look-n-feel prescription of the consumer
is possible. Alternatively, the fragments can be
“parameterized” using Cascade StyleSheets (CSSs) ([16])
which are then instantiated by the consumer to its own
values. The CSS attribute is a Boolean that measures the
support of parameterized, WSRP-compliant fragments.

Customizability also includes the easiness with which
customization parameters can be obtained. Adaptive systems
obtain these parameters automatically (e.g. the user agent can be
readily obtained from the A#fp request). By contrast, adaptable
systems require the intervention of the user. For the portlet case,
these users can be the portlet consumer (e.g. the portal
administrator) or the end-user. Provided the portlet can be
customized to the given features, the portlet consumer has an API
to customize the portlet to the consumer idiosyncrasies. As for the
end-user, an edit mode can be available in the portlet for the end-
user to introduce her preferences. The existence of this WSRP-
compliant mode can then be seen as an attribute of the
customizability sub-characteristic.

In table 3 the attributes and metrics proposed for customizability
are shown.

Table 3. Attributes and metrics proposed for customizability

Window Space left for portlet Window state | (normal,
states rendering minimized,
maximized,
solo)
CSS The portlet consider CSS Boolean
aesthetic guidelines to | availability
preserve the identity of
the portal
Edit mode A mode for the end- | Edit mode | Boolean
user to configure the | availability
portlet

3.4 Compliance

Compliance is the capability of the portlet to adhere to standards,
conventions or regulations in laws and similar prescriptions
relating to usability.

Following [11], an usability compliance metric should be able to
measure an attribute such as the number of functions with, or
occurrences of compliance problems, which is of the software
product to failing to adhere to standards, conventions, style
guides or regulations relating to usability which are required to
be adhered.

Currently, there are two main standards for portlets, namely,
WSRP ([20]) that describes the interfaces and protocols that
regulate the interaction between the portlet consumer and the
portlet provider, and JSR168 ([12]) that faces portlet
implementation in the Java world.

It should be noted that WSRP schemas can be extended to cater
for special needs. Notice however, that these are ad-hoc
extensions than can jeopardize portlet interoperability.

In table 4 the attributes and metrics proposed for compliance are
shown.

Table 4. Attributes and metrics proposed for compliance

Attribute Definition Metric Metric

Domain

Interface The portlet follows the | WSRP Boolean
Standards WSRP standard compliance

Extensions The portlet includes | WSRP Boolean
some extension extensions

Implementation | The portlet implements a | JSR168 Boolean
standards standard (as JRS 168 for | compliance

Java)

Attribute Definition Metric Metric
Domain
Location The portlet captures Location Boolean
information about the availability
location from which it
is accessed
Localization The portlet indicates Language Standard
the languages and language list
fguﬂmzsnn is expected Country Standard
support. country list
Time The portlet allows to Time Boolean
adapt the application adaptation
with respect to certain | availability
timing constraints
Device The portlet can adapt Mark-up type | List
itself to different -
hardware and software User agent List
capabilities
Network The portlet can adapt Network Boolean
itself to different adaptation
networks availability
User The portlet takes into User_profile WSRP
account the personal structure
characteristics of the
user

4. CONCLUSIONS AND FUTURE WORK

The recent delivery of WSRP will certainly facilitate a market for
portlets in the medium run that will “make the Internet a
marketplace of visual web services (i.e. portlets), ready to be
integrated into portals” as stated in the WSRP proposal. This
endeavor will be forwarded if quality models are available to ease
the selection among portlet providers.

This work focuses on usability as a key ingredient of the quality
model. The study is restricted to those aspects we have identified
as distinctive of the portlet case. Other usability subcharacteristics
such as attractiveness (i.e. the extent of which user likes the
software during operational testing, usability testing or user
operation ([11]) are not specific for portlets, and models proposed
for web applications can be used here..

Once the definition of metrics will be complete for this and for
the other quality characteristics, it would be necessary to validate
them. The validation must be done in two ways. The first one is
the formal validation of metrics using specific formal
frameworks as the ones proposed by [17] or [21]. The second one
is the empirical validation that could be done through surveys,
controlled experiments and case studies. As a result of the
validation process we will have a set of metrics useful for a given
quality characteristic. Using these metrics it will be possible to
construct a composition function for the calculation of each
quality characteristic for a given portlet. The result of applying
these functions to several portlets (which have the same utility)
can be used to determine and to choose the best one for the user
from the quality point of view.

After that and in addition to the quality characteristics of the
product itself, it will be necessary to consider other factors like
those relative to the service supplier (ISO 14598-4-5). For
instance, the software engineering processes used, and the
reputation of the portlet provider (e.g. financial stability,
experience, capacities, availability, service maintenance,
development plans, etc.). It rests to be seen what adaptations (if
any) are needed to accommodate the models proposed for COTS
to the portlet case.

5. ACKNOWLEDGMENTS

This work is supported by the Spanish Science and Technology
Ministry (MCYT) and the European Social Funds (FEDER) under
contracts TIC2002-01442 and TIC 2003-07804-C05-03). It also
benefits from funding of “Consejeria de Ciencia y Tecnologia” of
Junta de Castilla la Mancha (PCB-02-001).

6. REFERENCES
[1] Anuff, E. (2004) WSRP and the Enterprise Portal,
http://www.syscom.com/story/print.cfm?storyid=44674

[2] Bertoa, M.F. and Vallecillo, A. “Quality Attributes for
COTS Components”. In Proc. of the 6th ECOOP Workshop
on Quantitative Approaches in Object-Oriented Software
Engineering (QAOOSE 2002). Malaga, Spain, June 2002.

[3] Botella P., Burgués X., Carvallo J.P., Franch X., Pastor J.A.
and Quer C. (2003) Towards a Quality Model for the
Selection of ERP Systems in Component-Based Software
Quality. Cechich et al (eds). LNCS 2693. pp. 225-245

[4] Cai, X., Lyu, M.R,, Wong, K-F. and Ko, R. (2000).
Component-Based Software Engineering: Technologies,
Development Frameworks, and Quality Assurance Schemes.
Proc. of the Seventh Asia-Pacific Software Engineering
Conference (APSEC’00), IEEE Computer Society, 372-379.

[5] Calero, C., Ruiz, J. and Piattini, M. (2004). A metric web
survey using WQM. Proc. of the International Conference on
Web Engineering (ICWE’04).

[6] Dromey, R.G. (1996). Cornering the Chimera. IEEE
Software 20 (1), 33-43.

[7] Fernandez, G. and Rossi, P: (2000). Measuring Distributed
Software Quality: A First Step. Proc. of the Argentine
Symposium on Software Engineering, 19-28.

[8] Franch, X. and Carvallo, J.P. (2003). Using Quality Models
in Software Package Selection. IEEE Software 20 (1), 34 -
41.

[9] Garvin, D. (1984). What does “product quality” really
means?. Sloan Management Review, 24.

[10] ISO (1999). ISO/IEC 14598-4. Information Technology -
Software product
evaluation - Part 4 Process for purchasers.

[11] ISO (2001). ISO/IEC 9126. Software Engineering-Product
Quality. Partes 1 a 4. International Organization for
Standardization/ International Electrotechnical Commission.

[12] JSR 168, Java Community Process. JSR 168 portlet
specification, October 2003.
http://www jcp.org/en/jsr/detail?id=168

[13] Kappel, G., Proll, B., Retschitzegger. W., Schwinger,
W.(2003), Customisation for Ubiquitous Web Applications:
A Comparison of Approaches. International Journal of Web
Engineering and Technology, 1(1): 79-111

[14] Kitchenham, B. and Pfleeger, S.L. (1996). Software Quality:
The Elusive Target. IEEE Software 20 (1), 12-21.

[15] Landor, P. (2003). Understanding the Foundation of Mobile
Content Quality. A Presentation of a New Research Field.
Proc. of the 36th Hawaii International Conference on System
Sciences. IEEE Computer Society, 1- 10.

[16] Niessink, F. (2002) Software Requirements: Functional &
Non-functional Software Requirements.
www.cs.uu.nl/docs/vakken/swa/ Slides/SA-2-
Requirements.pdf

[17] Poels, G. and Dedene, G. (2000). Distance-based software
measurement: necessary and suffcient properties for software
measures. Information and Software Technology 42, 1, 35—
46.

[18] Sedigh-Ali, S., Ghafoor, A. and Paul, R. A. (2002). Metrics-
Guided Quality Management for Component-Based
Software Systems. Proc. of the 25th Annual International
Computer Software and Applications Conference
(COMPSAC’01), IEEE Computer Society.

[19] Simdo, R.P. y Belchior A. (2003). Software Component
Quality. In: Quality in Component Based Systems. Cechich,
A. et al. (eds.). Springer-Verlag.

[20] WSRP . Web Service for Remote Portals (WSRP) Version
1.0, 2003. http://www.oasis-open.org/commitees/wsrp/

[21] Zuse, H. 1998. 4 framework of Software Measurement.
Walter de Gruyter, Berlin.

[22] Diaz, O, and Rodriguez, J.J. (2004) Portlets as Web
Components: An Introduction, Journal of Universal
Computing Science, 10(4)

WS-QoC: Measuring Quality of Service Compliance

Ali Shaikh Ali Omer F. Rana David.W.Walker
Cardiff University Cardiff University Cardiff University
Newport Road CF24 3AA Newport Road CF24 3AA Newport Road CF24 3AA
Wales, U.K Wales, U.K Wales, U.K

Ali.Shaikhali@cs.cf.ac.uk

ABSTRACT

Web services have been the focus of much research activities
in recent years, especially those that provide a virtual frame-
work for resource sharing across institutional boundaries. As
a consequence of this, we envision a service rich environment
in the future, where service consumers are faced with the in-
evitability of selecting the “right” service. In such a scenario
the Quality of Service (QoS) serves as a benchmark to differ-
entiate between services. However, the autonomy of service
providers implies that the provider may defect in the course
of service delivery, and not accurately deliver the quality
agreed upon within a Service Level Agreement (SLA). It be-
comes necessary, therefore, to measure how “trustworthy” a
provider has been in complying with the agreed levels in the
SLA in the past. We propose Quality of Compliance (QoC),
which provides a mechanism for assessing the level of com-
pliance of the service provider to an SLA, and therefore gives
an indication of the actual service quality delivered. We also
present our prototype implementation of WS-QoC.

Categories and Subject Descriptors
C.4 [Computer Systems Organization|: Performance of
Systems— Reliability, availability, and serviceability

General Terms
Algorithm, Performance, Reliability, Measurement

Keywords

Trust, Reputation, Quality of Service

1. INTRODUCTION

The pervasiveness of Web services provides a novel form of
communication between individuals and organisations, lead-
ing to new flexible work patterns and making organisational
boundaries more permeable. Upcoming standards for the
description and advertisement of, as well as the interaction
with, Web services promises a seamless integration of busi-
ness processes and applications over the Internet. As a con-

O.FRana@ocs.cf.ac.uk

David.W.Walker@cs.cf.ac.uk

sequence of the rapid growth of Web services, consumers
are faced with the inevitability of selecting the “right” ser-
vice. In such a scenario the Quality of Service (QoS) serves
as a benchmark to differentiate services [20] — and thereby
aid the selection process. In this paper we assume that the
current rapid takeup of Web services is likely to lead to a
service ‘rich’ environment, necessitating users to select be-
tween services offering related functionality.

In the context of Web services, QoS metrics determine the
service usability and utility, both of which influence the pop-
ularity of the service. It comprises of techniques that aim to
bring a balance between the needs of the service consumer
and those of the service provider — while being constrained
by the limited network and server resources [11]. Deliver-
ing QoS is a critical and significant challenge because of its
dynamic and unpredictable nature. To ensure this QoS, the
service consumer jointly with the service provider should de-
fine a Service Level Agreement (SLA) as part of a service
contract. An SLA provides some guarantees about the likely
behaviour of a Web service for the consumer. An SLA also
defines the mutual understandings and expectations of ser-
vice delivery between the service provider and service con-
sumer. An SLA is often defined between a single provider
and consumer — although there may be cases where both
providers and consumers can be grouped — and the SLA is
defined for the group.

Although, the main goal of the SLA is to enforce the ser-
vice delivery based on various QoS properties, the parties
in the SLA cannot always be assumed to be trustworthy to
fulfil their obligations. Hence, a service provider which of-
fers excellent QoS metrics for delivering a particular service
might not accurately deliver the agreed levels of these met-
rics. There is no mechanism to quantify how trustworthy
the service provider has been in previous service deliveries.
The degree of trustworthiness has been loosely defined as the
“reputation” of the provider in [1], [5], [19] and [9]. These
authors quantify the reputation of the entities in their sys-
tem based on plausibility consideration. However, plausibil-
ity consideration, which is contingent upon prior beliefs, fails
to quantify the degree of trustworthiness in an entity. Obre-
iter [12] points out the limitation of plausibility considera-
tion as follows: (1) the system assumes that the recommen-
dation from a trusted entity is always correct (trustworthy);
(2) the recommendations from newcomers are considered un-
trustworthy sometimes as there is no first hand experience
with the recommendee and the recommendation behaviour

of the recommender is unknown; (3) the plausibility con-
sideration may be infeasible due to the lack of background
information — although their recommendation might be cor-
rect; (4) recommendations can only be credibly passed on
by commonly trusted entities. If the system lacks such enti-
ties, the recommender is solely in charge of the distribution
of the issued recommendation; (5) the system lacks a formal
method for the defamed entity to appeal and defend itself
— which may lead to (6) doubts about the effectiveness of
the reputation system. In this context, effectiveness refers
to the result of pruning untruthful recommendations, and
to the outcome of disseminating recommendations respec-
tively. If there are doubts about the effectiveness of such
pruning, the entities lack incentive for good behaviour.

Subsequently, neither the traditional QoS metrics nor the
plausibility consideration serves as a benchmark to select
the “right” service. In light of this issue, we introduce a
new concept called the “Quality of Compliance” (QoC) to
make sure that the “right” service is more appropriate to the
intended (and expected) behaviour. The QoC of a provider
(for a particular service) is defined as the degree of com-
pliance for delivering the qualities of the service as defined
in the SLA. Therefore, service selection should include the
QoC metric along with the more widely used QoS metrics.

The remaining of this paper is structured as follows. Sec-
tion 2 provides a survey of existing approaches for quanti-
fying the trustworthiness of entities in distributes systems,
and the existing findings for selecting services based on QoS
metrics. A discussion of the relationship between QoC, QoS
and Trust is provided in Section 3. Section 4 introduces a
framework for integrating QoC in SLA-enabled Web services
model.

2. RELATED WORK
2.1 Trust and Reputation

The significance of quantifying the trustworthiness of par-
ties in distributed systems is evident from on-going research
— especially in the context of file sharing systems such as
KaZaA. There are many approaches introduced in the liter-
ature for assisting the user in identifying the trustworthiness
of other entities. We categorise these approaches as follows:

(1) Collaborative Trust: The basic idea of collaborative
trust, or “network of friends”, is built on the assumption
that if A does not have a trust relationship with B, then A
asks his “friends” about their trust opinions or recommen-
dations about B. Then A usually weighs the opinions by
the trust that A has on the particular friend that returned
a recommendation. A system that uses collaborative trust
to retrieve the trust value of an entity is usually called a
recommendation-based reputation system. An example of a
collaborative trust system aforementioned is EigenTrust [9],
a trust management system for Peer-to-Peer systems. In
EigenTrust each peer ¢ is given a unique global trust value
that reflects the trust that the whole system puts in ¢ based
on past download experience. The system computes the
global trust value of a peer ¢ by computing the left principle
eigenvector of a matrix of the normalised local trust values
of all the peers in the network that had transactions with 4.
The local trust values of any peer towards i is basically the
average number of satisfactory transactions it has conducted

with ¢. By having peers use these global values to choose
the peers from whom they download, the mechanism is ef-
fectively used to identify malicious peers and isolate them
from the network.

(2) Rule-Based mechanisms: The general concept of this
approach is to derive rules to determine whose recommen-
dation is trusted. Rahman and Hailes [1] propose a model
for the deployment of rules in virtual communities to al-
low agents to decide which others agents’ opinion they trust
more. In this way, agents can progressively tune their trust
in other entities based on the outcomes of previous interac-
tions.

(3) Transfer of Importance: The basic idea of this ap-
proach is that if A has a link to B, then a portion of A’s
importance is passed to B’s. A well-known reputation sys-
tem that follows this approach is PageRank [13], the core
ranking system for Web pages performed by the Google. com
search engine. The basic idea of PageRank (PR) is that the
value associated with each page depends on the PR of the
pages pointing to it. A page has a high PR value if there
are many pages pointing to it, or if there are some pages
pointing to it that have high PR values. The PR algorithm
represents the structure of the Web as a matrix, and PR
value as a vector. The PR vector is derived by computing
the matrix-vector multiplication repeatedly.

(4) Measuring ‘expertise’ similarity: This approach is
based on measuring the similarity in the competence of com-
munity members. This requires the maintenance of some
type of user profile. Several multi-agent systems have been
developed to serve this purpose. The agents in these systems
act on behalf of community members, maintaining profiles
or routing questions to other member agents. These agents
use profile similarity as a criterion for finding possible part-
ners. This approach is closely related to the MatchMaking
mechanism — whereby agents with similar expertise can be
grouped together to offer a service. See [18] for a discussion
on expertise similarity.

Although these approaches are created to assist the user
to identify the trustworthiness of other entities, they do not
measure the real past performance of the entities as they are
based on plausibility consideration. These approaches are
mainly aimed at providing a subjective assessment of other
service providers. Extending them with real measurements
from a monitoring entity therefore is likely to lead to more
reliable ratings.

2.2 Quality of Service

Selecting services based on Quality of Service has been the
subject of intense research in recent years and has reached a
certain degree of maturity. Rashid et al. [2] propose a system
for discovering and selecting services based on QoS metrics.
In their system, they use the propertyBag feature of the
UDDIe registry [16] to publish QoS metrics in the registry.
They also use the range-based search feature of UDDIe to
search for QoS metrics based on numerical ranges, utilis-
ing operators such as “less-than”, “greater-than” and “be-
tween”, in addition to logical operators such as AND/OR.
Tian et al. [17] propose another framework, WS-QoS to en-
able an efficient Web service selection based on application

level QoS parameters. A broker service evaluates the QoS
requirements of a client against the QoS capabilities of a
service provider to find the most suitable service provider
for each client. In this case, each service interface is an-
notated with particular QoS attributes that can be offered
for that service. Some of these are specific to the service,
while others apply for all services managed by a particular
provider [3]. Web services such as:

Availability: The quality aspect of whether the Web ser-
vice is present or ready for immediate use. It represents
the percentage of time the server is available during an ob-
servation period. Larger values represent that the service
is always ready to use, while smaller values indicate un-
predictability of whether the service will be available at a
particular time [11].

Accessibility: Accessibility is the quality aspect of a ser-
vice that represents the degree to which it is capable of re-
sponding to a service request. It may be expressed as a
probability measure denoting the success rate or chance of
a successful service instantiation at a point in time. There
could be situations when a Web service is available but not
accessible. [11]

Accuracy: Accuracy defines the error rate produced by the
service [14].

Payment Rate: Rate at which the service/transactions are
charged [15].

Throughput: This metric represents the number of user
requests that are handled by the system [14]. The response
time of a Web service is related to its throughput. It is well
known that the response time of a given system decreases
as the system throughput increases.

Integrity: Integrity is the quality aspect associated with
how the Web service maintains the correctness of the inter-
action in respect to the source. Proper execution of Web
service transactions will provide the correctness of interac-
tion [11].

Response Time: This is the most important QoS metric
from a user’s perspective. Response time measures the time
interval between sending a request to execute a service, and
the time that the response has been received by the user [15].

Latency: The time taken between the service request ar-
riving, and the request being serviced [14]. The throughput
of a system is related to its latency.

Performance: Performance measures quality aspect as-
sociated with a Web service — and is measured in terms
of throughput and latency. Higher throughput and lower
latency values represent good performance of a Web ser-
vice [11].

Reliability: Reliability also measures the quality aspect of
a Web service, and represents the degree of being capable of
maintaining the service and service quality. The number of
failures per month or year represents a measure of reliability
of a Web service. Reliability is also defined as the probability

that a request is correctly responded within the maximum
expected time frame [11].

Regulatory compliance: Regulatory compliance measures
conformance with some pre-defined (and agreed on) rules,
law, standards, or established SLA [11],[14].

Security: Security is the quality aspect of the Web ser-
vice of providing confidentiality and non-repudiation by au-
thenticating the parties involved, encrypting messages, and
providing access control. [11]

Some of these metrics can be directly measured — using mon-
itoring tools that can be provided within the Web services
hosting environment, while other metrics need to be derived
from measured values. For instance, “Security” is a diffi-
cult metric to quantify — whereas “Latency” and “Response
Time” can be directly measured.

Monitoring the compliance of service providers for the agreed
QoS has also been introduced in literature. Bhoj et al [6] for
example, describe an architecture that uses contracts based
service level agreements (SLAs) to share selective manage-
ment information across administrative boundaries. Although,
the prototype implementation of this architecture has been
used for automatically measuring, monitoring, and verify-
ing SLAs for Internet services it does not provide a means
for discovering services based on service providers’ compli-
ance metrics. In addition, the compliance report generated
from the monitoring tool is meant to targets system admin-
istrators to analysis how well the system is conforming to
SLAs. Thus, service requestors does not benefit from this
information.

3. THE RELATIONSHIP BETWEEN QOC,
QOS AND TRUST

QoS metrics have often served as the benchmark for select-
ing services. Identifying a service provider likely to deliver
a specified QoS relies primarily in assessing the quality met-
rics supplied by the providers themselves. The current as-
sumption is that service requesters trust these metrics. The
autonomy of the service providers implies that the provider
may defect in the course of the transaction, and not deliver
the agreed levels of QoS defined and agreed upon before.
Therefore, the QoS metrics supplied by the service provider
are no longer trusted without a mechanism to prove that
these metrics are actually being met. This verification can
be undertaken during the course of a transaction, or once a
transaction has completed. The QoC proposed in this paper
provides a mechanism for assessing the level of compliance
of the service provider — thereby giving an indication of the
actual QoS delivered by a service provider.

The concept of QoC stems from the fact that there has
been no practice of recording the achieved service levels
once a transaction has been completed. Doing so gives an
insight into the providers past performance by providing
necessary data to progressively assess the compliance levels
over a range of past transactions. QoC refers to the ser-
vice providers’ ability to meet the service level of each QoS
metric specified in the SLA without incurring penalties. For
example, the QoS metric ‘response time’ has a correspond-
ing QoC value which gives an indication of the compliance

of the service provider for the response time metric. Con-
sider the following scenario, if a user agrees with a service
provider to invoke an operation for a 100 times with the
following QoS metric: response time = 10 seconds for each
invocation and the QoC of the response time for that op-
eration is 90%, then the user can expect that the response
time of 90 out of 100 invocations will be 10 seconds. The
remaining 10 invocation maybe violated, e.g. response time
> 10 seconds.

4., WS-QOC RUNTIME ARCHITECTURE
Various architectural building blocks of WS-QoC are dis-
cussed here, namely the elementary components needed to
enable the management of the reputation through the var-
ious stages of its lifecycle. Section 4.1 gives an insight into
the SLA specification, section 4.2 describes the main com-
ponents of the WS-QoC framework. Section 4.3 describes
the information flows and interactions between the different
WS-QoC components. Section 4.4 describes our prototype
implementation.

4.1 Service Level Agreements

An SLA defines mutual understandings and expectations of
a service between the service provider and service consumer.
The service guarantees are about what transactions need to
be executed and how well they should be executed. An SLA
must have the following components:

Parties: describes the participants involved in the SLA and
their respective roles.

Validity Period: defines the period of time over which the
SLA will be valid.

Scope: defines the services covered in the agreement.

Service Level Objectives: are the levels of service that
both the users and the service providers agree on, and usu-
ally include a set of service level parameters, such as avail-
ability and execution performance. Each aspect of the ser-
vice level, such as availability, will have a target level to
achieve.

Service level parameters: the means by which these lev-
els can be measured.

Typically, each Web service interacts with many other Web
services, switching between roles of being a provider in some
interactions and a consumer in others. Each of these inter-
actions could potentially be governed by an SLA. The Web
Service Level Agreement (WSLA) [7] project addresses ser-
vice level management issues and challenges in a Web Ser-
vices environment, for particular SLA specifications. The
project was designed to specify SLAs in a precise and flexi-
ble manner to automate the process of monitoring and met-
ric collections. An agreement that follows the WSLA spec-
ification compromises three sections: parties, service defi-
nitions and obligations. The parties section contains con-
tact and technical information about the involved parties.
Two types of parties are defined: signatory parties, namely
service provider and service consumer, and supporting par-
ties. The supporting parties in the context of WS-QoC are
the monitoring service, the SLA deployment service and the

compliance service, see section 4.2 for details about these
services. The service definition section contains one or more
service objects. A service object is an abstraction of a ser-
vice (e.g. a WSDL operation), whose properties are rele-
vant for defining guarantees described in the SLA. A metric
within such an SLA specifies how a value is measured (by
defining a measurement directive) or specifies a function to
compute the parameter. The function can take other met-
rics and other input into account. Figure 1 is an exam-
ple of the service definitions we use in our prototype im-
plementation. The service definition contains one SLA pa-
rameter: ProcessTimeRatio which is composed from the
ProcessTime (representing the time taken to process input
data). WS-Agreement [4] is another specification which of-
fers an XML language for specifying an agreement between a
resource/service provider and a consumer, and a protocol for
creation of an agreement using agreement templates. The
main difference between WSLA and WS-Agreement is that
WSLA, unlike WS-Agreement, has a concrete specification
for describing how the metrics can be monitored.

<ServiceDefinition name="ClassifierService">
<Operation name="classifyDataSet"
xsi:type="WSDLSOAPOperationDescriptionType">
<SLAParameter name="OverloadPercentage"
type="float" unit="Percentage">
<Metric>0verloadPercentageMetric</Metric>
<Communication>
<Source>Provider_A</ Source >
<Pull>ZAuditing</Pull>
<Push>ZAuditing</Push>
</Communication>
</SLAParameter>

<Metric name="ProcessTime" type="float" unit="seconds">
<Source></Source>

<MeasurementDirective xsi:type="SLA_ID" resultType="float">

<RequestURL>
http://ProcessTimeMonitoringService/
</RequestURL>
</MeasurementDirective>
</Metric>
</Operation>
</ServiceDefinition>

Figure 1: The definition of the service in terms of
the service parameters and their measurement.

The obligation section contains two types of obligations: a
service level objective and an action guarantee. A service
level objective is a guarantee that a specific SLA parameter
will have a particular value within a given time period. The
action guarantee is the agreement to execute a particular
task within a defined situation. For example: a notifica-
tion is sent if a service level objective is violated. Every
obligation has an obliged party. Service level objective are
typically the obligation of the service provider, and not of
supporting parties. Figure 2 is an example of a service level
obligation constructed from the service definition shown in
Figure 1. The ServiceLevelObjective in this figure states
that the process time must be less than 10 seconds. The
ActionGuarantee shows that a violation notification should
be sent to the SLA Deployment Service in case of a violation
that occurs during the process time.

4.2 WS-QoC Components

The architecture of the WS-QoC consists of six components:
the service provider, the service consumer, the monitoring

<Obligations>
</ServiceLevelObjective>
<ServiceLevelObjective name="ProcessTimeLessThan10">
<Obliged>ServiceProvider_Y</Obliged>
<Validity>
<Start>2004-03-25T14:01:00.000-05:00</Start>
<End>2004-03-25T14:02:00.000-05:00</End>
</Validity>
<Expression>
<Predicate xsi:type="Less">
<SLAParameter>ProcessTime</SLAParameter>
<Value>10</Value>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
</ServiceLevelObjective>

<ActionGuarantee name="ProcessTimeNotificationGuarantee">
<Obliged>ZMonitoringService</Obliged>
<Expression>
<Predicate xsi:type="Violation">
<ServiceLevelObjective>
ProcessTimeLessThan10
</ServiceLevelObjective>
</Predicate>
</Expression>
<EvaluationEvent>NewValue</EvaluationEvent>
<QualifiedAction>
<Party>ZDeploymentService</Party>
<Action actionName="notification" xsi:type="Notification">
<NotificationType>Violation</NotificationType>
<SLAParameter>ProcessTime</SLAParameter>
</Action>
</QualifiedAction>
<ExecutionModality>Always</ExecutionModality>
</ActionGuarantee>
</0Obligations>
</SLA>

Figure 2: The obligations of the parties, referring to
parameters defined in figure 1

service, the SLA deployment service and the service broker
— as illustrated in Figure 3. The QoC, the SLA deployment
and the monitoring services in our context are services pro-
vided by trusted third parties. The concept is similar to the
issuance of digital certificates from a Certification Agency
(CA) where the CA is considered as a trusted third party.
It is also possible for interactions between these components
to be encrypted Therefore, a message receiver trusts the con-
tent of the message as well as where the message came from.

According to this architecture, the service provider publishes
an SLA-enabled Web service and sends it to the service bro-
ker for advertisement in a repository. A service consumer
registers with the service broker — and finalises the SLA with
the appropriate service provider. Once the service provider
and consumer negotiate the relevant parameters, the SLA
is deployed via an SLA deployment service. The deploy-
ment service verifies the SLA’s parameters and assigns the
service level objectives, defined in the SLA, to the relevant
parties. The transaction then is monitored by a monitoring
service to detect any violations of service level objectives.
Any violation is sent to the responsible party and to the
SLA deployment service which captures the violation and
updates the compliance reputation of the responsible party
accordingly.

4.2.1 The SLA Deployment Service (SDS)

ool

SLA enabled
Web service

Service
Service Provider
Consumer SLA [certiicate]
\ —
: -
Service Fw: Service

Invocation Invocation

Monitoring
Service

SLA Deployment
Service

Figure 3: The Architecture of the WS-QoC Frame-
work

The SLA Deployment Service has two primarily functions:
(1) SLA activation, and (2) SLA termination. In the for-
mer case, SDS receives an SLA document signed by both
signatory parties and verifies the SLA obligations of each
party. The verification process confirms whether the SLA
parameters can be monitored. Once, the SLA is verified,
SDS distributes the obligations to the parties involved. It
must be addressed that signatory parties (service provider
and consumer) may do not want to share the whole SLA
with thier supporting parties i.e. third parties. The SDS
must extract the relevant information for each party. Thus,
each party receives his own obligation only.

Once the SLA has been terminated, SDS issues a receipt and
sends it to the QoC service. A specification of the receipt
is proposed for the context of WS-QoC, and comprises the
SLA document that was agreed upon. The service level ob-
jective section in the SLA is extended to include information
about the actual values of the delivered SLA parameters.
Figure 4 illustrates the specification of the extended service
level objective.

<xsd:complexType name="ServicelLevelObjectiveType">
<xsd:sequence>
<xsd:element name="Obliged" type="xsd:string" />

<xsd:element name="Expression" type="wsla:LogicExpressionType"/>

<xsd:element name="DeliveredValue" type=" xsd:string"/>
</xsd:sequence>
</xsd:complexType>

Figure 4: The extended specification of the service
Level Objective in the receipt specification

4.2.2 The Monitoring Service (MS)

The Monitoring Service (MS) is responsible for monitoring
service invocations, detecting any violation of service level
objectives and sending action guarantees to responsible par-
ties.

MS is implemented as a third party. It is important to im-
plement the MS as a third party as it is assumed that none
of the signatory parties, i.e. service provider and consumer,
trust each other to perform their obliged tasks correctly.
Thus MS acts in a supporting role and are sponsored by
either one or both signatory parties. The MS monitors the

service invocation from outside the service provider’s do-
main by probing and intercepting client invocations.

MS comprises five components: Control Management Ser-
vice, Monitoring Service, Measurement Service, Evaluation
Service and Notification Action Service. See figure 6 for the
architecture of the Monitoring Service.

The Control Management Service receives an obligation to
monitor the execution of an SLA. The main role of this
service is to propagate the obligations between the sub-
components and control the interaction between them.

The Measurement Service maintains run-time information
on the metrics that are part of the SLA. It measures SLA
parameters such as response time or availability. Two type
of measurement services are implemented: (1) SLA Mea-
surement Service and (2) Metric Measurement Service. The
Metric Measurement Service measures a particular metric
such as response time. The SLA Measurement Service acts
as a wrapper service or a manager for all the Metric Mea-
surement Services for an SLA. Each SLA has its own SLA
Measurement Service. See figure 5

i

[rvs
avs T DB for

: SMs Meas:remem

RTMS: Response Time Measurement Service
AMS: Availability Measurement Service

SMS: Security Measurement Service

SOAP Message

SLA Measurement Services.
Each SLA has a measurement service for its own
SOAP message is
forwarded to the
responsible

SLA Measurement service
for this invocation

Figure 5: The Architucture of the Measurement
Service

The Evaluation Service is responsible for comparing mea-
sured SLA parameters against the thresholds defined in the
SLA and notify the Action Service. It obtains measured val-
ues of SLA parameters from the Measurement Service and
tests them against the guarantees given in the SLA. This is
done after the end of each invocation.

The Action Service is responsible for notifying the respon-
sible parties. Each SLA obligation has ActionGuarantee
clause which defined the action required in case of violation,
see 2 for an example.

4.2.3 The Service Broker (SB)

The Service Broker in our context supports two main func-
tions: (1) support for service discovery based on QoC and
QoS metrics, and (2) support for dynamic update of QoC
for services. The UDDle [16] registry service provides the
basis for the SB. UDDIe extends the UDDI registry to al-
low service providers to publish information about their ser-
vices in a PropertyBag which extends the businessService
structure found in a standard UDDI registry. UDDIe has
been used primarily to publish services with their QoS in-
formation and subsequently to search for a service based on
QoS properties [2]. The QoS metrics are published in the

¥ Measurement

= | Control Evaluation
Manager
——Vv
-.a| Notification
Action

Figure 6: The Monitoring Service Architecture

propertyBag. We use the propertyBag to publish the QoC
metrics for services. However, we restrict updating the QoC
metrics to the Compliance Services.

4.2.4 The QoC Service

The QoC Service is the main component of WS-QoC. Its
role is to update the QoC metrics associated with a set of
services. It receives a receipt from the SLA deployment
service, which includes the actual and projected values of the
violated QoS metrics. For each QoS metric, the QoC service
computes the difference between the predicted or suggested
value, and the actual value delivered.

Hence, every QoS metric m in the SLA has a projected and
an actual value. We can therefore consider the SLA to be
aset: SLA = {m',...,m"} of metrics that need to be sat-
isfied. The projected value m,, is the value that the service
consumer and provider have agreed upon, and is defined in
the SLA. The actual value m, is the value that the service
provider delivers, and is measured by the monitoring service
—hence: AM = (mp—myg). In the context of an SLA, there-
fore, we can determine AM for the i*™ metric (1 <i < k) —
leading to:

AM?

a

normalised AM" =

This normalised value allows us to ensure that we can
fairly compare (within some limited bound) different met-
rics. normalised AM® can be positive or negative. A posi-
tive value occurs when the actual value is less than the pro-
jected value, and vice versa. As not all metrics are likely to
be of the same significance to a user, we can priorities each
metric — and therefore also the difference observed for that
metric (between the actual and the predicted values). This
leads us to the concept of a weighted (by wi) normalised
difference for a given metric, hence:

normalised AM*® =

— X W', where (0 < w' < 1)

a large difference in some metrics is considered to be more

significant than others. By default, all metrics are treated
in the same way (w® = 1,Vi) by the QoC service, and in
some instances it is possible to ignore certain metrics as not
being of significance in testing compliance (i.e. w’ = 0).
This weighted difference can be calculated for all metrics in
the SLA:

k i
= Z AM X w'
=1

me

In a strict sense, AM provides an indication of compliance
of an SLA between a service user and provider — suggesting
that the actual value provided must be ezactly the same
as that requested/predicted. However, it is possible that
compliance is not intended to be exact, i.e. AM?® can lie
within a range, or that two metrics may have a relationship
that must hold true, i.e. R(AM?®, AM?) (for some metrics
m* and m?) must evaluate to true for the SLA on metrics m’
and m? to be compliant. An example of such a relationship
R can be a threshold — for example:

1 if AM® < threshold,
0 otherwise

R(AMY) = {

this defines a Boolean relationship that can be tested with
reference to a threshold. Hence, the function R here indi-
cates that the difference between the actual and predicted
value must not exceed a threshold, for that particular metric
to be considered compliant. There are a variety of other re-
lationships R that may also be defined — with such functions
taking one or more arguments. Such an approach provides
greater flexibility when comparing metrics within an SLA
with measured values. Using this approach, we can there-
fore deduce that compliance for metric m’ = R(.). One can
now compute the compliance for an entire SLA as:

k

1 ,

compliance = Z E R’
i=1

which assumes that there are k metrics in the SLA (as in-
dicated above). All of the definitions above assume a single
transaction —i.e. there has been a single interaction between
the service provider and the consumer. One can therefore
generalise to n transactions, where compliance is now tested
across a complete set of interactions between a user and
provider. Hence, the normalised weighted difference for the
entire SLA is:

and using a similar argument, the compliance for the entire
SLA can be calculated as:

n

1 Ly
:kanZR<J)

j=1i=1

4.3 Interactions between WS-QoC components

WS-QoC lifecycle consists of six distinct stages. We assume
that the SLA is defined for a Web service (the interface for
which is defined in WSDL), which is running within the
service providers domain. The stages and the components
that implements the functionality needed during the various
stages are as follows:

Stage 1: Service description, advertisement and dis-
covery based on QoS and QoC

In the context of our framework, service providers must
explicitly publish their services with pre-defined QoS met-
rics. In the WSDL specification document, there is no ex-
plicit provision for associating QoS metrics with the ser-
vice definition. Therefore, we extend the WSDL document
and include an addition tag ServiceData similar to the
ServiceDataElement tag in the Open Grid Services Archi-
tecture (OGSA) [8] specification. The ServiceData tag is
utilised to encode QoS parameters associated with a service.
The ServiceData tag is mapped to the propertyBag exten-
sion in the UDDIe [16] registry service, which eventually
makes this QoS metrics searchable. We have developed a
service publishing tool wizard that automates the publish-
ing process by taking in two WSDL-based documents: i)
service interface definition, and ii) service implementation
and publishes the service in the UDDIe. The tool helps ser-
vice providers to include QoS attributes associated with a
service in the service interface definition document, and pub-
lish the service in the UDDIe registry — without having to
write any XML code. We have also implemented a tool that
automates the discovery process as illustrated in Figure 7.
The tool asks the user to fill in the QoS and QoC require-
ments of the required service. The tool then inquiries the
UDDIe registry which returns the list of matching services.
Once the results are returned from the registry, the tool rea-
sons about the QoS and QoC information for services and
returns the best selected service to the service requester.

Stage 2: SLA Negotiation and Establishment

The service information published in the service broker con-
stitutes an offer being made to the user. In this stage, the
service requester retrieves the SLA metrics from the service
offering, combines them into various SLA parameters and
obligations and sends them to the service provider. The ser-
vice provider in turn either accepts or rejects the request.
In the former case, the service provider may accept all the
obligations or negotiates with the service requester on vary-
ing some of the obligations. The outcome of the negotiation
process is a single SLA document comprising the SLA pa-
rameters and obligations of all the involved signatory and
supporting parties. Once the SLA has been established, it
is sent for deployment to the deployment service.

Stage 3: SLA Deployment

The deployment process involves two steps. In the first step,

M=%

é; Service Discovery

"’ WS-QoC

Service name: |[Maths|

QoS QoS Yalue GoC Value

[v] Response Time |1 0 seconds | |95% |
[Reliability | | | |
[Awailability | | | |

Search

Figure 7: Discovering Services based on QoS and
QoC metrics

the SLA parameters and obligations are validated. Typically
this validation process would check if the SLA parameters
are meaningful and can be measured. In the second step,
the deployment service sends the obligations to the relevant
parties.

Stage 4: SLA Monitoring

In this stage, the service level objectives are monitored. Any
violation is sent to the SLA deployment service.

Stage 5: SLA Termination

The SLA may specify the conditions under which it may be
terminated or the penalties a party will incur by breaking
one or more SLA clauses. Negotiations for terminating an
SLA may be carried out between the parties in the same
way as the SLA establishment was achieved. Alternatively,
an expiration date may be specified in the SLA.

Stage 6: QoC computation

Once the SLA has been terminated, the deployment service
sends a receipt which includes the actual and projected val-
ues of the violated QoS metric(s). The QoC service then
updates the QoC metrics of the considered service in service
broker.

4.4 Prototype Implementation

WS-QoC is implemented on RedHat Linux 7.2. The pro-
gramming tools are: Java2 SDK Version 1.4.0, UDDlIe reg-
istry service, WSLA4J and the Tomcat application server.
A monitoring service which supports some of the functions
outlined in section 4.2.2 has also been implemented. The
publicly available API (UDDI4J) is used to facilitate the
interaction between the deployment service and UDDIe. In
the following subsections we will discuss the implementation
details of measuring the response time and the availability
of the service.

4.4.1 Measuring Response Time

The monitoring service measures the response time metric
in an SLA. Figure 8 illustrates a GUI of the implementation.
The figure shows the result of monitoring a service opera-
tion. The response time for this operation was agreed upon
to be less than or equal to 10 seconds for 15 invocations.
The figure shows that in invocation number 9 and 10 there
was a violation.

Response time is a common and universal measure of perfor-
mance. For Web services, it can be defined as the guaranteed
average time required to complete a service request. Given
an operation op for a service s, the response time can be
broken down into two major components: delay time and
process time. Delay time (DT') refers to the time needed
to transmit data to the service. Process time (PT) is the
time a Web service takes to process and execute an opera-
tion op. The response time for an operation op for a service
s is therefore computed as follows:

T(op, s) = DT (op, s) + PT (op, s)

The process time can be further broken down into queuing
delay, setup delay and execution time. Queuing delay is the
time a service request spends waiting on the service provider
side, before the request is selected for processing. Setup de-
lay is the time needed to set up the Web service. Setup
activities may correspond to authorisation and authentica-
tion processes. The execution time is the actual execution
time of the operation. In our framework, we only measure
the PT of a Web service.

The response time monitoring service is implemented as a
Web service that monitors the service invocation by prob-
ing and intercepting message follows between the client and
service provider. As discussed in section 4.4.2 Measure-
ment, Evaluation and Notification Action services are imple-
mented as the core components of the monitoring service. A
Metric Measurement Service for the response time is imple-
mented to capture the response time for service invocation.
Figure 9 depicts the message path on the service provider
domain before it reaches the Apache Axis server.

A message arrives (in some protocol-specific manner) at a
Transport Listener. In our case, the Listener is an HTTP
Java Servlet. The Listener packages the protocol-specific
data into a Message object (org.apache.axis.Message),
and puts the Message into a MessageContext. Once the
MessageContext is ready to go, the Listener hands it to the
Monitoring Service. The Monitoring Service’s first job is to
send the Message to the SLA Measurement Service that is
responsible on monitoring the incoming message. Once the
Measurement Service receives the Message it forwards it to
the Metric Measurement Service responsible for measuring
the response time. The later service records the current time
and hands the message to the service provider. When the
response is returned from the service provider, the service
measures the response time as:

Response Time = the time when the response is returned
from service provider - the time when the message was sent
to Metric service.

MEX]

29 Response Time Monitoring

'k’ WS-QoC

g
= 10
a
2 a
=
o
5o
[
7 F
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Mumber of Invocations
|- Actual Vale Wl Projected Value
Violations

Invocation number 9
Invocation number 10

Figure 8: Response Time Monitoring Service

The Measurement Service keeps a record for the these mea-
surement in a database. The Evaluation service in turn
query Measurement service to test for violation. In case of
violation, the Action Service in notified as it was discussed
in section 4.2.2.

SLA Measurement
Service

Monitoring
Service

Transport (D‘ -
Listener)
Metric
Measurement
Service for Targ.et
response time Service
Return control Provider

to listener

Figure 9: The Architecture of the Response Time
Monitoring Service

4.4.2 Measuring Availability

The monitoring service also measures the availability met-
ric in an SLA. Measuring Service availability is a straight
forward practice. There are many times when the service
provider fails to response to a request message. We assume
that the service provider and requestor are already bonded
by an SLA agreement to deliver a particular service. The
failure might be due: (1) the service is off-line, or (2) high
system workload or a system fault (although we are aware
that there are other reasons why a service request can fail,
at present we only focus on these as they are the most com-
mon reasons a detailed analysis can be found in [10]). Each
time the service provider fails to response to a request mes-
sage, the monitoring service captures the failure as an SLA
violation.

5. CONCLUSION

The rapid growth of Web services indicates that service
requesters must consider many factors when selecting the

“right” service. In this paper, we introduced a new aspect
of quality, namely the Quality of Compliance (QoC). Man-
aging QoC provides a mechanism for assessing the level of
compliance of the service provider to some pre-agreed con-
tract, and therefore gives an indication of the actual QoS
values that a service provider has been able to deliver. The
concept of QoC stems from the fact that there has been no
practice of recording the achieved service levels once a trans-
action has been completed. Doing so gives an insight into
the providers past performance by providing necessary data
to progressively assess the compliance levels over a range of
past transactions. We also presented in this paper a frame-
work (WS-QoC) and prototype implementation for integrat-
ing the QoC into Web services.

Our framework consists of four components implemented as
Web services: the monitoring service, the SLA deployment
service, the QoC service and the service broker. In this
framework, the service provider publishes an SLA-enabled
Web service and sends it to the service broker for advertise-
ment in a repository. A service requester registers with the
service broker, searches for QoS and QoC aware services and
finalises the SLA with the appropriate service provider. Af-
ter the provider and the consumer negotiate the relevant
parameters, the SLA is deployed by the service (via the
deployment service). The deployment service verifies the
SLA’s parameters and assigns service level objectives to the
relevant parties. The transaction then is monitored by the
monitoring service to detect any violations of service level
objectives. Any violation is sent to the QoC service which
captures the violation and updates the QoC metrics of the
service in the service broker.

6. REFERENCES
[1] A. Abdul-Rahman and S. Hailes. Using
recommendations for managing trust in distributed
systems. Proceedings IEEE Malaysia International
Conference on Communication, 1997.

[2] R. Al-Ali, O. Rana, D. Walker, S. Jha, and S. Sohail.
G-qgosm: Grid service discovery using qos properties.
Computing and Informatics Journal, Special Issue on
Grid Computing, 21(4):363-382, 2002.

[3] R. J. Al-Ali, K. Amin, G. von Laszewski, O. F. Rana,
D. W. Walker, M. Hategan, and N. Zaluzec. Analysis
and provision of qos for distributed grid applications.
Journal of Grid Computing (Kluwer), (to appear)
2004.

[4] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,
H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke, and
M. Xu. Web services agreement specification.

http://www.gridforum.org/Meetings/GGF11/Documents/draft-

99f-graap-agreement. pdf,
2004.

[5] F. Azzedin and M. Maheswaran. Evolving and
managing trust in grid computing systems.
Proceedings IEEE Canadian Conference on Electrical
and Computer Engineering, 2002.

[6] P. Bhoj, S. Singhal, and S. Chutani. Sla management
in federated environments. Hewlett-Packard Labs
Technical Report HPL-98-203, 1998.

[7]

[9]

[10]

[11]

A. Dan, D. Davis, R. Kearney, A. Keller, R. King,
D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer, and
A. Youssef. Web services on demand: Wsla-driven

automated management. IBM Systems Journal,
March 2004.

I. Foster and C. Kesselman. The physiology of the
grid:an open grid services architecture for distributed
systems integration. Techinical Report, Jan 2002.

S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The eigentrust algorithm for reputation management
in p2p networks. Proceedings of the Twelfth
International World Wide Web Conference, 2003.

M. Klein and C. Dellarocas. A knowledge-based
approach to handling exceptions in workflow systems.
Journal of Computer Supported Cooperative Work,
9(Issue 3-4), August 2000.

A. Mani and A. Nagarajan. Understanding quality of
service for web services. http://www-
106.1bm.com/developerworks/webservices /library /ws-
quality.html,

2002.

P. Obreiter. Case for evidence-aware distributed
reputation systems - overcoming the limitations of
plausibility considerations. Proceedings of the 4th
International Workshop on Cooperative Information
Agents 1V, The Future of Information Agents in
Cyberspace, 2000.

L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Stanford Digital Library Technologies Project, 1998.

S. Ran. A model for web services discovery with qos.
ACM SIGecom Ezchanges, 4(1), March 2003.

A. Sahai, A. Durante, and V. Machiraju. Towards
automated sla management for web services.
Hewlett-Packard Labs Technical Report HPL-2001-310
(R.1), 2002.

A. ShaikhAli, O. Rana, R. Al-Ali, and D. Walker.
Uddie: An extended registry for web services.
Proceedings of the Service Oriented Computing:
Models, Architectures and Applications, SAINT-2003
IEEE Computer Society Press., 2003.

M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and
J. Schiller. A concept for qos integration in web
services. 1st Web Services Quality Workshop (WQW
2003), in conjunction with 4th International

Conference on Web Information Systems Engineering
(WISE 2003), 2003.

A. Vivacqua. Agents for expertise location.
Proceedings of the 1999 AAAI Spring Symposium on
Intelligent Agents in Cyberspace, 1999.

B. Yu and M. P. Singh. A social mechanism of
reputation management in electronic communities.
Proceedings of the Second International Conference on
Trust Management (iTrust’04), 2004.

[20] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,
and Q. Z. Sheng. Quality driven web services
composition. Proceedings of the twelfth international
conference on World Wide Web, 2003.

Distribution Concerns in Service-Oriented Modelling

N.Aoumeur, J.L.Fiadeiro, C.Oliveira
Department of Computer Science
University of Leicester
Leicester LE1 7RH, UK

{na80,jwf4,co49}@]|eicester.ac.uk

ABSTRACT

Service-oriented development offers a novel architectural ap-
proach that addresses crucial characteristics of modern business
process development such as dynamic evolution, intra- and inter-
enterprise cooperation, and distribution/mobility. In previous pa-
pers, we have shown how the mechanisms that regulate the rela-
tionships, functioning and cooperation of business activities in
such architectural models can be externalised from business rules
in terms of connectors that can be superposed dynamically on
stable core business entities. That is to say, we focused on what,
in the literature, has been called the “service composition layer” of
service-oriented architectures or, for short, their “composition
logic”. Our emphasis in this paper is on the distribution aspects:
we show how a corresponding “distribution logic” can be defined
in terms of another set of architectural primitives that address the
way business rules depend on “locations”. These primitives ad-
dress what are sometimes called “business channels” (ATMs,
PDAs, Pay-TV, Internet, inter alia) as offered in typical contem-
porary ICT-infrastructures with substantial added-value to busi-
ness processes. We argue that interacting (core) business entities
located at or endowed with such ICT capabilities should be mod-
elled in a way that separates the composition from the distribution
logic so that business interactions can be understood and evolved
in a location-transparent way. Our approach is based on a
mathematical model that we have recently developed for model-
ling context-aware interactions. An example from banking is used
for illustrating its applicability.

Categories and Subject Descriptors

D.1.3 [Concurrent Programming]: Distributed Programming,
Parallel programming. D.2.11 [Software Architectures]: Lan-
guages — connectors; F.1.2 [Modes of Computation]: Interactive
and reactive computation.

General Terms
Design, Languages, Verification.

Keywords
Evolution, location-awareness, rule-based business modelling,
service composition and coordination, software architectures

1. INTRODUCTION

Modern business processes are becoming more and more com-
plex, reflecting the increasing dependency of the economy, and
the functioning of the society as a whole, on intricate and volatile
intra- and inter- organisational cooperation. On the other hand,
business operations are relying more and more on day-to-day
advances in Information and (wired/wireless) Communication
Technology (ICT). In order to remain competitive, respond to
market pressure and attract more customers, companies are
pressed to provide ever more sophisticated added-value services.

For instance, banks are continuously creating new services or
updating existing ones to match the expectations and profiles of
their customers, while at the same time supporting more and more
advanced channels for day-to-day banking such as ATM, Internet,
PDA, Pay-TV, inter alia [23].

This tension between complexity and agility is raising new chal-
lenges on the way software needs to support business information
systems. It is clear that these challenges transcend by far the ca-
pabilities of the software engineering techniques that have been
traditionally used for business process development. This is why
most business designers are looking for new solutions around
workflows [1] and, more recently, web services [34]. As a result,
significant standards, techniques and models have been advanced
in both directions for modelling and enacting business processes.

However, we argue that the operational character of these ap-
proaches (even when supported by mathematical models like Biz-
Talk [8,24]) makes it very hard to tackle all the above features
adequately. Although it is widely accepted that abstraction and
rigor are the preponderant means for tackling levels of multi-
dimensional complexity, addressing these requirements equally
and coherently, as their nature and expected added-value deter-
mine, requires a more declarative approach and semantic model-
ling primitives that work at a level of abstraction in which the
different dimensions can be integrated and reasoned about.

More specifically, on the one hand, current standards lack rich
mechanisms like service negotiation, contracting and service
communication and coordination as required for flexibility and
dynamic adaptation and evolution [7] in cross-organisational proc-
esses. In addition, despite some progress in semi-automatic
derivation of service-oriented business processes from informal
business rules [26], the relationship between business rules, their
evolution and web-services in general remains largely unexplored.

On the other hand, proposals based on Web services experience
serious difficulties in addressing location-awareness as an essen-
tial business concern for dealing with multi-channels provided by
present day's technology. Web services can be programmed in
ways that respond to the need for businesses to operate in different
platforms and through different channels (say, banking at an
ATM, across the internet, or through a PDA/mobile phone), but
Service Description Languages do not provide abstraction mecha-
nisms for modelling the underlying distribution logic and the way
it adheres and enforces given business policies.

The purpose of this paper is to put forward a set of primitives
through which distribution concerns can be addressed in service-
oriented business modelling. We do so by extending the approach
that we have put forward in [6] for addressing the composition
logic, i.e. “the way composite services can be constructed for
defining processes or workflows that interact with sets of Web
Services to achieve certain goals™ [11,32].

In section two, we justify the use of a rule-based architectural
approach for modelling both the composition and the distribution
logic of services, discuss the main assumptions that we make on
the way service-oriented development applies to business proc-
esses, and present the running example — a simplified banking
system. In section three, the coordination primitives that address
the composition logic are reviewed and illustrated using the ex-
ample. In section four, location primitives are presented as the
building blocks for the envisaged distribution logic, and illustrated
using the same example. In section 5, we present an architecture
for modelling and evolving agile and dynamic business processes
based on coordination and distribution.

2. MOTIVATION

In this section, we justify why and how we are bringing together
concepts and techniques from service-oriented development, rule-
based business modelling, software architecture, and context-
aware computing.

A rich set of specifications is currently available for software
development over service-oriented architectures that include the
Business Process Execution Language for Web Services
(BPEL4WS or BPEL for short) [9], WS-Coordination [35] and
WS-Transaction [36], inter alia. A so-called BPEL composition
is a business process or workflow that interacts with a fixed set of
Web services to achieve a certain goal. A business process is
taken as a series of activities involving a given set of partners
connected according to given data and control flow requirements.
For instance, a banking process can be taken to consist of several
activities, including specifically:

¢ Customer identification and authentication.

¢ Customer execution of banking transactions (deposits,
withdrawals, loans, mortgages, etc).

¢ Customer exit.

Web Services are “self-contained, modular applications that can
be described, published, located, and invoked over a network,
generally the Web” [34]. They are capable not only of performing
business activities on their own, but also to take part in higher-
order business transactions by engaging in more or less complex
interactions with other Web services.

This approach offers a significant number of advantages. For
instance, by being platform-neutral, Web services support the
definition of business processes by using existing elementary or
complex services, possibly offered by different service providers
or extracted from so-called legacy systems. However, even appli-
cations developed on the basis of BPEL are still some way from
addressing the challenges raised by the need to tackle complexity
and agility as identified in the introduction. One of the reasons is
that BPEL-style applications are rather unstructured and static.
For instance, services are composed in a rather ad hoc and unprin-
cipled manner by simply combining their operations and input and
output messages. This makes business processes difficult to
evolve. If the business rules under which the process operates
change or need to be adjusted, the workflow will have to be re-
vised and additional or modified service interfaces may have to be
used for the interconnections.

Recent investigations in business process modelling are shifting
the emphasis towards more abstraction through business rule-
driven approaches [15,29]. Business rules are understood as “pro-
jections of organisations’ constraints and declarations of (inter-
nal/external) policy/conditions that must be satisfied for doing
business” [33]. They specify actions to be taken on the occur-

rence of particular events, including “state of being” changes con-
cerning individuals, infrastructure, consumables, informational
resources, and business activities in general.

Rule-driven approaches offer a number of advantages that are
crucial for coping with dynamically evolving complex business
processes. They support the specification of business models
independently of the specific processes that happen to be running
at any one instant. They focus on more primary requirements and
address business domain descriptions in a declarative rather than
operational way. For all these reasons, they are generally more
apt to support evolution.

The exploitation of these potentials for achieving new degrees of
dynamism and abstraction in Web Services composition remains
largely unexplored. An exception is the recent work by Papazo-
glou et al. [24]. In this approach, starting from a very general
specification, the composition is scheduled, constructed and fi-
nally executed with the assistance of business rules judiciously
classified in a repository. Besides basic elements such as events,
conditions, and messages, this classification includes rules dealing
with the activity flows, the data required for their composition and
the constraints to be respected. The direct construction and subse-
quent execution of the composition from the business rules is
performed in terms of XML-like descriptions. However, the ap-
proach does not address the distribution dimension.

Our contribution follows in this path and aims to enhance the
potential of service-oriented architectures by developing semantic
primitives that raise the level of abstraction and capture rule-based
business modelling. In the approach that we have in mind, each
business activity is a dynamic entity that is put together, at run-
time, from a number of self-contained applications (services) that
need to be located and invoked over a distribution network. The
way these services are brought together and invoked, what is
sometimes called “orchestration”, must follow given business
rules as set by the organisation. For instance, it is clear that a
withdrawal activity is subject to the business rules that apply to
the specific customer and account involved as business entities.
Depending on the nature of the account and of the customer, cer-
tain constraints may apply that determine if, for a given amount,
the withdrawal is authorized and, if so, what operations of the
bank itself need to be executed.

More specifically, our approach aims to capture business rules at
an interaction level so that dynamic adaptation of services and
cross-organisational service cooperation can be intrinsically and
explicitly supported (composition logic). For this purpose, we
adopt techniques akin to those that have been developed for Soft-
ware Architecture [3]. We propose to capture as a connector any
business rule dealing with intra- and inter-organisation coopera-
tion. On the one hand, as modelling primitives, architectural con-
nectors can be made to describe business service compositions in
a declarative way as shown through the rule-based approach pro-
posed in [5]. On the other hand, as shown in [22] architectural
approaches support dynamic evolution as required for agility and
reconfigurability.

In our approach, the mechanisms that are required for regulating
the relationships, functioning and cooperation of services are ex-
ternalised from business rules in terms of semantic primitives that
we call coordination laws. These describe composition mecha-
nisms in terms of event-condition-action (ECA) rules that can be
superposed dynamically on stable core business entities. Super-
position [16] is non-intrusive on the code that implements the
services. Therefore, business architectures can be dynamically

evolved, as volatile business rules change or new cross-
organisational links come into force, while ensuring compliance to
core business invariants.

However, business activities depend on business channels and
networks in ways that are orthogonal to the interactions that busi-
ness relationships impose. For instance, depending on the loca-
tion where the banking process is requested, identification and
authentication can consist of:

(1) A simple “hello” when the request is made by the customer
in person at the desk of the branch where the account has
been held for 20 years.

(2) The presentation of a personal identity document if the clerk
has only recently joined that branch or if the customer at a
different branch makes the request.

(3) A complex transaction involving debit cards and codes if the
request is made at an ATM (not necessarily by the cus-
tomer).

(4) A collection of passwords, security codes and pre-
determined personal questions if the request is made through
the Internet (again, not necessarily by the customer).

In terms of a service-oriented architecture, this means that the way
composite services need to be constructed should obey not only a
composition logic derived from coordination concerns, but also a
distribution logic derived from location concerns. Indeed, loca-
tion-awareness is common to business channels (e.g. ATM,
Branch, Pay-TV), mobile devices (e.g. PDA), internet-based fa-
cilities/software, and sensors, inter alia. The presence and quality
of communication with other partners as well as the ability to
migrate or move to other locations are among the crucial features
that need to be taken into account at the level of this distribution
logic.

Notice that, by location, we do not mean necessarily the space of
addresses typically used in the Web. In the literature, service-
oriented modelling is almost always instantiated to “Web Serv-
ices”, i.e. “software that can process XML documents it receives
through some combination of transport and application protocols”
[31]. Such services need to be located and invoked over the Web
using addresses and referencing mechanisms that identify where
services can be found using a given protocol like TCP or HTTP.

We have already motivated that this is a rather low-level view of
what can be called the “service-oriented paradigm”, which we
would like to explore from the point of view of business process
modelling in the architectural approach that we motivated. In
particular, we would like to distance ourselves from both the
XML-centred view of information exchange, and the Web-
oriented notions of location and reference protocols. Our proposal
is to work on a space in which locations correspond to business
entities and channels organised according to a given business
domain. Therefore, we do not work with a fixed notion of loca-
tion at all. We propose that, as part of business modelling, the
notion of location and distribution network that best applies to the
business domain be specified in abstract terms through data sorts
and operations.

To the best of our knowledge there is no conceptual modelling
approach that addresses location-awareness in business processes
in the sense that we have motivated, except for the work in [2],
one of our main sources of inspiration. This work invokes the
notion of “channel” for addressing location-awareness. It is, alto-
gether, rather “operational”, not as declarative as we wish ours to

be, because it uses state machines as a modelling tool. It does not
cope with the evolutionary side either, and it has not been inte-
grated within an architectural approach that provides explicit con-
nectors that can handle location-dependency aspects.

This is why, in what concerns the distribution logic that captures
the dependency on the business channels and networks, we pro-
pose an approach based on explicit connectors that we call loca-
tion laws. As with coordination laws, these connectors can be
superposed dynamically and evolved independently of the other
business aspects, allowing systems to self-adapt or be adapted to
changes that occur at the distribution level without interfering
with the core business policies.

The semantics of our distribution logic builds on our recent work
around CommUnity, a formal approach that we have been devel-
oping for architectural description [14]. CommUnity includes
primitives that capture distribution and mobility aspects [4,19].
The whole approach has a mathematical semantics defined over
Category Theory [13]. We borrow in particular the notion of
space of mobility (location structure) and corresponding contexts
with the "be-in-touch" and "reach" relationships as preconditions
for communication and mobility. These ingredients are then com-
bined in a new format for condition-action rules that model the
way service composition depends on the properties of the current
context.

3. COORDINATION CONCERNS

Coordination primitives, as we have been promoting in recent
work [5], provide a clean separation between the modelling of the
computations performed by stable core entities on the running
business configuration to ensure the functionality of basic busi-
ness services, and the mechanisms that reflect how the (intra- or
cross-organisational) interactions between these business services
should be coordinated according to given business rules.

The emphasis is, therefore, on the aspects that subsume what in
the literature has become known as the “Service Composition
Layer” of Service-Oriented Architectures [27], i.e. the level at
which business processes can be put together from elementary
services. We aim for the level at which so-called business pro-
tocols and processes [11] are addressed. What we have in mind is
the definition of processes or workflows that interact with sets of
Web services to achieve certain goals in terms of abstract service
descriptions, separated from specific deployments. In our ap-
proach, such interactions are captured using the concepts of coor-
dination laws and interfaces. In terms of architecture description
languages, these correspond to connector types and roles. In
terms of business modelling, they capture business rules that regu-
late and compose required and provided services by the core enti-
ties that instantiate the roles.

This view addresses the emphasis put by BPEL [9] on the defini-
tion of service compositions in terms of processes that interact
with partners that are external to the composition itself and identi-
fied only in terms of abstract interfaces. Indeed, it is particularly
important that we are able to separate the definition of the "com-
position logic" from the run-time composition of specific services
as part of a process that is being executed to fulfil a specific busi-
ness goal. We address the former in terms of "coordination laws"
that capture the business rules according to which complex busi-
ness activities are put together from more basic services. The pur-
pose of this section is to focus on the coordination model that we
adopt for composing abstract services according to business rules.

In fact, in our approach, we go one step further and assign part-
ners not to the business process as a whole but to the activities
that are performed as part of the process. This recognises the fact
that the partners involved in one activity may be different from
those in another activity within the same process. Moreover, it
may not be possible to pre-determine which partners will become
involved in a given activity as this may depend on what has hap-
pened in the process so far.

The abstract description of the services that are partners in a given
business is made in terms of what in [5] we called coordination
interface. For instance, as a business activity, a withdrawal in-
volves both an account and a customer regardless of the way the
withdrawal is requested, if by the customer proper or anyone else.
The purpose of the identification activity is, precisely, to deter-
mine the business entity that is involved in the business activity.
Hence, in the case of a withdrawal, two coordination interfaces
are required: one catering for the account service through which
the debit needs to be performed, and the other for the customer
service that is invoked as a result of the identification and authen-
tication activity.

Note that these are “business” partners, not software components
that offer operations as in object-oriented approaches. We fully
support the distinction made in [31] between Web-services and
distributed objects. In this paper, we are in no way concerned
with the way services are programmed and deployed. For us, an
account is not a software component that instantiates an object
class. An account is understood as a business service, a unit of
organisation around which a number of operations are grouped
together to fulfil certain goals.

Such business partners are not units of execution either. A cus-
tomer does not perform a withdrawal by calling the account to
execute a debit. It is the composition logic, as captured by a coor-
dination law, that dictates that a debit, as an operation of the ac-
count service, needs to be invoked whenever a customer issues a
request for a withdrawal, say at an ATM through some combina-
tion of keys and buttons. The debit is to be located according to
the account as a business entity, not as a software component that
stores the code of the debit operation.

The trigger/reaction mode of coordination that our approach sup-
ports requires that each coordination interface identifies which
events produced at execution time are required to be detected as
triggers for the process to react, and which operations must be
made available for the reaction to superpose the required effects.
Notice that this separation is supported, for instance, in BPEL
processes, by distinguishing between different kinds of actions
(e.g. synchronous request/response or asynchronous one-way
operation) that implement interactions among the process and its
partners. Indeed, in BPEL, this separation occurs at a lower level
of abstraction and has to be set in a pre-defined, static way. The
same applies to the identification of the exchange of messages that
such modes of interaction may require between the partners in-
volved: in WSDL, each operation/event in our sense is a sequence
of input and output messages.

The two composition interfaces that we have in mind can be de-
scribed as follows:

coordination interface CW-CI

partner type CUSTOMER

operations owns (a:ACCOUNT) : Boolean
events withdraw(n:money; a:ACCOUNT)
end interface

coordination interface AW-CI
partner type ACCOUNT

operations
balance() :money
debit(a:money) post balance() = old balance()-a

end interface

Each interface identifies the type of the partner that it models. A
coordination interface does not identify a specific instance of this
type, just the operations and events that partner instances are re-
quired to make available. Notice how the properties of the opera-
tions that are required are specified in an abstract way in terms of
pre- and post-conditions.

This type should be specified in terms of a sort of business identi-
ties and functions that can relate the partner to other business enti-
ties as required by the application domain. For instance, the sort
ACCOUNT should be provided with a function bank of type
BANK identifying the bank in which it resides, again as business
entity, not as a software component. To be more precise, as dis-
cussed in section 5, a;ACCOUNT may identify a service that is
running as part of a bigger service bank(a):BANK. That is, we are
not necessarily committed to creating a new independent service
upon instantiation of a coordination interface: we may bind the
interface to a running service that will take the instance of the
interface as a sub-service. In this way, we may cater for situations
in which the bank, as an organisation, runs a separate service for
each account, one single (complex) service for all accounts, one
single (huge) service for the whole bank, and so on.

Another important requirement for the intended composition logic
is that the activity, as a composite service itself, should be de-
scribed only on the basis of the interfaces and the data and control
flow aspects that the coordination mechanisms put in place to
ensure the underlying business goal. This is what, in BPEL,
would be called the “state and logic” necessary for coordinating
the interactions between the process and the partners. This “com-
position logic” can be described in terms of what we call a coor-
dination law [5]:

coordination law SW-CL
partners acco:AW-CI; cust:CW-CI
rules
when cust.withdraw(n,acco)
with acco.balance() = n &
cust.owns(acco)
do acco.debit(n)
end law

Besides identifying the coordination interfaces, a coordination law
specifies the rules that define the behaviour of the service. Such
coordination rules are of the form:

when event
with condition
do set of operation invocations

Each coordination rule identifies, under the “when” clause, a trig-
ger to which the contracts that instantiate the law will react — a
request by the customer for a withdrawal in the case at hand. The
trigger can be just an event observed directly over one of the part-
ners or a more complex condition built from one or more events.
Under the “with” clause, we include conditions (guards) that
should be observed for the reaction to be performed. If any of the
conditions fails, the reaction is not performed and the occurrence
of the trigger fails. Failure is handled through whatever mecha-
nisms are provided by the language used for deployment. See [9]
for explicit handling of faults within BPEL.

The reaction to be performed by the composite service is identi-
fied under the “do” clause as a set of elementary activities. This
set may include calls to operations provided by one or more of the
partners as well as actions that are internal to the “composition
logic” of the business activity itself. The whole interaction is
handled as a single transaction, i.e. it consists of an atomic event
in the sense that the trigger reports a success only if all the actions
identified in the reaction execute successfully and the conditions
identified under the “with” clause are satisfied. Details on transac-
tion protocols for web-service interactions can be found in [36].

In what concerns the language in which the reactions are defined,
we normally use an abstract notation for defining the synchronisa-
tion set as above. This is important for bringing to a more ab-
stract modelling level the definitions of business processes that
recent languages for “orchestration” like BizTalk [8] promote, in
terms of algebras and models for concurrency. Our opinion and
experience is that the architectural modelling level at which we
promote the representation of business interactions makes it easier
to bridge the gap from the more organisational high-level goals
and policies that dictate how business should be run to the choice
of particular control and synchronisation structures that can make
specific processes run.

The externalisation of this composition logic in a coordination law
is decisive for supporting the required agility in terms of dynamic
business evolution. The fact that the conditions on which an ac-
count may be debited by its owners are not hard-coded in the op-
erations made available by the account, make it possible for these
conditions to be changed without interfering with the deployment
of these services. For instance, in order to offer a VIP-withdrawal
in which a given credit limit is allowed, we just have to change
the composition logic as modelled by the coordination rule; the
basic debit operation does not need to be changed.

coordination law VIPW-CL
partners acco:AW-CI; cust:cCW-CI
rules
when cust.withdraw(n,acco)
with acco.balance()+cust.credit()z n &
cust.owns(acco)
do if acco.balance()z n
then acco.debit(n)
else acco.debit(1.01*n)
end law

Notice that a different partner is now required to play the role of
the customer: we need a service that offers an operation for ob-
taining the credit limit currently assigned to the customer:

coordination interface cCW-CI
partner type CUSTOMER

operations owns (a:ACCOUNT) : Boolean
credit () :money
events withdraw(n:money; a:ACCOUNT)

end interface

Coordination interfaces can be hierarchically organised so as to
facilitate location and binding of specific concrete services. We
leave such matters to a subsequent paper.

4. LOCATION CONCERNS

This section puts forward the concepts and constructions that we
are developing for addressing location-awareness in service-
oriented business modelling. As emphasized in the introduction,
our purpose is to provide elements for a “distribution logic” that
can capture the way service composition needs to take into ac-
count properties of the underlying business channels and commu-

nication infrastructure. Just like coordination mechanisms that
separate service functionality from the "composition logic", which
we illustrated in the previous section, we want to define location
primitives that can externalise the way business activities depend
on properties of the distribution topology over which services are
composed. The properties that we address in the paper are:

(1) The communication status, i.e. the presence, absence, or
quality of the communication link between locations where
given services are executing but require data to be ex-
changed and synchronisation protocols to be observed as
part of the composition logic.

(2) The ability to continue the execution of an activity at another
location, which requires the new location to be reachable
from the present one for the execution context to be moved.

For this purpose, we capitalise on the work developed around
CommUnity [19]. Although, for simplicity, we will not address
this specific aspect in depth, the space of locations can be defined
by the user as an abstract data type with a sort loc and functions
that capture the properties of the notion of location that are suit-
able for the application domain at hand. This is because, typically,
different kinds of applications require different notions of loca-
tion. When a specific notion of location is fixed, as for instance in
Ambients [10], modelling a different space of mobility requires
the encoding of a different notion of location, which can be cum-
bersome and interfere with other aspects. Two observables cap-
ture location awareness as discussed above: communication is
handled through BT:set(Loc) and movement/reachability through
REACH:LocxLoc.

As we did for the composition logic through coordination laws,
location laws are the means through which we model the distribu-
tion logic of a given business domain. Whereas coordination laws
interconnect partners that are meaningful for the underlying com-
position logic, e.g. customers and accounts in the case of the
withdrawal, the partners involved in location laws derive from the
distribution logic and, therefore reflect business channels like
ATMs, bank branches, etc.

That is to say, for the distribution logic of a withdrawal, what is
important is not if the customer has a VIP-contract with the ac-
count, but whether the ATM at which the request for the with-
drawal is made has enough cash in store and is in touch with the
branch in which the account is held. The composition logic will
determine whether the withdrawal can proceed according to the
relationship that exists between the customer and the account,
whereas the distribution law will determine how much money can
be given according to the context in which the transaction is being
made (cash available at the ATM and status of the communication
between the ATM and the branch).

Just like with coordination laws, locations laws are associated
with business activities within a process, not with the process as a
whole. This is because we want to allow for business entities to
change location during the process. For instance, we may well
envisage an instantiation of the banking process in which the cus-
tomer is a mobile entity that starts the process and performs some
activities through a PDA while driving to the bank where, upon
arrival, he continues by performing other activities until he even-
tually finishes the process over the internet in his office where he
needed to retrieve information that he was lacking at the bank.
The modelling of this kind of mobility within a business process
is still under active research and will not be further discussed in
the paper. See [4,19] for the mathematical domain over which we
are defining these aspects and early insights on how to use them.

Requirements on the location of the distribution partner is an
obligatory feature in every location interface. These requirements
consist in the definition of the type of the location as a subtype of
loc, including any relevant functions and properties. For instance,
if a location is required to handle high-precision calculations, its
type needs to be such that, upon instantiation, service operations
are executed on hardware that complies with the required proper-
ties. Security requirements may be reflected in other properties
and functions on the data that is transmitted.

location interface ATMW-LI
location type ATM
operations
default(),cash():money
acco() :ACCOUNT
give(n:money) post cash() = old cash()-n
events withdraw(n:money)
end interface

The event that is being required is self-evident and, as we shall see
in the next section, refers to the business activity for which we
have already defined coordination laws. When this interface is
instantiated, this event can be refined in many different ways de-
pending on the actual machine at which the business activity is
being performed: the pressing of a button in the keyboard, the
filling of a menu on the screen, etc. The parameter of the event
will also need to be provided on instantiation.

The ATM is required to make available two services: the amount
of cash available inside the machine and the default maximum
amount that the machine gives if there is no connection to the
account. The ATM service is also required to make available the
number of the account that is currently being serviced. This data
will have been stored upon identification through the ATM card.
We will see in the next section that location (and coordination)
interfaces are instantiated in run-time to services that may be run-
ning, i.e. instantiation does not mean creation of a service. In the
case at hand, the instance of ATM will be the service that will
have been running when the ATM was “switched on” and that
will have accepted and authenticated the card involved in the first
activity of the specific banking process at stake.

The location interface that applies to the bank is as follows:

location interface rBANKW-LI

location type BANK

operations internal (n:money; a:ACCOUNT)
maxatm(a:ACCOUNT): money

end interface

That is, the bank is required to be make available, for every ac-
count, the maximum amount that can be debited from an ATM, as
well as accommodate executions of withdrawals internally. This
is because we want to be able to move withdrawals to the bank
when they are requested at the ATM and there is no communica-
tion between the two locations.

These two location interfaces are brought together in the location
law that defines the distribution logic of the withdrawal activity
when performed at an ATM:

location law ATMW-LL
locations bank: rBANKW-LI; atm: ATMW-LI
rules
when atm.withdraw(n) &
BT (atm,bank)
with n = bank.maxatm(atm.acco()) &
n = atm.cash()
do atm.give(n)

when atm.withdraw(n) & -BT(atm,bank)&
REACH(atm, bank)
let N=min(atm.default(),n) in
with N = atm.cash()
do atm.give(N)
mv bank.internal (N, atm.acco()))
end law

As in coordination laws, location laws declare a number of part-
ners (called locations) and their interfaces. The ECA rules that we
use for describing the distribution logic in location laws differ
from the ones used in coordination laws because the composition
logic does not require the communication and reachability status
to be taken into account. On the contrary, in location laws, we
need to take into account the properties of the context in which the
trigger occurs, the condition needs to be evaluated, and the action
needs to be performed.

Indeed, as neither the presence nor the quality of communication
can be taken for granted in location-aware business components,
we have to take explicit account of the communication status be-
tween any involved interfaces using their locations. For instance,
depending on whether given locations are in touch, either a full
composition of operations is performed across all locations in-
volved thus synchronising the services in execution at these loca-
tions, or just a composition of the operations available at the loca-
tion where the trigger is perceived can be performed.

This dependency is made explicit through the use of BT. In the
location law, two different rules are considered depending on
whether the two locations are in touch when the request for the
withdrawal is detected. Notice that the distinction is made at the
level of the trigger (the event of the ECA), not the guard (condi-
tion). This is because each case needs to be treated differently, in
particular through different guards: when BT holds, the guard
concerns upholding the maximum withdrawal permitted by the
bank at an ATM whereas, when BT does not hold, it is the maxi-
mum allowed by the ATM itself that needs to be upheld.

The fact that two locations are not “in touch” (BT) does not mean
that one cannot be reached from the other (REACH). Reachabil-
ity allows for mobility of services, namely for service execution to
be moved to other locations as an instance of another service. In
the case that concerns us, even in the absence of communication
with the bank, ATMs can provide a limited amount of cash as
long as there is a protocol with the bank for remote/delayed
transmission of the corresponding withdrawal. The operations
that continue the execution of the activity at a different location
are declared under mv whereas those that are executed locally are
identified under do as usual.

Notice that what is being moved for execution at the bank con-
cerns a full withdrawal service, not the elementary debit operation
that we discussed in the previous section. Indeed, the required
service needs to be executed in the right context, which means
taking into account the coordination and location rules that apply,
internally at the bank, to that specific client and account. The way
the service is moved from the ATM to the bank is left unspecified:
it should be handled at the level of the definition of the location
types, namely the topology of movement that applies. In the case
of current Web services, these are rather trivial situations as
reachability is, once again, handled at the level of network ad-
dresses. In our example, this movement can be just the storage of
a request until communication becomes available (lightweight
mobility), or the print out of instructions that are delivered in hand
at the bank and executed on arrival at the end of the day (strong

snail mobility), just to name a few and stress that we are model-
ling services that are not necessarily deployed over the Web!

As discussed in the next section, the transaction to be executed
may involve whatever operations are required by the composition
logic through the coordination rules that react to the same trigger.
Indeed, the location rules above are not concerned with the con-
tracts that the customer has with the bank with respect to with-
drawals from the specific account that is involved as a partner,
just as the coordination rules discussed in the previous section
were not concerned with distribution. This separation of concerns
is, precisely, what the paper aims to explain.

Before we discuss the integration of separately modelled con-
cerns, consider a few more examples that illustrate other situa-
tions. For instance, consider the situation in which the request for
the withdrawal is made at a branch of the bank, although not nec-
essarily the one in which the account is held. We still need two
location interfaces because two locations are involved:

location interface BRW-LI
location type BANK

operations

cash () :money

give(n:money) post cash() = old cash()-n
events withdraw(n:money; a:ACCOUNT)

end interface

location interface BANKW-LI
location type BANK
end interface

In this case, nothing is required of the bank location that concerns
the distribution logic; only the coordination rules will apply as
discussed in the next section. This becomes evident in the loca-
tion law itself:

location law BRW-LL
locations bank: BANKW-LI; branch: BRW-LI
rules
when branch.withdraw(n,a) &
BT (branch, bank)
with n = branch.cash()
do branch.give(n)
end law

In this case, there is no location rule for the situation in which the
branch is not in touch with the “bank”, i.e. with the location in
which the account is held. This means that, in those circum-
stances, the request for the withdrawal is not recognised, i.e. does
not constitute a trigger (the clerk at the branch just says “sorry: the
system is down again”...)

Consider now a different business activity — identification. At an
ATM, two locations are involved: the ATM itself and the card.

location interface ATMId-LI
location type ATM
operations
acco() :ACCOUNT;
cust () :CUSTOMER;
accept (c:CARD) post acco()=ac(c) & cust()=ct(c)
enter(n:PIN)
end interface

events

location interface CARD-LI
location type CARD

operations attempts():nat
code () :PIN
reject post attempts() = old attempts()+1

accept post attempts()=0
end interface

The interface for the ATM detects the entering of a pin number. as
an event. As elementary services, it involves the acceptance of a
card, which implies retrieving from the card the identities of the
account and the customer. This is done through operations
ac:CARD—ACCOUNT and ct:CARD—CUSTOMER available at
the level of the data types provided as part of the underlying busi-
ness model. On the side of the card, elementary operations handle
attempts at guessing the code that is stored.

The corresponding location law is pretty intuitive:

location law ATMId-LL
locations atm: ATMId-LI; card: CARD-LI
rules
when enter(n) &
BT (atm,card)
with card.attempts() = 3
do if n = card.code()
then card.accept() &
atm.accept (card)
else card.reject()
end law

Notice that, in this case, BT means that the ATM is able to recog-
nise the card and, hence, “communicate” with it, namely to extract
information from it as done through the action accept. If the card
is not recognised, then the trigger is not recognised either and the
evaluation of the guard is not even attempted.

S. INTEGRATION OF CONCERNS

So far we proposed a set of semantic primitives through which we
can separate two different concerns in business modelling: the
coordination mechanisms that should be put in place to compose
services (composition logic or layer) and the location-aware as-
pects that handle the dependency on the business channels across
which services are distributed (distribution logic or layer).

This separation of concerns seems to be rather intuitive. As a
business activity, a withdrawal from a bank account should in-
volve a number of partners that execute required services in a
coordinated way, i.e. according to certain logic, regardless of
where they are located. For instance, the use of a credit facility is
part of a business contract between the customer and the bank
regardless of the channel through which withdrawals are made.
Likewise, the limitations that the absence of communication be-
tween an ATM and a bank imposes on the activity is independent
of the existence of a credit allowance.

This is why it is important to support this separation of concerns
at the level of business modelling. On the one hand, each dimen-
sion can be refined independently of the other. On the other hand,
changes in one dimension can be done without interfering with
decisions made in the other.

Being able to model these concerns separately does not mean that
they are independent. The way a business activity is performed
within a process system emerges from the coordination and loca-
tion laws that jointly apply to that activity. In this section, we
discuss this mechanism of emergence, i.e. we are concerned with
the away both concerns get integrated in a model of the business
activity as it ends up being executed.

As an example, consider the withdrawal once again. At run-time,
the way the withdrawal is processed is determined not by inde-
pendent partners and locations but by located partners: for in-
stance, cust@atm and acco@bank. That is, both coordination and
location interfaces need to be instantiated by the same run-time
services. In particular, because the ATM component identifies a

customer and an account, we have cust=atm.cust() and
acco=atm.acco(), i.e. a single customer service and a single ac-
count service. This makes it clear that the business partner that is
involved in the activity is not necessarily the person standing in
front of the ATM but the customer identified in the card.

To be more precise, the instantiation of the coordination and loca-
tion laws means binding the coordination and location interfaces
to services that are running on the current system configuration.
Hence, in the case of a withdrawal, we will have services running:
one that binds cust and atm; the other binds acco and bank.

As already mentioned, these services are not necessarily disjoint
or independent, and they are not necessarily created upon instan-
tiation. For instance, as discussed in section 3, acco may be a
service running autonomously within bank. On the other hand,
the ATM service atm will have started when the ATM was
switched on; when the binding of the location interface ATMW-LI
takes place, it will have a context in which atm.acco() and
atm.cust() will hold the identities of the account and customer to
which the withdrawal applies. This is because, through the loca-
tion law ATMId-LL, this data will have been retrieved from the
card during the identification activity. Moreover, the binding also
establishes that the value of cust.owns(acco) is true. Notice that,
at a branch, the binding of cust would not necessarily establish
this equality: in the case of the ATM, it is the use of the card that
authenticates the pair (cust.acco). This is another reason in sup-
port of making business processes location-aware.

The way a process activity like a withdrawal interacts with these
services in described in the coordination and location rules ac-
cording to the events that are detected in the run-time configura-
tion. For instance, the event that triggers the withdrawal business
activity instantiates as atm.withdraw(n) in the location interface
and cust.withdraw(n,acco) in the coordination interface Assum-
ing that the coordination law that is active in the run-time configu-
ration is SW-CL (see section 3), the occurrence of the event is
subject to the following rules:

when cust.withdraw(n,acco)
with acco.balance() = n &
cust.owns(acco)
do acco.debit(n)

when atm.withdraw(n) & BT(atm,bank)
with n = bank.maxatm(atm.acco()) &
n = atm.cash()
do atm.give(n)

when atm.withdraw(n) & -BT(atm,bank)& REACH(atm,bank)
let N=min(atm.default(),n) in
with N = atm.cash()
do atm.give(N)
mv bank.internal(N,atm.acco()))

The joint execution of ECA rules that we have in mind, as formal-
ised in [14], takes the conjunction of the guards and the parallel
composition of the actions (i.e. the union of the corresponding
synchronisation sets) when BT holds. When the located partners
are not in touch, i.e. cannot communicate, the coordination rules
do not apply. As a result, the rules according to which a with-
drawal is performed are:

when atm.withdraw(n) & BT(atm,bank)

with n = acco.balance() &
n < bank.maxatm(acco) &
n = atm.cash()

do atm.give(n) &
acco.debit(n)

when atm.withdraw(n) & -BT(atm,bank)& REACH(atm,bank)
let N=min(atm.default(),n) in
with N = atm.cash()
do atm.give(N)
mv bank.internal(N,acco)

That is, when the ATM is in communication with the bank, the
withdrawal is performed according to the coordination rule of a
standard withdrawal and the location rule of the ATM. Notice,
however, that cust.owns(acco) holds as a result of the binding and,
hence, was omitted from the “with” condition. The need for com-
munication is obvious in the guard condition, which requires the
balance of the account to be checked and the action, which re-
quires the account to be debited. In the case of the joint execution
of the guard, BT is necessary to ensure synchronous, atomic exe-
cution of the reaction. Notice that synchronous execution does not
involve REACH because the service is not being moved from one
location to another: both services are executed, each in its loca-
tion, but atomically, which is what requires communication.
Naturally, this semantics requires a proper distributed transaction
management system to be in place. See [20] for transaction pro-
tocols in the scope of Web services.

Summarising, as claimed in section 2, our approach is activity-
oriented in the sense that, for each activity within a business proc-
ess, we identify which are the location and coordination concerns
that apply to the business entities involved, and how they are put
together to enforce the business process logic (e.g. the activity
ordering). In general, there is a 0-N correspondence between each
business process activity and coordination / location laws. That
is, depending on the semantics of each activity, we may have no
coordination laws (which is the case of identification in the exam-
ple) or one or more coordination laws (case of withdrawals); and
the same for location laws.

We have to emphasize that, depending on the business entities
involved in a specific activity, not every law applies at each con-
figuration. Determining which laws should apply and, for those
that apply, how the business entities instantiate the interfaces (lo-
cation and coordination), and how the corresponding instantiated
coordination and location laws bind the entities together with
contracts, is out of the scope of this paper. See [5,6] for configura-
tion management primitives that apply to coordination laws. In
what concerns location laws, we are now developing similar con-
figuration primitives.

6. CONCLUDING REMARKS

In this paper, we discussed a service-oriented architectural-based
approach that addresses current challenges in modern business
process modelling for reflecting dynamic cross- and intra-
organisational interactions as well as dependencies on the busi-
ness channels and networks over which organisations operate.
Our approach is inspired in the rich set of specifications that is
currently available for software development over Web services,
ie. “software that can process XML documents it receives
through some combination of transport and application protocols”
[31]. Languages and techniques as made available by BPEL4WS
[9], WS-Coordination [35] and WS-Transaction [36], inter alia,
remain too close on this narrow view of services that need to be
located and invoked over the Web using addresses and referencing
mechanisms that identify where services can be found using a
given protocol like TCP or HTTP. As a consequence, they offer
little support to the higher-levels of abstraction in which business
rules and organisational infrastructures need to be modelled.

This is why we decided to distance ourselves from both the XML-
centred view of information exchange, and the Web-oriented no-
tions of location and reference protocols. Our proposal addresses
a rule-based approach to business modelling and addresses a space
in which locations correspond to business entities and channels
organised according to a given organisational communication and
distribution network.

The semantic primitives that we proposed for business modelling
capture structural features of architectural connectors in separating
concerns and addressing business rules as first-class entities.
Following our approach, the aspects that relate to the way busi-
ness rules determine how the services involved in a business ac-
tivity need to be orchestrated fall under what we call “coordina-
tion laws”. These are semantic primitives that are used for model-
ling the “service composition layer” of service-oriented architec-
tures or, for short, their “composition logic”.

In what concerns the “distribution logic” that captures the depend-
ency on the business channels and networks (e.g. properties of the
computational platform and communication network, mobility of
devices/sensors, inter alia), we proposed a similar approach based
on explicit connectors we called location laws. As with coordina-
tion laws, these connectors can be superposed dynamically and
evolved independently of the other business aspects, allowing
systems to self-adapt or be adapted to changes that occur at the
distribution level without interfering with the core business poli-
cies.

The semantics of both the composition and distribution logic, and
of coordination and location laws, builds on recent work around
CommUnity, a formal approach that we have been developing for
architectural description [14]. CommUnity includes primitives
that capture distribution and mobility aspects [19], and explicitly
separate between components computation, coordination and dis-
tribution/mobility. Besides recently forwarded operational seman-
tics—including graph transformations, Tile and rewriting logic—
the main strength of CommUnity lies in its logic of interactions,
which is based on Category Theory [13]. CommUnity is also
endowed with a software tool for editing, simulating and validat-
ing distributed software architectures. Extensions of CommUnity
towards context-aware computing are now being explored that
will further enrich this architectural approach.

We are currently working on more case studies in order to con-
solidate and validate this service-oriented architectural approach.
We are also collaborating with ATX Software, the IT company
with whom we developed the Coordination primitives, on the
methodological aspects of location laws; one of our main goals is
to develop a deeper understanding and classification of business
rules so that semi-automatic derivation of coordination and loca-
tion laws can be ultimately achieved. In this sense, the work for-
warded in [26] on classifying Web Services-oriented rules could
be a significant input for us. Last but not least, extensions to
modelling languages like the UML with coordination and distribu-
tion laws are also being investigated at Leicester.

Acknowledgements

N..Aoumeur was supported by the European Commission through
the contract IST-2001-32747 (AGILE: Architectures for Mobil-
ity). C.Oliveira was supported by Fundac@o para a Ciéncia e Tec-
nologia, Portugal, through the PhD Scholarship
SFRH/BD/6241/2001, and the European Science Foundation
through the Scientific Network RELEASE. The authors would
like to thank P.Kosiuczenko and A.Lopes for many insights and
suggestions on the work reported in this paper.

7.

REFERENCES

W.Aalst, A.-T.Hofstede and M.Weske, “Business Process
Management: A Survey”, in International Conference on
Business Process Management (BPM 2003), LNCS 2678,
Springer 2003, 1-12.

L.Abom, “Frameworking RM-ODP in Banking”, in
AM.Cordeiro and H.Kilov (eds) WOODPECKER 2001,
ICEIS Press 2001.

R.Allen and D.Garlan, "A Formal Basis for Architectural
Connectors", ACM TOSEM, 6(3), 1997, 213-249.

L.Andrade, J.L.Fiadeiro, A.Lopes and M.Wermelinger,
“Coordination for Distributed Business Systems”, in Infor-
mation Systems for a Connected Society, J.Eder,
R.Mittermeir and B.Pernici (eds), University of Maribor
Press 2003, 27-37.

L.F.Andrade and J.L.Fiadeiro, “Service-Oriented Business
and System Specification: Beyond Object-orientation”, in
H.Kilov and K.Baclwaski (eds), Practical Foundations of
Business and System Specifications, Kluwer Academic Pub-
lishers 2003, 1-23.

L.F.Andrade and J.L.Fiadeiro, “Composition Contracts for
Service Interaction”, Journal of Universal Computer Sci-
ence, in print.

A Baina, S. Tata, and K. Benali, “A Model for Process
Service Interaction”, in International Conference on Busi-
ness Process Management (BPM 2003), LNCS 2678,
Springer 2003, 261-275.

BizTalk Orchestration — a new technology for orchestrating
business interactions, Microsoft Research 2000.

Business Process Execution Language for Web Services,
version 1.1, May 2003, IBM

L.Cardelli and A.Gordon, “Mobile Ambients”, in Nivat
(ed), FoSSACs’98, LNCS 1378, 140-155, Springer-, 1998.

F.Curbera, R.Khalaf, N.Mukhi, S.Tai and S.Weerewarana,
“The Next Step in Web Services”, in [27], 41-47.

T.Elrad, R.Filman and A.Bader (Guest editors). Special
Issue on Aspect Oriented Programming. Communications
of the ACM 44(10) 2001.

J.L.Fiadeiro, Categories for Software Engineering, Springer
2004.

J.L.Fiadeiro, A.Lopes and M.Wermelinger, “A Mathemati-
cal Semantics for Architectural Connectors”, in Generic
Programming, R.Backhouse and J.Gibbons (eds), LNCS
2793, Springer 2003, 190-234.

P.Kardasis and P.Loucopoulos, “Expressing and Organising
Business Rules”, Information and Software Technology, in
press.

S.Katz, "A Superimposition Control Construct for Distrib-
uted Systems", ACM TOPLAS 15(2), 1993, 337-356.

ZKleppe, J.Warmer and W.Bast, MDA Explained: The
Model Driven Architecture--Practice and Promise,
Addison-Wesley 2003.

A Lindsay, D.Downs and K.Dunn, “Business Processes —
attempts to find a definition”, Information and Software
Technology 45(1):1015-1019, 2003.

A.Lopes and J.L.Fiadeiro, “On how Distribution and Mobil-
ity interfere with Coordination", in Recent Trends in Alge-

20.
21.

22.

23.

24.

25.

26.

217.

braic Development Techniques, M.Wirsing, D.Pattinson,
R.Hennicker (eds), LNCS 2755, Springer 2003, 343-358.

M.Little, “Transactions and Web Services”, in [27], 49-54.

P.Loucopoulos, “The S3 (Strategy-Service-Support)
Framework for Business Process Modelling”, in CAiSE
Workshops — Information Systems for a Connected Society,
CEUR Workshop Proceedings vol. 75, Technical University
of Aachen (RWTH), 2003.

J.Magee and J.Kramer, "Dynamic Structure in Software
Architectures", in 4th Symp. on Foundations of Software
Engineering, ACM Press 1996, 3-14.

A.Maurino, B.Pernici and F.Schreiber, “Adaptive Channel
Behavior in Financial Information Systems”, in CAiSE
Workshops — Information Systems for a Connected Society,
CEUR Workshop Proceedings vol 75, Technical University
of Aachen (RWTH), 2003.

G.Meredith and S.Bjorg, “Contracts and Types”, in [27], 41-
47.

B.Orrinsi, J.Yang, and M.Papazoglou, “A Framework for
Business Rule Driven Web Service Composition”, in Proc.
of Conceptual Modeling for Novel Application Domains,
LNCS 2814 Springer 2003, 52-64.

B.Orrinsi, J.Yang, and M.Papazoglou, “A Framework for
Business Rule Driven Web Service Composition”, in Proc.
of Conceptual Modeling for Novel Application Domains,
LNCS 2814 Springer 2003, 52-64.

M.Papazoglou and D.Georgakopoulos (guest editors), Spe-
cial Issue on Service-Oriented Computing, Communications
of the ACM 46(10), 2003.

28.

29.

30.

31.

32.
33.

34.

35.

36.

G.-C.Roman, C.Julien and J.Payton, “A Formal Treatment
of Context-Awareness”, Proc. FASE 2004, LNCS 2984, 12-
36, Springer-Verlag, 2004

D.Rosca and C.Wild, “Towards a Flexible Deployment of
Business Rules”, Expert Systems with Applications 23:385--
394,2002.

M.Shaw, "Procedure Calls are the Assembly Language of
Software Interconnection: Connectors Deserve First-Class
Status", in D.A. Lamb (Ed.), Studies of Software Design,
LNCS 1078, Springer 1996.

W.Vogel, “Web Services Are Not Distributed Objects”,
IEEE Internet Computing 2003.

J.Yang, “Web Service Componentization”, in [27], 35-40.

W.Wan-Kadir and P.Loucopoulos, “Relating Evolving
Business Rules to Software Design”, Journal of Systems Ar-
chitecture, 2003.

Web Services architecture overview — the next stage of evo-
lution for e-business, September 2000,
http://www.ibm.com/developerworks/web/library/w-ovr/

Web Services Coordination, version 1.0,
http://www.ibm.com/developerworks/web/library/ws-coor/

Web Services Transaction, version 1.0,
http://www.ibm.com/developerworks/web/library/ws-
transpec/

A Lightweight Approach for QoS—Aware Service

Composition
Gerardo Canfora, Raffaele Esposito,
Massimiliano Di Penta Maria Luisa Villani
RCOST - Research Centre on RCOST - Research Centre on
Software Technology Software Technology
University of Sannio, University of Sannio,
Department of Engineering Department of Engineering
Palazzo ex Poste, Via Traiano Palazzo ex Poste, Via Traiano
82100 Benevento, Italy 82100 Benevento, Italy
canfora@unisannio.it, r.esposito@unisannio.it,
dipenta@unisannio.it villani@unisannio.it
ABSTRACT years in other engineering disciplines to software development ac-

One of the most challenging issues of service—centric software en-tivities. In fact, electronics, mechanics and other engineering sys-
gineering is the QoS—aware composition of services. The aim is tems are commonly built by assembling pre-defined components,
to search for the optimal set of services that, composed to create asuch as memories, CPUs, etc.

new service, result in the best QoS, under the user or service de-

signer constraints. During service execution, re-planning such a Inthe same way, the spread of reusable software components avoids
composition may be needed whenever deviations from the QoS es-software engineers to “re-invent the wheel” each time. Building
timates occur. Both QoS—-aware composition and re-planning may software systems by “gluing” components enables them to con-
need to be performed in a short time, especially for interactive or centrate more on the problems their systems aims to solve. This
real-time systems. This paper proposes a lightweight approach forscenario changes when moving from component-based systems to
QoS-aware service composition that uses genetic algorithms forservice-centric systems, where a functionality is realized by search-
the optimal QoS estimation. Also, the paper presents an algorithming, composing and executing services. In the particular case of
for early triggering service re-planning. If required re-planning is web services, this is done by using a set of XML-based standards,
triggered as soon as possible during service execution. The per-known as UDDI, WSDL and SOAP [16].

formances of our approach are evaluated by means of numerical

simulation. The service-centric systems scenario poses several additional chal-
lenges with respect to component-based software engineering. First
Categories and Subject Descriptors and foremost, in a component-based software system components

are physically integrated and, except for distributed systems, they
are executed as a whole in the end-user’s environment. This is not
usually the case of web services as they are executed on the service
provider server, thus raising issues on the run-time service (and of
course network) availability and performances.

K.6.3 [Management Of Computing And Information Systemg:
Software process; G.1.8[Limerical Analysis]: Constrained op-
timization; H.3.5 [nformation Storage And Retrieval]: Web-
based services

General Terms

Algorithms, Measurement Secondly, several services may be available with the same func-

tion (we call themsemantically equivalerservices), however they
surely exhibit different Quality of Service (QoS). According to Std.
KeYWOVdS)) .) . ISO 8402 [9] and ITU [10], QoS may be defined in terms of at-
Quality of Service, Web Service Composition, Genetic Algorithms i tes such as price, response time, availability, reputation (fur-
ther details can be found in Cardoso’s PhD thesis [2]). Moreover, it
1. INTRODUCTION may be possible to have some domain-specific QoS attributes (e.g.,
Web services constitute a promising technology landscape for soft- a temperature service could have QoS attributes such as precision
ware engineering. During the last 20 years, component based soft-or refresh frequency). The choice between different but semanti-
ware engineering aimed at the application of principles used for cally equivalent services is a function of such QoS attributes: one
may decide to choose the cheapest service, the fastest, or maybe a
compromise between the two. Moreover, an user may specify con-
straints on the values of some attributes (e.g., the price cannot be
higher than a given value), which could influence the choice. On
the other hand, the service provider can estimate ranges for the QoS
attribute values as part of the contract with potential users. Also, the
QoS guarantees for the same service could be customer-dependent,
and so they would apply each to a different instance of that ser-
vice. For example, an user that buys a service at a given price is not

expected to get a response time below a given threshold. during the composite service execution. Re-planning is then
performed on a slice of the original workflow, avoiding to

Once service annotation and matching mechanisms are available, unfold loops that could worsen the performances.

a semantic description of the service may be included in the user

system as a reference to it. Such a description, that we call an

abstract servicecorresponds to a specific functionality, while not Numerical simulations have been used to evaluate the results.

necessarily to a single service implementation. At run-time, using

a matching algorithm, this description is used to retrieve some ser- The remainder of this paper is organized as follows. After a review

vices (that we will refer to asoncrete servicdsand then selectone Of the literature in Section 2, Section 3 details the approach we pro-

among them that meets the constraints and maximizes our QoS ob40se. In particular, the QoS composition rules are shown, the evo-

jective function. Several matching approaches have been proposedutionary approach for QoS-aware composition is described and,

in literature, see for example Paolucci et al. [13]. finally, the re-planning algorithm is detailed. Section 4 describes
the toolkit aiming to support the work, while Section 5 reports and

A composite service is a service resulting from a composition of discusses results obtained in the simulations. Finally, Section 6

other services whose interaction is described by some workflow concludes.

description language (e.g., BPEL4AWS [1]). The component ser-

vices can be, on their ownbstract servicegherefore two different 2. RELATED WORK

roblems need to be solved: . . .
P QoS-aware discovery and composition of services has been recog-

nized as a crucial aspect in the web services era, where companies
e determine the QoS of a composite service as a function of are starting to deliver their products as services over the Internet
the QoS of its components; and and the service-oriented architecture paradigm has become a new
reference for the software business. In this context, providers need
e determine the set @oncrete servicethat maximize the QoS ways to express their quality guarantees on the service being ad-
of the composite service. In other words, for eatistract vertised, and technological support should be given to customers
serviceof the workflow, determine a concretization such that to search for and select the best available service. Furthermore,
the total QoS is maximized and the global constraints are satisfaction of the quality requirements he/she specified should be
met. assured during execution. This is more difficult for composite ser-
vices, where the overall QoS relies on that of each component ser-
vice, and it depends on how services are integrated and interact with
Clearly, the QoS values of the single service components used forgach other. General issues for Web Services QoS are discussed in
computation may be estimations in turn, declared by each service 5 paper by Ludwig [11].
provider or obtained by computing statistics during previous execu- some formalism for the service QoS specification and Service Level
tions of the service. At run-time, the actual (measured) QoS values Agreements (SLAs) has been provided, such as the IBM’s Web Ser-
may deviate from the estimate ones or, simply, one of the services jce [evel Agreement (WSLA) language [12], or the Web Services
may not be availablg. Thus the compqsite service may have to bepffer Language (WSOL) [15]. On the other hand, some web ser-
re-planned, so to still meet the constraints and maximize the Q0S.yjice orchestration languages are being proposed as standard, like
Some approaches have been proposed in literature [17] to this aim.g|;siness Process Execution Language for web services (BPEL-
) -] 4WS) [1]. Nevertheless, the currently available workflow technol-
All of this, from the QoS-aware composition to re-planning, of- gy still lacks of facilities for a complete QoS estimation, man-
ten needs to be performed very quickly. Especially for interac- agement and monitoring for processes. In fact, most established
tive systems, Igng plelays may be _unacceptable- For_example, thesplutions in the area of workflow focus only on time management
user of a booking ticket system might not want to wait for a long o |0ad balancing and web-service-based systems that account for
t?me whil_e the system searc_hes for cand_id_ate services offering flight gther QoS criteria are still being experimented ([3], [14], [17]). In
tickets with the lowest booking fare. Gaining a few cents after sev- particular, some on-going research activities deal with QoS predic-
eral minutes of waiting may make the user disappointed. Even for jon and dynamic adaptation of the workflow to face unexpected
some non-interactive service a fast composition just before execu- QoS progress during execution. In this respect, our work is posi-
tion may be desired: performing service composition long before tjgned within that of Cardoso [2], and that of Zeng et al. [17].
execution may lead to unattended results (e.g., some services Mayrhe former proposes a mathematical model for workflow QoS com-
not be available anymore or, conversely, new, more convenient Ser-putation, described by some metrics aggregation functions which

vices can be available). are defined for time, cost, reliability, and fidelity. The meaning of
]) each metrics is precisely given. The model uses stochastic informa-
The paper aims are the following: tion indicating the probability of transitions being fired at run-time,

which can be initially set by the designer, wherever possible, and
then periodically adjusted, based on data on previous executions
stored in the workflow system log. The same method is also used
to re-compute tasks’ QoS. The QoS computation algorithm (SWR)
proposed by Cardoso consists of applying a set of reduction rules
mance of the service composition algorithm, like for scien- reduction approach for our workflow QoS estimation, because of
tific computations, an alternative approach is proposed:; the advantage of fast computation, and mostly consider the same
aggregation functions for each metrics, some of which are reported

3. finally, the paper proposes a re-planning algorithm aiming in Table 1. However, Cardoso’s method does not consider optimal
to anticipate the re-planning decisions as soon as possiblebinding of the service components nor re-negotiation at run-time.

1. it proposes an approach for a quick, coarse—grained QoS-
aware service composition, where some of the composition
rules are the same as those proposed by Cardoso [2];

In particular, the loop reduction rule does not seem to be suitable
for re-planning. In fact, this rule is based on a probability for the

feedback transition to fire, thus it does not allow distinguishing the
workflow part to be re-planned during execution, in case of errors
happening within the loop. We propose a different reduction rule
for the loop construct which enables dynamic service binding and
re-negotiation.

The work of Zeng et al. focuses on dynamic and quality-driven

selection of the service implementations of the workflow that ac-

counts for local and global quality constraints and user preferences.

Most notably, they propose a global planning approach to reach
overall QoS optimality through linear programming techniques. The

method is discussed, and empirical data given, under the assump-

tions of the workflow being acyclic, the constraints and objective
function being linear, and the workflow consisting of one execu-
tion path, for which the QoS estimate is made. Then the method

could be generalized by unfolding loops, based on the estimated

number of iterations, binding a concrete service to each task by
considering the "hot path” for that task, i.e. the most frequently ex-
ecuted path containing that task, while the constraint on linearity is
overcome by applying logarithmic transformation functions. While
this approach is quite effective with respect to reaching QoS opti-
mality, in case of a complex workflow with branches and frequent
loop iterations the concretization process they propose seems to b
less efficient. In this paper, we discuss the trade-off between effi-
ciency of the concretization algoritm and optimality of the solution
obtained. Also, we extend their method for workflow re-planning.
Web-Flow [14] and eFlow [5] are workflow management systems
that offer some support to selection of services according to qual-

ity constraints. However, these constraints are only applied at task

level. In particular, eFlow allows to bind a service implementa-
tion to ageneric nodeat run-time through aearch recipewhile
Web-Flow includes an exception handling mechanism, based on
the Event-Condition-Action paradigm, triggered by the violation of
constraints or other events like service faults, that may occur during
process execution. A model for exception analysis, prediction and

prevention in business processes, based on data warehousing and
mining techniques, was presented by Casati et al. [4]. The excep-
tional events are stated by the user and are defined by conditions

over process execution data. No dynamic recovery is addressed.
Finally, solutions for resource allocation and performance man-

agement that can be borrowed from the distributed systems area
have been suggested [11], along with an analysis on web services-

specific issues.

3. APPROACH DESCRIPTION

As stated in the introduction, the proposed approach is mainly de-
voted to allow for a fast, overall computation of the QoS of a com-
posite service, as well as to determine the optimal sebotrete
serviceso be bound to thabstract servicesomposing the work-
flow. The model also enables re-planning.

In the sequel we shall consider a composite senfcef n ab-
stract servicesS = {s1, s2,..., sn}, Whose structure is defined
through some workflow description language. Each composient
can be bound to one of the concrete servicess; i1, ..., ¢Sim,
which are functionally equivalent.

3.1 Computing the QoS of Composite Services
This section describes our approach, hereby referred asmtbep-

ing approach, for computing the QoS of composite service. Sim-
ilarly to what proposed by Cardoso [2], for a Switch construct in
the workflow, eachcase statement is annotated with the proba-

¢

a) b)

Figure 1: Workflow annotation: a) Switch b) Loop

bility to be chosen (see Figure 1-a). For example, for a workflow
containing a Switch composed of two Cases, with c@stsand

C- respectively and probabilitigs and1 — p, the overall cost is
computed as follows:

pCi + (1-p) Cs @)

eCIearIy, probabilities are initialized by the workflow designer, and

then eventually updated considering the information obtained by
monitoring the workflow executions.

Loops are handled differently from Cardoso [2], that basically pro-
poses to adopt a mechanism (based on the probabilities of enter-
ing/exiting the Loop) as for thewitch construct. Our approach

is more similar to what proposed by Zeng et al [17], i.e., Loops
are annotated with an estimated number of iteratibndnstead

of unfolding Loops (like Zeng et al.), here the QoS of the Loop is
computed taking into account the factor(see Figure 1-b) . For
example, if the Loop compound has a c@5t then the estimated
cost of the Loop will bek C;.

his approach for handling Loops presents two advantages:

e It allows for a quick computation of the overall workflow
QoS, without the need to unfold Loops;

e The estimated QoS accounts for the estimated number of
Loop iterations.

Given aconcretizationof a composite service, i.e., a composite
service description where eaabstract servicdas been bound to
one of its correspondingoncrete serviceghe overall QoS can be
computed by applying the rules described in Table 1, which shows
an aggregation function for each pair workflow construct and QoS
attribute. While for some standard QoS attributes the aggregation
function has been explicitly specified ([17], [2]) there may be other
attributes (for example, domain-dependent attributes) for which the
aggregation function is user—specified (see the last row of Table 1).

It should be noted that the table is not complete (it only contains
rules to be used in our examples) and, except that for Loops, the ag-
gregation functions correspond to those proposed by Cardoso [2].
These functions are recursively defined on compound nodes of the
workflow, although the table only shows their definition on sets
of elementary tasks. Namely, for a Sequence construct of tasks
{t1,...,tm}, theTimeandCostfunctions are additive whilAvail-
ability andReliability are multiplicative. The Switch construct of

QoS At Sequence —Switch Fork Loop
Time (T) 3 7 3 o+ 7(0) Maa{T(t:)icqr.m} |k T()
Cost (C) é C(t) é pai % Clts) é C(t) kx C(t)
Availability (A) ﬁl Alts) _fl Pas + A(t:) 'ﬁl Ats) A
Reliability (R) Zﬁ R(t;) Zzij Pai * R(t;) 11;[R(t;) R(t)*
Custom AT ()| J5(F ()i (1omny) | T8 (et FEierm)) | FrF@iciigy) | Fulh @)

Table 1: Aggregation functions per workflow construct and QoS attribute

Cased, . .., n, with probabilitiesp,1, . . . , pan SUCh thatfj Pai = operator The crossover operator takes two individuals (tfae-
] ' i=1 ent9 of the old generation and exchanges parts of their genomes,
1, andtaskgts, ..., tn } respectively, is always evaluated as a sum producing one or more new individuals (tbispring. The muta-

of the attribute value of each task, times the probability of the Case tjon operator has been introduced to prevent convergence to local
to which it belongs. The aggregation functions for the Fork con- gptima, in that it randomly modifies an individual's genome (e.g.,
struct, are essentially the same as those for the Sequence construcky flipping some of its bits, if the genome is represented by a bit
except for theTimeattribute where this is the maximum time of the string). Crossover and mutation are performed on each individual

parallel tasks{t1, ..., ¢, }. Finally, a Loop construct witl itera- of the population with probabilitpcrossand pmut respectively,

tions of task is equivalent to a Sequence construckafopies of wherepmut < peross. Further details on GA can be found, for

t. example, in the Goldberg's book [8].

3.2 Searching for a solution with Genetic Al- To let the GA search for a solution of our problem, we first need
gorithms to encode the problem with a suitable genome. In our case, the

Determining the best concretization of a composite service is an 96N0Me is represented by an integer array with a number of items
optimization problem: equals to the number of distinabstract servicegomposing our

service. Each item, in turn, contains an index to the array of the
concrete servicematching thatbstract service Figure 2 gives a
1. Maximize a fitness function of the available QoS attributes; better idea of how the genome is made.

and

2. Meet the constraints specified for some of the attributes. In Sy,
particular, these are the global constraints, i.e. assertions on ;
the overall QoS attribute values. Local constraints, i.e. con- i
straints on each service composing our service, need to Chis :
be checked when choosing the set of candidaterete ser- C3yy :
vicesfor s;. €Sy CS,y, CSy

concrete
services

Finding a solution for the above problem is NP-hard [7]. In this ‘ ‘ ‘ ‘ _____________ ‘ [‘

case, different strategies can be adopted, for example integer pro-

gramming [17] or Genetic Algorithms (GA). In our work we chose B8, Su

to adopt GA because the problem, as stated in our case, is well genome

suited to be encoded with a genome and solved using GA evolu-

tion. Differently to linear programming approaches, GA does not

impose constraints on the linearity of the QoS composition opera- Figure 2: Genome Encoding

tors (and thus of objective function and constraints). This permits

to adopt our approach for all possible (even customized) QoS at-

tributes, without the need for linearization. The crossover operator is the standard two-points crossover [8],
while the mutation operator randomly selectsastract service

GA originated with an idea, born over 30 years ago, of applying (i.e., a position in the genome) and randomly replaces the corre-

the biological principle of evolution to artificial systems. Roughly spondingconcrete servicaith another one among those available.

speaking, a GA is an iterative procedure that searches for the bestClearly, abstract servicegor which only oneconcrete servicés

solution of a given problem among a constant-size population, rep- available are taken out from the GA evolution.

resented by a finite string of symbols, named ¢fsmome The

search is made starting from an initial population of individuals, The problem can now be modeled by means of a fitness function

often randomly generated. At each evolutionary step, individuals and, eventually, some constraints. The fitness function needs to

are evaluated usingfaness functionHigh—fitness individuals will maximize some QoS attributes (e.qg., reliability), while minimizing

have the highest probability to reproduce. others (e.g., cost). When user—defined, domain—specific QoS at-
tributes are used, the specification of the fitness function is left to

The evolution (i.e., the generation of a new population) is made by the workflow designer. For standard QoS attributes, we define a

means of two operators: tleossover operatoand themutation fitness function for a genomgas follows:

The GA described in Section 3.2 suggests thatthecrete service

wr Availability + wo Reliability C'S> binds theabstract serviceS:; the latter does not maximize

F — 2
(9) ws Cost + wa Response Time () the fitness function (that is equal to 1/18, while it would be 1/15 if
CS; is chosen), although the constraints are met.
wherews, ..., w4 are real, positive weighting factors. As shown, | et us suppose now that we unfold the Loops in our workflow,

our fitness function is multi-objective. Different approaches have obtaining a workflow depicted in Figure 3-b. Let us consider a

been proposed in literature to deal with this kind of fitness func- genome composed of all the nodes of the unfolded workflow, as
tion [6]. Generally, calibrating weights is guided by observing the represented in Figure 3-c. This encoding permits to have differ-
fitness function’s landscape, as well as from the analysis of the evo- ent bindings for different invocations of a service component, that
lution of the different factors. can be useful to obtain a better QoS while meeting the constraints.

] . . In our example, a bindingC'S1, C'S2, C'S1} will ensure the con-
As mentioned above, constraints are assertions on the overall valuesstraint to be met, and also produces a fitness valag tf > 1/18.

of QoS attributes, e.g.:

Clearly, as it will be shown in Section 5.1, Loop unfolding could
mean an explosion of the genome size, and consequently of the time
the GA requires to converge. Therefore, a tradeoff should be pur-
Cost < 50 sued. Interactive applications may accept a weaker QoS in favor of

Time < 100 a short service negotiation time. Besides, for long—time—run scien-
1 Availability + lReliability > 0.95 _tific computations a long service_ negotiation time can be acceptable
2 2 if, for example, we are composing a workflow that implements an
algorithm to be run over weeks of computation time. In that case,
the choice of the best combination of services, although requiring
a longer time (e.g., some hours), could save days of computation
time.

When starting and evolving the GA, constraints need to be met any-
way. This requires the genome initialization, the crossover opera-
tor and the mutator operator be modified. In fact, any randomly—
generated genome that constitutes an individual of the starting pop-
ulation must be rejected (and thus generated again) if its QoS vio- 3.4 Triggering Service Re-planning
lates the constraints. Similarly, crossover and mutation operations During workflow execution, the actual QoS may deviate from the
must be roll-backed when, respectively, the offspring or the mu- estimated one, according to formulae shown in Table 1. Further-
tated individual violate the constraints. more, there could be services not more available when invoked. In
the two situations above, the slice of the workflow still to be exe-

3.3 Unfolding Approach: when better QoS is ~ cuted may need tobe re-planned.

more essential than Quickness The algorithm presented in Figure 5 describes the proposed re-
The described approach permits to quickly find a solution to the planning triggering approach. Actually, this algorithm needs to be
QoS optimization problem. However, when QoS attributes are con- integrated with the workflow engine to allow measuring the actual
strained, there could be better solutions at the price of a more ex- QoS during execution and to perform re-planning when needed.
pensive search. The algorithm is described for any additive QoS attribute (e.g.,
cost) however it is still valid (with proper changes in the QoS for-
mulae) for other (e.g., multiplicative) attributes. Also, for simplic-
ity, the algorithm shows how re-planning works for constructs such
as Loop, Switch, Sequence and invocation, while it can be easily
extended to other constructs (e.g. Fork).

Concrete Cost Response
3 service time
Cs, 3 2 Given the overall estimated Qo0& £sr), initially the actual work-
s, 5 . flow QoS Qacr) is equal to it. Then, the workflow execution

starts visiting the root node, and each node is recursively visited.
Each time the absolute difference between the actual QoS and the
estimated QoS is above the fixed threshd@ H, a re-planning is
a) by 9 triggered.
For Loop nodes, the actual number of iteratighss determined if
Figure 3: When unfolding may be convenient possible (when the Loop exit is bound to a condition, this might not
be possible), and the actual QoS is refined varying itASy— k)
Qinn~er (i.e., considering that the number of iterations is varied
Let us consider, for example, a simple workflow shown in Figure 3- by k' — k). In case this difference evaluates above the threshold,
a), where the Loop is estimated to be executed 3 times. Supposea re-planning is triggered. Then, the Loop inner node is visifed
now that our optimization problem is given by: times (or while the Loop condition isue), triggering re-planning
each time this is necessary.

) For Switch nodes, the actual Case to be executed;hih one) is
F(z) =1/(Cost + Time) determined, and the Switch inner QoS (originally a weighted sum,
Time <5 as shown in equation (1)) is updated, considering, instead, only the

Loop | Estimated Actual Current
node | [terations Herations Herations
i top— n, kg kg e
a) g kg L3 Je
<

Figure 4: Re-planning slice a) Node outside any Loop or Sequence b) Node inside a not yet estimated to be completed Loop c) Node
inside completed Loops

QoS of the Case chosen. Given the re-planning slice, the same approach described in Sec-
tion 3.2 is used to find its (sub)-optimal concretization. However,
For Sequence nodes, each child is visited, and re-planning is trig- this time the overall QoS that maximizes the fithess function while
gered each time the deviation of the actual QoS from the estimate meeting the constraints is given by:

is above the threshold. Finally, for service invocation nodes the

measured QoS after service invocation is used to update the actual

QoS QovEerarLr = Qror + QoS(slice))

3.5 Determining the re-planning slice
The functiontriggerReplan()invoked in the algorithm of Figure

5 acts on a slice of the original workflow, representing the set of
nodes that still are to be executed.

i.e., the QoS of already executed nodes, plus the estimated QoS of
the slice.

4. TOOL DESCRIPTION

Given a noder,, that, after its execution, triggers a re-planning, the We have implemented a tool prototype for a QoS-aware composi-

slice to be re-planned is computed depending on the position of thetion of services that we used for the experimentation of the pre-
noden,, in the workflow control structure. sented approaches. Some of the components we realized could

be integrated with a real web services orchestrator, while for the
purpose of our experiments it was enough implementing a quite
e If the node is outside any Loop or Switch statement, all the simple workflow engine simulator. The architecture of the tool is
nodes that follown,, (including the node,, itself) are part composed of:
of the slice (Figure 4-a);

e aService Repositoryhere concrete services are stored along
with their QoS information, and classified according to their
semantic descriptions;

o If the node is part of a Switch, while outside any Loop, the
slice will include again all the nodes that follawy,, exclud-
ing the nodes of the alternative Cases (Figure 4-b);

¢ Whenever the workflow execution enters a Lagphe fol-
lowing information is pushed on a stack: a reference to the
Loop node, the estimated number of iteratidns the re-
estimationk; (if available, otherwisé; = k;), and the actual
number of executed iteratiops. When a re-planning is trig-
gered inside a Loop, the slice is obtained starting from the
most external, not yetstimated to be completedoop. A
Loop: is estimated to be completéffl j; > k.. Clearly, the
resulting slice will contain, for such most external Loop, an
estimated number of iterations equalskfo— j;, i.e., only
accounting for the iterations left to be executed.

a Workflow Generation Toplused to automatically produce
XML workflow representations of composite services. The
workflow tasks are abstract services, while BPEL4WS-like
constructs are used for the control flow specification. Also,
it is possible to attach QoS constraints to workflow tasks;

aConcrete Workflow Buildefor retrieving concrete services
for the workflow tasks from the Service Repository, eventu-
ally according to local QoS constraints;

aWorkflow QoS Estimatoused for the overall QoS estima-
tion of a concrete workflow;

QEest —Estimated overall QoS;

Qacr — QEsT;

Qror «+— 0

NTH «replanning threshold;

NODE «— Workflow root node;

visit(NODE);

begin function visit(node)
switch node is type of do

case loop

k <« Estimated loop iterations ;
k' Actual # of loop iterations ;
INNER «— Loop inner node
QinnER — QOS(INNER);
Qroop — k' * QINNER;
Qact —
Qacr + (K — k) *QINNER ;
if |Qacr — Qest| > NTH then
replan(INNER, Qror) ;
end
for j — 1 to k' do
visit(INNER);
if |Qacr — Qesr| > NTH
then
Qror +— Qror —
ActQoS(INNER) ;
replan(INNER, Qror);

end
end

case switch

j < Case statement chosen ;
INNER « Inner node of the
j — th case ;

Qswitcu «— QoS(node);
QIiNNER — QoS(INNER);
Qacr —

Qact — Qswircu + QINNER;
visit(/ NNER);

case sequence

foreach Node n in sequence do
visit(n);
if |Qacr — Qresr| > NTH
then
Qror «+ Qror —
ActQoS(INNER) ;
replan(/INNER, Qror);

end
end

case invocation

INNER <« node

QiNNER — QoS(node);
Execute(node);

QiNNERACT — ActQoS(node);
Qror «— Qror + QINNERACT ;

if |Qacr — QEest| > NTH then

replan(INNER, Qror)

end
end
end function

Figure 5: Re-planning triggering algorithm

e a Workflow QoS Optimizetto find the optimal set of con-
crete services for the workflow, with respect to the overall
QoS, that maximizes a specified objective function and meets
global QoS contraints. This component uses @wncrete
Workflow Builderto obtain the concrete workflows needed
for the evaluation of the objective function through Werk-
flow QoS Estimatqrand arOptimization Libraryto solve the
global optimization problem;

e a Workflow Simulatarfor the service composition simula-
tion. This component can be used to simulate the execution
of a concrete workflow, to analyze the actual path followed
and the actual local and global QoS values. When perform-
ing a simulation, we considered: i) the actual response times
of the component services and the actual number of loop it-
erations, varying them according to a gaussian distribution
function centered in the estimated value, and with a speci-
fied standard deviation; ii) the probability of choosing a case
statement inside a switch construct, and the estimated avail-
ability of a service; iii) the values of the cost attributes of the
component services are all constant, since itis unlikely (even
if possible) that these could change at run—time. To avoid
bias due to the result randomness, simulations are performed
for a high number of times (say 1000), and average values
of the actual QoS are considered. TWerkflow Simulator
has also been extended with the implementation of our Re-
planning Triggering algorithm, and@oS Monitoring Toal
Whenever a re-planning trigger occurs during execution, the
slice of the workflow to be re-planned is computed and the
Workflow QoS Optimizeis invoked to do the re-planning
work on that slice. Th€oS Monitoring Tookeeps track of
the past workflow executions for each customer. The work-
flow log data is then used to refine the estimations on the loop
iterations and to update the probabilities on case statements.

5. EMPIRICAL STUDY

The evaluation of the workflow QoS estimation and re-planning
approaches has been performed through numerical simulation. The
experiments were run or@ompagq Proliant* with Dual Xeorf ™

900 MHz processor, 2MB Cache and 4GB of RAM. To this aim, we
used a simplified representation of the services, including a name, a
reference to its semantic description and estimated values for cost,
response time and availability attributes. The QoS values of seman-
tically equivalent services were varying according to some gaus-
sian distribution function, and better response time and availability
offers corresponded to higher costs. Also, workflows of different
sizes were generated with random probabilities on Switch and Loop
iteration estimations.

Some sets of experiments were set up to reason about unlooping
vs unfolding for a given workflow, when the estimated number of
Loop iterations increases, and the frequency of re-planning during
execution of workflows, due to deviations of the actual overall QoS
from the estimated one. These experiments and the resulting data
are discussed in the following subsections.

The GA was set up with the following parameters:

o Elitist GA, i.e., the best two individuals were kept alive over
subsequent generations;

e Population of 100 individuals;

e Crossover probability=0.7; and

Unlooped (10 iter) time rise of the unfolding case (i.e., the number of generations re-

— quired for fithess convergence) depends on the number of itera-

tions. Moreover, if we consider the GA execution performarices

- Unfolded (10 ter) i (see Figure 8), while those of the unfolding case are significantly

Unfolded (20 fter) higher (because of the largest genome) with an exponential grow

at the increase of the number of iterations, the performances of the
unlooping approach are lower and approximately constant with re-
spect to the iterations.

Unlooped (20 iter.)

Fitness Function

07t 7
800 -

0.65
700
06 s s s s s s s s s ‘ 600 |-
0 100 200 300 400 500 600 700 800 900 1000
Generations
500
§ 400 |
Figure 6: Unfolding vs. unlooping: fithess function conver- 300 |
gence
200
100
e Mutation probability=0.1. 0 s s s s : w w w)
2 4 6 8 10 12 14 16 18 20
Loop lterations
To avoid biasing results because of randomness, the GA executions
were repeated 10 times, and average values used. ur
09 2iter. 105
//"//‘176 iter. eI
20 iter. i 40 ter. 10 M
% o7 |t 9l
.‘%
0.65
8.5 |
0.6

0.55 2 4 6 8 10 12 14 16 18 20
Loop Iterations

05 I I I I I I I I I)
0 100 200 300 400 500 600 700 800 900 1000

Generations
Figure 8: Unfolding vs. unlooping: timing comparison

Figure 7: Unfolding rise time for different numbers of itera-

tions 5.2 Constraints
As described in Section 3, the unfolding approach may result use-
5.1 Unlooping VS. Unfolding ful in presence of global constraints. To support this hypothesis,

we performed a second set of experiments, imposing constraints

The first part of the experiments was concerned with testing both on the response time attribute (of typeerall response time <

approaches for a benefits-costs analysis. We initially considered a : .
simple workflow consisting of a Loop construct including 10 dis- V@/u€) . In order to evaluate the extent to which a loss of the over-
tinct abstract services, and repeated the experiments with a numbe .” quallty with our unlooplng approach, bu; with a time gain for .
of iterations ranged from 2 to 40, hence with 400 as a maximum |nd!ng an accept_able solut|on_, is worth against absolute QoS opti-
number of service invocations. Also, for each abstract service, up mality reached with the unfolding approach.

to 15 concrete services were considered.

In particular, a workflow containing a Loop over 3 services was
considered, with the number of iterations varying from 3 to 20. As
shown in Table 2, the unfolding approach can lead to an increase
of the fitness function value, although this is almost always limited
y the maximum time to be taken. In our experiments, we found
provements of the fitness function values varying from 7 to 119%,

Figure 6 plots the fithess function evolution across GA generations,
for worflows with 10 and 20 Loop iterations. It is important to note
that without constraints, we get convergence to the same fitness
value with both unfolding and unlooping approaches. However,
the unlooping approach is able to ensure convergence to be reache
much faster, after about 30-40 generations, regardless of the num-
ber of iterations considered. Vice—versa, as shown in Figure 8, the userCPU times computed with the Unix utilityme .

of Loop Fitness Fitness Fitness Time Time Time
Iterations | (Unlooped) | (Unfolded) | Increase| (Unlooped)| (Unfolded) | Increase
(%) (%)
3 0.71 0.79 10.78% 2.80 8.47 202.50%
5 0.71 0.77 8.98% 2.81 12.63 349.47%
10 0.69 0.74 7.18% 2.84 26.84 845.07%
15 0.68 0.73 7.44% 2.87 43.28 1408.01%
20 0.67 0.72 8.29% 2.91 62.97 2064.66%

Table 2: Using the unfolded workflow in presence of constraints: cost/benefits

while the additional time needed for convergence was up to 2000%. 100 - Cost
Noticeably, varying the constraint proportionally to the number of 9
iterations, we did not observe a corresponding increment in the dif-
ference between the fitness function values on the unfolded and
unlooped workflows.

Response Time -------

80 -
70

60
Thus, we believe that unfolding Loops may only be convenient
when, in presence of constraints, even a slight improvement of the
fitness value is worth hours taken to search for a solution. For ex-
ample, we may desire to minimize the cost as much as possible,
without trying to minimize the response time, on which, however,
a constraint has been specified. Once the constraint is satisfied,
the unfolding approach tends to choose the cheapest services rather = - - - o = " = .
than the fastest ones. On the contrary, the unlooping approach may Std. dev on iteration estimate (%)

require that each abstract service be bound to the fastest concrete

service, since each abstract service is only bound once in the work-
flow. The tradeoff between the unfolding (better fithess) and un-
looping (quick convergence to a sub-optinal solution) approaches
is represented in Figure 9.

50

Error on QoS estimate (%)

40

30

20

5]

Figure 10: Error on QoS estimate due to uncertainty in the # of
iterations

Better
Fitness

varies from 10 to 50. In this case the standard deviation on the QoS
UNFOLDED estimate was kept constant to 5%. Errors on availability were al-
ways below 1%, thus giving high confidence on service availability
even in the presence of big estimation errors. When varying the
standard deviation for the response time estimate, the error mea-

UNLOOPED sured for 5%, 10% and 15% were, respectively, of 3%, 5.5% and
8%. In this experiment, the standard deviation on Loop iterations
Quick solution estimates was kept fixed to 1%.
Figure 9: Tradeoff between unfolding and unlooping The general indication given by the simulations we performed is

that the actual QoS obtained during execution deviates in the pres-
ence of wrong QoS estimates and, above all, of wrong estimates on

5.3 Dealing with Uncertainty in QoS Estima- the paths to be followed in the workflow. This would require to: i)
tion refine the estimates as much as possible, using actual data obtained

X) during different service executions, and ii) trigger re-planning as
The estlmated ove_raII QoS may deviate from the a_lctual valu_es ol_a- soon as this is necessary.
tained during service execution. The QoS of a Switch node is esti-
mated, according to Table 1, as a weighted sum of the QoS values
of the different cases. At run—time, only the QoS of the case actu- 5.4 Triggering Re-plan during Simulations
ally followed is considered. Similarly, the actual number of Loop The last set of experiments aimed to simulate the behavior of the
iterations can deviate from the estimated one. Finally, some QoS re-planning trigger during workflow executions. We considered
estimations of the invoked nodes can vary. two different workflows, composed of 10 and 12 nodes respec-
tively, a standard deviation of 5% on QoS estimates, and of 10%
We used thaNorkflow Simulatoto compute differences between on the number of iterations estimates. Finally, we calibrated the
estimated and actual QoS values. Simulations were performed vary+e-planning threshold to 10% (i.e., the difference betw€ersr
ing from 10% to 50% the standard deviation on the estimated num- Q scT needs to be bigger than 10%). In our experience (on differ-
ber of Loop iterations, and from 5% to 15% that on the QoS esti- ent workflows, with the above specified estimate errors), thresholds
mates (only for response time, since we considered cost values tobigger than 30% would not lead to any re-planning.
be constant).
Figure 11-a shows that, for the first workflow, the re-planning like-
Figure 10 plots the error occurred on overall cost and response timelihood is of 56.8%, distributed on different nodes (two Sequence,
estimates when the standard deviation on Loop iterations estimatesone Switch and one invoke node, indicatedsds+#:0). In the sec-

ond case (Figure 11-b), the likelihood of re-planning is of 45.6%,

however limited to a unique, Switch node. This because the node

splits the whole workflow in two cases with similar likelihood and,

once the choice of the branch to be followed has been actually
made, a re-planning is triggered to (eventually) re-plan only from

that branch. It should be noted that the re-planning trigger can be [4]
useful not only at run-time, but also for analyzing how (and where)
wrong QoS estimates could make a re-planning necessary during

future executions thus wasting execution time.

SeqMode! 4

Percentage of replanning: 56.8 %

Si8m Percentage of replanning: 45.6 %

589% SeqNode#d
15,32%

1373%

SwitchMode#

Switch ode#d 100%
64,98%

a) b)

Figure 11: Triggering re-plan on different workflow nodes

6.

In this paper we described an approach for QoS—aware service
composition, based on composition of the QoS attributes of the

CONCLUSIONS

[3] J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut.
Quality of service for workflows and web service processes.

Web Semantics: Science, Services and Agents on the World

Wide Web1(3):281-308, April 2004.

F. Casati, U. Dayal, D. Grigori, and M. Shan. Improving
business process quality through exception understanding,
prediction, and prevention. IRroc. 27th International
Conference on Very Large Data Bases (VLDB;(dgges
159-168, Rome, Italy, Sept. 2001.

(5]
e-serviceslnformation System26(3):143-162, May 2001.

[6] K. Deb. Multi-objective genetic algorithms: Problem
difficulties and construction of test problenscolutionary

Computation7(3):205-230, 1999.
(71

M. Garey and D. Johnso@omputers and Intractability: a
Guide to the Theory of NP-CompleteneasH. Freeman,

1979.

[8] D. E. GoldbergGenetic Algorithms in Search, Optimization

and Machine LearningAddison-Wesley Pub Co, Jan 1989.

[9] 1SO.UNI EN ISO 8402 (Part of the ISO 9000 2002): Quality

Vocabulary

component services and on Genetic Algorithms (GA). The aim of [10] ITU. Recommendation E.800 Quality of service and

the approach is to provide a fast way, even if rough, to find the
(sub)—optimal service composition and estimate its overall QoS.
Constraints on the QoS attribute values are also kept into account.

Obtaining an estimate quickly is particularly relevant for interac-

tive services, where the time allowed to make the choice is limited.
Numerical simulation showed the effectiveness of the approach and
how an alternative approach, namely unfolding the workflow loops, [12]
can lead to better QoS values at the price of a higher search time.
For example, the latter may be more suitable for the composition

of non-interactive, computational intensive services.

In addition to the approach for composition, we proposed a re- [13]
planning algorithm to compute the deviation between the estimated
QoS and the QoS measured at run—time, whenever possible. When
the deviation goes above a threshold, the algorithm triggers a re-

planning action, that is performed on the workflow slice that still
remains to be executed.

Work—in—progress is devoted to better validate the approach on a
large set of real services, as well as to further optimize the compo-
sition approach, for example with an hybrid optimization technique

that combines GA and hill climbing. GA performances will also be

compared with those of other optimization approaches. The whole [15]
toolkit is going to be integrated on a service broker we are devel-

oping in a project together with a large Italian software company.

7.
(1]

(2]

REFERENCES
T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, S. T. D. Smith, I. Trickovic,

[14]

dependability vocabulary

[11] H. Ludwig. Web services qos: External slas and internal

policies or: How do we deliver what we promise?Rroc.
4th International Conference on Web Information Systems
Engineering Workshops (WISEW'0BEE, 2004.

H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. Web
service level agreement (WSLA) language specification.
http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf

M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara.
Semantic matching of web services capabilities. In
Proceedings of the first International Semantic Web
Conference (ISWC 2002)olume 2348 of_ecture Notes on
Computer Sciencgages 333—-347. Springer-Verlag, June
2002.

E. R. U.Greiner. Quality-oriented handling of exceptions in
web-service-based cooperative processeBraa.
EAI-Workshop 2004 - Enterprise Application Integration
pages 11-18. GITO-Verlag, 2004.

K. P. V. Tosic, B. Pagurek. Wsol - a language for the formal
specification of classes of service for web service®rc.

of the 2003 International Conference on Web Services
(ICWS’03) pages 375-381. CSREA Press, 2003.

[16] W3C Working Group. Web services architecture.

http://www.w3.org/

and S. Weerawarana. Business process execution language [17] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas,

for web services.
http://lwww-
106.ibm.com/developerworks/webservices/library/ws-bpel/

J. CardosoQuiality of Service and Semantic Composition of
Workflows PhD thesis, Univ. of Georgia, 2002.

10

J. Kalagnanam, and H. Chang. Qos-aware middleware for
web services compositiofEEE Transactions on Software
Engineering 30(5), May 2004.

F. Casati and M. Shan. Dynamic and adaptive composition of

A Framework for QoS-Aware Service Composition

Arnor Solberg
SINTEF
P.O. Box 124 Blindern
N-0314 Oslo, Norway

arnor.solberg@sintef.no

Sten Amundsen
Simula Research Labratory
P.O. Box 134
N-1325 Lysaker, Norway

stena@simula.no

Jan @yvind Aagedal
SINTEF
P.O. Box 124 Blindern
N-0314 Oslo, Norway

Simula Research Laboratory
P.O. Box 134
N-1325 Lysaker, Norway

Frank Eliassen

Simula Research Labratory

jan.aagedal@sintef.no

P.O. Box 134
N-1325 Lysaker, Norway

frank@simula.no

ABSTRACT

Preparing an open environment for dynamic compwsiéind re-
composition of services requires standardized telcigies for

building, deploying, and running software systerne key
challenge in this respect is how to compose sesviaad

orchestrate the service collaboration to best Hi¢ specified
behavior, both in terms of functionality and qualin this paper
we present an approach for QoS-aware service catiguosA

general framework, called service planning framdwors

presented. The framework is used at both build-tme run-time
to identify possible implementations of a serviogl @hoose one
service composition based on its QoS propertiebulit-time we

exploit model-driven system development, and attmme we

consider a QoS-aware execution environment.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management -Software quality
assurance, productivity.

General Terms
Management, Design.

Keywords
Service composition, QoS, modeling, specificatidiDA, model-
transformation, QoS-aware adaptation.

1. INTRODUCTION

Business rely more and more on distributed compusiystems
for collaboration and trading between businesseb lzgtween
businesses and customers, i.e., Business to Bas{B28) and
Business to Customer (B2C). In most cases, busisasmamic,
so work methods and processes evolve over times,Tthe
supporting systems also need to act dynamically eralve in
pace with changing environments and requirementaddlition, a
distributed system needs to cope with differenhtetogies and
continuous changes in the execution environmente (do
constrained system resource availability, load,.).et®ne
appealing way of meeting these challenges is toamhycelly
derive the structure and implementation of theesysbn demand.
Hence, based on specified requirements and comstraihe
requested service(s) are composed dynamically,, eby.
orchestrating a set of available autonomous sofweatities (sub-

services). In this context, a significant aspectthie provided
quality of service (QoS). Services providing thghti quality to
the right price will be requested. Then the chakmemains to
compose the service(s) based on specified requirtsnaad price
constraints, utilizing available environment resms and
services.

To handle the complexities of distributed systeofgect oriented
technology was an important step forward. It imgavthe
separation of concern between the different sofiwentities in
the system. Currently system developers have emtbrac
components as the most suitable software entitgdsigning and
developing distributed systems. Component techryologludes
important principles like encapsulation, interfgcassumptions
(i.e., required interfaces) and reflection/intrasmn. From a user
perspective, a component-based system may be cedfet a set
of services. These services are typically provided a
composition of collaborating components. Due to the
encapsulation property, we might compose new sesvitom
existing services, i.e., a recursive service coritjpos This view

of systems and the idea of late bindings are ke@eds of the
Service Oriented Computing (SOC) paradigm [3].

The focus within component-based software engingetias

mainly been on modeling the functional properti€, [and

developing suitable execution environments for shithg and

running services. However, composing services amatel for

B2B and B2C systems (e.g., in a global web envimmtnusing

the Web service approach [4]), consideration of @®§., cost,
availability, execution delay, reputation and sssfel execution
rate) is considered to be vital. To gain proper ag@ment and to
be able to offer services with QoS-guarantees, dv®cate that
QoS constraints should be carefully considered ndurthe

development phases and also managed during executio

This paper presents a general framework for QoSeawervice
composition (section 2). The framework include®adaept model
defining the core concepts for QoS-aware serviaapasition,
and the specification of the behavioral aspects/ludit we have
denoted service planning. Application of the frarogw is
described in section 3. This section describes tomwpply the
framework at build-time using a model-driven appigain
alignment with the model-driven architecture (MDA™)
philosophy [7], as well as how the framework migktapplied at
run-time for planning service composition and reiposition.
Build-time QoS modeling is based on the currensieer of the

UML profile for QoS [8]. At run-time the framewodssumes an
execution environment that implements reflectiod][Jand uses
run-time reconfiguration mechanisms of componemgasitions

[10][11]. A video-conference system is used tosiltate how the
framework is applied at both build- and run-time.

2. SERVICE PLANNING FRAMEWORK

The service planning framework defines a concepdehand the
behavioral aspects of the service planning activity

2.1 Concept Model

The concept model is shown in Figure 1. The thraanmoncepts
are: 1) service type, 2) service plan, and 3) binepThe service
type represents the service properties and is entignt of the
implementation. The service plan specifies the iserv
composition and the QoS-profile of a service typeblueprint
realizes a service type according to its associsgedce plan. The
concepts of the framework are described in moraildet the
following paragraphs.

LConstraint
q\man UtilityFunction i‘ QLDimension ‘4‘ QLCharacteristic ‘
0. 0.*

ResourceModel QLModel
1

Invefse L, 0 J
‘ QLMapperFunction ‘0' - o
o.
o |oa

ption
[
C
.0
QLAllocatorFunction Component
Q 1 0.*
0.

1
SenviceType

Figure 1. The framework concept model

ServiceType; Defines the service name and the provided

functional services in the form of operation sigmas and
semantic descriptions. There are different wayseresent a
service type, like web service description languggéSDL),
OMG's interface definition language (IDL) and Jawderface
description language (JIDL), even if these do nappert
semantic descriptions.

Blueprint; A blueprint is a persistent immutable value, which

realizes the service type. There can be many desshlizations
of a service type, each of which can have diffe@of profiles
(described in the associated service plan). A lbloep
encompasses a recursive structure, thus, a bluegmenclose
other blueprints. Its representation will typicalary with the
abstraction level. At the model level a blueprinancbe
represented as a UML design model, either at afoptat

independent level (PIM-level) or at a platform-sfieclevel

(PSM-level). At the platform-specific level, bluéms may also
be represented in code (e.g., EJB jar files coimgicompiled
Java classes).

ServicePlan;Contains information elements specifying how to

compose the service from blueprints (tbempositionPlajy and
which QoS-properties this composition will haveQL¢

Characteristic. A service plan may typically be specified in the

eXtensible Markup Language (XML), and if the asatmil
blueprint is a UML-model, the service plan is parpresented
using XML Metadata Interchange (XMI). A service plspecifies
what platform the blueprint is designed for, whiolay be a

UML-platform or a middleware platform. At the UMEevel one
may have either the pure UML-platform (the UML meatadel)
or a specific UML profile, like the UML EJB-profilgL6]. Since a
service plan denotes the actual platform of thefint, there is
one service plan for each blueprint. This also iegpthat you will
have a recursive structure of service plans inraeswe with the
recursive structure of the blueprints. The infolioratelements in
a service plan are:

« Assumption;A list with service configuration data, platform
requirements and dependencies to the associatédrplaThe
platform requirements specify the platform where btueprint
can be interpreted, for instance a UML-platformaoQoS-
aware execution environment.

CompositionPlan;Specifies the service composition, i.e., the
composite service types and bindings between tirégore 2
illustrates how composition plans specify the sketservice
types in a composition. Note that for an atomiaiser (or an
atomic blueprint), the composition plan of the ass®d
service plan is empty (it returasomiq.

Top level service

I

VideoStreaming

Atomic services Coder Sub service

L
- - . MPEG2 " -
Video_in_out :»—1
RTBinding =} duplex 128bEncrypnonr—‘: ConferenceBndgel

Figure 2. Servicetypesat different levelsin the composition

e QL-Characteristics; A set of domain quality loss
characteristics (QL-Characteristics) constitutes dhality loss
model. Each QL-characteristic is specified throwgtset of
quality loss dimensions. The QL-characteristic sedl to
specify QoS-properties of the service compositiam the
composition plan), using the QoS semantics destiig21].

It measures quality relative to perfect qualitg, the difference
between perfect and achieved quality. This diffeeeis called
quality-loss (QL)[13]. QoS, on the other hand, is viewed as
the difference between minimum achievable quality actual
quality. Figure 3 illustrate the QL-measure and QoS

Quality A

Ideal

Quality Loss

Actual

[Quality

| »
I >

Dimension

Figure 3. QL versus QoS

Formally, QL is the difference between ideal antialcoutput
traces, where a trace is the output messages femrvice. The
ideal output tracel, is defined to be the service output when
system resource availability is infinite. Actualtput trace A,
is defined as the service output with finite andreld system
resources. The difference between the ideal andalais a
series of vectors. Figure 4 illustrates the twgpatitraces and
the difference vector€;, between them fam output messages.
The figure shows how the time of the output evamd the
value of message content for each actual outpusagesdiffer
from the ideal. The number of ways in which an atctwace

may differ from the ideal trace may explode asdbeplexity
of the message structure increases. Fortunatelfregeently
are concerned only with an overall measure of degarom
the ideal. We therefore define an error model astaof QL-
functions over the series of input vectors. Eachf@iction is
typically defined as an aggregating statistical suea such as
maximum, mean value or variance This approach m@ites
functions useful and suitable for computations.
Message quality
A
‘\ \ e\ .

Py
L S . e

Time
Figure 4. Output message traces and difference vectors

To define ideal and actual output trace for a senone relates
the output message to the service input messagel is
achieved when the service is computing indefinitégt,
which is zero delay when considering the dimendietay.
Hence, if a service output happens at tintiee related service
input would have happened at titnas well. Figure 5 illustrate
the casual relationship between service output eapait,
which is used to define the QL-dimension and the- QL
function.

Message flow

\4

O— —O— —C
Input g & Output
Delay
Figure 5. Theinput-output relationship for the QL-dimension
delay

Utility function; To capture user constraints, the concept model

uses what is called QL-constraints. Users specifgirt
constraints as minimum and maximum acceptable @k
andglyay for each QL-dimension. The usability of the seevi
is represented by the utility measure, a real nunibethe
range [0..1]. Utility is expressed by a utility fttion, which is
a function that maps dimensional quality-loss insiagle
quality dimension to utility valuegd 2]. Hence, for each QL-
dimension there is one utility function. Figure Bows one
possible utility function together with the assoeth QL-
constraints. The utility function enables the frame to
identify the service plan that; 1) meets the useristraints and
2) optimize the usability. You can also derive aggte utility
functions based on existing utility functions, tet gutility
values for a combination of quality dimensions,. exgedia
quality including both audio and video quality.
QL-MappingFunction; There are two types of mapping
functions; QL-prediction (QL-PredictorFunction)and QL-
allocation (QL-AllocatorFunction) The prediction functions
encode the application developer's knowledge abitnet
service, and predict the quality loss for the sEndgomposition
as a function of composition and system resouredability
(CPU, disk, network, etc). Prediction functions caso be
made recursive, by invoking appropriate predictionctions

in each sub-service plan. The QL-allocation functiudgets
the quality loss down to each sub-service and at@mmivice in
the service composition. Input is the QL- limit,,;, andqlyax
for the QL-dimension of interest. At leaf-level th@L-
allocation functions define the system resourceliremqents,
which must be expressed in a form that can be simzt by
the resource manager.
Utility QL-dimension

1.0

—+——3 Quality Loss
0

Al e

Figure 6. Utility function and gl min - lmax

2.2 Behavior Modéd

The behavior model specifies the behavioral asp#dtse service

planning framework. It includes a set of activengdats as shown
in Figure 7.

Component
(from ConceptModel)

0.*

Blueprint SenicePlan

P!
(rom ConceptModel) | 0.1 | (om Conceptiodel)

Analyze

UserConstraint
(from ConceptModel)

Repository

I

ResourceModel
(from ConceptModel)
7

Negotiate
M
OLMapper calculateQoSLoss QLModel
(fom ConceptModel)

uses Ses

nvers?

Figure 7. The framework behavior architecture model

servicePlanReq -
SenvicePlanner

publish|

ServiceProvider

‘ QLPredictorFunction

QLAllocatorFunction

(from ConceptModel) (from ConceptModel)

The active elements in the framework are: the serprovider,
broker, service planner, QL-Mapper, and resourceager. They
interact to: 1) publish alternative service composs of service
types and 2) identify and choose a service conipasihat meets
the users QL-constraints.

ServiceProvider; The actor (organization, system architects,

application developers, etc.) that has a serviceublish for
others to use. A service provider interacts wite throker to
deploy blueprints and service plans, and to addcetypes.

Broker; a discovery service similar to the CORBA tradiegvice
[18] or the Universal Description, Discovery andtelgration
(UDDI) [19], where blueprints and service plans banpublished
and discovered according to specified propertiegrvi€e
providers advertise their service types and astmtigervice
plans, enabling the broker to map between a setyjge and
alternative service plans deployed for the seriyipe. The broker

relies on a repository for storing/retrieving seeviplans and
blueprints.

ServicePlannerjdentifies implementations of a service type that
guarantee correct functional behavior accordingh® type and
meets the specified QL-constraints. The servicar@a uses the
broker to discover alternative service plans feeevice type, and
it uses the resource manager for negotiating systsources.
This responsibility includes validating that asstions in the
service plan are met, and predict QL for each reétive service
composition. This is coordinated by the QL-mappéiciv can
read and analyze the QL-characteristics and QL-imgpp
functions(QLPredictorFunctionandQLAllocatorFunction in the
service plan. The service planner can be set ugttion one or all
service compositions that meet the user’'s consgralfinone is
found it rejects the service request from the user.

Resource Manager;Uses the resource model to retrieve
characteristics and availability of system resosirda the
platform. When the framework is implemented in aSQware
execution environment, the resource manager alguposts
resource negotiation and monitoring.

ServicePlanner : Broker ResourceManager

/ Find plans for
senice type

/

Analyse plan

UZ.

/Resolwve senice ™\
—> type

List of Plans :
SenicePlan

st: SeniceType|

/
N

glDim_Constraint :
QLConstraint

!

List :
QLDimension

Resource

(~ QLPredictionF

___unction _/ availability
Choose
[senice plan(s)
‘ QLAllocationFunctio Resource
n negotiation)
CompositionPlan mm

List :
Blueprint

Derive senice
_ composition(s) i

sc : SeniceCompostion

Figure 8. Service planning activities

The active elements in the service planning framkvperform
two main tasks: 1) store provided blueprints andoeisted
service plans for a service type as
ServiceProvider, and 2) identify and choose
compositions(s) that meet functional and QoS-can#s when
receiving a service request. Figure 8 illustragk td) in a UML
activity diagram. The required stimulus is a sesviequest that
includes the service type and the associated Qktmints. The
broker comes up with a list of alternative servidans for the
actual service type. The service planner seleasattpropriate
alternatives from this list, through analyzing Qhacacteristics

requested by th
service

and user defined QL-constraints. It then perfornisp@diction
and QL-allocation and negotiates with the resounzmager in
order to allocate the required resources. If itsfab allocate
required resources, the plan will be eliminatednfrihe list. The
set of composition plans and associated bluepanésused in
order to derive the appropriate service composstasoutput.

3. APPLYING THE FRAMEWORK

In this section we describe how the service plagframework
can be applied build-time and run-time. At builohéi we employ
a model-driven system development approach, bas¢deoMDA
[7] philosophy, where the service planning framewisr used to
perform QoS-aware model transformations.

When developing a system one typically considercadb set of
possible quality and functionality requirements idgr the
inception and early elaboration phases. Differémti& of more or
less crucial functionality are elaborated, and wh@bS
characteristics to consider is identified. Howevle, exact values
of the QoS characteristics are typically not sdtih this stage.
During late elaboration and construction phasegdhjeirements
to be implemented for this version of the systendegtermined.
Some requirements are typically modified, QoS valaled ranges
are resolved and some requirements may be ignareq, (o
shorten the time to market or to aim at a speniicket segment).
Thus, a more extensive set of possible solutionsypscally
considered at the higher abstraction levels, whtlehe lower
abstraction levels more decisions are made, redutia set of
possible variations. Consequently, a selection afssible
compositions for a service is made during modeidfiarmations
(e.g., for PIM to PSM transformations). Another sigieration in
this respect is that the PIM abstraction level rsatkee solutions
independent of existing and upcoming platforms eaions of
platforms. Thus, covering a broader set of vanetiat the PIM
level, and resolve variability through a PIM to PSM
transformation will provide an efficient system d@®pment
process. Different decisions might apply for difiet platforms in
order to exploit differences in platform capabdgti

At the execution level one may still have a setpaofksible
solutions to choose between. The selection is therormed
dynamically, at run-time, preferably in a clientarisparent
manner.

The concepts of the system planning framework aed both
during model transformation and during system etieouto
perform QoS-aware reasoning and to choose alteenagrvice
compositions.

At run-time the service planning framework is desig to be
implemented in a reflective execution environmeot, as a
dedicated management service that offers manageraedt
introspection of executing service compositionsisans of their
associated service plans. This is then utilized pimvide
mechanisms for transparent configuration and reégordtion of
service compositions.

Part of our research within the area of QoS-managénis
designing a new reflective component architectwigh a small
core. It is called QUA - QUality of service awarengponent
Architecture [15], currently available in two profpes, one
implemented Smalltalk and the other in Java. It Heeen
developed for prototyping new ideas and conceptisinvthe area
of dynamic QoS management. The service plannimgdveork is

one result from this work. Parts of the servicenplag framework
have already been implemented in the QUA prototypes

3.1 MDA and Model Transformation

In model-driven system development, an extensive e
interrelated models at different abstraction leais developed.
The key challenge is to define, manage, and mairttaces and
relationships between different models, model viand model
elements, including the code of the system. An aced MDA-

based framework should provide well-structured supgfor

modeling at different abstraction levels, and belealto

automatically perform roundtrip model transformasas well as
code generation.

Model transformation can be viewed as a transfaondietween
two model spaces defined by their respective metdets. Thus,

transforming a PIM to PSM is achieved by a generic

transformation specification, which specifies hownata-model
concept of the source model (PIM) should appeathe target
model (PSM). The transformation specification ftsil also

according to a meta-model defining the transforomati
specification construct3his is illustrated in Figure 9.

Transformation
(e.g. MOF QVT)

<<metamodel>> <<metamodel>>
PIM PSM
(e.g. UML subset) (e.g. EJB UML profile)

i
4 \ / T
| <<Saurce>> /<<target>> |
} / |
! / |
| £ |
! <<transformation>>| |
! |
! |
! |
! |
! |
! |
! |

PIM2PSM
Scheme

<<Model instance>> <<Model instance>>
PIM <<generated>> PSM

AN
N\
xgsource>>|
AN

N\ /
Transformation
implementation

Figure 9. Conceptual transformation model

To make the model transformation QoS-aware, the -QoS

properties needs to be integrated into the mod@S-properties
include significant information to enable extensiveodel
transformations, and, more importantly, to delieéficient code.
Thus, it is important to understand the implicasiaf the QoS-

requirements and specifications when performing ehod

transformations in order to deliver high-qualitguds.

Figure 10 shows how we utilize the service planrfiagnework
in order to accomplish QoS-aware model transfoionati

The transformation is exemplified with a PIM to PSM

transformation. The source model is a PIM moddligiag PIM-
level QL-specifications in alignment with the UMltggile for
QoS [8]. At the model level, the service plans ¢glly describe
design patterns. The blueprints are the actuaizeg&ins of the
patterns in the form of models according to thgeaaplatform (in
the MDA context this will be the UML-platform). Theervice
plan encapsulates the meta-data including the Qitacieristics
of a specific blueprint. The resource manager wsedatform
specific resource model, which is the specificatafnavailable
resources of the target platform, to negotiate uesas with the
service planner, e.g., to deliver efficient depleyhmodels. The
resource model instance is according to a resouorodeling

meta-model, which could be based on the GenerabiRes
Model (GRM) described in [15]. The framework belwavin
QoS-aware model transformation is further elabadratesection
3.3

<<metamodel>>
Transformation
(e.g. MOF QVT)

<<metamodel>>
Resource modelling QoS UML profile PIM PSM
(e.g. GRM) (e.g. UML subset) (e.g. EJB UML profile)
! AR i
<<Sburces> | <<target’> T
<<Model instance>>]
ResourceModel
0 <<transformation>>
ServicePlanner, PIM2PSM
3 Scheme
£ A\
‘ResourceManagev ‘ ‘ Broker ‘
v

Repository
e[S <<Model instance>> <Model instance>>
«Blueprints PIM <<gengrated>> PSM

(QL included) (QL included)

<source>> <<taret>>

Transformation
implementation

Figure 10. QoS-awar e model transformation

3.2 Case Description

Composing services on demand requires provisi@utginomous
services from which to select, configure and cormapoBSor
instance, in a Web-service environment there wél $ervice
providers publishing autonomous Web-services pingigpecific
functionality at certain quality and price. A sewi provider
typically wants to provide different compositionsnda
configurations of each provided service type toecodifferent
quality demands of an actual service, to be ablgetve a wider
set of users. A Web-service may be composed ofsenbees
controlled by the actual service provideintérnal service
compositiof or it can be composed partly or totally of other
public available web servicesxternal Web-service compositjon

To illustrate the service planning framework, wdyoconsider
internal service planning. However, the framewosn @lso be
used for external service planning, like creatinyVab-service
composition from existing Web-services. For rundi@oS-aware
service compositions, the service planning framé&waoay then
be published as a Web-service that configures andnfigures
the Web-service composition as indicated in Figade We
believe that end-to-end QoS-guarantees can onydeded by a
combination of external and internal service plagni

A video conference service is used to illustrater lioe proposed
service planning framework makes the service coitipns QoS-
aware. The system has a centralized video confersecver,
which advertises its service as a Web-service ynsef a UDDI
server. Figure 11 depicts the system.

Q Exter nal Web-
Service planning
- WSDL
UDDI
clgt Internett
Client : \/iden Conference
Video Conference
Client server

: Internal
WSDL : Service planning

Figure 11. Video conference system overview

An end-user of a video conference service typicals QoS
requirements with respect to maximum acceptableydeind
minimum acceptable video quality. When the clisna$ing wired
based networks to access the server, these reguiterwan easily
be met. But when wireless is used, the data ratkeimpose
restrictions that can only be solved by using videmders
designed for wireless networks. This means thatethare
alternative solutions with different QoS-properti€sirthermore,
end-users are often using laptops. This allows thenmove
during a video conference session. Thus, the systast at run-
time choose the video coder that can meet the sabuQo0S-
requirements.

Distributed systems, like video conferencing, maeh service
composition that include the clients. For thesetesys the
framework requires an execution environment ondient side,
which supports 1) downloading of blueprints fromremote
repository, 2) dynamic loading of blueprints andtamtiation of
components, 3) binding components together, andcefigction
mechanisms accessible for a remote service planner.

3.3 QoS-Aware Mode Transformation
A PIM of the Video conference service using UML Z19]
composite structure is shown in Figure 12.

VideoConferenceService
SettpHanager "~ > Copfloss
1

Ll
|
E VideoStreaming
1
Ll
Ll
)
)

Coder

| Video_in_out |—|

|—| ConferenceBridgel

vV _V \
<<QL>>) <<QL?>
Delay VideoQualityLoss
Figure 12 PIM model including QoS

The video conference service is composed of: setapager,
repository and video streaming service. The setamager is
responsible for initializing and setting up videonterences on
request from end-users. There is a repository farirg
management data like metadata of video conferezgsas. The
video streaming component is responsible for theasting video
to the clients. There is associated a set of Qlecheristics by
means of dependencies to <<QL>> stereotypes. The
stereotype of UML class is assumed to be definegaaisof the
PIM profile. The QL-characteristic of concern fbig application
domain is defined to be confidentiality lo&2ohfLos$, Delayand
Video QualityLoss The QL-characteristics will typically be
defined at a proper domain level, and will form @k-model in
concert with the QL-mapper functions (as depictedrigure 1).

QL

The QL-characteristics are defined using the UMafier for QoS
(8].

Figure 13 show the quality loss characteristics @intensions for
the video conference service, together with theifipd units and
allowed values. Ideal output traces for the QL-disiens are: 1)
output confidentiality equals input confidentialityith respect to
message protection, authorization and data protedimensions,
2) zero delay, 3) output message rate equals mpasage rate, 4)
output message is a correct representation ofniet imessages,
and 5) output image resolution equals input imagelution.

<<QLCharacteristic>>
Delay
<<QL_Dimension>> Delay :int
{unit(ms)}

<<QLCharacteristic>>
VideoQualityLoss
<<QL_Dimension>> FramelLossRate: int
{allowedValues(0,19),unit(fps)}
<<QL_Dimension>> FrameErrorRate:real
{allowedValues(0,0.1),unit(p)}
<<QL_Dimension>>ImResLoss:int[][]
{allowedValues((0,0),(544,332),
unit(pixels)}

<<QLCharacteristic>>
ConflLoss
<<QL_Dimension>> MessageProtection :mp
<<QL_Dimension>> Autorization:aut
<<QL_Dimension>> DataProtection: dp

+allowedValues \l/ +allowedValues \l/ +allowedValues \l,

<<enumeration>>
aut

<<enumeration>>
dp

<<enumeration>>
mp

ideal
psw
none

ideal
Firewall_vpn
none

ideal
[128bEncr
64bEncr
nonEncr

Figure 13 Definition of the QL -characteristics

Using the description of ideal and actual outpuacés as
illustrated in Figure 5, one can define the QL-timts for each
QL-dimension. The delay QL-dimension is defined He an
integer specifying latency in milliseconds. The @amspecific
video quality loss characteristic is defined to énahree QL-
dimensions; frame loss, frame error rate and imegelution loss.
The specifiedallowed valuesfor these QL dimensions are: for
frame rate loss 0 to 19 frames per second (fpsy, frhme error
rate a probability measure from 0.0 to 0.1 and image
resolution loss from (0*0) to (544*332) samples.n@dentiality
is the ability of a system to restrict access tforimation to
authorized users only. The QL-dimensions definedr fo
confidentiality is message protection, authorizatiand data
protection. The enumerations shown in Figure 13ndethe
allowed values. Then utility functions are derivied each QL-
dimension. The utility function for message pratattis shown in

Utility

1.0
0.9

0.5

mp

0
ideal

128bEncr 64bEncr nonEncr

Figure 14 Utility function for message protection QL -
dimension

When performing a model transformation the QL-disiens can
be partly or completely resolved by specifying thenin and

glmaxof the QL-dimensions. This specification is dexoas QL-
Constraints in Figure 1. To specify an exact vabre sets
glmin=glmax=value. In the following we perform a model
transformation from PIM to PSM where the followirngQL-
constraints are specified for the video streamirgvise:
ConfLosgglmin=glmax=nonEnc}, FramelLossRat{glmin=0,
glmax10), ImReg¢qlmin=(0,0), glmax(512,512)) and
Delay(glmin=0, glmax=200). Constraints on the QL-dimension
FrameErrorRate(defining at which level bit errors are corrected)
is not specified, and thus, not accounted for is titansformation.

PIMModeller Transformator ServicePlanner

Develop PIM
inc.l QoS

for each
servicetype

glc:
QLConstraint
st: SenviceType

PIM update "\«

pimRefined :
PIM

transformation)

Do
SenicePlanning
sc : SenviceComposition

for each
_ senvicetype

N
qlc:
QLConstraint

st: ServiceType

sc : ServiceComposition
(PSMupdate N\
./

Do
SenicePlanning |

pSM:PSM (<<

Figure 15. PIM to PSM transfor mation

Applying the service planning framework, the tramsfation
process will perform as depicted in Figure 15. & model
and QL-dimensions with associated specificationwvadfies and
range are input to the transformator. The transidomuses the
service planning framework to get appropriate servi
compositions according to the QoS requirementse Nuwit this is
performed both at the source level (PIM) and atttrget level
(PSM). The service planner utilizes the utility ¢tions to map
QL-Constraints to utility values. The service planmperforms
according to the UML activity diagram in Figure & the PIM
level the service planner uses the broker to get likt of
appropriate PIM level service plans with associdileeprints (if
any). In this example, there is only publishedrakive service
compositions related to the message protection iQlefussion .
These are shown in Figure 16.

Coder Coder Coder

| Coding | | Coding |—| Encryption64| | Coding |—| Encryption128|

nonEncr 64bEncr 128bEncr

Figure 16. Coder Composition plans

We see that the coder service type has three @iff@omposition
plans, each of which has different security prapsr{nonEncr,

64bEncr, and 128bEncr). Singgmax=nonEncr in our example
the nonEncr coder will be selected. The servicamptey process
is used to select the appropriate composition & firm of a

service plan with associated blueprint. When theregriate

selection is done the transformer integrates thevicse

composition blueprint into the PIM model and desitiee PSM of
the Video conference service (e.g., towards the Rid&orm).

Then the transformator again utilizes the servidanmer

framework to get hold of alternative PSM-level carsitions

according to the specified requirements. In oumea it comes
up with three possible PSM-level compositions fdne t
videoStreaming service which are listed in Figure 1

Coder::Coding

)| Video_in_out ’—

[H263CodeDuplex | —{ RTP_inding |— H263CodeDuplex | [—Conferencesridge]

Coder::Coding

—‘ConferenCeBridge

Video_in_out
1 = [H26L.CodeDuplex |—{ RTP_Binding |—| H26LCodeDuplex |

Coder::Coding

1| Video_in_out IConferenceBridge|

[MPEG2CodeDuplex|—| RTP_Binding HMPEGZLCudeDupIex‘

Figure 17. Three alter native composition plans

QL-prediction functions map the availability of 8% resources
to QL along each QL-dimension. System resourcesidered
relevant for the video conference system are: mgn@PU, and
network capacity. During build-time application é&pers are
free to decide their own format and the complexitythe error
prediction functions, hence, the functions may be
straightforward condition statement or a complexscdetion

measured quality loss. Composition | of Figure &7used to
illustrate one possible implementation of a QL-jpc&dn

function. The QL-prediction function takes avaikhbiemory,
CPU, and network capacity as input, and returnslrest (RS)a

orb (see table 1).

Table 1 shows the assumptions, QL-dimensions, and Q
prediction functions for composition |. The QL-aliion
function is not shown in table, since it is the arse of the
prediction function.

We now assume that all these alternatives are gepland
published to the run-time service planning. Thelofeing
subsections will then explore how the service pilagframework
is applied to perform QoS aware service compositigmamically
at run-time.

3.4 Deployment and Service Request

Blueprints are stored together with associatedic@mplans in a
logically global repository. In the video conferencase, this
means that one deploys service plans and bluepfortshe
alternative service compositions. The servi¢eleoConference
can then be published in a directory server, sisch BDDI and
CORBA namel/trader. From the directory server, eseral get
information about the published service, includingility
functions. End-user specifies QoS requirements biting
minimum and maximum QL values in each dimensiorgityu
function. Figure 18 illustrates one of the utilftynctions for the
VideoConferenceservice. In the figure are the end-users QoS-
requirements shown; minimum QL is set to zero aadimum

Plan Composition |

Properties

Assumptions:

- 1/P format 4:2:2 YCRCB(ITU-R 601 -PAL)
- I/P framerate [20 - 50]

- Platform Java

QLModel:

- M essagePr otection Ideal, 128bEncr, 64bEncr, nonEncr
- Delay 0-2s

- Framelossrate 0-19fps

- Frameerror rate 0.0-10p

- Imageresolution
QLPrediction

[0*0, 544*332] pixels

RS = (condition) ?[a], [b]

MessagePiect MEMclient> 20kB nonEncr| | nonEncr
Delay MEMserver>1MB 014 2
Framelossrate | =| CPUclient>200MIPS |~ 0 , 19
Frameerrorrate CPUserver> 700MIPS 0,015 0,015
Imageresolution NET > 9kbit/s 368*183| | 544* 332

Table 1. Service plan for composition |

QL set to 9 fps. The end-user then sends a sere@pgest, with
service type and utility functions, to the server.

Utility Frame Rate
1.
0.
: : : : Quality Loss
0 10 20 (fps)
qlmm qlmax

Figure 18. User QoS-requirementsfor one QL -dimension

3.5 Servicelnstantiation

A service request from an end-user specifies thécgetype and
the user QoS-requirements. In distributed systdikes,B2B and
B2C, the network data rate has a major impact gerenced
QoS. End users connected to a LAN have availatktarate that
allow for larger chunks of data. For run-time seevplanning it is
important that the resource models, there are ri@e one, are
updated with the data rate available. Hence, it choose a
composition that both meets the users QoS-requiremand
maximize utility. When the service planner receities service
request, it uses the broker to find the servicen.plEhis plan
specifies the overall composition at a logical lewsing service
types. For each service type specified in the serylan, the
service planner searches for assocoated servicas pénd
blueprints. Table 1 shows the service plan for aositjpn |, but
without the composition plan

First the service planner checks that the assumpiio the plan
can be met. Then it uses the QL-model to identifydgnensions,
acceptable values and units (expressed by the @Qdtifin).

Finally the service planner predicts the QL usihg prediction
function specified in the service plans. For théea conference
service, there are three alternative compositidfier predicting

the QL for these three, the service planner uses utility

functions to compare the predicted QL against teBer UQQoS
requirements. For a video conference with high datie and low
load on both client and terminal, all three composs meet the
end-users requirements, i.e., betwegp, andgl,., as shown in

Figure 18 for the frame rate QL-dimension. The p&mthen
chose the composition that gives the highest ytiithich in our
case is composition Ill. When accessing the videoference
server over LAN, the composition using MPEG-2 vidmmling
has the lowest QL along image resolution givinghbigutility,
and acceptable QL along the other four QL-dimerssion

Finally, the service planner uses the QL-allocationctions to
calculate the system resource requirements. Thatiresresource
vector is forwarded to the resource manager fogrvasion and
monitoring. The middleware then dynamically loadke t
blueprints, instantiate the components, and birdnttogether to
form the service.

3.6 Service Adaptation

After some time, the end-user disconnects the Réterable and
move over to WLAN. It is assumed that network cartios and
the RTP session are successfully re-establishedthennew
network. After a short time period, the resourcenitars detect
the reduction in network capacity, and notify tleevice planner
about the change. The service planner now needseto
composition the service to maintain the committedSevel.
Figure 19 shows the interaction the between theiceeplanner
and the other active elements in the service ptanftamework.

Meta-level

4. Choose new service (&

Repository o
composition Y,

3. Identify

Broker service plans %
ServicePlanner

{

Container

ResourceManager|

Figure 19. Behavior during service adaptation

After being notified, the service planner inspetite running
service composition using reflection. Then it rgsslthe service
type VideoConferenceand receives the service plan from the
broker. For each service type in the plan the senglanner
resolves all the way down to the blueprints, givinbierarchy of
service types and service plans. The planner casmternative
service compositions, as it did when choosing thgal service
composition. Predicting the QL shows that the loatadrate in
WLAN increases the QL.

For composition Ill, which uses MPEG-2 video coditite QL is

too high along delay, frame loss rate and imagelu&en loss.

Composition | and Il, on the other hand, meet theeru
requirements. To choose between the two compositidine

service planner uses the utility measure. Compositi has an
advantage over composition | since it uses a H@&8r with

inbuilt FEC. This gives the lowest QL and higheslity along

the frame error rate dimension. Using reflectitime service
planner stops the two MPEG code/decode components,
MPEG2CodeDuplexand replaces it withi26L.CodeDuplexThe
resource demand is recalculated by using the Qicatiion to the
service plan for composition Il. Finally the resoairvector is
forwarded to the resource manager(s) for resenvatamd
monitoring.

4. RELATED WORK

In this section we discuss related work within treas QoS-
aware service compositions, model driven
transformation and component based execution emvieots.

In [28], a QoS compiler is presented that translater-perceived
QoS levels to a run-time "script” correspondingdor service
planning concept. It is assumed that applicatiomeligers can
provide a QoS-specification with knowledge of sgsievel QoS
representations. This approach appears to yielpplication that
can only be deployed with the particular set of @aShagement
services understood by the application developenotider

approach, [29], addresses QoS-awareness by captumam-

functional properties in a QoS-model, specifyingrviee

compositions as task graphs. It selects servicesdban QoS
criteria, and employs an adaptive execution engfia¢ re-plans
the composition of services. Their ontologies anglementation
of local and global service planning, using integesgramming,
is designed for Web-services. Hence, system
management is merely assumed, which in the franieveothe
foundation for predicting and maintaining QoS at-time.

Model transformation needs a formal way to speoifth user and
system QoS-requirements. Aagedals [10] work on Qurept-
QML (CQML) and the UML profile for QoS [8] gives farmal
lexical specification language suitable for both Adols and
run-time QoS analysis, and is used for specifyimg QL-model
and QL-mapping functions in the proposed servicanmping
framework. In [22], Burt et al., explores how Qajuirements
can impact decisions related to the transformdiiom platform-
independent models in UML to platform-specific misdie IDL.
The idea of including QoS requirement in transfdrames is used
as input to our approach using the service planfrengework to
perform QoS aware transformation$he approach does not
address how QoS requirements can be integrated UMa
specification and how they could be resolved oiinesf in
automatic model transformations. In [24], Schmidale describes

the CoSMIC framework, which describes an MDA-based

development and run-time framework, which focusesiandling
QoS policies in the run-time framework. It does adtiress the
specification of QoS on a model level. The comnadr&iDA

tools, such as ArcStyler and Codagen provide méshmario

support model driven processes including modelsfaamations,
but are not concerned about the integration of @o$nodel

abstraction.

Component technologies/architectures used in cowiater
products, like EJB [25], lack application programmiinterface
(APIs) for adding QoS-management mechanisms. Thgooent
architecture OpenORB v2 [11] addresses this byodhicing
component frameworks (CF) as building blocks. E&Ehhas a
set of policies and rules that provides QoS-suppidre service
planning framework supports CF, but the QoS meta-da
separated from the application and placed in aicErplan.
Another approach, [26], adds QoS-awareness to coemidased
executions environments by extending the contaiméth
components and interface for QoS negotiation araptation.
The service planning framework is based on a differ
philosophy, aiming for a technology neutral framegyowhich
can be implemented in a range of executions enviemts. The
middleware platforms OpenORB [11] and CARISMA [12]
employ reflection for run-time reconfiguring. In @EORB,

QoS-aware

resourc

applications can reconfigure the structure of ths,Cwhile

CARISMA use reflection to add or change policieshe QoS-
profile associated with the application. DynamicTA&ds

reflection to CORBA, allowing inspection and redgaofation of

the ORB [27]. There are hooks for strategies that@RB uses to
implement middleware services, which may be reglaaerun-

time. These three alternative implementations regapplication
code for QoS handling. The service planning fram&vames not
require any application code, since the servica9lzapture the
QoS-properties of the applications.

5. CONCLUSIONSAND FURTHER WORK

Business systems are now coupled tighter togethkich has
resulted in a need for QoS-awareness in both miriedn system
development and the execution environment. Furtbermwith
the introduction of SOC and Web-services the wag wiews
enterprise application interfaces and componentesymhas
changed. In this paradigm everything is perceivedchaservice,
and new services might be composed from existingces. The
presented service planning framework extends egstiodeling
tools and execution environment with QoS-awareness.

The QoS-level provided by a distributed computinygtam is
related to the availability of processing powertatiase access
load, free memory space, networks technologiestiaffic load.
It is therefore important to allow the framework, keoth build-
and run-time, to work with alternative service casitions.
Furthermore, due to changes in the execution emviemt, the
framework must adapt the service composition tonta the
QoS-level. In the framework are concepts for syeuifthe QoS-
properties of each service composition, enablirgfthmework to
compare alternative service compositions basedheir QoS-
properties. When implemented in an execution enwrent user
QoS-requirements and the system resource avaijahii inputs
to the service planning framework The QoS-requirgsisets the
objective and system resource availability govehesachievable
QoS-level. The composition with a QoS-level thaetaghe user
QoS-requirements is chosen. To maintain the Qo&-l¢he
framework uses resource monitors to detect majangés in
resource availability. If this happens it will résin a new search
for a composition that meets the user QoS-requinésne

The framework can be applied for both external amernal
service planning, i.e., for identifying and choasi composition
of Web-services or component types.

The video conference case, used to illustrate hosvapplies the
framework in model-transformation and run-time iigg,

showed the importance of specifying formal QL-medahd QL-
prediction functions that enables both build and-time service
planners to make good decisions. How to express that QL-

models and QL-prediction functions needs to beistuanore.
Our current approach is limited to hard-coding, irgv low

flexibility and no reuse of models and functiongsigin solutions
for resource monitoring and interaction betweenr psgrvice
planners are also topics of further research.

6. REFERENCES

[1] Bowman, B., Debray, S. K., and Peterson, L. L. Beasy
about naming system&CM Trans. Program. Lang. Syst.,
15,5 (Nov. 1993), 795-825.

[2] Emmerich, W.: Distributed component technologied an
their software engineering implications.Rnoceeding of the
24th international conference on software enginegri
ACM Press (2002)

[3] Papazoglou, M., Georgakopoulos, D.: Service-Orinte
Computing. InCommunications of the ACMolume 46,
Number 10 (2003)

[4] F.Curbera et. al., Unraveling the Web Services: An
introduction to SOAP, WSDL, and UDDI, IEEE Internet
computing, vol.6, no.2 Mar./Apr. 2002.

[5] Dahl, O.-J., Myhrhaug. B and Nygaard, K., 1968,d,97
1972, 1984: "SIMULA 67 Common Base Language",
Norwegian Computing Center 1968 and later editions.

[6] Sun Micro Systemslava 2 platform enterprise edition
specification v1.4 (2003)

[7] Soley, R.M, Frankel, D.S.,Mukerji, J.,Castain, E.Model
Driven Architecture - The Architecture Of Choicerio
Changing World, OMG 2001.

[8] UML™ Profile for Modeling Quality of Service and Ha
Tolerance Characteristics and Mechanisms, Revised
submission, August 18 2003, www.omg.org (membehg)on

[9] Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kadam, J.,
Chang, H.: QoS-Aware Middleware for Web Services
Composition)EEE Transactions on software engineering
Volume 30, Number 5 (2004) 311 — 327

[10] Aagedal, J. O.Quality of service support in development of
distributed system#h. D. thesis (2001)

[11] Coulson, G., Blair, G., Clarke, M., Paralvantzas, Tthe
design of a configurable and reconfigurable midalew
platform: Indistributed computingvolume 15, Number 4,
Springer-Verlag (2002) 109 — 126

[12] Capra, L., Emmerich W., Mascolo, C.: CARISMA: Cotite
aware reflective middleware system for mobile aggilons.
In IEEE transactions on software engineerivplume 29,
Number 10 (2003) 929-945

[13] Walpole, J., Krasic, C., Liu, L., Maier, D., Pu, @McNamee,
D., Steere, D.: Quality of Service Semantics forltiviedia
Database SystemA&ppears in Database Semantics:
Semantic Issues in Multimedia SysteKiawer Academic
Publishers (1999)

[14] Staehli, R.Quality of Service Specification for Resource
Management in Multimedia Systerits Ph.D. thesis (1996)

[15] Staehli, R., Eliassen, FQUA: A QoS-aware component
architecture Technical report Simula Research Laboratory
(2002)

[16] Java Community ProceddML profile for EJB JSR 26,
http://www.jcp.org/jsr/detail/26.jsp

[17] Object Management GroupML profile for schedulability,
performance and time specificatidn ptc/2003-03-02,

http://ww.omg.com(2003)

[18] Trading object service specification, 2000.
http://www.omg.org/docs/formal/00-06-27.pdf

[19] UML™ 2.0,
http://www.omg.org/technology/documents/modelingecsp
catalog.htm#UML

[20] UDDI version 3 specification, 2002. http://www.udzg/

[21] Staehli, R., Eliassen, F., Aagedal, J. O., Blair,@ality of
Service Semantics for component based systems. In
Proceedings for? International workshop on Reflective
and Adaptive Middleware Syste(2903) 153 -157

[22] Burt, C.C., Bryant, B.R., Raje, R.R., Olson, A.,ghston,
M.: Quality of Service Issues Related to Transforgni
Platform Independent Models to Platform Specificddis.
In Proceedings of EDOC 200Rausanne, Switzerland
(2002) 212-223

[23] MODA-TEL IST 2001-37785 deliverable 3. Model
Driven Architecture Definitions and MethodologyR.
Steinhau (Editor)

[24] Gokhale, A., Natarajan, B., Schmidt, D., NechypuosrA.,
Gray, J., Wang, N., Neema, S., Bapty, T. Parsons, J
CoSMIC: An MDA Generative Tool for Distributed Real
time and Embedded Component Middleware and
Applications. InProceedings of the ACM OOPSLA 2002
Workshop on Generative Techniques in the Contekieof
Model Driven Architecturg(2002)

[25] Sun Microsystem<Enterprise JavaBeans ™ Specification,
Version:2.1.(2002).http://java.sun.com/products/ejb

[26] Miguel A., Ruiz, J., Garcia, M.: QoA-Aware Compohen
Frameworks. InProceedings of the 10 International
Workshop on Quality of ServicédEEE Communications
Society (2002).

[27] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T.,
Magalhaes, L., Campbell, R.: Monitoring, Securignd
Dynamic Configuration with the dynmicTAO Reflective
ORB. InProceedings of Middleware 20@2000)

[28] Nahrstedt, K., Xu, D., Wichadakul, D, Li, B.: QoSwAre
Middleware for Ubiquitous Computing. |IEEE
Communications Magazin&/ol. 39, No. 11 (2001) 140 —
148

[29] Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagam,

J. Chang, J.: QoS-aware middleware for Web Service
Composition)EEE Transactions on software engineering
Vol 30, No. 5. (2004)

Towards a Framework for Supporting the Negotiation
between Global and Local Business Requirements

Paolo Traverso!
Raman Kazhamiakin?

Marco Pistore?
Pierluigi Lucchese!

Marco Roverit
Paolo Busettal

Annapaola Marconit
Piergiorgio Bertolit

L TC-irst, Via Sommarive 18, 1-38050, Trento, Italy
2Department of Information and Communication Technology, University of Trento, Via Sommarive 14, 1-38050, Trento, Italy
{traverso,roveri,marconi,lucchese busetta,bertoli} @itc.it {pistoreraman}@dit.unitn.it

ABSTRACT

The development of service oriented applications very often needs
to address the problem of satisfying two conflicting kinds of busi-
ness needs: global business requirements, i.e., the regulations that
dictate the rules of engagement between different organizations,
and local business requirements, i.e., the rules local to each in-
volved partner which derive from its internal business needs. In
this paper, we propose a development process where both global
and local service requirements, as well as their behaviors, are in-
crementally agreed among partners and built through negotiation
steps. The development process is supported by the explicit defi-
nition of both global and local requirements at different levels of
abstraction. We express requirements in a language with a clear se-
mantics, and which allows for explicit links to executable business
processes, e.g., written in BPELAWS. This development process
opens up the possibility to adopt a variety of supporting techniques.
In particular, automated verification is used to detect design or im-
plementation problems. Automated synthesis of executable busi-
ness processes allows for a speed up in the development process
and reduces development effort. Finally, execution monitoring is
able to detect run-time problems with respect to specified require-
ments.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques;
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.4 [Software Engineering]: Software/Program Verification;
1.2.2 [Artificial Intelligence]: Automatic Programming; 1.6.4
[Simulation and Modeling]: Model Validation and Analysis

General Terms
Design, Languages, Verification

Keywords
Service composition models and languages, Requirements for
service-oriented processes

1. INTRODUCTION

In several application domains, service-oriented computing should
provide a universal basis for the integration of business processes
that are distributed across different entities, e.g., different organiza-
tions or companies. In these domains, different organizations must
interact and cooperate according to global, shared requirements.
At the same time, each organization has its own internal business
needs, which are specific to the business it carries out. As a conse-
quence, in these domains, two opposite and often conflicting kinds
of business needs have to be taken into account. From one side, the
global business rules, i.e., the regulations that dictate the rules of
engagement between different organizations. From the other side,
the local business rules, i.e., the rules local to each involved partner
and deriving from its own internal business needs.

Several applications have this characteristic. This is the case, for in-
stance, of several e-government applications involving different ad-
ministrative offices or departments, where global rules derive from
national or regional requirements and norms, while local rules de-
rive from each office’s responsibilities and internal organization.
Another example are business coalitions or market-places, where
different companies agree to obey to common market regulations,
but still pursue their own distinct profit and interest.

In most of the cases, it is rather natural that global and local busi-
ness rules have opposite goals and tend to conflict. For instance,
a national law may require maximum transparency from a govern-
ment office towards the citizen, e.g., the citizen should have the
possibility to inquire at any time the status of any on-going proce-
dure he is involved in. However, an administrative office may not
like to be slowed down in its internal procedures with too many ex-
ternal interactions. A common market regulation may require that
an offer evaluation is proposed to a customer after all partners’ of-
fers are available, while each vendor’s need is to get to know as
soon as possible whether the client will buy the product or not.

Dealing with the conflicts between global and local business rules,
both valid and well motivated from the two different points of view,
is what makes this kind of applications difficult to develop, and
what makes them substantially different from traditional fully cen-
tralized applications, where an authority dictates the rules of the
game, and fully distributed systems, where each actor has not to
deal with general regulations and norms. As a consequence, the
development process can hardly be carried out according to classi-
cal software development methodologies, which is not able to take
into account both the global and the local rules and their natural
conflicts. Moreover, software engineering tools that support the

life-cycle of distributed business processes should be re-thought to
support the development process that takes into account both the
global and local business needs.

Within Astro, an Italian national project which aims at the study and
application of service-oriented computing techniques, we are defin-
ing a novel development methodology and the supporting tools nec-
essary to face the challenges outlined above. This paper describes
this novel approach.

The central idea is that conflicting global and local business rules
should be negotiated within the development process. More pre-
cisely, the proposed development process interleaves the phases of
specification of both global and local rules with phases of negotia-
tion between global and local needs. As a consequence, the chore-
ography, i.e., the global view of how different partners interact,
the orchestration, i.e., the description of how one partner interacts
with (some of) the other partners, and the internal business process
of each partner, are incrementally built through negotiation steps,
thus emerging in a commonly agreed choreography and orchestra-
tion that, by obeying to global laws and norms, mediates among
global and local needs.

To implement this development process based on negotiation, we
propose a conceptual framework where the distinction between
global and local business rules is explicit in the different phases of
the development process, and at different levels of abstraction. We
specify global and local business rules both at the level of strate-
gic requirements, i.e., business goals and motivations, and at the
level of procedural requirements, i.e., specifications on how a busi-
ness should be carried out. The “transparency towards citizens” and
the “internal administrative office efficiency” are two examples of,
resp., global and local strategic requirements, while a process that
does or does not allow for interaction at each step with the citizen
is, resp., a global or local, procedural requirements. The proposed
methodology also takes into account that not all the local rules of
a given partner can be made visible to the other partners. For in-
stance, a customer company may decide to keep confidential its
internal business rules on how offers to customers are prepared, in
order to keep a competitive advantage.

In this requirements driven development process, global and (ex-
ternal and internal) strategic and procedural requirements are stated
with a precise notation and with a clear semantics, and are explicitly
linked to the detail design and implementation of business process,
e.g., written in standard business process modeling and execution
languages, like (abstract or executable) BPEL4AWS [1]. This opens
up the possibility to provide tools that support the process based
on negotiation during the development cycle: verification tools that
detect specification, design or implementation problems, e.g., the
fact the negotiation process leads to a choreography and/or orches-
tration that actually does not satisfy some global or local rule; syn-
thesis tools that suggest solutions, like a business process design or
implementation, to speed up the development process and reduce
development effort; monitoring tools, i.e., tools that monitor the
execution of a process to detect run-time problems w.r.t. require-
ments.

The described approach has been developed guided by a real appli-
cation domain, investigated inside the Astro project. It consists of
service-oriented applications for the public administration. In this
domain, procedures involve several different administrative offices,
which must follow the strict National and Regional laws and global

policies concerning these procedures, but which should also pre-
serve their own autonomy in order to deal with other tasks related
to other procedures and to obey to its own internal requirements.

The paper is structured as follows. In Section 2, we introduce the
application domain that will be used to explain our approach all
along the paper. In Section 3, we describe the proposed develop-
ment process supporting explicit negotiation phases. In Section 4,
we explain how global and local rules can be described with a pre-
cise language for requirements specifications, while in Sections 5
and 6 we discuss how all of this opens up the possibility to con-
struct tools that support the development process. We provide a
discussion of related works and some concluding remarks in Sec-
tion 7.

2. THE CASE: PUBLIC ENVIRONMEN-
TAL AGENCY SYSTEM

The Environmental Protection Agency (EPA) is a local agency
which deals with a wide range of environmental matters includ-
ing protecting air, water and soil quality, managing waste, prevent-
ing or controlling pollution and promoting sustainable industry. To
address these issues EPA has to deal with complex administrative
procedures distributed among various actors (administrative offices
as well as citizen and industries) and regulated by law: European,
National, and Local norms contribute to specialize the same proce-
dure adding new constraints, new actors and goals. Norms can be
seen as a collection of goals and activities delegated to specific ac-
tors; moreover they specify constraints and obligations concerning
for instance minimal and maximal durations of specific steps or of
the overall procedure. The definition of a new procedure in the do-
main of Environmental Protection is a costly and time consuming
task, that has to take into account constraints deriving both from
norms and from the internal organizational structure of the actors
involved in the procedure.

In this paper, we consider a specific licensing procedure for the
establishment and operation of a Waste Disposal or Recycling Fa-
cility: A citizen or a company submits an application to obtain the
license for its waste disposal or recycling facility (incinerator, pri-
vate landfill,...); the local government, involving various agencies
and experts, evaluates the proposal and authorizes it, if it complies
with high standards dictated by norms. We will assume that the
EPA wants to automate this procedure using web services inter-
faces, as they offer a platform independent approach for integrating
applications.

According to the classical approach, EPA assigns the responsibil-
ity of mapping this procedure to a business analyst. Starting from
specific regulations and norms (“D.C.1. 27 luglio 1984”; “L.R. 13
aprile 1995 n.59”; “D.Lgs. 5 febbraio 1997”) and interacting with
the various actors involved, the business analyst models the pro-
cedure with the activity diagram depicted in Fig. 1. In this dia-
gram, nested hexagon are used to describe the tasks and sub-tasks
assigned to the different parties involved. Any citizen proposing to
establish or operate a facility for solid wastes disposal has to ap-
ply for a certificate of designation; the application must be accom-
panied by all documents specified by the specific norms (e.g. an
engineering design and operations report). The application is reg-
istered by the Protocol Office (PO) and then it is reviewed by the
Waste Management Office (WMO) to determine whether the sub-
mitted documents are complete. If necessary, the WMO can ask the
citizen to provide additional information or clarifications in order
to complete the documentation. The validation of the documents

PROTOCOL
OFFICE

Submit Application

Provide Registration
Information

WASTE
MANAGEMENT
OFFICE

Provide Documents

Recelve Integration
Request

)

< Provide Integrations

| < Receive Abortion |

Notify

Obtain Registration
Information

\ Validate Documents,

TECHNICAL

\ Abortion
| v
{ Activate Application)

COMMISION

BN —

Analyse Application
Appoint Technical
Commission
Obtain Technical

Reports

Analyse Application

B> Receive Appointment
' Provide Technical

| Reports

| ¥

Organize Conference
Call Conference
\ Participate Conference

PROVINCE
BOARD

' i
| Participate Conference
L T
| Obtain Reccomended
Determination |

/" Provide Reccomended
Determination

Provide Final

Obtain Final |
Determination T

Determination

Figure 1: Activity Diagram for the Waste Facility License Procedure.

must complete within 30 days from the registration of the appli-
cation. The WMO is then in charge of appointing the Technical
Commission (TC), which is composed of various consultants and
directors of public agencies (e.g. Sanitary Agency, Water Quality
Control Agency, Soil Water and Plant Testing Laboratories, Envi-
ronment Engineers,...). Each member of the TC has to produce a
technical report and send it to the WMO which is responsible to
set the Conference and to notify all the participants (TC members,
citizen, WMO’s responsible for the application,...). The aim of the
Conference is to determine whether the facility complies with the
norms, taking into account the submitted information and all the
technical reports of the TC members. After the conclusion of the
Conference the WMO will be in charge of producing the recom-
mended determination and send it to the Province Board (PB) and
to the citizen within 90 days from the Conference Day. The PB will

evaluate the recommendations, draft the final determination and fi-
nally notify the citizen. Each application for a solid waste disposal
site or facility should complete within 150 days from the PO regis-
tration. This global process defined by the business analyst is used
as a blueprint for the design and implementation of the requested
software components. In particular, starting from this global view,
each actor involved defines (or adapt, if already existing) its inter-
nal processes and implements the web services necessary to carry
out its part of the procedure.

The classical development approach outlined above is strongly
based on a centralized, “authoritative” design that does not fit the
requirements of distributed business processes. In particular, it does
not take into account that the process developed by the analyst will
have a high probability of being in conflict with the actor’s inter-

nal requirements and constraints. A critical point is, for instance,
the interaction between Citizen and WMO in order to complete the
submitted documents. The norms regulating the procedure only re-
quire that the validation of the documents should terminate within
30 days. The Citizen would prefer to be able to submit new doc-
umentation incrementally within the 30 days, until the validation
is successful. On the other hand, this iterative submission of docu-
ments would affect the efficiency of the WMO, since the scheduling
of its work would depend on the Citizen. According to Fig. 1, the
analyst has addressed this conflict by allowing the citizen to sub-
mit further information only once. However, from the diagram it
is impossible to judge whether this is an acceptable compromise
between these conflicting requirements. The negotiation-based de-
velopment approach discussed in the next section addresses this
kind of problems.

3. A DEVELOPMENT PROCESS BASED
ON NEGOTIATION

The development process that we are designing is based on two
principles: it is requirements driven and it is based on the di-
chotomy between the choreography and orchestration in the de-
velopment of service oriented applications (see also Fig. 2). On
the former principle we remark that a clear model of the conflicting
requirements is necessary for being able to mediate among them.
More precisely, we need to represent requirements at two different
levels of abstraction: at a strategic level, for representing business
goals and motivations, and at a procedural level, for describing how
a business should be carried out. The activity diagram in Fig. 1
can be seen as a description of the procedural requirements, since
it describes the way the procedure should be carried out. Strate-
gic requirements include, e.g., the fact that the Citizen expects the
WMO to be collaborative, while the WMO has the goal of reduc-
ing interactions. In Section 4 we will define suitable notations for
representing them.

choreography orchestration
startegic
requirements - PHASE 1- - PHASE 2 -
Choreographic Orchestration
procedural Requirements Requirements
requirements
- PHASE 4 -
Interface
Negotiation
A\ 4 A\ 4
implementation
- PHASE 4 - - PHASE & -
Choreography Web Services

Development Development

Figure 2: The Proposed Development Process.

The terms orchestration and choreography are often used to refer
to the two key aspects of service oriented applications [13]. In or-
chestration, the application is considered from the perspective of
one of the business parties. The focus is on the interaction that the
party under consideration performs with internal and external web
services in order to carry out its tasks inside the procedure. Or-

chestration is usually private to the business party, since it contains
reserved information on the specific way a given process is carried
out. Choreography, on the other hand, describes the interactions for
a global, neutral perspective, in terms of valid conversations or pro-
tocols among the different parties. Choreography is usually public,
since it defines the common rules for a valid composition of the dis-
tributed business processes in the business domain. In our process,
we exploit the dichotomy between choreography and orchestration
at all levels of the development. We will have both choreographic
and orchestration descriptions of strategic requirements, of proce-
dural requirements, and of the implementation based on web ser-
vices.

The process we have been defining consists of five different phases
(see Fig. 3). Taking into account the two principles just described,
four phases correspond to the requirements analysis and to the im-
plementation, done both from a choreographic and from an orches-
tration point of view. The fifth phase consists of the interface nego-
tiation. This is the central phase of the whole process and plays the
role of bridging between choreography and orchestration as well as
between requirements and implementation. During this phase, the
“choreographic” analyst responsible of the procedure and the “or-
chestration” analysts representing the different partners negotiate
the design of the distributed application to be developed, mediating
among conflicting goals. This negotiation phase terminates (and
development starts) when an agreement has been reached on the
services every partner should provide.

4. GLOBAL AND LOCAL REQUIRE-
MENTS SPECIFICATION

Requirements play a fundamental role in the development process
discussed in the previous section. Therefore, it is important to
adopt flexible notations and methodologies for their specification.
Activity diagrams like the one in Fig. 1 are fine for representing
the procedural requirements, but they need to be completed with
a description of the strategic requirements. We exploit the Tro-
pos framework to this purpose. Tropos is a framework for the
requirements-driven, agent-oriented development of software [2].
It is based on the premise that during requirements analysis it is
important to understand and model the strategic aspects underlying
the organizational setting within which the software system will
eventually function. By understanding these strategic aspects one
can better identify the motivations for the software system and the
role that it will play inside the organizational setting. In previous
works [5, 16] we have shown how Tropos can be adapted to repre-
sent the requirements of service-oriented applications.

Fig. 4 is an example of a Tropos diagram that provides high-level
choreographic representation of the requirements of our case study.
It describes the actors (circles) involved in the considered proce-
dure with their strategic goals (the ovals attached to the actors).
For instance in the diagram we have the Citizen that aims to ob-
tain a waste facility license which is represented with the goal Get-
WasteFacilityLicence); the WasteManagementOffice that aims to handle
with the several applications for getting a license (goal ManageAp-
plication). The Tropos diagram also describes the interactions and
contracts among the different parties. These interactions are rep-
resented at a strategic level by means of dependencies (the ovals
linked to two different actors) that describe intent/offer matchings
among actors. For instance the fact that the citizen depends on
the ProtocolOffice for the activation of the application to obtain a
waste facility license is represented with the goal dependency Ac-
tivateApplicationManagement. Besides goals and dependencies, Tro-

Phase 1 — Choreographic requirements

Description of the procedure (laws and regulations; discussions with the experts...). Definitions of the existing ser-
vices that can be exploited in the procedure. Legacy systems that the procedure should reuse (e.g., existing centralized

Objective: Define the requirements for the management of the procedure.
Responsible: Business analyst in charge of the new procedure.
Input:
information systems).
Output:

Requirements specification document, covering a strategic (actors involved with their goals, responsibilities, mutual
dependencies...) and a procedural (actors’ tasks, control and data flows among actors and tasks...) description of the
choreographic requirements for the new procedure.

Phase 2 — Actor’s orchestration requirements

Description of the roles and responsibilities of the actor inside the procedure (laws and regulations; discussions with
Internal requirements of the actor (i.e., business objectives, internal procedures and organization...).

Objective: Define the actor’s requirements on the services it can provide to support the new procedure.
Responsible: Business analyst of the specific actor.
Input:

the experts...).

Definitions of actor’s services and of other software that can be reused in the new procedure.
Output:

Requirements specification document, covering a strategic (actor’s goals and responsibilities; assume/guarantee rela-
tions with external actors...) and a procedural (actor’s tasks and task decompositions, internal business processes,...)
description of the orchestration requirements of the specific actor inside the new procedure.

Phase 3 - Interface negotiation

Objective: Define the interfaces of the web services provided by the different actors.

Responsible: Board of the analysts responsible of Phases 1 and 2.

Input: Requirements specification documents produced in Phases 1 and 2.

Output: Definition of the web services provided by the different actors (and of the centralized systems) that permit the imple-

mentation of the procedure. The services are defined in terms of their interfaces (e.g., in WSDL), of the protocol for
interacting with them (e.g., in business process specification languages like BPEL4WS), and, at the strategic level, of the
tasks that the services are supposed to perform and the assumptions for their correct behavior.

Phase 4 — Development of the choreography

Development of the centralized software systems (e.g., centralized information systems, wrappers for legacy systems...)

Definition of the choreographic requirements (Phase 1). Definition of the interfaces that the choreographic component

Objective:
necessary to support the new procedure.
Responsible: Analyst / system architect responsible of the new procedure.
Input:
should provide (Phase 3).
Output: Detailed design and implementation of the choreographic system.

Phase 5 — Development of actor’s web services

Definition of the orchestration requirements of the actor (Phase 2). Definition of the interfaces of the services that the

Objective: Development of the web services of a specific actor.
Responsible: Analyst / system architect responsible of the actor’s software systems.
Input:
actor should provide (Phase 3).
Output:

Detailed design and implementation of the actor’s web services (or adaptation of the existing services and other software
components).

Figure 3: The Proposed Development Process Phase-by-Phase.

pos permits to represent so called soft-goals and soft-dependencies
(clouds). These represent non-functional requirements that will
have an impact on how the procedure will be implemented, but
whose achievement cannot be defined precisely in terms of clear
cut properties (for instance, the appreciation is subjective, or the
fulfillment of the requirement can occur only to a given extent).
The goal of the Citizen of having a “transparent application man-
agement”, or the dependency of having a “fair evaluation” from the
Province Board are examples of these “soft” requirements.

It has to be noticed that in Fig. 4 and in Fig. 1 we have represented
separately the strategic and procedural description of the choreo-
graphic requirements. However, these two diagrams are intercon-

nected in the actual model of choreographic requirements. Indeed,
each activity is linked with the strategic requirements that motivate
its presence in the model and that define its expected behavior.

An example of a linked representation of strategic and procedural
requirements, is provided in Fig. 5 from the local, “orchestration”
point of view of the wasteManagementOffice. This diagram repre-
sents not only the global goals of the WMO already represented in
Fig. 4 (shaded in the figure), but also its private goals representing
the internal needs, requirements, and constraints of the WMO. The
goals are organized in a tree structure that refines high-level goals
into lower level goals, until they are operationalized into tasks. For
instance the goal ManageApplication is refined in two sub-goals: Valid-

Protocol
Office

Register

Incoming o
omin Registration
Application Infgrmczfion

Manage
Applications

Activate
Application
Management

Provide
Application
Progress
Information

Submit
Application

Active
Participation

Track
Application
Progress

Get Waste
Facility
Licence

Responsible

Participation Transparent

Application
Management

Documents and CompleteApplication. This decomposition is motivated
by the requirements of having correct applications, which is cap-
tured by soft-goal Correctness. Indeed, in the diagram contribution
links are used to represent the fact that two sub-goals contribute
to the achievement of soft-goal Correctness. The goal ValidDocu-
ments is further refined in the goals CompleteApllicationDocuments and
ValidTechicalReports. These two goals are respectively operational-
ized with task ManageDocuments and ValidateTechicalReports. It has
to be noticed that the latter task is not present in the choreography
depicted in Fig. 1. Indeed this task is motivated by internal require-
ments of the WMO. In the diagram, two different kinds of links
between goals and tasks are shown. Solid arrows are used to de-
scribe that some tasks have been obtained by the operationalization
of certain goals, while dashed lines express the fact that the satis-
faction of a certain requirement depends on a given task. One can
see, for instance, that different tasks are responsible to guarantee
the completion in time of the different phases of the procedure.

The Tropos notations discussed in this section are supported by a
corresponding formal language, Formal Tropos [4], which allows
for a precise definition of the requirements and of the activity di-
agrams and enables the usage of verification tools for detecting
specification, design, or implementation problems. Formal Tro-
pos permits to specify the valid behaviors and the relations among
the different actors, dependencies, goals, and tasks that appear in
a Tropos model. At the strategic level the Formal Tropos annota-
tions specify properties like conditions on goal fulfillment, and as-
sume/guarantee conditions on delegations. At the procedural level,
they define pre- and post-conditions on tasks and sub-tasks. Even
more important, Formal Tropos annotations allow to link together
these two levels and the underlying implementation level. The key

Public
Conference

Provide
Documents

Respect

Constraints

Provide
Final
Determination

Fair
Management

Figure 4: The Choreographic Diagram of Strategic Requirements.

Expert
Analysis

Technical
Commission

Analyse
Application

Respect
Time
Constraints

Conference
Participation

Waste Timely
Management [Conference
Office Convocation

Provide
Recommended
Determination

> Province
>
Board

Determination
Ratification

advantage of Formal Tropos with respect to other approaches is
that it defines the dynamic aspects of a model and supports its for-
mal verification already at the requirements level, without requir-
ing an implementation of the specification, e.g., into BPEL4WS
processes.

We conclude this section by remarking that, after the negotia-
tion phase has been concluded, the refinement process of the re-
quirements diagrams can further proceed transforming activity di-
agrams into executable code. In our framework we are adopting
BPEL4WS [1] at the implementation level. BPEL4WS is quickly
emerging as the language of choice for the description of process
interactions. It provides core concepts for the definition of business
process in an implementation-independent way, and allows both for
the definition of internal business processes and for describing and
publishing the external business protocol that defines the behavior
of the interaction. Therefore, BPEL4WS permits to describe both
the orchestration and the choreography of a business domain with
an uniform set of concepts and notations. Most notably, BPEL4WS
can be easily obtained by refining activity diagrams like the ones in
Fig. 1 or in the bottom part of Fig. 5: see for instance [6] for a
Model Driven approach to this refinement. Finally, as shown in [5,
16], links to the requirements can be maintained into the BPEL4WS
code, so that requirements traceability is possible.

5. SUPPORTING THE PROCESS: VERIFI-
CATION

The development process described before is accompanied by ver-
ification tools that support the different activities necessary to de-
velop correct service oriented applications [5, 16]. These tools al-
low for verifying the correctness of a model at all levels of abstrac-

Complete
Applications

Cor‘r.\ple‘Ie . V:I'd | Correct
Application echnical Termination
Documents Reports

Satisfy
Time Limits

Transparency

+

Transparent
Conference

Provide
Application
Progress
Information

Minimize
Management,
Time

Timely

Conference
Convocation

Manage Application \ ' \

Initialize

Manage Documents

Validate
Documents
Obtain
Documents

Obtain
Registration
nformation

' I
Timely Avoid \\
Recommen- Cycles \ |
dations T — .
T~ - . \ |
S~ ~ .
. ~. '~
~. ~. N \. I

Analyse Application
Obtain
Technical
Repo
Validate
Technical
Repo

- .
I

\~
\~
~ I
\

drggnIze Conference S~

Call PUBIsh Provide |
Pariners Conference Recommended
Protocol Determination |

\ /

Figure 5: Strategic and Procedural Requirements of the WMO.

tions covered by our methodology. At the strategic level verifica-
tion can be used to validate the requirements and to check their con-
sistency. At the procedural level, verification can be used for prov-
ing that the processes are free of anomalies such as “deadlocks”
(when a execution is “blocked” and no longer proceeds through
the process) and “livelocks™” (when an execution gets “stuck” in a
never-ending loop), or to check the timing constraints on the dif-
ferent activities. At the implementation level, verification can point
out incompatibilities and inconsistencies among the different web
services that need to interact to carry out the procedure. More-
over, verification can be used to check the consistency among the
different levels of a specification, that is, the procedural level of re-
quirements should respect all constraints stipulated at the strategic
requirements level, and the implemented web services should be a
refinement of the activities defined at the procedural level. Finally,
verification can be done both from a choreographic point of view,
e.g., to check that the defined procedure respects all constraints im-
posed by the law, and from an orchestration point of view, e.g., to
check that the services a party will offer are compatible with its
own internal requirements and goal. For lack of space, we cannot
give a comprehensive description of all applications of verification
inside our process. We focus instead on some specific application
scenarios.

A first usage of verification techniques is for validating chore-
ographic requirements. While defining a global choreography,
one should deal with partners interactions in terms of intent/offer
matches as well as with the business rules common for all the par-
ticipants of the business process. This makes the definition of this
requirements model a complex and error-prone task. In order to

catch misunderstandings and inconsistencies in this model one can
verify it against set of properties that every execution of the system
should satisfy (assertion properties) or some execution may satisfy
(possibility properties). Querying the model allows one to check
the correctness of the model with respect to the property or to check
whether the model is not over-specified and some desirable behav-
iors are captured by the system. For instance, one property that the
choreography should guarantee is that, if all actors carry out their
own tasks, as described in the strategic requirements model, then
the citizen will eventually get a (positive or negative) answer to
the license request. However, a missing goal or dependency in the
strategic requirements diagram may falsify this property. Suppose
for instance that we remove dependency ActivateApplicationManage-
ment between the Citizen and the PO from the requirements in Fig. 4.
Then there is no guarantee that the Protocol Office will eventually
forward our application to the wmo after having registered it, and
the chain of activities leading to the answer to the citizen is bro-
ken. Indeed, if we exploit the verification techniques provided by
Formal Tropos to verify that the GetwasteFacilityLicense goal of the
citizen will be eventually fulfilled, we will get a negative answer.
Actually, the verification tool provides a counter-example scenario,
showing that it is possible for the po to fulfill all its goals without
having to forward to the wmo the citizen’s application.

At a lower level of abstraction, verification can be used to detect
anomalies like deadlocks in the activity diagrams defining the in-
teractions among parties. For instance, let us assume that, within
the negotiation process, we modify the definition of the ManageDoc-
uments activity in Fig. 1 as described in Fig. 6. The intuition is that
we want to model a wmo that keeps interacting with the citizen in

Manage Documents

Validate Documents)<t

Provide Documents

Receive Infegration
Request <
Provide Integrations

Obtain Documents

Figure 6: Modified Citizen - WMO interaction.

an iterative, cyclic way until a complete documentation is obtained.
If this modification is not reflected into the orchestration activities
of the citizen, a deadlock occurs. Indeed, if the documents provided
are not correct also after a first integration, the wmo will ask for
further documents. However, according to Fig. 1, after a first inte-
gration the Citizen expects either a conference announcement or an
abortion of the procedure, so he is not able to provide further docu-
ments. The verification techniques we are providing can be used for
finding such inconsistencies. For instance, if the analyst designing
the services of the cCitizen verifies his internal process against the
modified choreography described above, the inconsistency is de-
tected and the following scenario leading to the deadlock condition
is reported as a witness:

X A

Citizen PO WMO
|

|
Rc%islcr Application |
| |
! Registration Info DVahdalc Documents
|
|

|
| Integ Request
Integration Documents

DValidate Documents

Integration Request D

Request

|
|
|
|
S

A last example of verification consists in checking if the choreo-
graphic process model is compatible with the local needs and ex-
pectations of a specific actor. Let us assume that the choreographic
process adopted permits a cyclic interaction between the wmo and
the citizen in order to obtain integration documents, as in Fig. 6.
Then the verification tool shows that the internal goal CorrectTermi-
nation of the wMO may be violated. Indeed, the formal specification
of the goal is that every application submitted to the wmo should
terminate with a recommendation or should be eventually aborted
by the wmo. This property is violated if the choreography allows
for cyclic interactions with the Citizen, and the following example
of goal violation is reported by the verification tool:

6. SUPPORTING THE PROCESS: SYN-
THESIS AND MONITORING

In this section we comment on how we can exploit program synthe-
sis techniques to automate the development of web services within
our reference process. These techniques come to help after the de-
sign and the negotiation of the web services has been done and
every participant has to implement his own services. The scenario
we are interested in is when the participant already has services (or

Application % % %

Ci li‘zen PO WMO
| |
! Request |
I - it |
Re, %mer Application |

|
Registration Info
| DV&llidule Documents

|

|

! Integration Request
End Cycle : Integration Documents

WASTE MANAGEMENT OFFICE

Start Cycle

|
|
Activated |
|
|
|

PROTOCOL
CITIZEN OFFICE

{SECRETARY

TECHREP TECH
EXPERT COMMITTEE

SYNTHSIZED
SERVICE

CONF MAN

PROVINCE
BOARD

siis= =

Figure 7: Synthesis of the wmo Service.

other software components) available that can be exploited to carry
out his activities, but these services have to be adapted and com-
posed in a way suitable to the new procedure ad hand. In our case
study, the wmo already has internal services available for managing
the standard tasks occurring in the different procedures the office
is involved in. These services represent in some sense the ’back-
office” of the wmo (see Fig. 7). In our case, the back-office consists
of a Secretary service, of a Technical Report Expert and of a Conference
Management. The secretary is in charge of evaluating whether the
documents provided by the user conform to the requirements, to in-
crementally file the evolution of the request, and to extract relevant
data that have to be communicated to the other parties involved.
The technical report expert is in charge to communicate the rele-
vant data to the technical committee, and collect and interpret his
responses. The conference management is in charge of organizing
the meetings between the participants involved. To participate to
the new procedure, the wmo has hence to implement one more ser-
vice that interacts with the other internal “back-office” services and
with the external services of the other participants.

Automating the generation of this new service can be seen as a
particular instance of automated generation of web services. By
automated composition [14, 20] we mean the task of generating
automatically, given a set of available web services, a new web
service that achieves a given goal, i.e., that satisfies a given re-
quirement, by interacting with the available web services. Different
techniques have been proposed so far which address this problem.
In our framework, we exploit the automated task planning tech-
niques described in [14, 20]. According to the approach of [14, 20]
(see Fig. 8), we take as our starting point the BPEL4WS specifica-
tion of the existing internal and external services (Wq,...,Wp). In
our case, these descriptions are either already available to the wmo
(for the internal services) or they are an outcome of the negotiation
phase (for the external services). We encode each of the BPEL4WS
specification in a state transition system (Zwy,..., 2w, in Fig. 8),
which provides a sort of operational semantics to the BPEL4AWS
model. Each of them describes the corresponding web service as a

Composition Goal G —»{

r 1
| ! |
Wl 3y &
. ! . ‘W\ % TUsuch that
| | | ——— —
N s |03 Zn=G
| : | : | a
AR '
I
: L ‘ w
. Wn ” b2 |
X ! oW, Executable
”””””” BPEL4WS
BPEL4WS State Process
Processes Transition
Systems

Figure 8: Automated Composition.

state-based dynamic system, that can evolve, i.e., change state, and
that can be partially controlled and observed by external agents. In
this way, it describes a protocol that defines how external agents
can interact with the service. From the point of view of the new
composed service that has to be generated, say W, the state tran-
sition systems Zyy,,.. ., Zw, constitute the environment in which W
has to operate, by receiving and sending service requests. They
constitute what, in planning literature, is called a planning domain,
i.e., the domain where the planner has to plan for a goal. In our
case, the planning domain is a state transition system X that com-
bines Zwy,...,Zw,. Formally, this combination is a parallel com-
position, which allows the n services to evolve independently and
concurrently. X represents therefore all the possible behaviors, evo-
lutions of the planning domain, without any control performed by
the service that will be generated, i.e., W. The composition goal
G (see Fig. 8) imposes some requirements on the desired behav-
ior of the planning domain. In our case, the goal can be obtained
from the “orchestration” requirements model of the wmo. Given
> and G, the planner generates a plan Tt that controls the planning
domain, i.e., interacts with the external services Wq,...,Wp in a
specific way such that the evolutions satisfy the goal G. The plan
Tt encodes the new service W that has to be generated, which dy-
namically receives and sends invocations from/to the external ser-
vices W,...,Whn, observes their behaviors, and behaves depending
on responses received from the external services. The plan Ttis
encoded as an automaton and can hence contain complex control
constructs, like tests over observations, conditionals, loops, etc. As
a final step, we can translate Ttinto process executable languages,
like BPEL4WS.

Though still preliminary, the experiments reported in [14, 20], show
that the automated synthesis approach described above can deal
with cases that are far from trivial. Moreover, an interesting pos-
sibility offered by the composition approach described in Fig. 8 is
that of obtaining monitors, i.e., software components that are able
to observe the messages exchanged with (internal or external) ser-
vices and to report whether they are violating the BPEL4WS pro-
tocol that they are supposed to implement. Indeed, we can exploit
to this purpose the finite state machines >y, ..., 2w,, that capture
the operational semantics of the corresponding BPEL4WS specifi-
cations.

7. CONCLUSIONS AND RELATED WORK

In this paper we propose a development process where global and
local requirements are incrementally defined within a negotiation

process. Requirements are described in a language with a clear se-
mantics, which allows us to define precise links between business
requirements and (executable) business processes. This opens up
to the construction of tools for the analysis of requirements, the
verification of business processes, as well as their synthesis and
monitoring. The proposed approach has been inspired by and ex-
perimented with a real application we are developing in the public
administration field. We see this work as a first step towards the
construction of techniques and tools that support the development
of distributed services by reducing development time, efforts, and
errors.

The Model Driven Architecture [3], backed by OMG specifications
such as UML 2.0 [18, 17] , aims to separate business logic from
the details of platforms, programming languages and middleware.
Developers create platform-independent models (PIMs), which can
be semiautomatically transformed to platform-dependent models
(PSMs). We share with this approach the need for high level spec-
ifications of services; more specifically, in terms of “Model Driven
Service Composition” [11], we share the idea that service require-
ments should be analyzed in a systematic way, and the idea to de-
scribe business rules as precise statements. However, none of the
previous approaches is based on the idea of incremental definition
of the business rules that come out of a negotiation between global
and local goals. In our proposal, requirements are structured, an-
alyzed, and negotiated according to a clear distinction between in-
ternal business needs for a single business process, dependencies
of objectives among different partners, and business rules that are
common to a community of services. The development process
described in other works, see, e.g., [11, 12], focuses on an impor-
tant but orthogonal issue, i.e., how high level requirements (e.g.,
expressed in UML and OCL [11]) for a single process can be clas-
sified for service composition, and how they can be refined into
executable processes. Some of the model driven approaches advo-
cate for the use of verification techniques, e.g., based on Petri nets
[15], or model checking [7, 8]. However, in these approaches, the
problem of verifying local versus global rules is not addressed.

In [21] a formalism is proposed, based on Petri nets, which allows
for verifying that local implementations of workflows do not create
anomalies over organizational borders. However, the considered
development process is purely top-down, from community require-
ments to the local implementation of workflows that have to sat-
isfy the global requirements. There is no global-local requirements
negotiation in [21], and thus the problem of verification of local
versus global requirements is not addressed.

Different automated planning approaches have been proposed for
the composition of web services [22, 10], for the interactive com-
position of information gathering services [19], and for providing
viable plans satisfying specific queries of the user [9]. Within the
development process that we propose, we use instead automated
planning techniques to generate automatically executable business
processes from high level requirements, and to generate automati-
cally at design time monitors that can detect problems at run-time.

Acknowledgments

This work has been supported in part by the FIRB-MIUR project
RBNEO0195K5 “Astro”. The authors want to thank all members of
the Astro project for their collaboration and their feedback.

8.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, F. Leymann
J. Klein, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic,
and S. Weerawarana. Business Process Execution Language
For Web Services, Version 1.1, 2003.

J. Castro, M. Kolp, and J. Mylopoulos. Towards
requirements-driven information systems engineering: the
Tropos project. Information Systems, 27(6):365-389,
September 2002.

D.S. Frankel. Model Driven Architecture: Applying MDA to
Enterprise Computing. John Wiley and Sons, 2003.

A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri,
and P. Traverso. Specifying and analyzing early requirements
in Tropos. Requirements Engineering, 2004. To appear.

R. Kazhamiakin, M. Pistore, and M. Roveri. A framework
for integrating business processes and business requirements.
In Proc. 8th Int. IEEE Enterprise Distributed Object
Computing Conference (EDOC’04), 2004. To appear.

J. Koehler, R. Hauser, S. Kapoor, F. Y. Wu, and S. Kumaran.
A model-driven transformation method. In Proceedings of
the Seventh International Enterprise Distributed Object
Computing Conference (EDOC’03), pages 186-197,
Brishane, Queensland, Australia, September 2003. IEEE
Computer Society.

J. Koehler, R. Hauser, S. Kapoor, F.Y. Wu, and S. Kumaran.
A Model-Driven Transformation Method. In EDOC 2003,
pages 186-197. IEEE Press, 2003.

J. Koehler, G. Tirenni, and S. Kumaran. From Business
Process Model to Consistent Implementation: A Case for
Formal Verification. In EDOC 2002, pages 96-106, 2002.

A. Lazovik, M. Aiello, and Papazoglou M. Planning and
Monitoring the Execution of Web Service Requests. In Proc.
of the 1st International Conference on Service-Oriented
Computing (ICSOC’03), 2003.

S. Mcllraith and S. Son. Adapting Golog for composition of
semantic web Services. In Proc. 8th International
Conference on Principles of Knowledge Representation and
Reasoning, 2002.

B. Orriens, J. Yang, and M. Papazoglou. Model Driven
Service Composition. In Proc. of the 1st International
Conference on Service-Oriented Computing (ICSOC’03),
2003.

M. Papazoglou and J. Yang. Design Methodology for Web
Services and Business Processes. In Proc. of the
Technologies for E-Services Third International Workshop
(TES’02), pages 54-64, 2002. Lecture Notes on Computer
Science, Springer-Verlag, Berlin, Germany.

C. Peltz. Web Services Orchestration and Choreography.
Web Services Journal, July 2003.

M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and

P. Traverso. Planning and monitoring web service
composition. In Proc. 11th Int. Conf. on Artificial
Intelligence: Methodology, Systems, Architectures, 2004. To
appear.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Quartel, M. van Sinderen, and L. Ferrera Pires. Service
Creation: a model based approach. In Proc. of the 7th IEEE
Workshop on Future Trends of Distributed Computing
Systems (FTDCS’99), 1999.

M. Roveri R. Kazhamiakin, M. Pistore. Formal Verification
of requirements using Spin: A Case Study on Web Services.
In Proceedings of the 2nd International Conference on
Software Engineering and Fomal Methods (SEFM’04),
Beijing, China, 2004. IEEE Computer Society.

P. Rivett and OMG Group. Unified Modeling Language:
Infrastructure - version 2.0, 2003.

B. Selic and OMG Group. Unified Modeling Language:
Superstructure - version 2.0, 2003.

S. Thakkar, C. Knoblock, and J.L. Ambite. A View
Integration Approach to Dynamic Composition of Web
Services. In Proceedings of ICAPS’03 Workshop on
Planning for Web Services, Trento, Italy, June 2003.

P. Traverso and M. Pistore. Automatic composition of
semantic web services into executable processes. In
Proceedings of 3™ International Semantic Web Conference
(ISWC2004), Lecture Notes Computer Science, Hiroshima,
Japan, 2004. Springer Verlag.

W.M.P. van der Aalst. Inheritance of Interorganizational
Workflos: How to agree without loosing control?
Information Technology and Management Journal,
2(3):195-231, 2002.

D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau.
Automating DAML-S Web Services Composition using
SHOP2. In Proceedings of the Second International
Semantic Web Conference (ISWC2003), 2003.

Interface inheritance for object-oriented service
composition based on model driven configuration

Vincenzo D’Andrea
DIT, Univ. of Trento
Via Sommarive, 14

38100 Trento

loannis Fikouras
BIBA, Univ. of Bremen
Hochschulring 20
28359 Bremen

Marco Aiello
DIT, Univ. of Trento
Via Sommarive, 14

38100 Trento

Italy Germany Italy

dandrea@dit.unitn.it

ABSTRACT

In today eCommerce environments, customers have to deal
with a wide variety of alternatives, both in terms of service
offerings as well as service providers. They risk to be over-
whelmed by the complexity of alternatives, thus reducing
the usefulness of the experience and consequently the like-
lihood of transactions. There is an increasing need for new
ways to reduce the perceived complexity. Service-oriented
computing can help the user cope with this problem. With
services, interfaces no longer hide units of code, but provide
access to complex functionality equivalent to that of entire
conventional applications.

We introduce a methodology for extended service compo-
sition derived from model-driven configuration and object-
oriented systems. By focusing on the concept of interfaces,
and applying it to the object-oriented concept of inheri-
tance, we propose an innovative approach to composition
that takes into account how the composed services can be
recognized or accessed via the composing service. In or-
der to set the stage, we discuss the similarities between
Service Oriented Computing, Object-Oriented Configura-
tion and Object-Orientation. In addition, we provide an
overview of knowledge-based systems, described as software
systems built by capturing the knowledge used by experts,
and more specifically object oriented configuration for im-
plementing service composition.

Categories and Subject Descriptors

H.1 [Information Systems]: Models and Principles; D.1.5
[Software]: Programming techniques— Object-oriented Pro-
gramming

General Terms
Web services, Object-oriented programming, Model driven
configuration

1. INTRODUCTION

“It is the customer who determines what a business is” [13]
by attempting to address specific needs and express his per-
sonality through custom-made products and services [26].
Customers thus drive vendors to strive for product palettes
with an ever increasing number of variants. Consequently

fks@biba.uni-bremen.de

aiellom@dit.unitn.it

the pursuit of differentiation through variety leads to unique
products and services [16, 19]. This strategy is known as
“mass customization”. Mass customization is defined as
“when the same large number of customers can be reached
as in mass markets of the industrial economy, and simul-
taneously they can be treated individually as in the cus-
tomized markets of pre-industrial economies” [12]. Accord-
ing to [31] the objective of mass customization is “to deliver
goods and services that meet individual customers needs
with near mass production efficiency”. Online transactions
and specifically eCommerce environments differ greatly from
conventional commercial transactions. Online transactions
achieve greater execution speeds and can bridge greater dis-
tances than traditional commerce. Furthermore purely dig-
ital products (i.e., information services or digitized media)
can be discovered, adapted, evaluated, purchased, paid for
and delivered by a single service platform within a very short
timeframe at any time of day or place on earth [32]. More-
over such platforms compared to conventional sales facilities
(i.e., brick and mortar stores) are quick and cheap to imple-
ment as well as adapt to new requirements even in not previ-
ously predetermined ways [32]. This allows for the rapid and
inexpensive deployment of on-line stores offering advanced
functionality (such as rearranging the product palette for
individual customers) impossible to implement in brick-and-
mortar facilities.

On the other hand, customers in an eCommerce environ-
ment are faced with more information, resulting from a
wider variety of alternatives both in terms of service offer-
ings as well as service providers. However the processing of
this information occurs based on the same knowledge and
information processing capacity available to the customer as
in conventional shopping scenarios [32]. These constraints,
unaffected by new technologies, result in a significant draw-
back to high variety strategies. A customer overwhelmed
by the amount of available products or frustrated by their
complexity is less likely to complete the transaction and pur-
chase the product, and more likely to delay the decision or
leave the shop altogether [18]. This behaviour illustrates
the need for new ways for retailers to reduce the perceived
complexity of their products. Advanced functionalities are
designed to help the user cope with a large amount and at
the same time a significant complexity of product data. The
advance functionality necessary to accomplish the vision of
mass customization may be offered by service composition

functionality implemented in a service-oriented infrastruc-
ture.

Service oriented computing (SOC) is a new computing para-
digm in which complex systems are built on the basis of ba-
sic distributed autonomous services by abstracting on the
actual implementation and location of the various services
[24]. This paradigm allows for a high distribution of the
workload, for the building of complex system yet dynami-
cally and easily scalable. Following the “Service Oriented
Computing Manifesto” [25], SOC is more formally defined
in terms of services, that is:

Services are autonomous platform-independent
computational elements that can be described,
published, discovered, orchestrated and programmed
using XML artifacts for the purpose of develop-
ing massively distributed interoperable applica-
tions.

The best-known example of service-oriented technology is
that based on web services. In [10], web service are described
as

a networked application that is, able to interact
using standard application-to-application Web pro-
tocols over well defined interfaces, and which is
described using a standard functional description
language.

In the SOC paradigm the emphasis shifts from the engineer-
ing of appropriate isolated applications towards the integra-
tion, orchestration and choreography of a set of independent
services over a network. Typical distributed systems prop-
erties [8] become of paramount importance in this setting,
most notably: heterogeneity, openness, security, scalability,
failure handling, concurrency, transparency. Furthermore,
in the SOC model no fixed synchronous bindings are es-
tablished, but rather the computational elements follow the
find-bind-use model.

If the scene is that of a web of autonomous computational
elements that offer simple services exposing their interfaces,
then the challenge is that of creating massively distributed
applications offering added value by taking advantage of the
basic services. In other words, service composition is the
cornerstone for the success of the SOC vision.

Various approaches to service composition have been pro-
posed in the literature. On one extreme are those who con-
sider composition as a run-time process in which services
are composed on the fly, e.g., [20]. To achieve this, seman-
tic annotation of services going beyond a simple operational
interface is mandatory. Efforts involving semantic web tech-
nology are blooming, most notable is the semantic web ser-
vice initiative (www.swsi.org), but others based on tempo-
rized automata have also been proposed [4]. On the other
extreme, many approaches consider composition as an engi-
neering process that starting from user requirements, data
or knowledge models arrives at a service composition satis-
fying the requirements. Examples of this approach are [7,
23].

In [14], we have shown how Model Driven Configuration
theory can be exploited for service composition and orches-
tration, in [11] we have shown the analogies relating object-
oriented programming and service-oriented design. In this
paper, we propose a methodology for extended service com-
position derived from model-driven configuration and object-
oriented systems, having the notion of service as the central
building block. By focusing on the concept of interfaces and
applying it to the object-oriented concept of inheritance, we
propose an innovative approach to composition that takes
into account how the composed services can be recognized
or accessed via the composing service. We propose a classi-
fication of service composition, derived from the concepts of
inheritance, interface inheritance, and object composition.
For instance, from the notion of object composition we de-
rive the definition of Opaque Composition, that is, a service
is composed by other services without informing the external
world of the details of the composing services.

The paper is organized as follows. In Section 2 we provide an
overview of knowledge based systems. The paper then pro-
ceeds focusing on the use of knowledge-based construction
systems, specifically object oriented configuration for imple-
menting service composition. In Section 3, we present a dis-
cussion of the similarities between Service Oriented Comput-
ing, Object-Oriented Configuration and Object-Orientation,
in order to bridge the gap between model driven configura-
tion and services. Section 4 presents the main results of the
paper, that is, a methodology for the composition of services
based on object-oriented configuration. Concluding remarks
and open issues are summarized in Section 5.

2. KNOWLEDGE-BASED SYSTEMS

We focus on the use of knowledge-based construction sys-
tems, specifically model-driven variant configuration for im-
plementing service composition. The following section gives
thus a broad overview of knowledge-based systems.

Knowledge-based systems are defined in [1] as:

computer programs which (a) use knowledge and
inference procedures (b) to solve problems which,
if addressed by a human, would be regarded as
difficult enough to require significant expertise.

For the purposes of this paper we use the following definition
of software systems built by capturing the knowledge used by
experts and structuring it according to a specific method, in
order to solve problems requiring application domain spe-
cific knowledge. Such knowledge stored in a knowledge-base
can be organized according to a number of different meth-
ods depending on the underlying concept for storing and
managing knowledge. Methods in use include rules-based
systems using lists of rules for describing dependencies and
conditions, case-based systems that use libraries of prede-
fined descriptions of past cases, and finally object oriented
or model-driven systems that store knowledge in an object
hierarchy with the help of a domain specific data model [29].
Furthermore knowledge-based systems are split into three
broad categories Diagnosis, Simulation and Construction,
according to the type of problem they attempt to solve [27,

28]. In our work, we focus on the category of Construction
and, in particular, on Configuration problems.

The goal of Construction is the creation of a new solution
out of a set of existing components. Construction problems
include the configuration of products, processes, resources
or services. Configuration is the design of a system through
identification, parameterization and combination of instan-
tiations of appropriate components types out of a predefined
component set [17]. Configuration focusing on the modifi-
cation of existing constructions is termed Variant Configu-
ration.

Variant Configuration [29] is a process were complex prod-
ucts are composed out of elementary components. A con-
figurator in this sense is a knowledge-based system imple-
menting such process, based on predefined goals as well as
domain specific knowledge. Design goals can be constraints,
functional requirements, predetermined components or vari-
ous quality criteria [21]. Such systems do not follow a single
predefined method, but rather a strategy based on a se-
ries of small steps, each step representing a certain aspect
or assumption leading to the configuration of the composite
service. Configuration is therefore considered as the solution
to a single exercise and not the solution to a whole problem
or problem class that has first to be methodically analyzed.
This implies the following, see Figure 1:

e The set of all possible solutions is finite.

e The solution sought is not innovative, but rather is a
subset of the available parts.

e The configuration problem is known and well defined.

Requirements

. Variants

/
7

2 aliiti v
s 90lUlio]

Possible
Services

7/
e

7
/
/
7
7

Figure 1: Variant Configuration solution-space.

Configuration as a knowledge-based system requires a knowl-
edge-base as the source of its domain specific knowledge.
The structure of this knowledge-base determines to a large
degree the configuration process itself. Currently three ma-
jor types of variant configuration are defined: (i) rules based

configuration, (ii) case-based configuration, and (iii) model
driven or object oriented configuration.

Object-oriented Variant Configuration is based on the con-
cept of iterative composition of the final product out of a
set of elementary components that have been previously or-
ganized according to a product data model into a structure,
known as the object hierarchy that contains all knowledge
related to the product in question. The relationships be-
tween components and how they fit together are described
with the help of constraints.

Constraints are constructs connecting two unknown or vari-
able components and their respective attributes which have
predefined values (taken from a specific knowledge domain).
The constraint defines the values the variables are allowed
to have, but also connects variables, and more importantly,
defines the relationship between the two values [30]. In other
words, constraints contain general rules that can be applied
to make sure that specific components are put together in
a correct fashion without having to specify any component-
related rules or calculations [30]. The constraint satisfaction
problem is defined as follows [2]:

e There is a finite set of variables X = {z1,...,%n}.

e For each variable x;, there exists a finite set D; of
possible values (its domain).

e There is also a set of constraints, which restrict the
possible values that these variables are allowed to take
at the same time.

The object hierarchy contains all relevant objects and the
relationships between them in an “is-a” relationship that
defines types of objects, object classes and subclasses, and
their properties. The configuration process creates objects
on the basis of this information according to the products
being configured. In one specific hierarchy (as depicted in
Figure 2 for the configuration of automobiles), classes for
specific car types (i.e., coupe, minivan, etc.) are connected
by “is-a” relationships to the main “car” class. This hierar-
chy also allows the breakdown of a product into components
with the help of further “has-parts” relationships. These
“has-parts” relationships are the basis for the decision-making
process employed to create new configurations. An example
of such a relationship would be the relationship between a
chassis and a wheel. A chassis can be connected to up to
four wheels in a passenger car, but the wheels are repre-
sented only once, with appropriate cardinality.

The greatest hurdle to be resolved when creating new con-
figurations is the fact that the software is required to make
decisions that are not based on available information. Such
an action can possibly lead to a dysfunctional composition
or simply to a combination that does not conform to user re-
quirements. In this case all related configuration steps have
to be undone (backtracking) in order to return to a valid
state. The longer it takes for the configuration to detect
that a mistake has been made, the more difficult it is to
correct the error in question [21]. The configuration process
itself is composed of three phases [9]:

Coupé Object
Car £
Minivan :
N————) Component
1 =
LN
Chassis

Wheel 4 o1

Figure 2: Automotive object hierarchy.

e Analysis of the product in order to define possible ac-
tions.

e Specification of further configuration actions.

e Execution of specified actions.

These actions are:

Disassembly of the product into its components. This
is meant to reduce the complexity of the problem and
create a large number of smaller objectives in the man-
ner of conventional top-down specification.

Assembly of components, integration and aggregation.
This step creates a product out of its components in a
bottom-up manner.

Creation of specialized objects. Object classes are spe-
cialized through the definition of subclasses.

e Parameterize objects. Define attributes and parame-
ters for the specified objects that can be used for the
application of constraints or other configuration mech-
anisms.

3. MODELDRIVEN CONFIGURATION AND
OBJECT ORIENTATION

A service composition engine based on object-oriented con-
figuration implemented by project NOMAD [22] employs
the following data model for composition of services. It di-
vides services conceptually into two categories, Elementary
Services and Composite Services, cf. Figure 3. Elementary
Services represent a specific instantiation of a service and
contain all data needed to describe it. Composite Services
act as templates designed to provide the default knowledge
required to produce a specific composition and consist of
groups of Components derived individually from Elemen-
tary Services. Interfaces can be defined between Elemen-
tary Services, Composite Services, Service Categories and
Service Providers. For a detailed discussion of the NOMAD
service composition data model the reader is referred to [15].

The relationship between interfaces and elementary services
matched by the filters contained in an interface resembles

wDatentyps
_|Abstract Category

aDatentyps

| aDatentyps
Service Category|

y Service

«#Datantyps
Service Provider

0.1 . 0.1

«Datentyps |
| interface |

wDatantyps
connection

«Datentyps T T

Abstract Service

.

wDatentyps

e wDatentyps
Abstract Service Companent _ “comp

«#Datantyps
ite Service C: i

posite Service

oo

Figure 3: Object hierarchy for composition of ser-
vices.

the one between plugs and sockets, whereby interfaces as
sockets match multiple plugs. Henceforth, connections to
Elementary Components that have a direct reference to an
interface via its unique identifier will be referred as sock-
ets and components that are matched by a socket will be
referred to as plugs. An interface object is not restricted
in its scope to use by only one pair of services, but rather
implements a generic rule (constraint) that can be used by
multiple components for describing their interfaces. For a
detailed discussion of the NOMAD service composition en-
gine the reader is referred to [14].

One of the common metaphors used in textbooks on Object-
Oriented programming (OOP) is to view objects in terms of
the services they provide, describing them in “service ori-
ented” terms (see for instance [5]). Building on abstraction
and encapsulation, the key idea is to hide programming de-
tails that provide object functionalities. An interface de-
scribes these functionalities in terms of methods and prop-
erties, providing a logical boundary between operation invo-
cations and their implementations. Then an object is just a
“server” of its own methods.

Objects in this respect closely resemble services with their
plug and socket interfaces as implemented based on the
above model-driven configuration service composition en-
gine. Furthermore, similarities between the Object-Oriented
paradigm and the Service Oriented paradigm as illustrated
by this composition engine extend to a number of proper-
ties typical of objects and Object-Orientation. Referring
to Figure 4, we draw a parallel. The concept of an ontol-
ogy is fundamental to both paradigms. Any development
is based on an ontology appropriate to the application do-
main in question. Based on this ontology in object-oriented
terms use cases and scenarios are defined. These usually lead
to a class diagram detailing the architecture to be imple-
mented. This is analogous to the object hierarchy produced
from the object-oriented model employed by model-driven
configuration. Another common mechanism used to convey
semantics related to the overall architecture and propagate
best-practice design are design patterns. In order to achieve
a certain type of composition in an efficient way (based on
best practice) default knowledge is required. This knowl-
edge is provided by composite service templates previously
described. Design patterns directly correspond to such com-
posite service templates.

Ontology
Use cases,
Scenarios
Model Class Diagram
Csamp_oslts Design
. Patterns
Templates

Figure 4: Relations between model driven configu-
ration concepts and object orientation.

Based on these parallels further similarities can be estab-
lished, see Figure 5. Elementary or composite service def-
initions directly correspond to classes. Categories of ser-
vices, providing convenient ways of sorting large amounts of
instances of services, are the equivalent of abstract classes,
that describe common features but can not produce objects
through instantiation. Constraints on the other hand are the
equivalent of preconditions and post-conditions commonly
used in object-oriented development.

Constraints

Composite Preconditions |
Service Postconditions
El
ementary Class
Components
Categories Abstract Class

Polymorphism

Figure 5: Additional relations between model driven
configuration concepts and object orientation

More object related concepts can move into the service ori-
ented world in order to enhance the technology and, per-
haps, clarify the role and scope of web services. Here are
the most immediate example of concept migration:

Inheritance. Two modes of inheritance are used in OOP:
code inheritance and interface inheritance. Interface inheri-
tance is the most immediate to apply to web services. Con-
sider a payment service, which could be subtyped in a service
with acknowledgment of receipt. In a workflow, the former
could be substituted by the latter as it is guaranteed that the
same port types are implemented in the subtyped service.
Inheritance enables service substitution, service composition
and it induces a notion of inheritance on entire compositions
of services. Consider a workflow A built on a generic service
and another one B with the same data and control links, but

built on services which subtype the services of A. Could we
say that B inherits from A or that B is a specialization of
A?

Polymorphism. Both inclusion polymorphism and over-
loading can be extended to the service paradigm. A compo-
sition operation in a workflow may have different meanings
depending on the type of the composed services. For exam-
ple, composing a payment and a delivery service may have
a semantics for which the two services run in parallel; on
the other hand, the composition of two subtyped services
in which the payment must be acknowledged by the payers
bank and the delivery must include the payment transaction
identifier have the semantics of a sequencing the execution
of the services.

Composition. A formal and accepted notion of composi-
tion is currently missing in the SOC domain and, as just
proposed, inheritance and polymorphism could induce such
precise notions of composition over services. Some of the
gaps left by standards which do not have a clear semantics,
most notably, BPEL [3], could benefit from semantically
funded definitions of composition.

4. INTERFACE INHERITANCE FOR SER-
VICE COMPOSITION

Composition is a central issue both in the object-oriented
paradigm and in service oriented computing. By means of
composition an entity can access other independent entities
during the execution of its operations. On the other hand,
the concept of inheritance, which is quite central in object
oriented systems, does not have a relevant role in the service
oriented paradigm.

In object oriented systems, the term inheritance is used to
describe the mechanism allowing the derivation of a class
Cy from another one Cy. Class C2, the inheriting class, is
said to be a subclass of C';. The subclass class will have to
present the same external interface of Ci, in addition to its
own public interface. In other words, it is possible to treat
as object O3 of class Cs as if it is of class Ci: that is Oz will
accept the same messages of objects of class C.

The behaviour of Cs could extend or limit the behaviour
of C'1, but the important fact is that it is defined with re-
spect to Cq behaviour. One may distinguish between several
forms of inheritance [5], but in our discussion we focus on
inheritance for specialization; a class is defined in terms of
specialization of an already existing one — this is expressed
by the “is a” relationships. For instance, if we state that a
TextWindow is a Window, we mean that the TextWindow
has all the properties and behaviors of the Window, plus
some additional property and/or behaviour.

Specialization usually implies a semantic coherence between
the two classes. When this is true, Co, that is, the specializ-
ing class or subclass, is also called a subtype of the class C;.
If semantic coherence is not granted the subclass will just
have the same names as C; for public variables and meth-
ods, but the meanings attached to these interface elements
can arbitrarily change. In other words, the subclass requires
only a syntactical match, while the subtype guarantees also
a semantical match between the involved classes.

The concepts of subclass/subtype are also related to a dis-
tinction commonly made between what is sometime referred
to as “true” or “code” inheritance versus interface inher-
itance. The former is used when, besides presenting the
same external interface, a class includes also the same code
of the inherited class. As a consequence, a subclass formed
via code inheritance will also be a subtype unless it explic-
itly overrides the behaviour of the inherited class. The lat-
ter term, interface inheritance, is used when a class has the
same external interface of the inherited one, but it has no
direct access to its code. In this case, a subclass becomes
a subtype only when the behaviour of the inherited class is
reproduced with the same semantics.

In terms of implementation, a simplifying model is to view
inheritance as a special form of composition. Composi-
tion generally implies wrapping the interface of the included
classes, and filtering the communication between these classes
and the external world — the composition operation could be
completely hidden. In the case of inheritance, the interface
of the inherited class is added to the one of the inheriting
class, letting the external world know of the relationship
between the two classes. In addition, in the case of code
inheritance, the operation of the inherited class will also be
available.

Inheritance can be described as if the inheriting class incor-
porates (composes with) the inherited one, but without fil-
tering the communication; the inherited class interface is di-
rectly accessible. An object of the inheriting class responds
to the same invocations as an object of the inherited class.
If the subclass is also a subtype, the results will also be
the same. To think at inheritance (subtyping) as a form
of composition which maintains the interface (behaviour) of
the composed object, makes it easier to reason about similar
concepts in the service world.

Before presenting the application of interface inheritance for
service composition (see Section 4.2), in the next section
we discuss the role of composition in the service oriented
paradigm and its relationship with the similar concept in
OOP.

4.1 Object composition versus service compo-

sition

A large amount of effort in research literature and in indus-
try standards is devoted to service composition. As repre-
sentatives of the approaches mentioned at the end of Sec-
tion 3, we refer on one hand to authors focusing on designing
the composition of service (e.g., [6, 33]) and on the other
hand to authors defining how semantically annotated ser-
vices can be automatically composed (e.g., [20]).

Service composition based on model driven configuration ad-
dresses the problem of creation of composite services during
run-time. This is achieved through the iterative composition
of elementary components into a composite service based on
well-defined constraints. Connections between elementary
services are realized based on the aforementioned plugs and
sockets concept where composition dependencies (connec-
tions) that make use of an interface component are referred
to as sockets and components that are matched by a socket
are referred to as plugs. A composition created based on this

process consists of a group of elementary services connected
via their interfaces in order to produce a more complex ef-
fect defined to be the composite service. Consequently a
composite service can synthesize its functionality out of the
functionality of a number of other services, e.g., a location
based weather forecast service that is composed out of a
service providing positioning data and a service providing
weather forecast information. This behaviour can be cleanly
mapped to the type of composition employed in the context
of object oriented development, where the composite service
functions as an inheritor and composing elementary services
play the role of the parents.

In comparison, composition in Object Oriented development
is a design-time activity mainly dealing with statically de-
signing the architecture of the system. To state that an
object is composed of another one, means that in the class
diagram a containment relationship between the two corre-
sponding classes exists. In this relationship the containing
object is able to use the contained one, possibly shielding it
from other parts of the system (see Section 4.2).

An additional level of detail, related to composition in the
object oriented world, is grounded in the difference between
the abstract view of classes and the instantiation process,
that is, the creation of the actual objects. A composition
relationship between classes C1 and C2 will lead to the fact
that an object Op (instance of class C1) will contain an ob-
ject Oz (instance of class C2). This result can be achieved
in two radically different ways: exclusive or non-exclusive
composition. In the former case, the instantiation of O; will
create Oz, a new instance of Cs; when O; will be destroyed,
O2 will also be deleted. In the latter, non-exclusive, case,
01 will make use of O}, an already existing instance of Co;
in this case, deleting O; will not affect O5.

Recapitulating, the main difference between service com-
position and composition of objects is that composite ser-
vices are not statically designed, but rather are composed
at run-time, as services providing the required supporting
infrastructure are composed using dynamic discovery mech-
anisms. Consequently, the service paradigm provides the
capabilities for dynamic, runtime composition instead of a
statically planned architecture.

The dynamic nature of service composition has several con-
sequences. A significant one is that negotiation and contrac-
tual agreements cannot be accomplished off-line, they have
to be dealt with at run-time. The role of catalogues and
the discovery mechanism have no counterpart in the world
of objects and components.

Services demand a transition from static binding between
objects or components that are to be integrated to the dy-
namic binding of services. From the point of view of the
design there is the need of a transition from designing an
architecture to designing the enabling medium, that is, the
infrastructure for runtime composition.

Furthermore, a composite service functioning as the inher-
itor retains all the interfaces of its individual elementary
components playing the role of the parents. This behaviour
can be cleanly mapped to object-oriented inheritance mech-

anisms.

4.2 Interface inheritance for service composi-

tion
Interface inheritance allows to treat in the same way two
elements of a composition relationship: with interface in-
heritance, a member of a composition can be substituted
its inheritor (descendant). Interface inheritance for services
guarantees the presence in the inheriting service of a specific
interface: the inherited one.

An example is a service A designed for informing client ser-
vices about conformance to certain policies, for instance,
acceptance of a certain kind of credit card or availability
of express shipping. A business process could then be de-
signed in terms of requests to A and decisions based on its
responses. If a second service B is built inheriting A inter-
face: in addition to its own operations, it will respond to
the A-like requests regarding card acceptance or shipping.
Moreover, interface inheritance guarantees that the format
of the requests accepted by B is the same as the ones of A.
We can then substitute A with B in the business process. In
addition, the service B may have further interface elements
which do not affect the process.

We identify four different composition scenarios, which differ
on the basis of the kind of operations performed and on the
relationship between service interfaces. Table 6 summarizes
the four scenarios, illustrated in Figures 7-9 and discussed in
the reminder of this section. In Table 6 we use two categories
for describing composition scenarios. Along the vertical di-
mension, we discriminate services according to the fact that
the composing service presents (or not) to external applica-
tions the same interface elements as the composed services.
On the horizontal dimension, we differentiate services ac-
cording to the additional operations that are performed in
addition to using the composed service. We define as value-
added the operations that significantly change the nature of
the operation of a composed service, while we define pass-
through the operations that are only rearranging or refor-
matting data in addition to activating the composed service
operation.

Value-Added | Pass-Through
Operations Operations
Same Sub-class Sub-type
Interface | composition | composition
Different Opaque Transparent
Interface | composition | composition

Figure 6: Composition and Inheritance.

In Figures 7-9, we represent a service with an oval in the
diagrams and with capital letters in the text. Elements of
the interface (that is, service operations) are represented
by small shapes positioned on the oval boundary. Different
shapes represent different operations, the same shape in two
services indicates that the two services offer the same oper-
ation. In the text, interface elements are identified with i,
iy, and so on. Arrows represent requests or invocation of ser-
vice operations. The + inside an oval of a service indicates
that the service adds its own processing to a request, instead

of just passing it to a composed service operation, possibly
with some trivial data transformation. This second case is
represented by a line connecting the interface element with
the activation of the composed service. We also include sim-
plified UML class diagrams, indicating the object oriented
relationship from which we originate our description.

Opaque
Composition B
Application 1
1
o B
A

Figure 7: Opaque composition.

In the case of Opaque composition, see Figure 7, service
B is composed by another independent services: A. The
interface of service B is not related to the one of A. For an
external application, there is no indication that B contains
service A.

A request i, to service B will be performed by activating
operation i, in service A. Besides requesting operations to
A, B will perform additional work when it receives request
iz

On the outside of B there is no notion of A operations.

Transparent
composition _ _ B

Application §

Figure 8: Transparent composition.

Transparent composition, see Figure 8, differs from Opaque
composition because B does not process request i., but dif-
ferently from the following cases, B’s interface, i., is not
the same as A’s interface, i,. For this reason, rearranging i,
data to match i, format does not change the nature of this
composition.

For instance, B could be a commercial service which is using
A, a credit card validation service. Beside using a validation
operation i, of A, B could offer to external applications a
validation operation i,, using a different name and different
parameters from i,. Upon receiving request i,, B will reor-
ganize the request parameters and it will in turn ask A to
perform 7.

From the point of view of the external application, there is
no connection between operation i, of B and operation i,

of A. They just happen to have a similar scope.

Sub-class
composition

>

Application

Figure 9: Sub-class composition.

With Subclass composition, see Figure 9, the role of inher-
itance starts to appear. Since service B inherits service A
interface, it has to present to external applications the same
interface as A, in addition to its own operations.

In Figure 9, B has i, and i, operations, with the same names
and parameters as A operations. Since this is a subclass,
there is no requirement to guarantee that B will produce
the same results as the requests of the same these operations
to service A. In fact, B could assign a completely different
meaning to these operations.

Since B is not using A, there is no composition between the
services. Nevertheless, from the point of view of an external
application, B could be treated as an A, since having the

same interface it will accept the same requests.
A
B

Sub-type

Figure 10: Sub-type composition.

As for Sub-class composition, in the case of Sub-type com-
position, (Figure 10), service B has the same interface as A,
possibly with additional elements. The important difference
is that B has to preserve the meaning assigned by A to its
own operations.

One possible description of the case in Figure 10 is that B
just receives the requests i, and iy, passing them on to A.
It this way B guarantees that an accessing application will
be able to treat B as if it was an A service, obtaining the
same results.

Substitution of A with service B is possible also in the pre-
vious case, but without being semantically coherent.

4.3 Discussion

The widespread use of composition in systems based on ser-
vice oriented architectures will ultimately lead to complex

business models, relying on advanced service composition
functionality. We suggest that the concept of composite ser-
vices can be extended in a useful manner by allowing access
to individual elementary services through interfaces exposed
on the composite service. Examples scenarios where this
type of extended composition would be useful are location
based services (LBS). LBS typically require the integration
of at least one service providing positioning data. Conse-
quently every invocation of any composite LBS, like for in-
stance a location based weather service, would also require
the invocation of a service providing access to a positioning
system, i.e., cellular positioning. If a user makes continu-
ous use of composite LBS, a business model providing cost
saving is to allow an already invoked composite LBS to par-
ticipate in a new composition. In the new composition, the
composite LBS would play the role of an elementary service,
using only a subset of its functionalities. According to our
model, the composite LBS would be used via the positioning
system service interface only. In a different scenario, the mo-
tivation for this type of extended composition could be the
provision of value-added services based on simpler versions
provided by elementary components of a composition.

Such business models pose additional requirements for con-
trolling the way the functionalities of the elementary services
are composed and made accessible to the composite service
consumer. Based on the concept of object-oriented inheri-
tance, and of interface inheritance in particular, we propose
a number of extended types of composition, supporting dif-
ferentiated access modes to the functionalities and interfaces
of elementary services.

Transparent, opaque, sub-type and sub-class composition
can be compared to public, private and private protected in-
terfaces in object-oriented terms. Much like object-oriented
development makes use of such mechanisms to selectively
expose interfaces to outside users or direct inheritors of a
class, we propose access control mechanisms to achieve sim-
ilar results when dealing with interfaces of elementary ser-
vices participating in a more complex composition.

5. CONCLUDING REMARKS

The object oriented paradigm has a solid formal background
and is a well-established reality of today’s computer science.
Service oriented computing is, on the other hand, a new
emerging field, which tries to realize global interoperability
between independent services. To meet this goal, service
oriented technology will need to solve a number of challeng-
ing issues, such as how to manage service composition and
orchestration. We have proposed a methodology based on
model variant configuration by ‘borrowing’ concepts from
the object oriented world. In particular, we have shown
how the concepts of interface inheritance induce four forms
of service composition.

Future investigation will be pursued in two directions. On
the one hand, the utility of the approach will be tested by
implementing a tool for designing compositions of services
based on the proposed methodology. On the other hand,
the added value of semantical enrichments of the interfaces
will be investigated.

6.

[1] A. Barr and E. Feigenbaum, editors. The Handbook of

2]

[7]

[12]
[13]

[14]

REFERENCES

Artificial Intelligence. Kaufman, 1981-82. Vols. 1-2.

R. Bartdk. Week of Doctoral Students (WDS99).
MatFyzPress, 1999.

BEA, IBM, Microsoft, S. AG, and Siebel. Business
Process Execution Language for Web Services, 2003.
http://wuw-106.1ibm. com/developerworks/library/
ws-bpel/.

D. Berardi, D. Calvanese, G. De Giacomo,

M. Lenzerini, and M. Mecella. Automatic composition
of e-services that export their behavior. In

E. Orlowska, M. Papzoglou, S. Weerawarana, and

J. Yang, editors, Int. Conf. on Service Oriented
Computing (ICSOC 03), LNCS, 2910, pages 43-58.
Springer, 2003.

T. Budd. An Introduction to Object-Oriented
Programming. Addison Wesley, 2002. (3rd edition).

F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and
M.-C. Shan. eFlow: a platform for developing and
managing composite e-services. Technical report,
Hewlett Packard, 2000.

F. Casati and M. C. Shan. Definition, execution,
analysis and optimization of composite E-Services.
Bullettin of the IEEE Computer Society Techincal
Committee on Data Engineering, 24(1):29-34, 2001.

G. Coulouris, J. Dollimore, and T. Kindberg.
Distributed Systems: Concepts and Design. Addison
Wesley, 2001. (3rd edition).

R. Cunis, A. Giinter, and H. Strecker. Das
PLACON-Buch. Informatik Fachberichte. Springer,
1991.

F. Curbera, W. Nagy, and S. Weerawarana. Web
services: Why and how. In Workshop on Obejcet
Orientation and Web Services OOWS2001, 2001.

V. D’Andrea and M. Aiello. Services and objects:
Open issues. In G. Piccinelli and S. Weerawarana,
editors, Furopean workshop on OO and Web Service,
pages 23-29, 2003. IBM Research Report. IBM.
Computer Science, (RA 220).

S. Davis. Future Perfect. Addison-Wesley, 1987.

P. Drucker. The Practice of Management. New York:
Harper, 1954.

I. Fikouras and E. Freiter. Service discovery and
orchestration for distributed service repositories. In
E. Orlowska, M. Papzoglou, S. Weerawarana, and
J. Yang, editors, Int. Conf. on Service Oriented
Computing (ICSOC 03), LNCS, 2910, pages 59-74.
Springer, 2003.

I. Fikouras and F. Ramme. Service orchestration with
generic service elements. In Proceedings of the 6th
International Symposium on Wireless Personal
Multimedia Communications, 2003.

(16]
(17]

(18]

(19]

20]

33]

R. Glazer. Winning in smart markets. Sloan
Management Review, 40:59-69, 1999.

M. Heinrich. Ressourcenorientieres konfigurieren.
Kiinstliche Intelligenz, 7(1):11-15, 1993.

C. Huffman and B. E. Kahn. Variety for sale: Mass
customization or mass confusion? Technical Report
R98-111, Marketing Science Institute, 2004.
http://www.msi.org/msi/publication_summary.
cfm?publication=491.

B. Kahn. Dynamic relationships with customers:
high-variety strategies, volume 26. Sage, 1998.

S. Mcllraith and T. C. Son. Adapting Golog for
composition of semantic web-services. In D. Fensel,
F. Giunchiglia, D. McGuinness, and M. Williams,
editors, Int. Conf. on Knowledge Representation and
Reasoning (KR2002), pages 482-493, 2002.

B. Neumann. Configuration expert systems: a case
study and tutorial. In H. Bunke, editor, Artificial
Intelligence in Manufacturing, Assembly and Robotics.
Oldenbourg, 1988.

NOMAD. Ist-2001-33292. Project Web-Site:
http://wuw.ist-nomad.org.

B. Orriéns, J. Yang, and M. P. Papazoglou. Model
driven service composition. In E. Orlowska,

M. Papzoglou, S. Weerawarana, and J. Yang, editors,
Int. Conf. on Service Oriented Computing (ICSOC
03), LNCS, 2910, pages 75-99. Springer, 2003.

M. P. Papazoglou and D. Georgakopoulos.
Service-oriented computing. Commun. ACM,
46(10):24-28, 2003.

M. Papazoglou et al. SOC: Service Oriented
Computing manifesto, 2003. Working draft available
at http://www.eusoc.net.

F. Piller. Kundenindividuelle Massenproduktion: Die
Wettbewerbsstrategie der Zukunft. Carl Hanser Verlag,
1998.

F. Puppe. Expertensysteme. Informatik Spektrum,
9(1), 1986.

P. Schnupp, H. Nguyen, and T. Chau.
Ezpertensystem-Praktikum. Springer, 1987.

W. Tank. Wissensbasiertes konfigurieren: Ein
iiberblick. Kinstliche Intelligenz, 7(1):7-10, 1993.

E. Tsang. Foundations of Constraint Satisfaction.
Academic Press, 1993.

M. Tseng and J. Jiao. Mass customization. In
G. Salvendy, editor, Handbook of Industrial
Engineering, pages 684-709. Wiley, 2001.

P. West, D. Ariely, S. Bellman, E. Bradlow, J. Huber,
E. Johnson, B. Kahn, J. Little, and D. Schkade.
Agents to the rescue? Marketing Letters,
10(3):285-300, 1999.

J. Yang and M. Papazoglou. Web component: A
substrate for web service reuse and composition. In
CAiSE, pages 21-36, 2002.

Privacy-based Ranking of Web Services

Abdelmounaam Rezgui
Department of Computer Science, Virginia Tech
7054 Hayock Road, Falls Church, VA, USA
Phone: 1 703 538 8343

rezgui@vt.edu

ABSTRACT

In this paper, we propose a novel algorithm for privacy-based
Web service ranking. The proposed algorithm is inference
aware and history sensitive. Inference awareness refers to
the ability to make it futile for Web services providers to
use inference mechanisms to derive non explicitly disclosed
information about users. History sensitiveness refers to the
ability to prevent services from violating users’ privacy by
exploiting their invocation history. The algorithm’s over-
head is minimized so that it can be integrated in any online
service discovery mechanism.

Keywords

Privacy, semantic Web, Web services, inference control

1. INTRODUCTION

Preserving users’ privacy was identified as a significant
challenge almost as early as the dawn of the computer indus-
try [7]. Since then, privacy has been an issue in almost every
new wave of computer technologies or computing paradigms.
With the Web revolution, privacy, or Web privacy, has come
to the fore as a problem that poses a set of challenges fun-
damentally different from those of the pre-Web era.

The Web has been essentially an interactive environment.
Most of its content is interpretable only by humans. Users’
involvement is necessary for virtually any Web-based trans-
action. This has motivated a research direction that aimed
at introducing more automation in the Web. A key mile-
stone in that research was the introduction of the idea of
the semantic Web. The intuition behind the vision of the
semantic Web is to transform today’s Web into an “intel-
ligent” infrastructure where many of the time-consuming,
user-initiated and user-monitored tasks become automated.
In this vision, machines become much better able to process
and understand the data that they merely display at present
[2].

A technology that is widely expected to play a definite
role in enabling the semantic Web is Web services. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifc
permission and/or a fee.

Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Athman Bouguettaya
Department of Computer Science, Virginia Tech
7054 Hayock Road, Falls Church, VA, USA
Phone: 1 703 538 8403

athman@vt.edu

W3C defines a Web service as “a software system designed to
support interoperable machine-to-machine interaction over
a network” [21]. A Web service exposes an interface through
which it may be automatically invoked by Web clients. A
Web service’s interface describes a collection of operations
that are network-accessible through standardized XML mes-
saging [10]. Research on Web services aims at enabling the
Web service computing paradigm. In this new paradigm,
Web services publish their functionalities through service
registries. Web clients access these registries to discover the
description of Web services providing specific functionalities.
They then invoke the services according to that description.
Several standards have been developed to enable the use of
Web services. These include WSDL [18] (for service descrip-
tion), UDDI [20] (for service discovery), and SOAP [17] (for
service invocation).

1.1 Motivation

In today’s Web, users generally decide on initiating a Web
transaction based on their prior knowledge of the different
parties involved in that transaction. In the envisioned se-
mantic Web, software agents will replace users in initiating
Web transactions and controlling their execution. In typical
semantic Web transactions, Web services and agents will in-
teract to carry out sophisticated tasks on behalf of users. In
the course of this interaction, they may automatically ex-
change sensitive private information about these users. A
natural result of this increasing trend towards less human
involvement and more automation is that users will have
less control over how their personal information is manip-
ulated by software agents and Web services. This requires
fundamental changes in how Web services are discovered and
selected. Research on Web service discovery has largely fo-
cused on the aspect of discovering Web services that best
suit some given functionality requested by a user. Far less
attention was devoted to the issue of retrieving Web services
based on quality of service (QoS) criteria, e.g., performance,
cost, security, reputation, and privacy. A central problem
that must be solved before achieving the vision of the se-
mantic Web is to enable agents to automatically establish
a privacy-based ranking of several Web services that may
be invoked to accomplish a given task. Agents may then
use such a ranking to autonomously determine, according
to the current context, the most privacy preserving invoca-
tion scheme to accomplish the given functionality.

1.2 Contribution and Paper Organization

In this paper, we develop a novel algorithm for privacy-
based Web service ranking. The proposed algorithm is (i)

user dependent, (ii) inference aware, (iil) history sensitive,
and (iv) computationally light. User dependency is a natural
requirement for any privacy-based selection of Web services.
Inference awareness and history sensitiveness make it futile
for Web services providers to use inference mechanisms on
users’ invocation histories to derive non explicitly disclosed
information about those users. Finally, the proposed algo-
rithm is computationally light so that it can be integrated
in any online service discovery mechanism.

This paper is organized as follows. In the next section,
we give a brief literature review. In Section 3, we introduce
the key concepts of our solution. In Section, 4, we give
the details of the proposed Web service ranking algorithm.
Section 5 concludes the paper.

2. RELATED WORK

Although the need to preserve privacy in the envisioned
semantic Web is widely recongnized, little research was actu-
ally devoted to the development of solutions achieving that
objective. Before the concept of Web services was intro-
duced, most of the research focused on the aspect of hid-
ing the real identity of Web users when they access static
Web content (e.g., Web pages) and Web-based applications
(e.g., search engines) [13, 14]. Techniques that addressed
this aspect included: Crowds [12], anonymizing tools (e.g.,
Anonymizer [1], cryptographic techniques [3], onion routing
[6]), and aliases (personae) generators for Web users [5].

On the standardization front, a notable privacy standard
is W3C’s Platform for Privacy Preferences Project (P3P).
The motivation behind P3P is to develop an industry stan-
dard that “enables Web sites to express their privacy prac-
tices in a standard format that can be retrieved automati-
cally and interpreted easily by user agents” [22]. A Web site
implementing P3P expresses its privacy policy in a machine-
readable format. Its users may configure their browsers
to automatically determine if the Web site’s privacy pol-
icy reflects their personal needs for privacy. P3P, however,
provides no technical mechanisms that guarantee that Web
sites actually implement their stated privacy policy. More-
over, P3P is proposed as a standard to specify the privacy of
Web sites and not Web services; it only automates the pro-
cess of checking that users’ privacy will probably not be vio-
lated when they access applications through a P3P-enabled
Web browser. In standards for Web services, the issue of
preserving privacy was often absent. For instance, the two
standards WSDL and UDDI provide little or no support for
privacy enforcement.

Some of the research aiming at solving the privacy prob-
lem in the semantic Web focused on the concept of on-
tologies. The importance of ontologies in building the se-
mantic Web is widely recognized. In particular, they are a
central builiding block in making Web services computer-
interpretable [4]. This, in turn, enables the automation of
the tasks of discovering, invoking, composing, validating,
and monitoring the execution of Web services [11, 15]. On-
tologies will also play a central role in solving the privacy
problem in the semantic Web. Building a privacy ontology
for the semantic Web is one of the several recent proposi-
tions to enable Web agents to carry out users’ tasks while
preserving their privacy [9]. A recent solution that used
ontologies was proposed in [19]. The authors present a pri-
vacy framework for Web services that allows users’ agents
to automatically negotiate with Web services on the amount

of personal information to be disclosed. In this framework,
users specify their privacy preferences in different permis-
sion levels on the basis of a domain specific ontology based
on DAML-S, an ontology for Web services specified using
DAML-OIL [16, 15].

Our work is also related to inference control (IC). Tech-
niques developed in the area of IC have been widely investi-
gated in the context of statistical databases [23]. The objec-
tive of inference control in this context is to prevent intrud-
ers from compromising privacy using inference techniques
that draw on data mining, record linkage, and knowledge
discovery [8]. Our work aims at initiating research that: (i)
leverages established database inference control techniques
to the semantic Web context, and (ii) investigates new so-
lutions that are specifically tailored to the semantic Web.

3. PRIVACY-BASED WEB SERVICE RANK-
ING

In this section, we introduce a few concepts necessary to
the description of our ranking solution.

Definitions

Definition 1 : The privacy profile for a user u is a set P,
= {(a1, f1), (a2, f2), .., (an, fn)} where: a; is an attribute
(e.g., Name, PhoneNumber) and f; is the privacy sensitiveness
factor of that attribute, i.e., the importance that the user
u associates to the attribute a,. Without loss of generality,
we will assume that all attributes are discrete and ordered,
i.e., for any two values of v; and vy of attribute a;, there
exists a finite number of other values vg,, vk, that attribute
a; can take such that: vi < g, < .. < vy, < v2. We note
the size of the interval of values that attribute a; can take
by: | ai ||

Definition 2 : The invocation history H, of a user u is a
list of invocation records { r1, .., rm }. Each record r; in H,
records the event of invoking operation op;; of service s; by
user u at time ¢t. Each invocation record also captures the
values of the input parameters provided by user u to service
s; in the invocation. An invocation record is represented by:
{ (si, opij, (alj, v1), .. (afj, vi), t)* } where v; is the value
of attribute aéj. The size of the history H. (number of its
entries) is noted || Hy ||

Definition 3 : Let A; be a subset of attributes and a;
be an attribute. a; is said to be inferable from A; if it is
computationally possible to derive one single value for a;
from any instantiation of A;. We note this by: A; — a;.
For example, if A; = { ZipCode } and a; = City, then:
Ai — Qj.

Definition 4 : Let A; be a subset of attributes and a;
be an attribute. a; is said to be potentially inferable from
A; if it is computationally possible to derive a finite set of
values for a; from any instantiation of A;. We note this
by: A; —, a;. For example, if A; = { HighestDegree,
JobTitle } and a; = SalaryRange, then: A; —, a;. We
note the cardinality of the set of values that attribute a; can
take for a given instatiation V; of A; by: || A —p a; ||v;-

Definition 5 : The universal inference function I is a func-
tion defined as follows:

Privacy

Profile

Service
Registry

Service
Registry

O= =

Invocation
History

=)

Invocation
History

Service
Registry

-

Inference
Engine

Figure 1: Service Ranking Principle

For each attribute subset A; and attribute a;:

AZ'*)G,]' —— I(Ai,aj):l
Ai —pa; = I(Aia;) = oy

where a;; (0 < a5 < 1) is given by:

1
maz(|| Ai —p a; [v;)

Q5 =

auj is called the confidence of the inference Z(A;, a;). Con-
sider the following examples:

1. Z({ ZipCode }, City) =1

(
2. Z({ FamilyName }, Country0fOrigin) = 0.4
3. Z({ Country0fOrigin }, NativeLanguage) = 0.8
4. I(

Z({ HighestDegree, JobTitle }, SalaryRange) =0.7

In the first example, the confidence is 1 because the at-
tribute City can deterministically be derived from the at-
tribute ZipCode. The other examples illustrate cases where
the value of an attribute may be derived, with some confi-
dence, from the value(s) of one or more other attributes.

Closure of the Universal Inference Function

The closure of the universal inference function, noted Z*, is
derived from Z by appliying the transitivity inference rule.
This rule may be stated as follows:

e Initially, Z7* := 7

o If
I(A1,a1) = Q1
I(Az,ag) = 2
az € Ay
then

I*(A1U Az, a1) := max(Z" (A1 U Az, a1), min(a, az))

Definition 6 : Let s; be a Web service and op;; an oper-
ation of s;. The input signature of op;j, noted IS5(opi;), is
the set of its input parameters {a1, az, .. , ax}.

Definition 7 : Let s; be a Web service of which a user u has
invoked one or more operations. The invocation knowledge
that service s; has of user u, noted IK;‘i, is the set of pairs
{(a, v)} where a is an attribute and v is the value of attribute
a as collected by service s; directly through an invocation
from user u.

Definition 8 : The potential knowledge that service s; has
of user u, noted PK},, is the information that the service s;
may derive on the user u by applying the closure inference
function Z* on the attributes of IKy,. This knowledge may
be represented as a set of pairs {(a, o)} where a is an at-
tribute and « is the maximum confidence that service s; has
in the value of a after applying all possible rules of Z*. For
example, by applying the transitivity rule, we may derive
that:

T*({FamilyName, Country0fOrigin}, NativeLanguage) = 0.4

We also may derive that (NativeLanguage, 0.4) € PKy,.

4. PRIVACY-BASED RANKING

In this section, we first describe the general idea of our
service ranking scheme and then present and evaluate the
proposed ranking algorithm.

4.1 Ranking Principle

The basic idea of the proposed ranking scheme is based on
the notion of potential exposure of users invoking Web ser-
vices. Consider a service s; with a potential knowledge PK ;*1
on user u. Let Py = {(a1, f1), (a2, f2), .-y (Gn, fn)}. The
potential exposure of user u (from his/her own perspective)
to the service s;, noted by x(u,s;), is defined by:

Algorithm 1.

Input:
- A set of Web services S

- A user’s privacy profile P = ((a1, f1), (a2, f2), .., (an, fn))
- The closure of the universal inference function Z*
- A History H that records the past service invocations of user u

- An exposure threshold 6
Output:

- An ordered list of Web services A where services are ranked according to their

privacy preserving potential

begin

0 A:=10

(1) for each service s; € S:

(2) e := Exposure (x(u, 8;), 8i), Pu,L*, 0pi;)
(3) if (e>0)

(4) then S := S - {s;};

(5) else

(6) k-Insert (s;, 0) in the list A;
€)) endif

9) endfor

end

Figure 2: Web Service Ranking Algorithm

X(u, si) = Z a.f

(a,0)EPKE, (a,f)EPy

Example:

o PK ={ (Name, 1), (Country0fOrigin, 0.2), (SalaryRange,

0.7) }

o P, = { (Name, 0.2), (Address, 0.9), (Country0fOrigin,
0.8), (SalaryRange, 0.2) }

In this case, the exposure of user u to service s; is given
by:

X(u,8) =1.02402.08+0.7.0.2

O.

The principle of the proposed algorithm (Figure 1) is as
follows. Users will keep track of their own view of the po-
tential knowledge that services already have about them.
A user u may derive this value for service s; from his/her
invocation history H,. Assume that the user may invoke
one of several services to achieve a given functionality. The
ranking process precedes the service selection. It consists to
compute the anticipated user’s exposure for each alternative.
Three parameters are required to compute the anticipated
potential exposure that would result from invoking opera-
tion op;; of service s;: the user’s privacy profile Py, the cur-
rent potential exposure of user u to service s;, x(u,s;), and
the input signature of operation op;j, I1S(op;i;). The output
of the ranking process is the list of candidate services or-
dered in the increasing order of their anticipated potential
exposure.

4.2 Ranking Algorithm

In this section, we present our service ranking algorithm.
The algorithm (Figure 2) takes as its input: (i) a set of Web
services’s, (ii) a user u’s privacy profile Py, (iii) the closure
inference function Z*, (iv) the user’s invocation history Hu,
and (v) a user-specified exposure threshold 6. The output of
the algorithm is a list A of services ranked in the order of
increasing anticipated potential exposure.

The function Exposure (Line 2) computes the anticipated
potential exposure of the user u if service s; is invoked. Let
P be user u’s privacy profile. For an operation op;; with
input signature I1.5(ops;) = {ar}i<k<p:

Exposure(X(u, si), Pu, Z", 0pij) = x(u, si) + > f
a € 15(opij)
(CL,f) S Pu

(1)

The function k-Insert (Line 6) uses a sorted binary tree
of k elements to keep track of the list of the current best k
services. The list A has a maximum size k. The insertion of a
service s; whose anticipated potential exposure is lower than
the service Smqr with the maximum anticipated exposure
already in the list A results in the substitution of S;qz by
s; in the list A.

4.3 Analytical Evaluation

For the evaluation of our algorithm, we will use the fol-
lowing notations:
- s: number of Web services selected for ranking
- n: number of attributes in the user’s privacy profile
- r: number of inference rules in Z*
- 0;5: the number of attributes in the input signature of op-
eration op;j, i.e., ZS(op;ij)=0i;.

- I: the user-specified maximal size of the list A, i.e., || A ||=
l.

Line 1 of the algorithm is a loop of s iterations. In each
iteration, the function Exposure adds the value of x(u, s;)
to Zaels(omj),(a,f)epu f and checks each of Z* rules (see Eq.

1). This requires a computation of complexity O(r.min(o;;,n)).

Line 6 inserts an element in an ordered binary tree (the list
A) of size I. This requires a processing cost of O(l.log(l)).
Each of the other lines of the algorithm requires a constant
processing cost. With the assumption that 0;; << n, the

overall computational cost of the algorithm is: O(s.r.n.l.log(1)).

5. CONCLUSION

The vision of the semantic Web calls for tools that en-
able users to safely delegate much of the time consuming,
user-initiated, and user-controlled tasks to software agents
and Web services. A significant challenge is to automate the
process of service selection. Automating this process would
have a great consequences on users’ privacy as agents and
Web services will maniplate sensitive information on behalf
of users. In this paper, we propose a privacy-based ranking
algorithm that enables users and agents to a priori deter-
mine the extent to which their privacy may be at risk when
several Web services may be candidate to accomplish the
same functionality. The proposed algorithm may be used as
a stand-alone solution for Web service ranking or incorpo-
rated in any type of infrastructure, e.g., for service search,
composition, optimization.

6. REFERENCES
[1] Anonymizer. hitp://www. Anonymizer.com, 2002.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, May 2001.

[3] L. F. Cranor. Electronic Voting. ACM Crossroads
Student Magazine, January 1996.

[4] D. Fensel and M. A. Musen. The Semantic Web: A
Brain for Humankind. IEEE Intelligent Systems,
16(2), March-April 2001.

[5] E. Gabber, P. B. Gibbons, D. M. Kristol, Y. Matias,
and A. Mayer. Consistent, Yet Anonymous, Web
Access with LPWA. Communication of the ACM,
42(2), February 1999.

[6] D. Goldschlag, M. Reed, and P. Syverson. Onion
Routing. Communication of the ACM, 42(2):39-41,
February 1999.

[7] L. J. Hoffman. Computers and Privacy: A Survey.
ACM Computing Surveys, 1(2):85-103, 1969.

[8] Josep Domingo-Ferrer, editor. Inference Control in
Statistical Databases: From Theory to Practice. LNCS
2316. Springer, 2002.

[9] A. Kim, L. J. Hoffman, and C. D. Martin. Building
Privacy into the Semantic Web: An Ontology Needed
Now. In Proc. of the Semantic Web Workshop, May
2002.

[10] H. Kreger. Web Services Conceptual Architecture.
Report of IBM Software Group, May 2001.

[11] S. Mcllraith, T. C. Son, and H. Zeng. Semantic Web
Services. IEEE Intelligent Systems, 16(2), March-April
2001.

[12] M. K. Reiter and A. D. Rubin. Anonymous Web
Transactions with Crowds. Communication of the
ACM, 42(2), February 1999.

[13] A. Rezgui, A. Bouguettaya, and M. Eltoweissy.
Preserving Privacy in the Web: Facts, Challenges and
Solutions. IEEE Security & Privacy, 1(6),
November-December 2003.

[14] A. Rezgui, A. Bouguettaya, and M. Eltoweissy.
SemWebDL: A Privacy Preserving Semantic Web
Infrastructure for Digital Libraries. Intl. Journal of
Digital Libraries (to appear), 2004.

[15] The DAML Services Coalition. DAML-S: Semantic
Markup for Web Services.

[16] The DAML Services Coalition. DAML-S: Web Service
Description for the Semantic Web.

[17) The World Wide Web Consortium. Simple Object
Access Protocol (SOAP).
http://www.w3.org/ TR /soap.

[18] The World Wide Web Consortium. Web Services
Description Language (WSDL) 1.1.
http://www.w3.org/ TR /wsdl

[19] A. Tumer, A. Dogac, and H. Toroslu. A Semantic
based Privacy Framework for Web Services. In
WWW’03 workshop on E-Services and the Semantic
Web (ESSW’03), May 2003.

[20] UDDI. Universal Description, Discovery and
Integration. http://www.uddi.org.

[21] W3C. Web Services Architecture. W8C Working
Draft, August 2003.

[22] T. W. W. W. C. (W3C). The Platform for Privacy
Preferences 1.0 (P3P1.0) Specification, April 2002.

[23] L. Wang, S. Jajodia, and D. Wijesekera. Securing
OLAP Data Cubes Against Privacy Breaches. In Proc.
of the 2004 IEEE Symposium on Security and
Privacy, pages 161—, May 09-12 2004.

Contact Author

Enrico Mussi

Politecnico di Milano

Piazza Leonardo da Vinci, 32
20133 Milano, Italy

Email: mussi@elet.polimi.it

Authors
Luciano Baresi, Devis Bianchini, Valeria De Antonellis, Florian Daniel, Andrea Maurino,
Stefano Modafferi, Barbara Pernici.

Topic of interest
Workflow technologies & services, Service modeling and representation languages.

Keywords
Service-oriented computing, Service discovery, service selection

Abstract

Service oriented computing is becoming the standard paradigm to
support the creation of applications composed of services selected
from a registry. Nowadays, we are assisting to the proliferation

of standardized approaches to describe such services, but there is
the general agreement of distinguishing between the general
characteristics of services and the characteristics associated

with service invocation. In many cases, the selection of services
is static and based on matching techniques to retrieve the most
appropriate service.

The paper presents the MAIS architecture to provide highly
adaptive services in a mobile and interactive environment and we
focused on service selection and invocation, context-aware
orchestration and mechanisms for managing user interaction in a
service-oriented architecture. We propose adaptivity at different
levels: at process level, during the selection of a concrete

service, and also at end user level. Selection is based on

suitable ontologies and considers the actual context and user
characteristics to retrieve the most suitable services. The paper
describes the main components of the architecture and exemplifies
them on a simple process for a shipping company.

Provisioning of Complex Adaptive Services

L. Baresi, F. Daniel, A. Maurino,
S. Modafferi, E. Mussi, B. Pernici
Politecnico di Milano
P.zza L. da Vinci 32
20133 Milano, ltaly

mussi@elet.polimi.it

ABSTRACT

Service oriented computing is becoming the standard paradi-
gm to support the creation of applications composed of ser-
vices selected from a registry. Nowadays, we are assisting to
the proliferation of standardized approaches to describe such
services, but there is the general agreement of distinguish-
ing between the general characteristics of services and the
characteristics associated with service invocation. In many
cases, the selection of services is static and based on match-
ing techniques to retrieve the most appropriate service.
The paper presents the MAIS architecture to provide highly

adaptive services in a mobile and interactive environment
and we focused on service selection and invocation, context-
aware orchestration and mechanisms for managing user in-
teraction in a service-oriented architecture. We propose
adaptivity at different levels: at process level, during the
selection of a concrete service, and also at end user level.
Selection is based on suitable ontologies and considers the
actual context and user characteristics to retrieve the most
suitable services. The paper describes the main components
of the architecture and exemplifies them on a simple process
for a shipping company.

Keywords

Service-oriented computing, Service discovery, service selec-
tion

1. INTRODUCTION

The emerging paradigm of service-oriented computing sup-
ports the creation of applications by composing services se-
lected among a variety of available services with different
characteristics. Services may be invoked directly by the ap-
plication in which they are used. Essential to this paradigm
is the description of services using a standardized approach;
in the literature, several proposals of service description lan-
guages have been made, such as WSDL, of service ontologies,
such as in AgFlow [25], of semantic web services [1], sepa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

D. Bianchini, V. De Antonellis
Universita degli Studi di Brescia
Via Branze 38
25123 Brescia, Italy

rating general characteristics of services from the character-
istics related to service invocation. In the above mentioned
approaches, service selection is generally static, assuming
matching techniques to retrieve the most appropriate ser-
vices. In VISPO [2], authors introduce the concept of con-
crete and abstract services in the context of process defini-
tion, allowing the designer to specify the process in terms of
abstract services and then providing an invocation environ-
ment to select the most appropriate concrete service. During
selection and execution, the availability of the selected pro-
cess is evaluated and mechanisms for substituting concrete
services whenever they are not available are provided.

However, in both VISPO and AgFlow, where service un-
availability is considered at runtime, the assumption is that,
beyond unavailability of services, the context of invocation
is always the same. This assumption cannot be considered
valid anymore in applications running in a highly variable
environment in terms of both the architecture and its com-
ponents. In such environments, for example in the case of
mobile information systems [15], services invocation may
vary depending on their availability over the network, on
parameters of devices on which they are invoked and on the
characteristics of the networking infrastructure. In addition,
services might be used in the process several times and their
execution environment might change over time.

The goal of this paper is to propose the MAIS architecture
and its mechanisms for designing and executing complex ser-
vices exploiting adaptivity. We propose adaptivity at differ-
ent levels: at the process level, at the level of selection of a
concrete service for a given abstract service and at the level
of interface between users and the platform. We support
service selection with an enhanced UDDI registry, storing
descriptions of abstract and concrete services and including
information about quality parameters on the provider side.
The proposal has been developed in the MAIS (Multichan-
nel Adaptive Information Systems) Project [23].

The rest of this paper is organized as follows: Section 2
introduces the scenario for our running example, a mobile
information system for a shipping company in order to pro-
vide motivations for the aspects discussed in the rest of the
paper. Section 3 describes the MAIS functional architecture,
focusing on orchestration and concrete services selection and
invocation. It also introduces the basic services ontology of
the MAIS Registry. Section 4 exemplifies the behavior of the
functional architecture with respect to the running example
and discusses a mechanism for decoupling service invocation
from the design of a user environment in terms of its interac-
tion with the system, based on an extension of the WebML

ShipEveryWhere

GetPackage
List
(o) ¢
GetRoute
SR
LOOP
Update Loop Evaluation Comp\ete
Route Pick Evaluation Delivery

» €

OnMessage="Udpate route” OnMessage="Delivery complete”

New Crraffic.check) <De|ivery.NotificaliolD
Route
< Route.Replan

G_oop UpdateCond\tiurD Guop.updatecanditio@

.

Figure 1: Workflow of shipping assignment and ex-
ecution phases

model [10]. Section 5 discusses our proposal in relation to
the state of the art. In Section 6 conclusions are reported
and future work is anticipated.

2. THE SHIPPING COMPANY

This section presents the scenario of the running example
used throughout the paper. It describes the typical prob-
lems of a shipping company that wants to optimize the de-
livery of packages. We concentrate on a simplified version
of the process to deliver goods and imagine that the need
for optimization and adaptation of the delivery procedure to
the context leads to enacting the process in several different
ways.

ShipEvery Where, our shipping company, has a unique pro-
cess to support the delivery of all packages. For simplicity,
we consider a single item and we also assume that the pro-
cess starts after assigning the item to the best vehicle. The
process includes the creation and update of the route fol-
lowed by the vehicle. Figure 1 shows the workflow model
of the process that oversees all the phases and is inspired
by basic BPEL4WS [11] primitives. Notice that we use a
dot notation to name activities: the first part identifies the
service, while the second part specifies the operation.

The process starts with the assignment of the task to the
vehicle that carries the item (service Delivery, operation Re-
ceiveWork). The ShipEveryWhere control center, through
an appropriate user interface, assigns the item and related
delivery information to the selected driver. According to the
destination and dimension of the item, the vehicle can be a
truck, for destinations longer than 200 kilometers, a van, for
destinations between 10 and 200 kilometers, and bulky pack-
ages, and a motorbike for close destinations, i.e., less than 10
kilometers and small boxes. Each vehicle is equipped with
a device to interact with the control center via a GPRS in-
terface. In particular, each truck hosts a laptop; vans have
PDAs and motorbike drivers use a smart-phone. Vehicles
are equipped with different devices because of the different
uses and the available room on board. This choice, however,

implies that the enactment of the process varies and that it
must cope with the device on the actual vehicle.

After the assignment phase, the driver calculates the best
route to deliver the item (service Route, operation Calcu-
late). This activity varies according to capabilities of the
device hosted by the vehicle and can be done in different
ways. For example, the control center can send required
data, the vehicle can use local (context-dependent) services
to discover traffic conditions and calculate the best option,
or drivers can decide based on their own experience.

While driving towards destination, the driver can either
notify the control center that the item is delivered (service
Delivery, operation Notification) or request the current situ-
ation of traffic conditions and consequently replan the route.
The UpdateRoute operation can be required by the driver,
in case of heavy traffic on the selected route, or by the con-
trol center to notify the driver of congested traffic conditions
on the route (message UpdateRoute of Pick activity). The
selection of the actual services that detect traffic conditions
and replan the route depends on the driver’s profile (e.g. the
used device) and the specific context in which the request is
placed (e.g. the availability or absence of a GPRS network
can affect the set of available alternatives). If the driver is
not able to connect to the control center, because the band-
width is too low, he can connect to the TIER service (Traffic
Information on European Roads). If the vehicle cannot use
GPRS channel (or if the driver declares in his profile that he
does not want to pay for it), the replanning must be done
locally (that is, manually) with the information on board or
by using the driver’s experience. In this last case, data must
be supplied by the driver by means of a special-purpose user
interface.

3. FUNCTIONAL ARCHITECTURE

This section introduces the MAIS functional architecture,
its components and the relationships among them.

Before doing this, we must set the jargon used in the paper
and clarify that we distinguish between:

e abstract services, which are services that cannot be
invoked directly and for which only abstract aspects,
like functional interface and QoS levels, are described;
implementation details are omitted; the functional de-
scription is expressed using the abstract part of the
WSDL specification, in terms of the operations that
the service performs, the input values it requires for
the execution and the output values it produces af-
ter execution; constraints on input and output values
can be specified; the quality of service is expressed
by means of a set of standard quality dimensions, im-
posed by the channels used for service delivery and
guaranteed by the service provider; each dimension is
described by a name and a range of admissible values
(see [18]);

e concrete services, which are services directly invocable,
which inherit the abstract functional interface and the
QoS levels of an abstract service; a concrete service can
extend the functional interface and QoS description
with implementation specific details (i.e., access pro-
tocols, QoS values); the concrete services are clustered
on the basis of their functional similarity (see [4]), eval-
uated on the WSDL abstract interfaces; abstract ser-
vices are associated to the clusters of concrete services

and their interfaces are representative of the interfaces
of the concrete services in the clusters; in particular,
the set of operations in the interface of the abstract ser-
vice are only those common to all the concrete services
in the cluster; the designer can possibly force further
capabilities that are considered to be relevant for the
cluster, for example, because they are present in most
concrete services of the cluster; in all cases, proper
mapping rules between the capabilities in the abstract
service and those in the corresponding concrete ser-
vices must be defined; they are defined on operation
names and on I/O entity names; furthermore, in our
framework concrete services are distinguished into two
subcategories:

— simple concrete services, which are concrete ser-
vices that do not use the orchestration and sub-
stitution functionalities of the MAIS architecture;
all these operations are made by the provider and
are hidden for our framework and for users;

— complex concrete services, which are concrete ser-

vices containing an abstract process definition which

will be instantiated and executed using the or-
chestration and substitution functions offered by
our framework.

Contextual information is given in terms of conditions
under which the service is provided and are used to
further refine concrete services presented to the end
users; in particular, it refers to the Channel used for
service provisioning, the Location where it is used and
the Time at which it is executed;

e MAIS services, which are generic services offered by
the MAIS framework to end users; this definition masks
the framework complexity, hiding service classification
to end users, who work only with MAIS services while
the management of the different kind of services is per-
formed by the framework.

There are two kinds of actors which interact with the
MAIS architecture:

e designers, who define processes contained into the com-
plex concrete services; designers browse the registry to
search for MAIS services, select them, and compose
processes with the selected services;

e end users, who invoke the MAIS services; end users
interact with the platform for searching and invoking
services.

3.1 MAISarchitecture

Figure 2 shows the MAIS functional architecture and the
relationships among its modules. The architecture is com-
posed by six modules that cooperate to provide and manage
complex services in a context aware manner.

The Platform Invocator represents the point of contact
between the User Environment and the MAIS architecture
and hides the complexity of the architecture. Its interface
exports a set of operations, which allow interacting program-
matically with the architecture, performing operations like:
i) searching published services in the MAIS Registry ii) exe-
cuting the chosen services and iii) managing the interaction

with the User Environment during the execution of a com-
plex service. For this reason, end users interact through
the User Environment and not directly with the Platform
Invocator. The User Environment provides the graphical
interface for end users who want to interact with the MAIS
architecture. What distinguishes this module from a simple
static GUI is the ability to dynamically generate the user
interface with respect to the context in which end users are
(i.e., devices, available communication protocols, user pro-
file). This module is realized using WebML (see Appendix),
which is a well established visual notation for the conceptual
design of data-intensive Web applications and has recently
been extended with new primitives also supporting the in-
tegration of Web services and thus suits our needs.

The information about the context is taken from the MAIS
Reflective Architecture Interface. This module represents
the access point to the reflective middleware and allows
other modules to observe and modify the context of the
execution and capture relevant events from the reflective
middleware. These events provide useful information to the
architecture for the provisioning of adaptive services (i.e.,
QoS degradation or battery level of a mobile device).

Once end users select and invoke a service using the User
Environment, the management of such an execution is per-
formed by the core modules of the MAIS architecture. These
modules are: i) the Process Orchestrator for managing the
execution of complex concrete services and ii) the Concrete
Service Invocator for instantiating the services and execut-
ing the calls of concrete service operations.

The Process Orchestrator manages the state of the pro-
cess and, step by step, interacts with the Concrete Service
Invocator for invoking each operation specified in the def-
inition of the workflow. The Process Orchestrator invokes
abstract operations using abstract parameters; it is up to
the Concrete Service Invocator to translate abstract param-
eters into concrete ones and invoke the concrete operation
compatible with the abstract one.

The Concrete Service Invocator, which is in charge of man-
aging the invocation of services, can:

e Start the invocation of concrete services. When the
Platform Invocator asks for a service invocation, the
Concrete Service Invocator invokes the correct con-
crete service after the interaction with the MAIS Reg-
istry.

e Invoke abstract operations. This is a sophisticated
functionality used by the Process Orchestrator for in-
voking abstract operations. An abstract service can-
not be invoked and we need to select concrete services.
During this phase, called link phase, the Concrete Ser-
vice Invocator accesses the MAIS Registry for finding
concrete services and evaluate their affinity with re-
spect to the abstract service (i.e., the request). Once
a compatible concrete service is chosen, the Concrete
Service Invocator proceeds by invoking the concrete
operation. The Concrete Service Invocator receives as
input the parameters of the abstract operation, trans-
lates them into the concrete ones, invokes the concrete
operation and then translates the concrete output pa-
rameters into abstract ones. The translation of param-
eters is performed by using wrappers registered in the
MAIS Registry.

........... MRA Access

== == = MAIS Registry Access

Module Invocation
End User
T T T T T Platform Invocator = sereeee
|
Designer I
| Process
| | Orchestrator
WS Registration | l
I I MAIS Registry Access

MAIS Registry API

Match Maker

Public
uDDI

Private
uDDI

Registry

Service
Onthology

Domain
Onthology

Wrapper

Repository

User Environment

Concrete Service

Invocator

MAIS Reflective Architecture Interface

Web Services
Implementations

Figure 2: MAIS functional architecture

e Invoke concrete service operations. This invocation
is performed by accessing directly the concrete imple-
mentations of services and invoking the concrete oper-
ations by passing concrete parameters.

The last module of our architecture is the MAIS Registry.
This module contains suitable descriptions of all published
services, along with other auxiliary information.

The MALIS registry is composed of: a UDDI registry, where
services are registered with associated keywords, a domain
ontology, where semantic information for service input/output
annotation is maintained, and a service ontology, where ser-
vices and semantic relationships among them are organized
in two different layers (concrete layer and abstract layer), as
explained later. The relevance and benefits of an architec-
ture, which combines UDDI registries with ontologies, have
been already motivated in [14] for semantic service match-
making.

The service ontology is organized in two layers: in the
concrete layer, concrete services are grouped into clusters
according to identified semantic similarity relationships; in
the abstract layer, abstract services are related to each other
by means of semantic generalization and /or part-of relation-
ships. An association link is maintained between each ab-
stract service and the corresponding cluster.

During process execution, the MAIS Registry is directly
accessed by the Concrete Service Invocator to find the con-
crete services that must be invoked. Given an abstract ser-
vice, the MAIS Registry searches the available concrete ser-
vices associated to the abstract one, applies mapping rules
and proposes services to the Concrete Service Invocator. At
this point, context and quality requirements are checked to
filter the proposed concrete services.

The MAIS architecture also comprises a Match Maker
component, which provides the functionalities for publish-
ing and retrieval services on which the MAIS Registry API

is based. During the publication phase, the Match Maker
analyzes the published service description, compares it with
service descriptions that already exist in the MAIS Registry
using a set of techniques for affinity evaluation and updates
the contained UDDI registry and the ontologies. Further-
more, the Match Maker acts as search engine for browsing
the registry and the ontologies, in order to retrieve all the
concrete services compatible with an abstract one.

4. RUNNING EXAMPLE

After introducing the main components of the MAIS ar-
chitecture, this section exemplifies their behavior with re-
spect to the shipping company example illustrated in Sec-
tion 2.

The execution of the process specification depicted in Fig-
ure 1 is up to the Process Orchestrator. Its main tasks are:
i) deciding when to invoke an abstract operation and ii) con-
trolling the link phase of the Concrete Service Invocator to
bind the choice of concrete services to the execution context.

In this example, the choice of which operation to invoke is
very simple and only depends on the process specification.
The orchestrator selects an abstract operation and uses the
Concrete Service Invocator to invoke it. For instance, in the
shipping company example, the orchestrator waits until a
message triggers the activity Receive Work. When this hap-
pens, the orchestrator invokes the abstract operation Calcu-
late, notifies the calculated plan to the driver and then waits
for other incoming messages. If an UpdateRoute message
is notified, the orchestrator invokes the abstract operations
Check and Replan and then waits again. If a CompleteDeliv-
ery message is notified, the orchestrator invokes the abstract
operation Notification and terminates the process.

More interesting is the managing of the link phase. There
are various concrete services that provide operations for
checking, calculating or replanning and the selection of the

suitable concrete services depends on the execution context,
like, for example, the position of the vehicle. A driver con-
tinuously changes his position and every time that the or-
chestrator needs to invoke an abstract operation for check-
ing traffic or planning the route, it must be sure that the
concrete service that performs such operation covers the ge-
ographic area where the vehicle is. This is done by forcing
the link phase before invoking the operations Check or Re-
plan.

Initially, the Process Orchestrator requires the abstract
service Route to be linked, which contains the abstract op-
eration Calculate. The Concrete Service Invocator searches
the MAIS Registry for selecting concrete services that are
compatible to the abstract service Route. This search is
performed by considering constraints derived from the ex-
ecution context, like the geographic position of the vehicle
or the minimum GPRS bandwidth required. For example,
if we only consider geographical constraints, the Concrete
Service Invocator would select concrete services that offer a
route service that covers the geographic area in which the
driver is. After the search phase, the Concrete Service Invo-
cator chooses the most suitable service among selected ones.
This can be done, for example, by choosing the service that
offers the widest GPRS bandwidth.

After executing the link phase, the Process Orchestrator
can invoke the operation Calculate on the linked abstract
service by sending the invocation request and related ab-
stract parameters to the Concrete Service Invocator. The
Concrete Service Invocator transforms the abstract param-
eters into concrete parameters by means of proper wrappers
and then invokes the operation on the previously selected
concrete service. Returned parameters are also converted
by means of the same wrapper and sent back to the Process
Orchestrator.

If the Process Orchestrator invokes the operation Replan
on the previously linked abstract service Route, the Con-
crete Service Invocator performs such an invocation on the
concrete service already selected. If such service is unavail-
able, a concrete service belonging to the same set of selected
concrete services must be chosen. This behavior implies
that, if the Process Orchestrator needs to use services with
a particular geographical position, it has to perform the link
operation every time that the vehicle changes its position.

A particular case of the link process concerns the abstract
service Delivery, which is used by the orchestrator for in-
voking the operation Notification. If we suppose that there
is only one concrete service that realizes such an operation
(i.e. the ShipFEveryWhere concrete service) there is no need
for the Concrete Service Invocator to search the MAIS Reg-
istry for selecting the proper concrete service. The search
is avoided by the Process Orchestrator that performs a spe-
cial link over the Concrete Service Invocator to permanently
bind the abstract service Delivery to the concrete service
ShipEvery Where.

As stated before, besides the functionality related to ser-
vice invocation, the Concrete Service Invocator is responsi-
ble for delivering messages between the Process Orchestrator
and the Platform Invocator. When the process begins, the
driver must be informed about the task and subsequently
about the route he has to follow. This is done by the Pro-
cess Orchestrator that uses the functionality of the Concrete
Service Invocator for delivering messages to the Platform
Invocator and implicitly to the driver. The same thing is

performed by the driver who uses the Platform Invocator,
via the User Environment, to notify UpdateRoute or Com-
pleteDelivery messages to the orchestrator.

The Platform Invocator represents the access point to the
MALIS architecture. It notifies allocated tasks and related
routes to the driver; this is done using an activity list. The
Platform Invocator manages a list which contains all the ac-
tivities (tasks and advices, for example) assigned to drivers.

When a driver accesses the architecture via the User En-
vironment, he reads the assigned task, views the assigned
route and performs the delivery to the correct destination.
If during the delivery process the driver decides to recalcu-
late the route, he has to notify the decision to the control
center by sending an UpdateRoute message via the User En-
vironment. The Process Orchestrator receives this message
and reacts consequently. The same thing must be done by
the driver when he completes the delivery.

Moving to the MAIS Registry, Figure 3 shows a portion
of the service ontology of ShipFEveryWhere. We have four
abstract services associated with the corresponding clusters
of concrete services. We suppose that:

e the Concrete Service Invocator receives a request of
a service to replan route or to obtain traffic informa-
tion from truck-A with a laptop that uses the GPRS
network and requires a high bandwidth (greater than
100Kbps);

e the location scenario is the European one (context in-
formation).

The Concrete Service Invocator exploits the functional match-
ing mechanism to find the abstract services Route Planning
and Traffic. In the first case, it has to choose between the
concrete services PlanRoute and Fasy Europe Travel: for
both these services the location is acceptable and both of
them are provided on the GPRS network, but only the sec-
ond one has an acceptable bandwidth value. So only the con-
crete service Fasy Europe Travel is returned to the Concrete
Service Invocator. The selection of a concrete service for
the abstract service Traffic is similar. Suppose now that the
same request is sent from the motorbike-D, which is equipped
with a smartphone that uses the UMTS network. The con-
nection to the concrete services Easy Furope Travel and So-
cietaAutostrade is not possible, since they are only provided
on GPRS networks. On the other hand, services PlanRoute
and TIER are also supplied on UMTS networks and are pro-
posed to the Concrete Service Invocator. Finally, let us sup-
pose that we need a planning with cost evaluation: in this
case, functional requirements concern a planning operation
that returns the cost as output parameter. In our example,
the Concrete Service Invocator uses the functional matching
algorithm to obtain the abstract service Planning with Cost,
for which, however, only the concrete service Furo Itinerary
is acceptable, since for the service Milan-Rome Map&guide
the location is too restrictive. So, if a GPRS network is
not available, we have two solutions: the Concrete Service
Invocator does not return concrete services as result or it
exploits the is-a relationship and presents as result the ser-
vice PlanRoute associated with the more general abstract
service Route Planning.

This example shows how the service ontology can be ex-
ploited to enhance adaptive service provisioning, starting
from searching abstract services with required functional ca-
pabilities, then locating groups of suitable concrete services

Route Planning Service

Traffic Service
I

| (1) [trafficinfo] = check(region) |

(1) [ack] = DeliveryNotification()
(2) [ack] = receiveWork()

is-a "

\

\

Es |

Planning with Cost Service \

\

(1) [item,cost] = \|
planWithCost(start,end) \ ABSTRACT
N\ \ SERVICES

\ \

N |

~ |

(1) [item] = replan(start,end)

Delivery Service
(2) [item] = calculate(start,end)

}—“_~\

hY
7 7 N L
7 —_————
#hannel.Network={GPRS,UMTS}, \\ " 2= ~
/fa”d‘.”'dt_hl:{fzowbps)' \ /] (channel.Network={GPRS}, \\
| ocation={taly}} \ ,/ Bandwidth={>200Kbps}} \
l Milan-Rome Map&guide / \
1 / Speedy Delivery \
| l
(\
l‘ {Channel.Network={GPRS},] |‘ |
\ Bandwidth={unboundedy},] \ ,
\ Location={Europe}} ! \ {Channel.Network={UMTS},]
\ / \ Bandwidth={0-200Kbps}} 1
. /]
PN \\ Euro Itinerary , \\ y;
/l < / \ AlphaDel /
{ChaveLNetwork=(GPRS.UM‘|\~i¥ e P4 N Vi
Banglwidth={<100Kbps}} \ S So Vil
4 \ S’
l’ PlanRoute \‘ T
N
| \ {Ch;ngel,Networlc(GPRS‘UMTS}\, \
: 1 Bndwidth={<100Kbps}} \
{Channel.Network={GPRS}, / \
| | Bandwidth={unbounded},] / \
\ | Location={Europe}}] / TIER \
7 / \
Easy Europe Travel / [N)
L | {Channel.Network={GPRS}, ’
N va \ Bandwidth={unbounded},
\ | Location=(italy}} 1
Sae__-" / CONCRETE
4
SocietaAutostrade On-line |y SERVICES
/
N A
N ~ ~ 7

—_—————

Figure 3: A portion of the service ontology for the running example.

One-way Reg-Response Notify
e -
O

Conversation Conversation Conversation

Figure 4: WebML primitives for Web services inte-
gration

and finally reducing the number of concrete services on the
basis of context and quality requirements in an adaptive
way.

4.1 Integrating Web Servicesand WebM L

Concerning our scenario of the shipping company Ship Ev-
eryWhere, we require primitives capable of modeling inter-
actions with external Web Services, due to the fact that the
MALIS architecture supplies (abstract) Web services, which
may be weaved into the application logic of a particular User
Environment. [5] introduces the required functionalities at
an adequate level of abstraction; Figure 4 shows the graphi-
cal rendition of the units used in our example. Appendix A
shows the WebML constructs used for this purpose.

The depicted three operations represent just a subset of
the introduced novel operations reflecting the set of WSDL
message exchange patterns [13], but still enough for our pur-
pose. The One-way operation serves the purpose of client-
initiated messages, while the Notify operation stands for
the inverse communication direction and thus for service-
initiated messages. Finally, the Request-Response unit rep-
resents a synchronous operation initiated by users, with one
outbound message followed by one inbound message. For
further details about Web services integration into WebML
please refer to [5, 6, 17].

4.1.1 Data Modeling

The first step in designing the user interface regarding the
van driver consists of modeling the application data. Start-
ing from the default WebML sub-schema, required for user
management and personalization, three entities (Van, Pack-
age, Route) model the specific application data. The exe-
cution of service-related operations causes implicit update
of data. In particular, the operations GetPackageList and
GetRoute/NewRoute affect the entities Package and Route
respectively.

4.1.2 Hypertext Modeling

Figure 6, finally, shows the arrangement of a possible hy-
pertext built upon the specified data model and gives an
idea of the complexity masking power of the MAIS Plat-
form. Only operations exposed by means of abstract MAIS
services are known at the User Environment level, while
all the process orchestration details occur in a completely
transparent manner. The names of used operations are re-
ferred to the User Environment and are directly mapped
onto the operations of the process as described in Figure 1:
incoming or outgoing links with respect to the box called
ShipEveryWhere, which represents the overall delivery ser-

User 1q LN S v
1~ roup iteView

Username =
Password —| GroupName 11 1N SiteViewName
EMail 1N 1N NumberOfUsers

Van Package Route
InternalNumbi N oackagenumb From
nternalNumber ackageNumber .

|

NumberPlate Destination Destination
Producer Weight Map
Model Size
Store

Figure 5: Data model for integrating the Ship Every-
Where service

Delivery Assistant

Driver Details o] Package List
Get unit Driver Details Get PackageList Package List
o)
User é (5
User ShipEveryWhere Package
[Van2Package]
Select Van Van Details
» Get Route
Van Van

hipEveryWhere

Route P\anner/ \ /

Entry unit Route Details

—/
—/

Complete
Delivery
—

ShipEveryWhere Route

Figure 6: Hypertext schema of user interface.

vice, correspond to user-oriented invocations.

The hypertext schema describes the PDA user interface
of the van driver. After a successful login process (not mod-
eled here), the page Driver Details shows the relative user
details and provides a list of free vans. The driver chooses
one of the vans and, based on the chosen van, he can ei-
ther get the list of the loaded packages or get the delivery
route for the freight. Both these operations are performed
by means of calls of the delivery Web service. While visit-
ing the Route Planner page, the route can even change au-
tomatically due to changing traffic conditions and notified
by means of the notify unit NewRoute. At the other hand,
also the driver himself may send manually an UpdateRoute
message and wait for the asynchronous answer New Route.
Once the packages have been delivered, the CompleteDeliv-
ery operation communicates the successful delivery back to
the control center.

5. RELATED WORK

The semantic description of services is very important in
dynamic contexts where different services can offer, com-
pletely or partially, the requested features. The use of a reg-
istry that publishes and subscribes capabilities is the usual
way to allow a dynamic search of services. The de-facto stan-

dard for registries is UDDI and nowadays all the semantic
match-makers must be UDDI-compliant. The description of
interfaces by means of WSDL is UDDI-compliant, but it is
not enough to perform useful semantic search in a service
registry. On the other hand, the use of rich descriptions,
followed by the OWL-S coalition [1], can raise problems like
the compliancy with UDDI and the delay associated with
searches.

A compromise is described in [14, 25], where the authors
propose a semantic description of services and a match-
maker able to browse a UDDI-compliant registry. Our ap-
proach follows this compromise since the semantic descrip-
tion is used to improve the degree of freedom in the design
of the business process, but search performances are still
acceptable.

Another important aspect of service provisioning concerns
the definition of languages for Quality of Service (QoS) de-
scriptions. QoS has been the topic of several research and
standardization efforts across different communities [21, 24,
26]. In [18], authors propose a multilayer model to evaluate
quality of services in a dynamically evolving environment.

The adaptivity to the context is a fundamental issue of
modern frameworks for provisioning of services. The adap-
tation process can involve or not the user. According to the
degree of user interaction, we can identify three different
levels.

At the lower level, adaptivity is focused on the middleware
for service provisioning [8, 19]. In this perspective the nature
of the application is weakly considered and often the user
does not know or interact with the adaptation process.

The middle level is related to adaptivity issues on the busi-
ness logic. Here, applications can react to events forwarded
by the lower levels and modify their business logic in or-
der to adapt their behavior with respect to users. Several
systems and approaches have been proposed to extend tra-
ditional workflow management system technology to adap-
tive, Internet-based scenarios: CrossFlow [12] , WISE [16],
MENTOR-LITE [22]. e-FLOW [9] is one of the first re-
search prototypes addressing the issues of specifying, en-
acting and monitoring composite services; other proposals
include SELFSERV (3], in which services can be composed
and executed in a decentralized way, and The Dysco project
[20] that faces the issue of automatic composition.

The top level involves aspects related to user environ-
ments [7]. Applications modify their user interfaces accord-
ing to the client execution context. Automatic transcoding
tools, like WebML [10], are very important in the automatic
generation of multi-channel access systems.

6. CONCLUSIONSAND FUTURE WORK

In this paper we have presented a novel approach for the
provisioning of complex abstract services. The decoupling
of abstract description of services and their actual imple-
mentations is strongly exploited by the MAIS architecture
and it was designed with this purpose in mind. Our service
ontology is defined by looking a compromise between the
richness of the description and its real usability. The defini-
tion of QoS dimensions become the fundamental parameter
for the selection of the best service.

The possibility of dynamic search is already a kind of
adaptivity. Moreover to increase the flexibility of our frame-
work, we can provide simple services that have to be orches-
trated by the end user or the architecture can hide all details

and present only a value-added (fully orchestrated) service.

The adaptivity is also addressed by using a reflective ar-
chitecture, which is able to know and, in some case manage,
the parameters of the distribution channels.

Even if exiting languages give many opportunities, it is
necessary to augment some of them. We are now formal-
izing these extended languages. The next step will be the
implementation and deployment of the MAIS framework in
some special-purpose settings.

Acknowledgments

This work is partially funded by the Italian MURST-FIRB
MALIS Project (Multi-channel Adaptive Information Systems).

7. REFERENCES

[1] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila,
D. Martinand D. McDermott, S. Mcllraith,
S. Narayanan, M. Paolucci, T. Payne, and K. Sycara.
DAML-S: Web Service Description for the Semantic
Web. In In Proc. of International Semantic Web
Conference (ISWC 2002), Chia, Italy, 2002.

[2] V. De Antonellis, M. Melchiori, B. Pernici, and
P. Plebani. A methodology for e-Service
substitutability in a virtual district environment. In
Proc. of 15th International Conference on Advanced
Information Systems Engineering (CAiSE 2003),
volume 2681 of Lecture Notes in Computer Science,
pages 552-567, Klagenfurt, Austria, June 16th-20th
2003. Springer.

[3] B. Benatallah, Q. Sheng, and M. Dumas. The
Self-Serv Environment for Web Services Composition.
IEEE Internet Computing, 7(1):40-48, 2003.

[4] D. Bianchini, V. De Antonellis, and M. Melchiori. An
ontology-based method for classifying and searching
e-Services. In Proc. Forum of First Int. Conf. on
Service Oriented Computing (ICSOC 2003), Trento,
Italy, December 15th-18th 2003.

[5] M. Brambilla, S. Ceri, S. Comai, P. Fraternali, and
I. Manolescu. Model-driven Specification of Web
Services Composition and Integration with
Data-intensive Web Applications. Bulletin of the
Technical Committee on Data Engineering, 25(4),
December 2002.

[6] M. Brambilla, S. Ceri, S. Comai, P. Fraternali, and
I. Manolescu. Model-driven development of web
services and hypertext applications, December 2003.
SCI2003, Orlando, Florida.

[7] P. Brusilovky. Adaptive hypermedia. User Modeling
and User Adapted Interaction, 11(1-2):87-100, 2001.

[8] L. Capra, W. Emmerich, and C. Mascolo. CARISMA:
Context-Aware Reflective middleware system for
Mobile Applications. IEEE Transactions on Software
Engineering, 29(10):929-945, 2003.

[9] F. Casati and M. Shan. Dynamic and Adaptive
Composition of e-Services. Information Systems,
26(3):143-163, May 2001.

[10] S. Ceri, P. Fraternali, B. Bongio, M. Brambilla,
S. Comai, and M. Matera. Designing Data-Intensive
Web Applications. Morgan Kauffmann, 2002.

[11] F. Curbera, Y. Goland, J. Klein, F. Leymann,
D. Roller, S. Thatte, and S. Weerawarana. Business

[15]

[19]

21

[22]

[24]

Process Ezecution Language for Web Services, version
1.0, July 2002.

P. Grefen, K. Aberer, Y. Hoffner, and H. Ludwig.
CrossFlow: Cross-Organizational Workflow
Management in Dynamic Virtual Enterprises.
International. Journal of Computer Systems Science
& Engineering, 15(5):277-290, 2000.

Martin Gudgin, Amy Lewis, and Jeffrey Schlimmer.
Web Services Description Language (WSDL) Version
2.0 Part 2: Predefined Extension, August, 3rd 2004.
T. Kawamura, J.A. De Blasio, T. Hasegawa,

M. Paolucci, and K. Sycara. Preliminary Report of
Public Experiment of Semantic Service Matchmaker
with UDDI Business Registry. In Proc. of First Int.
Conf. on Service Oriented Computing (ICSOC 2003),
volume 2910, pages 208-224, Trento, Italy, December
15th-18th 2003. Lecture Notes in Computer Science
Springer-Verlag.

J. Krogstie, K. Lyytinen, A. L. Opdahl, B. Pernici,
K. Siau, and K. Smolander. Research areas and
challenges for mobile information systems.
International Journal of Mobile Communication
(IJMC). Special issue on Modeling Mobile Information
Systems: Conceptual and Methodological Issues, 2(3),
2004.

A. Lazcano, G. Alonso, H. Schuldt, and C. Schuler.
The WISE approach to Electronic Commerce.
International Journal of Computer Systems Science &
Engineering, 15(5), September 2000.

I. Manolescu, S. Ceri, M. Brambilla, P. Fraternali, and
S. Comai. Exploring the combined potential of web
sites and web services. poster at WWWO03, Budapest,
Hungary.

C. Marchetti, B. Pernici, and P. Plebani. A Quality
Model for Multichannel Adaptive Information
Systems. In Alternate Tracks Proceedings of 13th
International World Wide Web Conference
(WWW2004), ACM Press, pages 48-54, New York
City, NY, USA, May 17th-22th 2004.

N. Parlavantzas, G. Coulson, and G.S. Blair. A
Resource Adaptation Framework For Reflective
Middleware. In Proc. of 2nd Int. Workshop on
Reflective and Adaptive Middleware (located with
ACM/IFIP/USENIX Middleware 2003), pages
163-168, Rio de Janeiro, Brazil, June 2003.

G. Piccinelli and L. Mokrushin. Dynamic e-Service
composition in DySCo. In In Proc. of Int. Workshop
on Distributed Dynamic Multiservice Architecture, at
ICDCS, Phoenix, Arizona, USA, 2001.

Shuping Ran. A Model for Web Services Discovery
with QoS. In ACM SIGecom Exchange, volume 4,
pages 1-10, ACM Press, New York, NY, USA, 2003.
G. Shegalov, M. Gillmann, and G. Weikum.
XML-enabled Workflow Management for e-Services
across Heterogeneous Platforms. VLDB Journal: Very
Large Data Bases, 10(1):91-103, 2001.

The MAIS Project Team. The MAIS Project. In Proc.
of 4th International Conf. on Web Information
Systems Engineering, Rome, Italy, December 2004.

L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,
and Q. Z. Sheng. Quality driven web services
composition. In In Proc. of Conference on World

Wide Web, pages 411-421. ACM Press, 2003.

[25] L. Zeng, B. Benatallah, Anne H.H. Ngu, Marlon
Dumas, Jayant Kalagnanam, and Henry Chang.
QoS-Aware middleware for web services composition.
IEEE Trans. on Software Engineering, 30(5):311-327,
May 2004.

[26] John A. Zinky, David E. Bakken, and Richard E.
Schantz. Architectural support for quality of service
for CORBA objects. Theory and Practice of Object
Systems, 3(1):1-20, 1997.

APPENDI X
A. THE WEB MODELING LANGUAGE

WebML is widely known for being an intuitive visual lan-
guage for specifying the structure of data-intensive Web ap-
plications and the organization of contents in one or more
hypertexts [10]. However, in a certain sense, it is even more
than yet another specification language. Indeed, it can also
be considered a full design process consisting of two main ac-
tivities, which represent incremental steps towards the final
application:

Content units

Data unit Multidata unit Index unit Entry unit
—/
B3 J— —/
Entity Entity Entity

[conditions]
Operation units

Create Delete Modify Connect Disconnect
E9(E9(E9 (=) (=Y
5)

o o o

Entity Entity Entity
<param := value> [conditions] [Conditions]
<param := value>

[conditions] [conditions]

Relationship Relationship

Units for accessing global session parameters

Set unit Get unit

-0 | | O—

o o

Parameter Parameter

Figure 7: Summary of core WebML units.

e Data Design. The WebML Data Model represents
the basis for the overall modeling process and adopts
the Entity-Relationship (ER) primitives for represent-
ing the organization of the application data. Its funda-
mental elements are therefore entities, attributes and
relationships.

e Hypertext Design. The WebML Hypertext Model
allows describing how contents, specified by means of
the ER data schema, are published into the application
hypertext, the so-called site views. Site views are struc-
tured by areas and pages, that are the actual content
containers made of content units. They are directly as-
sociated with data entities and, by means of specific
selector conditions, publish content within pages. Be-
sides content units, operation units provide support for
content management operations, set and get units al-
low accessing session variables and entry units model

HTML input forms. Units and pages are intercon-
nected by links, transporting or not parameters and
describing user navigation. Figure 7 shows a graphical
summary of core WebML units.

Personalization of contents and services is achieved by
modeling users and their roles as data. Personalization may
occur along two different dimensions: customized contents
with respect to user identity and tailored hypertext struc-
ture with respect to groups the user belongs to (e.g., guest,
adiministrator and so on). The first is based on relation-
ships between users and content entities at data level, the
latter requires designing alternative site views for each user
group.

Site views may also serve the purpose of expressing al-
ternative forms of content organizations on different devices
for the purpose of multi-channel deployment. Each site view
may cluster information and services at the granularity most
suitable to a particular class of devices or communication
protocol.

Yet WebML does not provide any delivery mechanism,
nor does it depend on the particular deployment language
chosen for application delivery. Its visual representation,
though, is mapped on an equivalent XML-based textual rep-
resentation that can be processed by automatic code gener-
ation tools, such as the WebRatio Site Development Studio.

Web Services Orchestration and Interaction Patterns:
an Aspect-Oriented Approach

Guadalupe Ortiz

Juan Hernandez

Pedro J. Clemente

Quercus Software Engineering Group
University of Extremadura
Computer Science Department
Avda. de la Universidad s/n. 10071 Caceres, Spain

+34 924 38 70 68

gobellot@unex.es

+34 927257204

juanher@unex.es

+34 927 2578 07

iclemente@unex.es

ABSTRACT

Web Service technologies offer a new and successful way for
interoperability among web applications. However, there is not a
unique and standard opinion as to how Web Services composition
must be implemented, and services involved are generally
strongly coupled, which raises problems at design,
implementation, maintenance and evolution. This paper shows
one approach to the implementation of orchestrations by using
aspect-oriented techniques, thus improving modularity, scalability
and flexibility in the compositions. Aspect-oriented programming
will also allow us to reuse the interaction patterns described by the
orchestrations in different contexts, as we will demonstrate in this
research.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features — abstract data types, classes and objects, patterns.

D.1.0 [Programming Techniques]: General.

General Terms
Design, Languages.

Keywords
Web services compositions, orchestrations, business processes,
aspect-oriented programming.

1. INTRODUCTION

Web Services convey one step further in the long way which
object-oriented technologies and distributed platforms have
walked. These technologies offer a new and successful solution
for interoperability among web applications, and they have

become the best way to integrate third-party approaches, therefore
collaborating in the client-server architectures replacement by
peer-to-peer distributed architectures [4].

Once the general behaviour and definition of Web Services seem
highly consolidated, it is time to face how to tackle interaction
among different services. Unfortunately, there is so far no
agreement on how to implement Web Services composition.
Whereas different proprietary approaches rise in the business
process control, and various standards try to emerge in order to
solve future business connectivity, there is not yet any free
approach to compose Web Services in an easy way.

The terms orchestration and choreography [11] have recently
emerged to be two of the biggest attention points on Web Services
nowadays. They refer to two different ways for managing
business connectivity, and have arisen in a moment in which
many companies have begun to incorporate Web Services to their
deployments. Many languages have been proposed and discussed
for those types of collaborations among business processes, for
instance, XLANG [13], WSFL [8], or BPML [2], but we can
especially mention three of them in the area of Web Services:
BPEL4WS [1], WSCI [3] and WS-CDL [6]. Whereas the first
three are more oriented to business and flow control, the last
above mentioned are especially led to Web Services and their
composition, and this is precisely what we are going to focus on in
this paper.

BPEL4AWS (Business Process Execution Language for Web
Services) allows wusers to describe the control logic for
coordinating different Web Services which takes place in a
process flow, that is, the way in which the invocations may be
ordered. It is mainly focused on permitting orchestration to be
defined, although abstract BPEL4WS attempts to describe
external observable behaviour of single services to be used for
choreography descriptions.

On the contrary, WSCI (Web Service Choreography Interface) is
based on the particular description of each service and the way in
which they all are choreographed, and it only describes the
observable interaction of Web Services with their users, which
may also be a Web Service. WSCI was proposed by Intalio, and it
was one of the working notes in the development of the W3C
Working Group. It is clearly oriented to choreographies, not to

orchestrations, but it does not provide a good notion of the global
model in the interactions.

WSCDL (Web Service Choreography Description Language) is
yet one more proposal, from Oracle this time. As its name
indicates, it is also oriented to choreographies, and the W3C
workgroup has recently published a draft of it. So we would
expect a standard on choreographies in the same line as Intalio
and Oracle's proposals, which is currently being elaborated by the
W3C workgroup.

Regarding orchestration, BPEL4Ws appears to be the most
relevant approach, although, as we mentioned before, the
boundaries between choreographies and orchestrations are not
very clearly defined and therefore we cannot establish limits
concerning them for the different approaches proposed.

In any case, what is evident is that we still have no established
standard for composing Web Services and that the approaches
which are already in the market are proprietary, complex and
rather highly business logic-oriented, neither do they offer the
possibility of reusing interaction patterns previously implemented
as compositions. What happens if we have already defined an
orchestration and we want to reuse the same interaction pattern in
another one? Do we have to code all the composition again?
Could we not have the pattern in a modularized way instead of
having all the code scattered and highly coupled to the main
application? In spite of it being influential to both evolution and

maintenance in Web Services, the market has not found an answer
to this matter for the time being.

For these reasons, we propose composing Web Services by using
Aspect-Oriented Programming (AOP) [7], thus totally decoupling
the various Web Services composed and facilitating services
maintenance and modularization, as well as reusability of their
interaction patterns. In this paper we shall centre mainly in how to
apply AOP techniques to Web Services composition and how to
reuse the interaction logic of the orchestration previously defined.

The rest of the paper will be organized as follows: a case study is
presented in section 2 to identify the problems defined before,
illustrating the orchestration concept and its implementation using
different kinds of tools. Section 3 outlines the way in which AOP
can help to solve these problems, and how Aspect] has been used
and applied in Web Services composition, as well as in defining
and implementing orchestrations interaction patterns; in this
sense, we have illustrated the matter with some code examples.
Other related approaches are discussed in section 4, and the main
conclusions will be presented in section 5.

2. WEB SERVICES ORCHESTRATION

The term orchestration [11] has recently emerged to be one of the
biggest attention points concerning Web Services nowadays. It is
related to the way in which business connectivity is managed and
has appeared at a moment in time in which many companies had
begun to incorporate Web Services to their deployments.

CLIENT TRAVEL AGENT S. AIRLINE S. CREDIT CARD S.
O bookFlight O bookFlight O
O buyFlight 0 getFinalPrice
O buyFlight

| : ! :

bookFlight —p | bookFlight ———p | bookFlight :
1

! : v |
bookFlight < bookFlight ¢ bookFlight '
Response Response Response I

: . : |
buyFlight ——» | buyFlight —————p | getFinalPrice |

1

[! v |

. getFinalPrice < getFinalPrice .

| Response Response :

1

1 1

: + : 1

1

: chargeVisa . > chargeVisa

1

1 T

! - 1 v

' chargeVisa < : chargeVisa

1 Response : Response

1

1

: y - !

1 R ! 0

: buyFlight ___» | buyFlight :

\ '

' i v !
buyFlight < | buyFlight < buyFlight 0
Response Response Response :

' ! T \

Figure 1. Invocation order in an orchestration example.

Orchestrations refer to the sequence of activities that compose a
business process, in other words, to Web services which interact
among them and that probably may imply an execution order in
the messages invocations, as well as a business logic.
Orchestration includes the management of the different messages
interchanged among the services involved, and it is important to
note that one of the parties controls the process.

2.1 Case Study

For instance, as shown in Figure 1, we may have an orchestration
composed of three services: a travel agent service, an airline
service and a credit card service. To begin with, the travel agent,
the part which controls the process, offers two operations: String
bookFlight (int passengerNumber, date flightDay, String
flightNumber) and String buyFlight (String reservationNumber,
int creditCardNumber), which allow him to book and buy tickets
for a specific flight, respectively. Secondly, the airline service
offers the same two operations, but the travel agency
identification must be provided instead of the credit card number
of the client: String bookFlight (int passengerNumber, date
flightDay, String flightNumber) and String buyFlight (String
reservationNumber, int agencylD). It also offers one additional
operation for obtaining the final price of the selected flight: int
getFinalPrice(String flightNumber). Finally, the credit card
service offers a single operation, String chargeVisa (int
creditCardNumber, int amount), in order to charge the cost of the
flight to the client’s credit card. We can observe the control flow
in the above figure, in which a client has been included.

The client asks the travel agent to book a flight, and,
automatically, the travel agent asks the same of the airline service.
When the airline provides the reservation number, if booking is
possible, the agent in turn gives it to the client. Likewise, when
the client requests the flight purchase, the travel agent first of all
has to ask the airline for the final price of the flight; afterwards he
has to charge it to the client’s credit card and finally, if everything
is right, the travel agent buys the ticket from the airline service.
Once the process is finished, it returns to the client, whatever the
result of the operation is.

2.2 Orchestration Implementations

In this section we are going to implement the orchestration
defined in Figure 1 with two different tools, exemplifying the two
main approaches for Web Service compositions. The first one, the
Sun tool JWSDP, is based simply on the implementation of code
with a general tool for Web Services performance; the second one,
BPEL4WS, is based in the creation of a new XML file that leads
the orchestration.

2.2.1 Web Service Orchestration Using JWSDP

To begin with, if we implement the orchestration example using
free conventional tools for Web Services, we would have to
implement all the code related to the composition manually. In the
case of the travel agent service the orchestrations would be
implemented in both operations, bookFlight and buyFlight, as
shown in Figure 2. As can be seen in the figure mentioned, this
implementation does not perform many of the basic mainstay of
programming, as we will briefly go on to outline:

= Modularity: The code related to the other Web Services
invocation is very strongly coupled, which creates hard
dependencies between the main service and the rest of

public interface TravelAgent extends Remote {

String bookFlight(int passengerNumber, date flightDay, String
flightNumber) throws RemoteException;

String buyFlight(String reservationNumber, String
creditCardNumber) throws RemoteException;}

String bookFlight(int passengerNumber, date flightDay, String
flightNumber){

/Icode related to airline stub creation
String reservationNumber =
airlineStub.bookFlight(passengerNumber, flightDay,
flightNumber):

/lother issues
return reservationNumber}

String buyFlight(String reservationNumber, String
creditCardNumber){

/lcode related to airline stub creation
String finalPrice= airlineStub.getFinalPrice (flightNumber);
/lcode related to credit card stub creation
String visaResult =
creditCardStub.chargueVisa(creditCardNumber, finalPrice):
if (visaResult==checked)
String buyingResult = airlineStub.buyFlight(reservationNumber,
agencylID);
else buying result="no credit”;

/lother issues
return buyingResult}

Z

Figure 2. Travel Agent orchestrations with JWSDP.

the services which are involved in the composition, thus
having all the code related to the orchestration mixed
and scattered in the application and therefore definitely
not modularized.

= Reusability: If we want to reuse the same orchestration
we have no chance to do so, as all the code is tangled
and scattered all over our application. Furthermore, we
cannot reuse the interaction pattern in other contexts
where we could find it, either.

= Maintenance and evolution: In all the operations in
which we need to interact with other services, such as
the airline service, we have to create a local stub in
order to invoke its operations, which implies not only a
bad design, but also problems in maintenance and
evolution. Furthermore, if we want to offer a new
operation in our travel agent in which the airline service
is also involved, we will have to repeat the same code
again.

2.2.2 Web Service Orchestration Using BPEL4WS

On the other hand, if we try to implement the same example with
the BPEL4WS tool, we find it is a visual tool that generates an
XML code for the indicated interactions. The code related to the
implementation of the orchestration for the buyFlight operation
can be seen in Figure 3. It has been simplified to emphasize the
interaction sequence code.

<process name="TravelAgent" [..]

<sequence name="main">
<receive name="receivelnput" partnerLink="client" [..]/>

<sequence>
<invoke name="getFinalPrice" partnerLink="AirlineService"
operation="getFinalPrice" [...]/>
<invoke name="chargueVisa" partnerLink="CreditCardService"
operation="chargueVisa" [..]/>

<switch>
<case condition="visaResult==checked">
<sequence>
<invoke name="buyFlight" partnerLink="AirlineService"
operation="buyFlight" [..]/>
<sequence>
</case>
<otherwise>
<assign>
<copy>
< from variable="NoCredit"/>
<to variable="EndResult" />
</copy>
</assign>
</otherwise>
</switch>
</sequence>

<invoke name="callbackClient" partnerLink="client"
portType="tns:TravelAgentCallback" operation="onResult" [...]/>
</sequence>

</process>

y

Figure 3. BuyFlight orchestration with BPEL4WS.

If we examine the same points in this case as we did in the
previous subsection with the JWSDP implementation, we will find
that we have improved as far as modularity, maintenance and
evolution are concerned but we again find an essential not
desirable aspect for an application:

= Reusability: In this case, we can reuse the orchestration
completely, as a new service, provided we have exactly
the same requirements in another application, in which
case we would invoke the operations offered by the
orchestration. However, we still have no chance to reuse
the interaction pattern in other contexts. Since it is a
very common pattern, it would be very useful to have a
unique interaction pattern to specialize it to the different
contexts where we want to apply it.

Therefore, these are the reasons why we have to look for an easier
way to compose services, which will allow us to maintain our
services independent and our final application well modularized
and structured, avoiding the composition code being scattered and
tangled throughout the application and thus facilitating
maintenance and evolution in our orchestrations.

Although BPEL could be a solution to avoiding scattered and
mixed code in the main application, the reusability of the
interaction pattern is also very important, as we mentioned before,
since we can find many contexts in which the same pattern may
appear. For example, we can find examples as a portal for selling
cinema tickets or any other portal for selling products over the
Internet which may easily adapt to the pattern in our example.
Therefore, it is very desirable to be able to reuse and adapt the
pattern to our particular example, instead of needing to create the
interaction flow again.

We believe AOP is the answer to the problem, since it was created
in order to deal with elements that are scattered all over an
implementation, by modelling their behaviour in an external layer.
Aspect-oriented techniques are also successfully used in the Web
Service domain for decoupling non-functional properties at
compilation time, allowing the implementation of important
properties in the Web Services, as logging or timing, in a
modularized and completely decoupled way [9]. Hence, it will
probably be helpful in decoupling these compositions and
allowing to reuse their interaction patterns. As a result, we would
be able to manipulate the orchestrations without influencing the
rest of the code in the application, having the code related to the
remote services involved in the composition completely
modularized and being able to reuse their interaction patterns
should they be necessary.

3. ORCHESTRATIONS
IMPLEMENTATION AND REUSE WITH
AQOP

In this section we are going to show how aspect-oriented
techniques may be used in order to solve the above difficulties,
that is, to avoid the strong dependencies among the composed
services and to allow reuse of their interaction patterns.

AQP arises because of the problems detected in Object-Oriented
Programming (OOP). OOP is supposed to permit the
encapsulation and modularity of related data and methods which
address a common goal. This should imply a code completely
organized in meaningful units and not blended at all, but this is
not always possible. We may find it impossible to model various
concerns into a unique and structured decomposition of units. We
can simply have transversal concerns, which cannot be included in
the logical structuring of the code by functionality. These
concerns cause scattering and tangling code all over our
application and that is the reason why they are called crosscutting
concerns.

AOP establishes aspect as the way to model these crosscutting
concerns. Aspects are units of encapsulation which incorporate
two main elements: join points and advices. On the one hand,
through join points we specify in which points of the
implementation we wish to insert the new code, that is, where we
want to alter the behaviour in the application. On the other hand,
advices identify the new code to be injected, thus reflecting the
desired new behaviour in the application.

In the orchestration presented in Figure 1, which offers us the
interaction flow of the compositions, we can see how we have to
follow an order when making the invocations: we will then have
services which have to be invoked before others, those which will
have to be invoked after others have finished and finally services
which may be or may not be invoked depending on the result of
other invocations. Aspect-oriented programming allows us to
model this kind of interactions in separated aspects, that is, in
individual units. Furthermore, all the business rules remain
modelled in the aspect, without having scattered code due to the
composition in the application.

We can use several different languages to model aspects. We have
chosen Aspect] among all aspect-oriented languages, both
because of its proximity to Java programming language, and
because it is very versatile, offering plenty of possibilities at
design and implementation time.

3.1. Implementing Orchestrations

Figure 1 indicated the interaction flow for implementing the travel
agent orchestrations, the interaction flow for booking a flight and
the one for buying it. Aspect-oriented languages as Aspect] model
this kind of interactions into different independent units called
aspects. This can be seen in Figure 4, where we can notice how
the aspect implements the interaction pattern for the travel agent
operations. In this figure we can discern pointcut BookingFlight(),
which injects code in execution of method bookFlight. The
corresponding advice (an around advice) indicates the code to be
injected. In this same figure we can recognize pointcut
BuyingFlight(),which injects code in execution of method
buyFlight. The corresponding advice (an around advice) shows
the code to be injected.

public aspect TravelAgentAspect {
/lcode related to airline stub creation
/lcode related to credit card stub creation

® pointcut BookingFlight(int,date,String): execution (public *

* bookFlight(int,date,String) ~ && args(passengerNumber,
flightDay, flightNumber);

String around(int passengerNumber, date flightDay, String
flightNumber): BookingFlight(passengerNumber,flightDay,
flightNumber){

String reservationNumber =
airlineStub.bookFlight(passengerNumber, flightDay, flightNumber);
proceed(passengerNumber, flightDay, flightNumber)

return reservationNumber;}

pointcut BuyingFlight(String,int): execution (public *

®* buyFlight(String,int)) && args (reservationNumber,
creditCardNumber);

String around(String reservationNumber, int creditCardNumber):
BuyingFlight(reservationNumber, creditCardNumber){

String finalPrice= airlineStub.getFinalPrice (flightNumber);
String visaResult =creditCardStub.chargueVisa(creditCardNumber,
finalPrice):

If (visaResult=="checked”) String buyingResult =
airlineStub.buyFlight(reservationNumber, agencyID);

else buyingResult= “no credit”;

proceed(reservationNumber, visaNumber);

return buyingResult;}}

String bookFlight(int passengerNumber, date flightDay, String
flightNumber){ //other issues return reservationNumber;}

\ String buyFlight(String reservationNumber, String visaNumber){
/lother issues return buyingResult;}

Figure 4. Travel Agent orchestrations using aspects.

Besides, all the business control remains modelled in the same
unique aspect, without having code scattered and tangled all over
the application. We can note the fact that there is no reference to
the specific airline service to invoke in the application code in
Figure 4, in contrast with the original code, without aspects,
previously shown in Figure 2. As can also be seen in this code, all
the order in the invocations is controlled by the advice, not by the
corresponding operation, thus abstracting, modularizing and
encapsulating the code related to the rest of the services involved

in the composition. Furthermore, we do not have repeated or
scattered code because of the different stub instances for the
different modules in the application, as we have all modularized in
the aspect code.

The JWSDP tool leans on the Ant tool for compilation processing,
thus for compiling this Aspect] code with the rest of the
application, we will have to modify the build.xml file. We must
link the Aspect] compiler, instead of the Java one, in the
compilation targets inside the build file.

Therefore, aspect orientation may be used to model control flow
in Web Services orchestrations, preserving the participating
services decoupled and independent among themselves. Hence, if
we want to replace any of the services invoked from the travel
agent by another one, we can do it without modifying the main
application, but by only altering the aspect class.

Hence, our proposal allows the developer to implement the
applications, without minding which services have to be invoked
from it, and focusing on the main structure and the essence of the
application. After that, he can attach the needed invocations via
aspects, thus maintaining the code well modularized and
encapsulated. In the very moment the developer decides to replace
one of the services invoked by another one due to new
requirements, the main application will not be affected and he will
only have to modify the aspect. In this regard and without
affecting the main code behaviour or structure, we could add non-
functional properties to the services involved in the composition
or to the orchestration itself by using aspects. For example, we
could add a timing property to be able to check the time of use of
the different services involved or the time of use of the different
operations offered by the orchestration. The same could be done
with the logging property [9].

3.2. Reusing the orchestrations interaction
patterns

We stressed in the previous section how the impossibility of
reusing the interaction pattern was one of the most important
drawbacks of implementing orchestrations not only with
conventional tools, but also with specific tools as BPELAWS. The
interaction pattern of the case study is represented in Figure 5.

BOOKING
BOOKING THE PRODUCT
RETURN BOOKING RESULT
END BOOKING

BUYING
GETTING THE FINAL PRICE OF THE PRODUCT
CHECKING THE CLIENT VISA
IF VISA HAS ENOUG CREDIT THEN
BUY PRODUCT
RETURN BUYING RESULT

ELSE
RETURN ERROR INDICATING NO CREDIT
END IF
END BUYING

Z

Figure 5. Interaction pattern for booking and buying
products over the Internet.

This pattern is very usual nowadays. Many companies offer the
possibility of buying some products, previously booked online,
checking before the end of the purchase whether the credit card
provided by the client has enough credit. Most the electronic
commerce applications could adapt to this pattern. In this sense
we can create a pool of typical patterns implemented as a
composition of services, as for instance a purchase with a previous
credit and stock check or related pursuits based on the result of
previous searches..., so we can reuse the patterns in the different
contexts in which they appear.

By using aspect-oriented techniques, the interaction patterns can
be implemented as abstract aspects so we can also obtain a big
capacity of reuse from using AOP for performing compositions.
We may define an abstract aspect which describes the interaction
pattern for a specific kind of orchestration, as we have depicted in
Figure 6, which implements the interaction pattern of the case
study presented.

abstract aspect AbstractCompositionAspect {

public abstract String booking(Object [] args);

public abstract String gettingPrice (Object [] args);

public abstract String checkingBalance (Object [] args, String
finalPrice);

public abstract String buying (Object [] args);

abstract pointcut Booking ();

String around(): Booking (){
Object[] args = thisJoinPoint.getArgs();
String reservationNumber = booking(args);
proceed (args[0], args[1]. args[2]);
return reservationNumber;}

abstract pointcut Buying ();
String around(): Buying (){
Object[] args = thisJoinPoint.getArgs();
String finalPrice=gettingPrice(args);
String visaResult =checkingBalance(args, finalPrice);
if (visaResult==checked)
String buyingResult = buying (args);
else buyingResult="no credit”;
proceed(args[0], args[1]);
return buyingResult;}}

Figure 6. Abstract aspect for a booking/buying
orchestration.

Therefore, in the very moment we need to implement an
orchestration of that kind, we only have to inherit the composition
pattern from the abstract aspect and particularize it with the
specific stubs from the services invoked and the specific
invocation methods. As we can see, this aspect is integrated by
two abstract pointcuts, one for booking and the other one for the
purchase. As they are abstract aspects, we still do not have to
specify in which method execution we are going to insert the new
code. In the advices linked to those pointcuts, we can see how the
arguments are obtained from the context and used for the
invocation of the abstract classes that represent the operations of
the remote methods. Regarding the booking of the product, we

can stress that we only need to invoke the abstract method
booking; and for the buying of the product we can point out that
we first have to invoke the method gettingPrice, checkingBalance
after that and, finally, if the credit card result is right, the final
method buying; all of them abstract. We do not need to indicate
the specific Web Services that have to be invoked nor their
operations, since this will be done when we create the specific
aspect that inherits the abstract one. Hence, we can represent the
interaction pattern as an Aspect] aspect.

If we want to implement our specific orchestration case study
using this designed pattern, we have to implement an aspect which
extends the abstract one, specifying the concrete stubs of the
services involved in the composition (creditCardService,
airlineService), as can be seen in Figure 7.

public aspect CompositionAspect extends
AbstractCompositionAspect{

/lcode related to airline stub creation
/lcode related to credit card stub creation

pointcut Booking(): execution (public * *.bookingFlight());

public String booking(Object [] args){

String reservationNumber = airlineStub.bookFlight(args[0],
args[1], args[2]);

return reservationNumber;}

pointcut Buying(): execution (public * *.buyFlight());

public String gettingPrice (Object [] args){
String finalPrice= airlineStub.getFinalPrice (args[0]);
return finalPrice;}

public String checkingBalance (Object [] args, String finalPrice);
String visaResult =creditCardStub.chargueVisa(args[1],
finalPrice):
return visaResult;}

public String buying (Object [] args);
String buyingResult = airlineStub.buyFlight(args[1], agencyID);
return buyingResult;}

Figure 7. Inherited aspect for a booking/buying
orchestration.

We also have to redefine the pointcuts Booking and Buying,
indicating the points in which we are going to insert the new code.
After that we also have to redefine the abstract operations,
gettingPrice, checkingBalance and buying, now to implement
their real behaviour, invoking the corresponding operation in the
remote services.

If now, for instance we wanted to make an orchestration to offer a
web portal for buying cinema tickets online, we could reuse the
same interaction pattern and make our new composition aspect
inherit from it so as to offer the desired behaviour. As shown in
Figure 8, the pointcuts are now extended with the methods of the
cinema application, as well as the abstract methods include the
invocation to the new Web Services implicated in the
orchestration.

public aspect CinemaAspect extends AbstractCompositionAspect{
/lcode related to cinema stub creation
/lcode related to credit card stub creation

pointcut Booking(): execution (public * *.bookTickets));

public String booking(Object [] args){

String reservationNumber = cinemaStub.bookTickets(args[0],
args[1], args[2]);

return reservationNumber;}

pointcut Buying(): execution (public * *.buyTicket());

public String gettingPrice (Object [] args){
String finalPrice= cinemaStub.getFinalPrice (args[0]);
return finalPrice;}

public String checkingBalance (Object [] args);

String visaResult =creditCardStub.chargueVisa(args[1],
finalPrice):

return visaResult;}

public String buying (Object [] args);
String buyingResult = cinemaStub.buyTicket(args[1], userID);
return buyingResult;}

Figure 8. Inherited aspect for booking/buying tickets
online for a cinema.

Once we have seen how to implement orchestration by using
aspect-oriented techniques, how to perform their interaction
patterns and how to reuse them, we can review the three
programming pillars we mentioned before in order to check how
we have improved the orchestrations implementation through the
use of aspect-oriented programming;:

= Modularity: As we have coded all the code related to the
composition in the aspect, it is found completely
modularized, decoupling the remote services entirely
from the application we are implementing and thus
having no trace of the scattered and tangled code that
we had before using aspect-oriented programming
techniques.

= Reusability: Now we can not only reuse the complete
orchestration if we need exactly the same behaviour for
another application, as we have it well modularized; we
can also reuse interaction patterns previously defined,
extending them in an specific aspect which implements
the new orchestration.

= Maintenance and evolution: Now that we have the
composition code separated, maintenance and evolution
are better, as we know we do not have to modify the
main code of the application at all for changing the
interaction flow, but only the modularized aspect. In this
sense, our application will be more reliable.

Regarding survivability, as the composition is specified in the
aspect itself, it will survive as long as the signatures of the
methods in the main application do not change, independently of
whether the behaviour does. If method signatures changed, we

would only have to modify the pointcuts defined in the aspects,
maintaining the implemented behaviour. On the other hand, due to
the big facilities existing concerning the use of aspects in different
environments and the different aspect-oriented languages
available we can also mark the adaptability of the proposal, not
only to the environments, but also to changes as explained in the
point of evolution.

Definitely, we can assert that AOP turns to be very useful for Web
Service composition in general. Both in the case of orchestrations
or just a simple invocation between two services, aspect-oriented
techniques provide a good way to modularize and encapsulate the
message exchange in whichever of the previous occurrences,
decoupling the services among them and offering an easy
maintenance of the application. Moreover, we can also define
interaction patterns with AOP for orchestrations and reuse them
should they be necessary.

4. RELATED WORK

Web Services composition is a very common research area
nowadays. There are plenty of studies on Web Services
composition and on how to improve them. Although there are
undoubtedly important infrastructural issues in this field, there
seems to be little or no discussion in the specialized media on how
to use AOP techniques for this functionality.

On the one hand, the idea of encapsulating the composition logic
and maintaining it in a modularized and decoupled form can be
examined in various articles [10] [12]. B. Orriéns et al. propose a
packaging mechanism, named web component, for developing
applications by combining various existing Web Services [10].
According to their proposal, the web component would
encapsulate the composition logic and the script code in order to
combine the services. Their construction would also allow
developers to have the various services separated and decoupled,
but, in contrast to our proposal, they propound various different
stages with their different specification languages. We appoint to
a simpler option, in which only one language is needed for the
specification of the composition which, moreover, uses a language
which is already known and easy to use. Otherwise, G. Piccinelly
et al. propose a basic grammar for workflow processes as a
language for composing Web Services [12] Although they also
provide a graphical environment, it seems to be slightly intuitive
as multiple roles have to be assigned to the different services. We
believe the developer is more familiarized with his developing
language and therefore it may be easier for them to work with an
aspect-oriented language, in addition to the aspect-oriented
programming advantages.

On the other hand, we discern various articles which propose
composition languages based on XML. We can especially outline
one proposal which runs in the same line as the different
languages proposed on the matter of choreographies and
orchestrations [5]. As we mentioned before, there is still not a
unified opinion as to which of these languages is more suitable for
Web Services composition, nor is there any standard established
on this matter. In this sense, we propose an alternative using
aspect-oriented techniques instead of XML based languages.

The idea of using aspect-oriented techniques with Web Services is
not very widespread, but we can still find some more papers in
this sense. Especially, we distinguish a paper focused on
modularising Web Service management with AOP [14]. M.A.
Verheecke et al. suggest the use of a dynamic aspect-oriented

language called JAsCo for decoupling services from the
application which invokes them. It is a very interesting proposal in
the sense that they redirect abstract requests to Web Services to
concrete ones that can be modified in a dynamic way. They focus
mainly on the client side, leaning on an intermediate layer called
WSML (Web Services Management Layer). In contrast, our
proposal uses a general use aspect-oriented language and is not
only centred on the client-side, but especially on the server-side,
which means that they may not be acting over a Web Service, as
the client does not necessarily have to be a service, while we are
clearly acting over one. Furthermore, we do not limit to
redirecting the services invocations, but to any type of Web
Service composition, maintaining the logical order of the
operations encapsulated and decoupled from the rest of the
application.

5. CONCLUSIONS

The results obtained in this study show how aspect-oriented
programming is really useful in order to compose Web Services.
In particular, Aspect] has been used for dealing with Web
Services orchestrations implementation, and it has proved to
improve modularity, scalability and flexibility in these
compositions. In addition, aspect-oriented techniques have also
been used to implement, extend and reuse the orchestrations
interaction patterns.

One of the main advantages of our proposal is the possibility of
replacing any of the services in the composition without the need
to modify the main application, but only the aspect class; the same
can be done for adding new services to the final application.

It is also important to stress the possibility of defining abstract
aspects which describe general interaction patterns, which can be
later inherited from a concrete aspect which only has to
particularize the stubs and the invocation methods to implement
the desired composition.

In addition to the orchestration implementation, aspects are also
used to add non functional properties to the Web Services [9].
These properties can also be applied to the orchestration itself. In
this same line, we are currently working on the choreography
implementation, where the interaction pattern and the
choreography specification may be aspects themselves.

We would finally like to point out that all the compositions
performed with AOP are implemented without the need of
knowing the implementation code of the services involved, but
only the WSDL document. Besides, all the examples shown in
this paper manage compositions from a service, but any of them
could be a simple client without our proposal being affected.

6. ACKNOWLEDGMENTS
This work has been developed thanks to the support of CICYT
under contract TIC2002-04309-C02-01.

7. REFERENCES

[1] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein,
J., Leimann, F., Liu, K., Roller, D., Smith, D., Thatte, S.,
Trickovic, 1., Weerawarana, S. Business Process Execution
Language for Web Services Version 1.1. Microsoft, May
2003.

[2] Arkin, A.. Business Process Modeling Language (BPML).
BPMIl.org, November, 2002.

[3] Arkin, A., Askary, S., Fordin, S., Jekely, W., Kawaguchi, K.,
Orchard, D., Pogliani, S., Riemer, K., Struble, S., Takacsi, P,
Trickovic, L., Zime, S. Web Service Choreography Interface
(WSCI) 1.0. Bea System, Sun, Intalio, Sun Microsystems,
August 2002.

[4] Cauldwell, P., Chawla, V, Chopra, V., Damschen, G., Dix,
C., Hong, T., Norton, F., Ogbuji, U., Olander, G., Richman,
M.A., Saunders, K., Zaev, Z.. XML Web Services. Wrox
Press, 2001

[5] Florescu, D., Griinhagen, A., Kossmann., D. XL: an XML
Programming Language for Web Service Specification and
Composition. Proc 11" International Conference on WWW,
Honolulu, Hawai, USA, May 2002

[6] Kavantzas, N. Web Service Choreography Description
Language (WS-CDL) 1.0 Editors draft. W3C, April 2004

[7] Kiczales, G. Aspect-Oriented Programming, ECOOP’97
Conference proceedings, LNCS 1241, June 1997.

[8] Leymann, F. Web Service Flow Language (WSFL 1.0). IBM,
May 2001

[9] Ortiz, G., Hernandez, J., Clemente, P. J. Decoupling Non-
Functional Properties in Web Services: an Aspect- Oriented
Approach. Workshop EOOWS, ECOOP Conference, Oslo,
Norway, June 2004

[10] Orriéns, B., Yang, J., Papazoglou, M.P. 4 Framework for
Business Rule Driven Web Service Composition. Workshop
ER Conference, Chicago, Illinois, October 2003

[11] Peltz, C. Web Service Orchestration and Choreography. A
look at WSCI and BPEL4WS. Web Services Journal, July
2003.

[12] Piccinelli, G., Williamns, S.L. Workflow: A Language for
Composing Web Services. Proc. Int. Conference on Business
Process Management, Eindhoven, The Netherlands, June
2003.

[13] Thatte, S.. XLANG. Web Services for Business Process
Design, Microsoft Corporation, 2001

[14] Verheecke, B., Cibran, M..A. AOP for Dynamic
Configuration and Management of Web Services. Proc.
International Conference on Web Services, (ICWS-
Europe'03) Erfurt, Germany, September 2003.

A Semantic Protocol-Based Approach for Developing
Business Processes

Amit Chopra Nirmit Desai

Ashok Mallya Leena Wagle Munindar P. Singh

{akchopra, nvdesai, aumallya,

| vwagl e, singh}@csu. edu

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

ABSTRACT

A (business) protocol is a modular, public specification of an inter-
action among different roles that achieves a desired purpose. We
model protocols in terms of the commitments of the participating
roles. Commitments enable reasoning about actions, thus allow-
ing the participants to comply with protocols while acting flexi-
bly to exploit opportunities and handle exceptions. A policy is a
(typically private) rule-based description of a participant’s business
logic that controls how it participates in a protocol. We propose that
a business process be conceptualized as a cohesive set of protocols,
and be enacted by agents playing specified roles in the protocols in
which they participate. The agents would respect the given proto-
cols while adhering to their local policies.

We propose OWL-P, a language for specifying protocols, and
implement it using a multiagent architecture. We compile OWL-P
specifications of protocols into skeletons for each role. Each skele-
ton corresponds to a set of rules with place-holders for policies.
Developing an agent involves using the rules for its intended roles
and supplying the necessary policies.

The key benefits of this approach are (1) a separation of concerns
between protocols and policies in contrast to traditional monolithic
approaches; (2) reusability of protocol specifications based on de-
sign abstractions such as specialization and aggregation; and (3)
flexibility of enactment of processes in a manner that respects local
policies while adapting continually.

This paper develops further results on a programming method-
ology through which agents can be implemented to realize desired
processes. This methodology includes design patterns that ensure
that agents built according to those patterns will be guaranteed to
be compliant to the stated protocols.

Categories and Subject Descriptors

[Service Computing & Applications]: e-Business; [Softwareen-
gineering techniques for service-based development]: Service
design principles; [Core service activities and technologies]:

*This research was sponsored by NSF grant DST-0139037 and a
DARPA project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Service composition; [Service & Al Computing]: Multi-agent
based service models

Keywords

Business Process, Service Composition, Multiagent Systems, Rule-
based Systems

1. INTRODUCTION

Business processes typically span multiple business partners that
are autonomous, and heterogeneous. Business processes involve
complex patterns of interactions between the partners. These in-
teractions are organized in the form of business protocols. In the
past, business relationships were preconfigured and processes were
customized and implemented to suit the partners, as in the Elec-
tronic Document Interchange (EDI) approach. However, the EDI
approach is not conducive to the development of open business pro-
cesses where partner relationships are developed on the fly. The
autonomous and heterogeneous nature of participants poses diffi-
cult challenges to the development of such open business processes.
This paper presents an approach of developing business processes
(for open systems) based on the interaction protocols used and the
policies of the partners.

Conceptually, a business process has two important elements,
protocols that the partners use to interact, and business policies
that drive the partners’ enactment of the protocols. Protocols are
specifications of interactions and represent the public part of the
business process; for the process to be carried out effectively, the
partners must adhere to the protocols. By contrast, policies are lo-
cal to the partners; they capture the internal reasoning of partners.
Protocols and policies are related in that a partner’s policies drive
the execution of the protocols it is participating in. For example,
when a protocol allows a participant to choose from multiple ac-
tions (messages), the local policy of the participant decides which
one to take. Similarly, policies also help decide the contents of the
messages sent, and the processing of the messages received. The
overall business process is realized as a result of the protocols be-
tween the partners.

Flexibility is an important consideration for business processes
in open settings. Exceptions and opportunities routinely arise dur-
ing the course of interactions in such settings. A business process
will be flexible if the constituent protocols are flexible. Traditional
specifications of protocols such as FSMs and Petri Nets specify a
rigid sequences of interactions and lack a high-level semantics. A
cornerstone of our approach is the use of commitments to give a
declarative semantics to protocols [Yolum and Singh, 2002a]. A
commitment is a directed obligation from one partner to another
for achieving or maintaining a specified condition. Business pro-

tocols can naturally be seen as exchanges of commitments among
the parties involved. Therefore, commitments represent an impor-
tant ingredient of the semantics of business protocols. Flexibility
in the protocol comes from reasoning about the commitments and
taking actions accordingly.

We define an ontology for protocols using the Web Ontology
Language (OWL) [OWL, 2004]. Our ontology is called OWL-P
(OWL for Protocols). The ontology provides for concepts such as
the roles in a protocol, the messages exchanged between the roles,
and declarative rules that describe the effects of sending messages
in terms of commitments. OWL-P rules can be converted into Jess
rules [Jess] for execution and integrated with policies in a princi-
pled way. Our programming model is based primarily on rules.
Rules lead to a declarative style of programming where the actual
computations are inferred at runtime, thereby enhancing dynamic
behavior.

From the software engineering point of view, the clear separa-
tion of protocols and policies offers certain advantages. Protocols
can be reused across business processes. Protocols may not only
be reused directly, they are also amenable to abstractions such as
refinement and aggregation [Mallya and Singh, 2004]. However,
in our programming methodology, protocol rules consult policies.
The integration of policies and protocols at this level encourages a
designer to think about the soundness of the business policies with
respect to the protocol.

Organization

Section 2 motivates our approach, lists our contributions and the
scope of this work, and introduces the basic concepts and termi-
nology. Section 3 describes our proposal for developing protocol
specifications and policies. It also describes the system architec-
ture, and the method of generating local flows from an OWL-P
specification, with a sketch of correctness proof for the generated
local flows. Section 4 compares our work with current research
efforts in the area and charts out directions for future work.

2. MOTIVATION

Here, we describe an example of a business process developed
with contemporary methodologies and tools, e.g., BPEL [BPEL,
2003] and list their shortcomings. Later sections contrast our ap-
proach with current trends to demonstrate the advantages of our
approach. Figure 1 depicts a general procurement process where
items to be purchased are already selected and the price has been
agreed upon. The agents involved in the process are a Customer
who wants to buy items, a Merchant who sells items, a Shipper who
is a logistics provider, and a Payment Gateway who authorizes pay-
ments. The payment-related interactions are imported from the Se-
cure Electronic Transactions (SET) standard [SET, 2003]. Empty
circles in the flow of a participant represent the execution of internal
business policies, whereas filled circles are the external interfaces
through which the participants receive messages. Dark arrows rep-
resent the internal control flow. Thus, a sequence of dark arrows,
empty circles, and filled circles (in some order) represents the lo-
cal flow (local process) of the participant. When there are multiple
out-edges from empty circles, all of the out-edges are executed in
parallel. Since there are multiple participants possibly acting con-
currently, the ordering of the messages shown is just one of the
possible orders. For example, all the messages after message 8
(messages 9-17) could occur in any order.

Although this process is functionally correct and serves the pur-
pose of its participants, its shortcomings are exposed when exam-
ined under the light of service-oriented computing (SOC) environ-
ments and open sys