
RC 12434 (#s58I l5) l /9/87
Computer Science 62 pages

HiSh Perfornrance Reduced Instruct ion Set Processors

by

Ti 1ak Agerwala

John Cocke

IBl l Thomas J. l ia!son Resedrch C€nrer

Yorkloen HeiShts, New York

arch 31, r987

LIMITED DISTRI BUTION NOTICE

This report has been submitted for publication outside of I8M and will
probably be copyrighted i! accepted for publication. It has been issued
as a REseareh Report for early disserninati,on of its contents. ln view
of the tlansfer of copyright to the outside publisher, its distribution
outside oI IBM prior to publicadon should be lirnited to peer
cornrnuniqations and specific t eguests. After outside publication,
leguests should be filled only by reprints or legally obtained copies of
the article (e.g., payment of royelties),

iEli Research Division
Alrnaden r YorLtown r Zurich

RC 1243rr (*s5845) r /9 i 87
Computer Science 62 pages

High Perforoance Reduced lnstruct ion Set Processors

Ti lak Age(. 'a1a and John Cocke

Ttre focus of this psper is of l high performance, In general pulPose con-
put lng envi lonnents, a very large f lacl iof l of instruct ions executed ale
stnlpler loed, slore, add, shl f t , compare, lo8ic, and branch. To obtain
h18h speeds, sequences of s imple instruct ions Dust be executed as fast
ss possible. This pdp€r descr ibes coopl1er, archi tecture, and nachine
organizat ion approaches that lesul. t in eff ic ient use of hardwale and v€ry
hiSh execut ion speeds. Ve show hot plpel ine disrup! ions can be (alnost)

el iEinaled by ploper alchi tecture desiSn and apProPridte comPiler opt i_
mizat ions. The penal l ies due to cach€ misses can be sj .Snif icant, and
approaches to reducing these penalt ies are Plesented. l le descr lbe 6 se_
t l€s of techniques and show the effect of each one on perfornance.

l ie do not lecommend a pure RISC approach for al l appl icat ions and envi-
ronmeDts. I f complex opelat ions (such as f loat in8 Point ar i thnet ic) ale
i .mpoftaf l t , d irect hardirare i rnplementat ion of the fuf lct ions may b€ neces-
sary to l r leet pel for[ance !ar8ets. Even in lhese cdses, ho!,ever, i t is
posslble !o extend the bastc RISC dPProdch and exPose the haldeale to the
compile! to obtain belte! ef f ic iencies Hi.gh sPeed execut lon of thlee
important complex opelat ions including movement of cha!acle! st ! in8s in
memory 8nd f loat ing point ar i thmetic er i l l be presented in this pape!.

Contents

1. Int loductlotr

' 2. A SiEpIe l'lachtn€
l .

2. t Cycle Tin€

:, 2.2 Tir i l$t of Sone Sequences

2.3 Pelfolnanc€ of the Sfulple Uachine

2.4 Instructlon Schedullng

3. A Pipeltned Processo!

3.1 Perforn6nc6 of the Pipellned Processo!

3.2 Relative Branches

3.3 Incleased Cache Latencies

3.4 Addit ional Enhancemefits

' 3.5 coE nents

. 4. Cach6s

4.1 An Exabple of a Cache Systedl

4,2 Alchitectural Support for Ceches

5. LonS Operatio.6

5.1 RX lnstructlons

5,2 Charectet Stl ing l toves

5.3 Fixed Point Mult lpl icarlon

r.
5.4 Floatlng Point Arj. thnetic

6. Suiornary

7. AcknoeledgeDetlts

i 8. References

lligh Perfo.oance Reduced Instruction

by

Tll.ak ASerwala

John Cocke

S€t Piocessors

1. Introductlon

Reduced lnatruct ion s6ts contain careful ly salected, slnpl€ lnst luct l .ons.

The choice 13 dependent on hardssre 6nd coopi ler considerat lons, 1!

should be posslble to implef ient the instruct ions eff ic lent ly in haldosre

snd cornplex Junct ions should be compi lable as compdct sequencel l of s lnp16

instructlons, This Ieads !o an approsch In i{hi.ch perfornance is obtllined

by transfefr lng as Euch sork 6s possible faom luJr t lne to codpi le t ime,

Tte basic chardcter ist lcs, t lot iv l r t ion, and evolut ion of reduced inst luc-

t l ,ot l set Dachlnes eer6 vely ad€quately cov€r€d in [1j . fhis pape! also

provided an ov€rvler{ of thre€ inportant plojects; 801 at IBM I2l , I I IPS

at Stenfold [3] , dnd RISC at Berkeley, 6nd touched upon th€ lole of op-

t l l r lz lnS colpi lers and machine orgnnlz6t ion is6ue3.

The focus of our paper is otr hlgh perfornlrnce. In Seneral purpose con-

put in8 envi lonoeots, a very 1a!ge fract lon of instruct ions executed 6re

sl lnple: load, store: add, shl f t , conpale, 1o8ic, and branch. To obldin

high speedE, sequeoces of s inple instruct ions drust be executed as fast

ds poss{b1e. This p6per descr ibes compi ler, archi !ecture, and mschine

orSanizat iot l approaches that lesult in eff ic ient use of hardware and very

hiSh execut ion speeds, I{e shoo ho$ pipel ine disrupt ions can be (almost)

el iminated by prope! drchi tectule design and appropi late compi ler opt i -

nizat ions. Th6 penalt ies due to cache mlsses can be sigAif icdnt, and

approaches to leduci,ng these penalt ies ere ple6ented. l {e descr ibe s se_

r iesoftechn{ques6ndshogtheeffectofeachoneonPerforhance'The

overal l ut l l { ty of a given l tpprol tch is, of course, dependef l t on the aP'

pl lcat ion environnen! 6nd design const laints.

Fo! special ized funct ions such as f ixed poht ! |ul t ip ly, f loat in8 point

ar i thmetic, ga!b68e col lect ioh, and type checkin8, l t is posslble to

provide sinple architecture support which cdn be used by the compi ler !o

provide bette! pel fornance, In al l such cases the inpact on the machine

d6ta pdths and the expected perfolmance Sains must be careful ly analysed.

14le do not lecoftnef ld a pure RISC approach for al l appl j .cat ions and envi_

ronm€nts. I f cooplex operat ions (such as f lo6t ing polnt al l thoet ic) are

impoltaDt, direct hdrdwars inpl€mentat ion of the funct io[s may b€ neces-

sary to meet pelforoance targets. Even in these ceses, ho$ever, i t is

possible to extend the basic RISC approach l tnd expose the hardoare to the

conpl ler to obtaj .n better ef f ic iencies, HiSh speed execut ion of three

iaportent complex operat lons including r lovement of character st l iDgs in

meooly aod f loat ing point 4r i thmel ic ar i l l be presented in lhis paper.

I le wi l l focus on an architecture sihi lar to the 32-bi t 801 architocture

descr ibed in [2] . The 801 has f ixed length, 32-bi t i rs l luct ions, a 32-bi t

word (4 bytes), and 32 general purpose reaisters (GPR). Charact€r, hal f

sord and word data types are supported. Load and store instruct ions use

Base/Index or Base/Displacement for ef fect ive address Senerat ion "Pro_

gressive indexinS" can be used. In this case the effect ive dddress is

the sun of the conlents of lhe base and index registers; the base reSiste!

is updated vi lh the effect ive address. The usual complenent of ar i thne-

t ic, logicaI, and conrPare oPera! ions ale Plovi ,ded as registea to fegiste!

(RR) inst luct ions. A 3-address formdt is ul i l . ized tn RR oPeiat ions. In

addit io l , a pooerful set of shi f t and lotate operat lons si th nasking ale

de! ined. A 4-bi t condit ion register is provided together l . ' i !h "branch

on bl t | inst luct ions. The archi iecture uses a r ich set of . inoediste"

f le lds.

2. A S imele l lachine

To achleve 4 sustained rate of one cycle pe! i lstruct ion (C/I) on a long

sequence of s inple inst luct ions, I4,e st l t l t t { i th the simple data f low shotn

in Flgure 1, l ' renory bandir idth greater than l word pe! cycle is lequired

since each instruct ion €xecuted must be fetched, and tyPical ly 40% of the

lnstruct ions wi l l refelence merDory. To achieve this, tso hiSh sPeed

ceches ale provlded, one for instruct ions (I) and the other fo! dats (D).

Each cache has a]atency of l -cycle and can slnul taneously del iver one

aord every cycle. Spl i t I and D caches are chosen ove! a dual_port o!

inter leaved cache design, s ince spl i t caches are simpler !o imPlenent.

The architecture doeg not support stor ina into the i l1st luct ion strean'

so the I and D caches do r lot have to be synchlonized. Spl i t t ing the caches

also a11ows them to be separately opt imized i l so desired, (e.9. , a smal l

D-<A CtrE

n

/\

D
A
D
D

f

A
D
D
i

to D-aAcHe

FRor.,l
r-(Ac

t-(A<

FI6UR,E I I DATN PATTIS OF N SIHPLE T- lACH'NE

3a

1-cycIe I-cache and

cache is buffered ifl

larger 2-cycle D-cache).

tenporary reSiste! (CREG)

Data read from the data

The general purpo3e re8islers (GPRS) requlre 3 read add 2 l , l i te ports.

Three simultaneous ieads are ne€ded to sustain 1 cycle per instruction

t{hl le executinS a series of stole . inslructions. Tto irr i tes are needed

to updltt6 the GPRS flom th€ executlon unit and sinultaneously fro$ lhe

dsts cache.

RR opelat iotrs leave their result i [the FR register. The GPRS are de-

siSned so that 6t the start of an inst luct ion execut ion cycle, FR is

wri l ten lnto e GPR and simul laneously "wri . t ten through" to the execut ion

units i f the GPR ts bej.r lg read by the cul lent i rst luct iod. The CREG is

ut i t ten through in the salne t ay. Since the reglster addresses are aloays

In the same f lelds of the 32-bi t instruct lon, three legj .sters are al i ,ay6

lead ou! at the start of each cycle. In p6r61161, the lnstruct lon Is

decoded. Solne o! al l of lhe values which l rere read out 6!e ut i l ized.

P!o8!essiv€ lndexinS does not requite lhy extra dsta paths. Tte effect ive

addresg is lei t tn f 'R and the standard dete path is us6d to update th6

bsse reSi6te!. The renalnde! of the data f low is quite st laight fondtd.

The t ining of lhe 3 generic lnstruct iod types j .s Sive! belos. Upddt ing

af ld accessinS the GPRS always lskes place simultaneously wtth the decode

of the instruct ion. For brevi ly we denote al l three operat ions as "d€-

code".

1. RR ops

I Decode , ALU/RoTATE + FR

one Cycle

2a. Laad

I ALU f DADDR
I Decode , ALU + lR

2b. Stole

D-CACI{E + CREG

ALU . DADDR
Decode , RoTAT! . DATA

ALU . FR
DATA + D-CACHE

3. Branches

I Decodo , ALU + IADDR I.CACIIE + IREG

fhe processor has 3 separate cycles. The f i lst cycle of each instruct jon

rsi l l be cat led "A!" (for address tenelate or execut6), the second cycle

of loads aird slores r i l l be cal led "DC" (for dat6 cache access), and the

second cycle of branch lnstruct lons, " IC", (fo! inst luct lon cache ac-

c€ss). Fetchlnt of the next sequent ial i l rstruc! ion 6cc€sa occurs con-

t inuously, 6nd thls cycl6 is also cal led "IC".

2. I Cvcle Time

Cycle ti[le is dependent on technology and packaSi.ng issuea rhich are be-

.. yond the scope of this paper. Functlons such as GPR access, shift , dnd

6dd have sioi lar complexity. In ECL technology these functions can be

"' petforned j.n someehat Less than 10 levels of logic, i f l TTL and Nllos, 1n

e{hat grealer than l0 levels. Ceche access t lEe is dependent on cache

size and the speed and density of array chlps. The sl l lple tndchine has 6

"fat" cycle since 2 basic functions 6!e pe!formed sequ€nti611y, every

cyc16.

2.2 Tlmlna of Some Sequences

Tinin8 diaglams in this paper have the fol loolng fof inat I instruct lons

are 1ab€1Led with s lphabets, A, B, C,. , . . . ; t ine incleases hol jzontal ly

and the cycles ere]abel led f , 2, 3, . . , . . ; the states ln the plp€ &re

rePresented v6!t lcaI ly.

(1) R. + R^ + R- lAl

R.+R,.R. IBI

rc lAlBl

AE lAlBl

r23

(2) Load Rl , Address lAl

R1 +R2+R3 [B]

rc I A I B I

DC

lA l tBl

tAl

1234

t2345

A! lhe end of cycle 3, the value dest ined for Rl is in FR. B can execute

i tr cycle 4 because of the l . l ! i . te through f lom the CREG to the execut ion

uni ts. Even so, a l -cycle penal ty occurs.

(3) compale Rt , R2 [A]

Branch Addless IBI

(N€xt sequent ial inslruct ion is C, and rhe targe! is T)

rc A I B c I T I

AE lA Bl l r l

DC

,

I f the blanch is not taken, C executes in cycle 4. I f th€ branch is taken,

the tarSet executes i l l cycle 5 for a l_cycle Penalty.

2.3 Perforoance of the Simple l lachine

Gtvin the t lning diaSlans of ioPortant sequences of i [structjons, the

perlomrance of the simPl€ slachlne can be estidated. The oachin' hes a

peak pelforDance of one cycle P€r instruction. Howeve!, loadsr stoles'

and blancheB deSrade the perforuance. Estlnated ftequenclest of occur-

lence of these inBtluctions ale Siven belos:

lpads, stores, 6nd one cycle RR operat ions hav€ f teqnencies ol 251' l5 'A

and 40%, lespect ively. l ranches account for the r€nainlnS 20% A third

of these ale utrcondit lonal ly taken, a thi ld ale condit iotal ly taken and

the renafuring ale not taken.

lhrouShout this papei w€ l,ill lo6ke assunptlons 6bout code chaEacte!-

j .st lcs, corDi lgr opt ioizat lons, cache hi t rat los, etc. These nunbels

can v6ry substant ial ly f rom apPl j .cat ion to aPPllcst ion. Ve do not

clai | I that the nuFbers are typical . Ttre est imates ar€ based oo ex_

pei lence with some large codes and al lou us to dlscuss var ious per-

forna[ce lnhibi tors and quant i fy the effect iveness of the Perforn6nce

enharcement techniqu€s discussed in th{s PaP€r. l {e make this dis-

claimer once ar ld rai l l not repeat i t ever]rahele.

the perfornance of the sinple machine can be est j .mated as fol loas: Each

instruct ion takes at least I cycle. Based on the t iming diagram for

bla[ches immediately fol lowj.ng a conpare, there is t lo delay for a branch

that is no! taken and a one cycle delay for branches that are take[. The

!o!sI penal ty for branches, t r i th a one-cycIe cache is therefor€ 0.2 ^

(2/3) t 1= O.13 cycles per inst luct ion. Simi la l ly , loads incur a pendl ty . - .

0.25 x 1= 0.25 cycles per instruct lon

Sustained performance assunlng al l memory leferences ale sat isf ied by the

caches (rr inf in i te cache perfornance") is thelefore 1+ 0 13 + 0.25 = 1.38

cycles per instruct lon. I f the cache latencies are I for the I-cache and

D for the D-cache, the perfornance is Siven by 1+ 013I + 0.25D. For

I=D=2, the peltormance degrades !o 1.75 cycles per inslruct ion Cache

latenci.es are lhus c! i t ical .

2.4 Instruction Scheduling

Pelfof i rance can be lnproved by schedul ing lnstruct ions to avoid penal_

t ies, Such schedul inS need be done only on a local basis and does not

involve global analysis. Tle f i rst technlque is to nlove loads back and

introduce i .nstruct ions betoeen a load and lhe inst lucl lon that needs the

dats fetched by the load. "Branch and Execute" (BEX) insl luct ions can

be used to reduce branch penalt ies. The senant ics of branch and execule

aler pel forul the bxanch test, Senerate the targe! address, and execute

the next sequent ial insl luct ion (Subject) . I f the branch is laken, exe-

cute the tarSet; else execute the instruc! ion foI loFing the subject in-

structlon. I66d and branch schedulinS a11oI' useful l'ork to be done dulln8

othelr{ lse eopty cycles, l l l€ estiEate the fol looinS statlst ics: 252 of

the load instflrctlons camot be scheduled. 65U c6n be ooved back one or

tro lnstructions and 101 can be ooved back only one lnstructlon. AlEost

s1l the uncondlt ionElly taken branches can b€ scheduled as bldnch and

execute. as can 50il of the co[dit ional branches, If I-cache and D_cache

latencies are esch one cycl€ then only 25X of the Ioads ir i l l j .ncu! a

penalty (of on€ cycls) for 6 total contrlbutlon of 0.25 * 0.25 = 0.0625

cycl€s per Lnstluctlon. 0!1y h6lf of th€ condit lonally taken branches

oll l lncur I pcnalty. Th. total br.nch delay l . therefor€ 0..20 * 0.5 t

(1/3) = 0,0333 cycles pe! instluctlon. The sustained perf;rnance is lhen

I + 0.0625 + 0.0333 = I .1 cycles per instruct ion.

l lore Senela11y, the sustalned pelforrnance ls:

+I

+

+ 0.25 (.55 <D-2> + . l (D-1)

0.2 ((1/3) * (I -1) + (.5/3)

.2sD)

(I-1)+(.s/3)*(I)

wher6 I alld D are the instruction and data cache latencles. and <n>-0 if

n 1s n€gativs.

Tith a single instruct lon decoded pe! cycle, the best p6rformance that

cdn be obtahed Ls 1 cycle per lnstruct ion. Hlth schedul ing, the Binple

Dachine echleves . p&fotrao.e of 1.1 cyc16s p6r inst luct ion. Horeever,

the cycle consists of the !1[e lequlred to do tuo basic futrct lons, In

whBt fol lows, e6 u1l1 descr lbe approaches th6t achieve close to one cycle

l0

po! lnstruction at a " lean'! cycle t ine; i .e., the cyc16 conslsts of the

ti .me requiled to perforn a sitrgle basic function.

3. A-!lPe!!rd-!res

The pelfornance of lhe slnple nachlne can bc inproved lf the cycle t lme \:

1. reduced by p1p€linln8 the si$ple data f lor,r. Fl8ure 2 is a val l lr t lon

olr Flture I rhele th€ procsssin8 of RR itrstructions is di.vl.d6d lnto 2

sEat63:

I D.code I ALU/RoTAIE + FRI

The pipelj .ne for loads is

I Decodc
I

The pipel ine for stoles

ALU + DADDR
ALU + FR

is

ALU + DADDR
ROTATE + DATA
ALU + FR

D.CACIIE + CREG

D.CACIIE + CRIG

I.CACHE + IREC

The plpelh€ fo. b.glrches ts

I Decode I ALU + IADDR

the f i lst cycle ls now called RD. In th13 cycle, 8e!r6!al purpose fetls-

tera dre access€d and Btaged ia AREG , BREG , and DIi!G. In the next cycle,

address B€ner6tion or executlon tak€s placei the result is sta8ed j.n FR

and cart also be "bypassed" !o AREG, 8RE0, or DREG. fe assuD€ for now that

the caches re[taln at 1. cycle latency (possibly by u6in8 faEter a!!ays)

and lsl. l l digcr3s the eff€c! of hcreased ldtency later. Data fron the

D-cache is staSed in CREG and can be bypassed to AREG, BREG, or DREG. l

11

EUorl D-<ACtaE

' ta D- aAcH e

tl

8

r
e
D
D
I

FI6UR€ 2. DArA PFr{s oF A P,FEL,N€D PAoC€ssoR

Both FR and CREG reSisters "rer i te through" the GPR f i le as before. The

reason for the separate adder ei th the IREG si l l be explained later.

The lesult and data bypasses llDprove petfofinance. Cotrsider the sequence

Rl +R2+R3 [A]

R.+R,.R. IBi

R-+R.+R- ICI

The t lolng on the ptpelined processor without bypasses lE:

RD lAl lBl lc l

AE lAl lBl lc l

Thc t iming on lhe pipel ined processo! l { i th bypasses ls:

RD lAlBIcl

AE lAlBlc l

1234

In cycle 1, registers R1 and R2 ale eccesEed dnd stdged in AREG 6nd BREG.

In cycle 2, the add takes pl6ce; si t lu l taneously, th6 access of R3 and R4

occurs. Dul ing th6 decode of lnstruct ion B ir l cycle 2, i t is deternlned

that the correct velue for R3 wi l l be on bus R late in cycle 2. At the-

end of cycle 2, bus R is gated into AREG (instead of R3). DurinS cycle

3, B executes and operands ale accessed for instruct ioD C. The coarect

value of R3 is oow in-FR. At the slart of cycle 3, R3 is being or i t telr

f rom FR and also beinS read. This i r i1 l cause the contents of FR to appear

at the output port of the reglster f i1e. This exanple i l lustrates that

12

uhether an operdnd is in the legister f i1e, being conputed or ndit ing in

FR for put aoay, i t is avsl lable for use. Tte bypass from the cache is

lequired for the Bane reason. Consider the sequence:

Load R-. Address IAI

R^+R, 'R- IBI

'R^+R,+R- ICI

The t l .olnS olth the cache bypass is:

RD A BC

AE A BC

DCA

12345

At lhe end of cycle 3, data on the cache bus is bypassed into AREC and

also letched in CREG. l^ri . thout the bypass an addit lonal cycle uould be

lost. ISnoling the IREG add€r, the t1minS for branches l.s 8iv6n b61ota.

cR Rl, R2 [A]

Branch [8 |

IC A B C T

RD ABC T

AB TAX

13

tn cycle 4, address Senelatlon of tho blanch takcs Place. In cycle 5,

the tartet j.a fetched dnd a 2 cycle de16y occurs' lhe next 6equenti6l

lnstructlon, C, ls condlt lonally decoded tn cycle 4. (I f this is not

done, a l_cyc1e d616y tdi11 occur ev€n if the blanch 15 not takcn) '

3,1 P. l fof trance of the Pip€l ined Processo!

PerforDance of pipsllned Proce6sors can be estieatcd by etaaolning
'ny

one

3ta8e 6nd account in8 for enPty cycles j .n that sta8e. This 1r Part icular ly

lnportdnt in the pt.3ence of Ln3truction3 uhlch ax.cut€ fo! !|ore ther ofie

cycle j . ! r a 81v€n stage. Fo! exaDple, 6 brdnch deldy ! |ay not shot" up in

the AE stdge i f the lat ter is execut ing a nult lcycle operat lon when the

branch is encounteled. the analysis in thj .s sect ion is baaed on act iv i ty

La the AE stage. To detelnlne the b€nef i t6 of var ious oechdnisns bclnS

propos3d, thr€e cases are dlscussed below. At the end of this sect ion,

gdditional t6chnlques to ltiprovo perfolnance t{ill b6 P!63edt€d' The code

and schedul lnS str t ist lca Slven 6ar1ie! u{11 be used here'

9A9!l (Ho cache br?635 6nd no sohedullnS of loads or branches)

The penalty fo! a load fol loired by a dependent oPeratlon is 2 cycles'

The total penatty due to loads is thereJole 0.25 | 2 z 0.5 cycles P€!

instructlon. The Penalty for a tak€n branch is 2 cycles. With one con-

dit lonal decode, thele is no Pen6lty for a branch which is r lot taken

Since two thirds of the b!6nches ale taken, th€ btencb P€nslty is 0 2 *

14

(2/3) 2 = 0.27 cycles pe! lnstruct ion. The

0,27 = I .77 cycl€s Per inst luct lon.

sustained Perfortoance is L

CASE 2 (Bypasges but no schedullnS of loads or branches)

With both bypasres,

perforoance is i I

lhe penalty due

+ 0.25 + 0.27 =

to loads is reduced to I cycle.

1.52 cycle3 per inst luct ion.

94!!l (Eypasses and schedullnS of loads ard branches)

S€venty f lve percent of the loads csn be moved back l or 2 instructlons'

6nd ltr these cases there is no penalty. For !h€ lemainlng 25%, the Pen'

alty ts 1 cycl€. The penalty du€ to load instructions ts 0'25 x 0.25 r

1 = 0.0625 cycles pe! instauctlon. A third of th€ blanches (uncondi '

t tonally takel) can be sch6du]ed as blanch and execute and the Penalty

is I cyclei a thi ld ele condlt lonally not teken 6nd th6se do not incur

any penalty; of the lemalnlnS third, 501 can be schsduled and the Penalty

i! 1 cycle. the renaful inS branches caus€ a 2 cycle Penalty. The addi '

t lonal delay due to branches is therefore 0.2 * [(1/3) t r 1t 0.5 x (1/3)

* 1+ 0.5 * (f /3) r 2I = 0,167 cycles per in6t luct ion. The Perfolmance

ts: 1+ 0.063 + 0.167. 1.23 cycles per instruct io[,

3.2 Bslcglv!--Ele4e.Ler

The branch penalty (14% of the lotal cycles Per instruct ion) can be !e_

duced furthe! by j .ntroducing brsnches relat ive !o lhe pro8ran counte!.

15

l {e €stinate that 901 of aI1 bratlches can be coded lelative to the progran

count€r (aith a range of t 32K sords). This is lnPortdnt because tarSet

addr€ss generation for lelative brdnches catr b€ done rithout GPR access.

The 1REG add6r is used to conPute the td!8et 6dd!e3s for rel6tive

branches, Ir l th€ RD cycle of every instruction, t ihi le regj.ster dccess

6nd decode ale proceedint ' the displacenent f ieLd of the IREG is added

!o th6 ProSrrd Counte! (PC) The PC ls also inclenented. Late in this

cyc1e, a decislon is nade to gate the next sequentlal instructio[address

or the ' tguessed" t6!8et address. If the branch ts not relst ive, s ful l

address 8€nelation occurs ln the next cycle. This lE best i l lu3treted

by 6n example:

Compare R,, R, lA)

Branch Relst ive IB]

The t lming on lhe piPelined mdchine isi

IC ABCT

RD AB T

AE

123456

Sevelal things occur sinul taneously in cycle 3. Durlng the RD cycle' the

address adder always adds lhe di6Placenent f ie ld to the PC; PC+4 is slso

computed. Durin8 cycle 3, l t l '111 be detemlined thether instruct ion B

is a bfanch, snd i f so, ohetber l t is relat ive. Late in cycle 3, the

compdre o111 conplete and the condit ion oi l1 be resolved. I f inst luct ion

B Is trot a branch, or i f i t is a brdnch but 1s not taken, PC+4 is Sated

T6

to lhe l-cache 6t the end of cycle 3. I f B ls a relative takel br6nch'

Pc+dlsplacenent 1s tatEd. othelwise, D is a taken lon_r61ative branch

and 6 futl AE cycl.e i6 r€$rir6d. Thls $ould occu! ln cycl6 4. Tbe pen6lty

for 6 taken branch can lhus b6 r€duc€d to I cycle for a Dajorlty of the

brallche3. l{e estiorate that 901 of the bralches in each category (uncon-

ditIonal, condlt ion6l taken, condlt iondl not taken) ate !e16tive, The

brattch penalty is then reduced to:

9+

.2 [(l /3)

!1x

; 0.1

(1/3)

(1/3) t .s: .1

. l I =

+ (1/3) x

0.047 cyc16s p.r inrt luctlon,

th€ overal l porfomance lr i th special handlin8 of relative branches

+ 0,063 + 0.047 ! 1.1cycl€3 per instruct lon.

The various tachnlques described ltr thls secllon brltrg the perforrnance

of the pipelined machine down to 1.1 cycles pe! j .natructlon dt 6 cycle

'|uch
],e!rnar than that of the sli|ple dachlne. A 3l.n8le b6sic function 13

pelforn.d ln esch cycle.

3.3 Incr€asod Cache Latencies

The effect of increased cache

of compleldt less Again, let 1

and data cach€s, re3pect ively.

latencies is presented next for the sake

6nd D be lhe latencies of the instructlon

Lad penalt ies ate Siven by:

0.25 I 0.65 <D-2>+0.1 (D- l) +0.2s (D) I = (D-r .4) /4 fprD> I

t7

Blanch penalt les can be calculated fro$ the tabl .e beloqt:

CASE

Condt- Taken Relative BEX

Penaltv

t ional

l -Cache l-Ceche

0

I

I

I

I+1

Y N (1/3) 0

N Y Y Y (1/3) ' .9 0

N Y N Y(1/3)x.1 1

YYYY(1/3)x.9t .s0

YYNY(1/3)x.1x.s1

Y Y Y N (1/3)x.9x.5 1

YYNN(1/3) ' .1 i .52

Th€ branch penalty is:

(0.2) * (1/3) [0.9 * (I -1) +0.1* I +0.9 x 0.5 * (] -1)

+0.1* 0.5* I +0.9.r 0.5* I + 0.1* 0.5 * (I+r) l

= (0,4I - 0.26)/3 cycles pe! inst luct ion

Fo! I=D=2, the pelfolnance is 1.33 cycles per lnstructlott and goes up to

1.71 cycles per lnstluctlon l f the latencies dre 3 cycles.

18

3.4 Addit ional Enhancenents

Several dddition6l techniques can be utilized to lDprove Perfomanco by

reducint branch and 1o6d de]ays. Tte total dclay due to branchcs d€Pends

oa th€ nurnber of branches dynanically encountered, the de16y due to con_

dlt ion resolution and the delay in felchi$g th€ tartet,

1. The branch and ex.cute instructi .on can leduce the effect of the delay

in fetchlnt th6 tartet by schedulilr8 atl hstructlon (phich occuls prlor

to th. branch) as a lubj.ct Lnstructlor. Brrnch and 6xecuta can be ex_

tended to al low nore than one subject instruction. This i3 useful i f the

latel lcy of the l-ceche is 8leat€r than I cycle. For addit ional f1ex1-

bl l i ty, instructions froD the tdrget stror||r can be scheduled as subjects

by introducing a "bEanch al ld execute N or sklp" instruction. If the

brafich ls taken, the N subject lnstluctions are erocut€d irhl le the 16_

Daind€! of the ler8et is belnS fetched. If th€ branch is not taken' the

N sublact i trat luctions ar. skipped. If a sklp can be l |nplaocnt€d fast6r

thrn a Earget ferch, branch peralt i . l r can b€ lcduced.

2. A stsndatd loop closlng hstluction, "DBR couNl, Addless" ha6 the

fol lonlt lg senantics: "Declen.nt CoUNT. If th€ re6u1t ls not equal to

zero then branch." The de16y 1n condit ion re3olul ion can be inproved by

providlng a'nore eff icielt lnstruction: "BRD CoU\T, Address" which

speclf{es that "if CoUNI ls not €qu61 to zero then braoch and declement

CoUNT". In this case, the branch is innedlately leso1v€d aft€! r€Sister

sccess snd does not have to o6it for a fu1l addit ion. The 8RD instrucl io[

19

can be extended to al lor,r subject iostruct lons. The exadple belol , i l lus-

trat€s the code genelet ion chanSes.

P!oBram

D0 10 1= 1,N
A(l) = B(I)

10 CONTINUE

Pseudo Code Using Standard Loop Closina

CoUNT = N
L00Pr A(N - CoUN! + 1) = B(N - CoUNI + 1)

DBR COUM,LOOP

Pseudo Code UrinR New Loop Closina

CoUNT = N-1
L00Pr A(N - CoUNT) = 8(N - CoUNT)

BRD COUNT IOOP

l inal ly, a genelal izat ion of "auto incremen!" index addressing can be used

to leduce load p€[61t1€s. In this case, t ' ID6d Rl, R2, R3rr sPecif ies that

th€ effect ive opeland addless ls t t t R2. l {hi le the D_cache is belnS ac_

ce3sed! R2 and R3 6re edded and the result is Placed ln R2. The advantage

over proSresslve lnd€xlng i5 that the oPerand address is aval lable ion6-

d16te1y after rdglste! access and a ful l address ten€lat ion cycle 13 not

required. Then this inst luct ion can be usedt the load Penalty ls r€duced

by 1cycle wl thout schedul inS.

20

Cofitrents

It should be clea! flon the analysl3 in the Prevlous 3ectiolt3 that coo_

pilet schedulinS 1s l t lportant. Liks othet Processors, th€ PiPelined na_

chine desclibed hele beneflts fron conpller oPti. [lzatlons such as

r6gister al locatlon, coftnon subexpression el inina!ion, reduction in

3!ren8th, constant propatstlonr €tc. Except for "branch and execute N

or skip", th. addit lonal scheduling discussed ln this pap€t 15 al l done

locally rdithln 6 basic block. Siople mlnded altol i thns !o! load sched-

uling and branch arld exacut€ tek6 o(n2) and o(n) t loa, ra3p.ctlvsly, shen

n is the nulnbe! of lnstluctions in d b6sic block. 'rB!6nch 6nd execute N

or sklp" requlre3 global f low analysis.

I t r the reoslnder of thls paper, l .e present technique6 to ex€cute 1on8

opelat ion6 eff lc jent ly af ld discuss tho pena]t ies lnculred due to f tni te

caches togeth€r with dpproaches that leduce these Penalt ies.

4. Cache!

The perforhance of the pipel ined nschlne d€scribed ln sect ion 3 is 1.1

cycles pe! instruct ion with a cache latency of one cycle. Incleasi trg the

eache lat€ncy c6n hlve 6 large ilrpact on peffordance, Moreoverr al]

perforDance est loater up to nou have been " inf lnl te cache", i .e. assrur ing

a1l referBnces are sal isf ied by the cache. The f ini te cache penalty can

be cdlculeted as:

2r

FCP=I!*P cycles pe! instruct ion

irhere n j .s the miss rat io (in misses Per inslruct ion) and P is the dverage

penalty per niss. I f a miss occurs €vely 20 inst luct ions and P is 20

cycles, perfornsnce decleases fron 1.1cycle per instruct ion to 2. l cycles

per inslruct j .on. The f ini te cache pendlty can thus be a f i rs! order: de-

telDinan! of perfornance. In l rhat fol lots, the, const i tuents of this

penalty are analyzed in more d€tai1. Alchj tectur.e and mdchine orSanlza-

l ion approaches !o reduce the penalty ale discussed.

The penalty per miss can be dtvlded into t l i ,o main partsr the leading edge

detay (LED) and the trai t ing edge delay (TED) The leading edge delay

is the number of cycles lhe processo! is delayed unt i l the requested wold

Is suppl ied by lhe memoly syslem. Included in this is the access t i tne

of lhe next level in the neooly hlelalchy and lransmj.ssion t ine bet! ,een

the tr 'o Ievels. The leaditS edSe delay can be Sreate! when the processin8

of s diss is delayed because a plevious ni .ss is in Progress ("cluster-

in8"). For a stole_in_cache, 6 modif ied l ine nust b€ wri t ten back to

oemory (' rcast-outt ') , before a l ine can be brought i l l ("Put aaay") ' De_

penal ing on the cache system des18n, this can increese th6 leading edge

de16y. After the processor receives the lequested word (which caused a

niss), i ! conpeles \r i th lhe putar.ray and cast-ou! fo! cache cycles and cen

be delsyed furthe!. This is the tr6i l ing edge delay.

The leadinS edae delay can b€ teduced by (1) accessinS the requested
'ord

f i rst and bypassing i t d i rect ly to the plocessoi and (2) by placing dn-

22

other (larger and sl .ooe!) cache between the f i rst 1evel aod the Dain

nemory. The delay due to cluster ing can be reduced by providi l t eul t ip le

miss faci l i l ies and increds€d nedlory bandwidth, but this ls expensive.

The lrai l ing edge delay can be reduced by (1) leduclnS the size of the

cache l ine, but this can incresse lhe niss rat lo, (2) by i f lcreasing the

size of the unit that is pulaqray in the cache every cyc1e, or (3) by

buf let ing the requested l lne and stor lng l t in the cache du!1n8 fre€ cy-

cles,

a.l An Example of a Cache Svstem

A part icular cache system is presented and an6lyzed ln this sect ion as

an examPle.

I .CACHE D.CACHE I,IVEI 2 MAIN }IEI '(13)

Size (KB) 32 32 L024 M

Lire Slze (B) 32 32 1024 4096

Associal iv i ty4a4Fut l

Latency (CYCLES) 1 1 4 20

Access rate (BYTES/CYCLES) 4 4 t6 t6

Puraway rate (BYISS/CYCLES) 4 4 15 15

Store-in ? No No Yes

?3

ComEents

0n an l-cache rolss, words are cont l .nuously bypassed to the processo!.

0n a D-csche Diss only the requested sord is bypdssed. The L2 cache has

a IKB cast-out buffer. A rnodif ied l ine in L2 ls f i rst lead out i f l to thls

buffe! and then stored in main menoly. Ihe requested l ine fron main

herrory is p16ced in a 1KB lead buffel dnd lrr j t ten lnto L2 after the cast

out, l f 6ny, 1s completed. For this systeo, var ious delays €l le est idated

belos,

I -Cache

0n 6n l-cache miss, the missins i f lstruct ion is fetched f lon the L2 cache

Assuding a hl t in L2, the leading edge delay is 4 cycles. Subsequent

inslruct ions are bypassed to the processor, I f no branch instruct lons

are encouteled durlng the putaeay, !he!e is no addit ional de16y. A

second niss can be caused by a taken blanch or sequent ial instruct ion

fetch dcross a cache l in6 boundary. Figure 3 i l lustrates €I specif ic

sl tuat ion. Instrucl ions I and E nisa in th€ l -csche and F is a blanch.

Th6 instruct ion felch of B nisses ln the l -cache in cycle 2. B is

aval lable 4 cycles late!. Fro$ cycle 7 to 14 the l ine containing B ls

put 6say j .n the I-cache, The lnstruct ion E a13o Disses in the I-cache

because l t happens !o be i t r 6 new I ine. The access of this l ine frot l l LZ

does oot start unt i l the previous put awsy ls complete. E is avai lable

fo! decode. i f l cycle 18. The r lext sequent ial i lstruct ion, F, ls s branch

whose target is in th; I -cache. Houever, i t cannot be fetched unt i l cycle

27 because the l -cache is busy with a put enay. In this exanple, the

penal ty is 19 cycles for 2 misses o! 9.5 cycles per oiss.

2!+

IC A B X X X X P P P P P P P P X X X X P P P P P P P PT

RI} A BCD E' T

AE A - - - - B C D - - - - - - - - - E F ------T

l23t S 6 7 89

DECODE

EARI,IEST

EXECUTION

OP TARGET

x 12 ACCESS

I,INE PUTAI|AY

CYCLES LOST DUE TO I.CACHE MISSES

19 CYCIE PENAITY FOR TUO CLUSTERED HISSES

IIGURE 3: I-CACIIE MISS PENALTY

24a

D-Cache

L2 - Cach€

l{s r{1ll as6uoa the l,orst case h€re. For €xd&pl€, the load thl.ch ol6res

ls follor.od by 6[other load (irhich requlr.s a cache accera). since the

cache is busy fo. 6 cycles during the l ire putauay, the ful1 4+8=12 cycle

penalty is taken for the dl1ss. There are no addit ional penalt ies due to

clustering,

The dlfferent L2 rlss c63es are l l1ustlat€d in l i8ure 4.

In Ce6a 1, thele is no cas!-out from L2 6nd ther€ is no clusterin8 (no

L2 inlss occurs untl l lhe prevlous on6 is completely processed). Twenty

cycles after the Ll mlss, the quadword (16 bytes) containlng the requ66ted

rord (4 byteg) is available at L2 snd ls byp&sed to Ll. CoDplste access

of tha II(8 l ine tak.s 64 cycl€s. Bec6use of th€ bypass to L1 th68e 64

cycles do not show up as 6 delay in the proc€ssor. The L2 delay, s€eD

at th€ processo! is 20 cycles.

In C6se 2, the 1i [e beinS replaced ln] ,2 has been oodi l ied and nust bs

c,ast out (wrl t ten back to dajr meooly). There is holrever, no cluster lnS

of L2 Bislss. Aa soon as the nain mearory dccess is lni t iated, the !e-

placed Lj ie. ls read o\t of L2, into a cast our buffer. This takes 64

cycles. ldhen lhe read out fron oain nEnory is conplete, the line buffer€d

in the csst out buffer is written into mei|ory. Tketlty cycles afte! the

25

CASE 1 NO CASTOUT. NO CLUSTERINC

L3 IATENCY
I,IAIN ItE}IORY ACCESS

tr. l ta l ,

t \
L2 I'ISS BYPASS TO L1

CASE 2 CASTOI,"T. N0 CLUSTERING

l20 l 64 |

164 l l54 |

CASTOI}T TO EUITER I,IRIIE BACK IN I{AIN UTMORY

CASE 3 NO CASTOI'T. CIUSIERING

l2ol 64 |
t t l
I,2 IIISS 2ND L2 !'ISS START PROCESSINS 2ND MISS

ADDITIoNAL PENALTY FoR 2ND MISS: 32 CYCIES

CASE 4 CASTOLIT. CLUSTERING

l20 l 64 |

| 64 l l64 |
t . - t t
I,2 IiISS 2ND L2 I.IISS START PROCESSINo 2ND XISS

N)DITIoNAI PENALTY roR 2ND MISS: 64 CYCLES

IIGUR! 4: I,2 MISS PENALTIES

L2 niss occurred, the appropriate quadsord retulns to L2 and is b' 'passed

L1. The !2 delay as see! by the plocessor is st i l l 20 cycles.

In Case 3, there is no cast out but a second i2 miss occurs \ lh l le lhe f i rst

one j ,s being processed. Assume that the second miss occurs midaay be!\ . teen

the 64 cycle readout of the previous L2 1ine. The processing of lhe

second miss waits unlI l the f i lst has conpleted and is delayed fo! an

addi ! iong L 32 cycles.

In Case 4, both cast out and clustel in8 occur, 1{€ assume that the niss

occurs midway betc,een the period $hen the mdin nenoly iS busy wlth the

f i rst request, 1.e, , just af te! lhe readout f rom main nemory and jus!

before the wr i te back of the l ine cas! out of L2. ln th is case, lhe

plocessing of the second L2 miss is delayed an addit ional 64 cycles.

To est i |dste lhe f in i te cache penalty, ihe frequency wlth whi.ch va! ious

events occur is needed. lJe assume lhst an I_cache miss occurs 6very 60

inst luct ion5, e D-cache nlss occurs evely 50 inst luct ions, and an L2 niss

occurs ev€ly 300 instruct ions on the average, lJe furtber essume that due

to cluster ing, an instruct lon mlss inculs a 9.5 cycle pef lal ly as in the

exanple. Ve assume the probebj l i ty of cast out f rom L2 is 0.25; when

thele is no cast outt the s€cond oiss occuls hal! way through lhe nain

menory access \r i th probabi i i ty 0.5 and af ler the nrain tnemory access t i th

probabi l i ty 0.5; whe$
-there

is a cast out, the second miss occurs imme-

diately af ler the main memory access oi th probab. i l i ty 0.8 and after the

oain memory ! , / r i teback with probabi l i ty 0.2. I te can nolt est imate the lotal

26

f in i te cache penalty. The instrucl ion cache miss peral ty is (1/50) * 9.5

= 0.16 cycl .es pe! instrucl ion. The data cache Diss penalty is (1, /50) *

12 = 0-24 cycles per inst luct ion. Fo! t2 nisses l{ i . lhout castout the av-

erage penal ly is 0.5 * 20 + 0.5 * 52 = 36 cycles. In the presence of

castou!, lhe everaSe penal ty is 0.8 * 84 + 0.2 * 20 = 71 cycles. Since

th€ cestout occurs f l i th probabi l i ly 0.25, the average 1,2 miss Penalty is

0.25 , ! 71 + 0.75 : ! 36 = 45 cycles. The d€graddr ion du€ !o L2 misses is

then (1/300) * 45 = 0,15 cycles per instruct ion. The lotal cache miss

penalty ls the sun of the cont l ibut ions f lom lhe I-cache, the D-cache and

L2 and ts 0.16 + 0.24 + 0.15 = 0.55 cycleE per lnstruct ion. l^r i thout the

LeveI 2 cache, the penalty would be approxlmately 1 cycle Der lnstruct ion

r i th s imDle cont!oIs,

l {e stress lhat this exerclse, is for i1 l}strat ive purposes only to ident i fv

the val ious const i tuents of the f in l te cache penaltv and a very crude

method of €st l tnat inR this Denalty. For 6 given cache sYstem, acculate

est imates must be obtained throuah detai led l race dr iven simulat lon. I t

should be clea! f rod this exanpl€ lhat f in i te cache effects are a f i lst

orde! det€rolnant of pel form6nce and that c luslei in8, cast outs, aird l j ,ne

putsirav can increase delavs slSnif icant ly, bevond bsslc nemorv latencies.

4.2 Architectulal SuDDort for Caches

Cache penalt ies can Re leduced by providing expl ic i t cache management

instruct iots [2] . This approach is very important for high petformance

systens. Examples of such instruct ions ale:

27

(1) Establ ish a l ine in the cache ni thout Eoving any data from the next

level in the hierarchv.

(2) Invalidate a Line.

(3) t {r i te back a l ine i f modj. f ted.

The f l tst t l ro csn be used to leduce the traf f ic between the cache and the

n6xt level. I f a new temporary stolage area is beint c leated, instruct ion

(1) can be used. I f computed valueE have been used and are no longer

requiredr lnstruct ion (2) can be used. l i rh (2) and (3), l /0 can proceeo

di lect ly to main menory; cach€ l ines can be f lushed and inval idated only

rrh6n necessary. I f this sof lware approach is not used, hdrdwere desrgnels

have two opt ions fo! handl ln8 I /0

l . f love the I /0 date physicel ly through the c6che. Thls reduces the h1t

2, IntelroSate the cach6 directol ies oi ev€ry acceSs and lnvalioere or

f1u9h as n€cessary. This slows down the processo! due to cacne :.n-

rerf€r€nce crealed by rhe I/0

l | l i . th Ul l of L2 and 168 of maln memory (aE in the exanple csche), s large

anount of napping i l forJ0at ion tnust be malntained to control the cacnes.

Eff ic ient dapping mechanisns can b6 designed I f i t is guaranteed, throuSh

software colvent lons, that there is no al iaslnS: i .e. rhe same physical

2E

data wi l l never be refer led to by two di f ferent vir tual addresses. one

such mappirg mechanism is desc. ibed beloo.

Le! the vi l tual address be 32 bi ls V(0-31) ehere bi t 31 is the least

signi f icant bi t and let the vir tual page siz€ be 4KB. Each of the I and

D-caches is 32K8, 4-oay set ,ssocia! ive and has a l ine si .ze of 32B.

V(17-24) is used to access one of the 256 congluence classes. A1l 4 sets

in lhe directory and cache arrays are lead out simultaneously in one cy-

c1e. Late in lhe cycle, the infornat ion in the djreclory is conpared

against the 17 hiSh ord6r bi ts of V to determine uhether th€ requested

l l 'ord ls in the c6che and i f i t is. one of the four wolds lead out of the

cache a! lays ls transmit ted to lhe processor. Vir tual !o real t ranslar ion

is done on 4KB pages. The direclory l ras accessed using 8 bl ts, of which

V(17-19) are subject ro ! lanslat ion. I f 6 l iasing wele El lowed, I

congluence classes would have to be searched !o delelnine a cache mlss,

In the absence of al iasinS, a single search is suff ic ient. l i lhen the di-

lectory is olgl tni ,zed as above, the cach6 is cal led a "vir tual" cache slnce

lt is accessed using a vi l tual address. I f e vir tual . cache is used, cache

management instauct ions can specify vir tual addr€sses and need not be

pl iv i leged opelat ions. ProSlam execut jon can thel l b6 opt imized without

opelat ing system ca11s.

L2 is lUB, 4-q'ay associat ive, and has a l ine size of 1KB. The sane

mechanism can be used for L2 as wel l . A coneruence clsss is accessed

using V(14-2I) . V(0-13) is compared against the directory entry contents

to determine a match and one of 4 l ines is selected afte! the L2 arravs

29

are accessed. I f L2 is not busy, the Ll and L2 directory accesses can

be done in paral lel to reduce the leading edge delay on an L1 niss. The

corresponding nain demory address can be kePt in the L2 directory entr i .es

!o locate a l i f le in main memory raPidly. In addi l ion, a fu] l inverted

page table fo! L3 can be naintained in memory and accessed by a smal l

f in i te stale machine to provide fuI1 coverage of main memory [4]

Long oDe!at ions

Conslder a reduced inslrucl ion set plocessor si lh added instruc! ions for

frequent ly pe!folmed complex operat ions such as t 'Move Characters" and

l lul t ip ly. Assume lhat lhe frequencies arei Eranches 20%, Loads :5:; '

Slores 15i i , Uult ip l ies 2%, snd one cycle register to registe! instruct ions

35.95' ; , Assuoe further that sholt characler slr ing moves (< 8 bytes) are

2t; and long moves (1000 byces are 0,05i1)

Assut| le that a f tul t ip ly lakes 4 cycles, a 1000 character move 500 cycles'

and the short move 5 cycles. The perfotmance of the piPel i l led machide

of Sect ion 3 caD be calculated by addi lg the ext la cycles for the long

opelat ions (appropriately scaled by frequency) to the base Performance

of 1.1 cycles pe! inst luct ion. The Pel formance is 1 1+ 0.02 t 3 + 0.0005

r 499 + 0.02 * 4 = 1.5 cycles pe! inst luct ion where lhe i f ls t ruct ion set

has both simple and complex instruct ions. I f the comPlex funct ions are

coded using a sequence- of s imple inst luct ions, the Performance remains

clos€ to 1 cycle per instruct io[, but th€ number of instruct ions executecl

increases. In ei ther case, the conplex funct ions must be executed as

:0

eff iciently as possible. In this section ue discuss four cat€8olies of

complex instructions: Storage to reSisler (RX) opelations, characte!

ooves, f ix€d potnt nultIply, ard f lodtlnt point arithmetic. Alchltec-

tu!81 suppolt fo! character st l iog ooves and f lxed polnt inult iply was

defined in the o.i8insl. E0l architecture [2].

5,1 RX Instruct ions

RX Lnstr[ct lons can be lncluded ln an 6rchitecturo to f i lprove perforr!6nce,

reduc€ ret is le! usate and leduce code space. Since ou! focus is on pe!-

fohance, w6 wi l l consider th€ f l rst point 1n nore detai l . The coftputa'

t lon J = 11 * 12 a In requires n+2 instruct lons l f RX adds ere

us6d 6nd 2n+2 I f they a!6 not, On some processors, this can result ln

inproved performance; on the processors discussed in thls paper, i t does

not. The RX 6dd require3 two addlt lons, one fo! address Senerat ion snd

tbe other fo! execut j .on. 0u! pipel ined mdchin3 has a slngle 6dde!, and

an RX add vi11 thelefore lake at least two cycl .s. Th€ execut ion of se-

qu€nce of RX adds (4, B, C, D, , . . .) or the pipel ined machlne ls Siven

be 1oi, :

IC

RD

AE

DC

BC D

A B CD

ABAECDC

AB CD

234561A9 10

3I

To achieve this speed, control infornat ion abou! A nust be maintained in

cycles 4 and 5. The sane Perforrnance can be obtained on the piPel ined

machine without RX inst luct ions and sinPle controls by schedul in8 loads'

To obtain a speed of 1 cycle Pe! instruct ion on RX adds, a processor l , t i th

2 f ixed poin! adders is required. A straiShtfof l rald approach is to

pipel ine lhe Processing in lo j s lages:

I IFETCHIDECODE AGEN ID FETCH I EXECUTE I

though mdny va! iat ions are Possible, one Seneric approach is discussed

iD mole ale!ai1. Two copies of lhe Senela1 purPose registers are provided,

one for the Addless Generat ion adder and lhe olher for the Execute adde! '

The copies are kePt jdent ical by sinul taneously updat inS both of lhem

The inslrucl ion is fetched in lhe f i !s! s lage The decode and regisler

access for address Seneral ion lakes Place jn the second stage The ad'

dress is comPuted in the third stage ln lhe foul th sta8e, date is

f€tched f lom the csche and lhe legisters are accessed Execut ion lakes

place in the f i f th stage A sinple RR add could execut€ in stage 2' bu!

lhis comPlicales the hardware. To keep the cont lols and data Paths sin-

pIe, al l inst luct ions 8o !h!ou8h lhe 5_stage pipel ine, at td execute in the

last stage. \{e wit l cal l lh is machine the t{ ,Jo adde! machine The Pe!-

fornance of the piPel ined machine and the two adder nachine is compare' l

on t i lo sequences to deternine the advantaSes of Rx oPerat ions'

32.

Sequence I

Add R1' ADDRESS tAl

R2 + R3 + R4. tBl

co[PARr R4 R1 tcl

BRANCH T tD]

(Br6nch is taken)

Tlming on the two adder machine

ICAECD

A.-D

T

ABCD

t 2 3 4 5 6 7I910 11

Cycle 7 ls the earl iest poi[t et rhjch the tar8et T cdn be fetched

($j.thout bianch predlct iotr nechanlsos). The talget is fetched as soon

as th€ addless ls avdilable but prior to branch resolutlon. This co!!-

pl jcates the controls. Executlon completes in cycle 11.

Code fo! the plpelined dachine dfter scheduling

Load RS, ADDRESS IAI

R2+R3+R4 tBl

R1 +R5+Rl . tc l

colrPARE R4' R1 tDl

BRANCH T IE]

RD

AG

DC

EX

33

Ti 'ning or lhe pipel ined machine

IC A B C D E

ABCDE

ABCDE

1 2 3 4 5 6 7 I 9 10

IC A B C

T

RD

AT

DC

The lalget is fetched after branch lesolut ion and is ini t iated one cycle

1ater, Hor, teve!, the sequence cof ipletes one cycle eE!1ier '

Sequence 2

Add R1' ADDRESS tAl

R1 +R2+R3 tBl

Add Rl ' (R3) ICI

R3+R4+R3 IDI

TldinS on the t i ,o adder f iachine

RD

DC

EX

D

c-

c-

c-

AB CD

12345678910

Code for the pipel ined mdchine after schedul inS

tAl

lBl

tc l

tDl

tEl

IF1

Load RO,

R. + R, +

R1 +R2+

Load R,,

R5+R] +

ADDRESS

"1

"3

(R^)

-1

l in ing on the plpel lned oachine

IC

RD

DC

F

D

8

AB

BCDE

B CD

A

Though two oore instructions are executed, the f inal add completes one

cycle ear l ler ,

RX operat ions require addit ional code polnts, and this c6n be sl8ni l icant

i f the ful l c loss ploduct of (loadslx(RR operat ions) is supported, Fo!

processors Like the]) ipel ined RISC machine, RX inst luct lons cl tn b€ in-

cluded to save code sp6ce i f the code points are avai lable. They should

be used only ahen nothing can be scheduled betueen s LoAD R2, ADDRESS and

R,+R..R , sequence. For machines l ike the tr . ro adder nachine, signi f icart

i5

perfortnance idprovement c8n be obtained on sorne sequences; on othets the

ut i l i ty is quest ionable.

TEI,IP ' SOURCE

TARGET + TEMP

5.2 Chdr6cter Str ing l toves

MovlnS 6n albi tr l ry str inS of bytes fron one locat ion to 6nothe! is a

cof lnon oparl t t ion. The pref€r led s6mantics ete descr lbed below assuolnS

thdt the sourco and targe! have th6 sdoe nrrtnbe! of bytes, B. L6t the

soURcE str inS be in addresses S, s+1, . . . , S+B-1 alrd l6t th6 TARGET str inS

b€ in addresars T, T+1, . . , , T+8-1. The effEct of the oove, TARGET €

SoURCE, should be

Th€ 370 alchltecture has f lVC and MVCL instructio[s for movlng character

str ings, n6{ther of which has these sematlt ics. The op€ration of MVC is:

FoR1=1loBD0

T(r - 1) ' s(I -1)

By sett ing S=T-1, the chalacter in locat ion S can be propagated throughout

memory. In the case of UVCL, no l love lakes place t f SST5S+B-1 (Destruc-

t ive ovelLap). othenrise, the nove takes place 4ccolding to the prefelred

sedant ics. (l lVCL is actual ly much more conplex and Seneral than desct ibed

36

here). In this sect ion

lnoves oo the pipel.ined

we wil l discuss

RISC nachlf le.

aPProaches to execut ing character

The rbve cait be lirplement€d nithou! use of a tenporary str inS as fol loss:

II TSS THEN

FoR I=1T0BD0

r (r -1) . s(r-1)

FoR I=IT0BD0

r (B-r) + s (B-r)

END.

Thus, i f T < S, lhe move stal ts from lhe beSinning of

ploceeds forr6!d. I f T >S the move stal ts from the end of

goes backsdrd,

the

string and

strinS and

Figure 5 shoes a characte! st l i .ng rnove of 8 bytes. To accompllsh this

on a reSlste! | lachine, t ro funct ioDs are r€quired: "extended shif t" and

"part ial store". The extended shlf t funct ion al lous the ent i le soutce

str ing to be shi f ted lef t or ! i8ht across rord bounddries. In Figule 5,

the source af ld target str i l rgs are not al igned lr l th respect to each othe!

or on uord boundaries. The soulce st l ing must be shi f ted lef t one posi-

t ion before 1! can be stoled at the tarSet address. Thls is sccodpl ished

by fetchj .nS a tordr rotat ing i t , Iedvj .ng the result in a special legiste!,

melging the rotated word r i th the previous cor lents of lhe regisle! and

31

bloRD r,toRo
N*!

at alz (ul .Lf 4t 4,6 4r .ta

Boo,,DARre9,
//

I
I

tE.

c

acl
o

. t ' t f

3

ct qr 4t 41 4t 4 ' qt q8

F,G uR€ S

stor inS the result . For the f i rst and last words stored, only Eelecled

bytes ate changed (refer ro f l tu le 5). A part ial store funct ion is !e-

qulred to dchieve this. Stat lst ics lndica!6 that most character noves

ate qulte lon8 or very short . The apptoach for long moves Is descr ibed

f irst . An irst luct ion RoTATE AND STORE RC, RT, RN i lhere register RC

contains the dala (D), RT contains the tarSet byte addless (T), and re8-

ister RN specif ies the rorat ion (N) is used. lNl Is 6]ways a oult ip le

of S and ls the amount of the rotat ion (0, l , 2 or 3 bytes). I f N i .s

negat lve a l€f t lotat lon is specif ied els6 o l l .ght lotr t Ion. A nask l l l

is g6neleted 6s specif ied below:

Gen€rat ion of Hesk Ul

ROTATE AI'OUNT IlASK
l11l
1110
1100
1000

0111
0011
0001

on the d6ta paths of the pipe-The Rotdte a$d

I ined machine

DIRECTION
L€ft
left
Left
L6ft
RiSht
Rlght
Right
RiSht

Stole instruction execlrt€s

as speclf ied belor:

0
6

24
0

24

RD CYCLE

Access g€neral reSistels RC, RT, and RN

Rotate D as specif ied

Place tbe resul t Y in

bvN

register SP

AE CYCLE

38

Generate l l1

l ,elge Y $i th lhe previous contents of SP to 8et X
(For each byte, select f loo Y i f M1 is L else select f ron SP)

Inclen€lrt T by 4

Place thj .s value in FR for updat in8 RT

DC CYCLE

Sto.e X at the new value ot T

StoraSe i5 addtessed as shown In Figule 5. Let S and Tbe the source 6nd

target addresses. Assuhe that T< S, i .e., the tttove starts from the be-

gj .nnint of th6 st !1ngs. Let s =S l lod 4 and t =T6od 4. Let N = (t -

s) * 8. Let S, T - 4, snd N be ln Senera1 reSisters RS, RT, and RN, re-

spectively. ISnoring boundary condit ions, the lnn€rmost loop for a long

Eove is 81ven belou:

L00Pr Loed RC fron addless j .n RS; RS + RS + 4

ROTATE AND S?ORE RC, RT, RN

COIIPARE RT, RLIMIT

BRANCH IT, f,OOP

The loop can be oprirolzed:

L00P: Load RC flon address in RS; RS + RS + 4 tAl

COMPARE RT, RLIIIIT' 18]

BRANCH LI AND EXECITE RELATIVE, LOOP tC]

ROTATE AND STORE RC, RT, RN ID]

39

rhere RLIUIT - 4 the t i tn ing

cr lDl l42 I

Bl I Cl I Dl I

Al I 81 | c l I

lAl l I

the pipel i f led

t t l

t t l

lA2 l I

lD1 l42 |

nachine is

t l

t l

t l

RLI}I IT

I 81 |

lA1 |

IC

AE

DC

A2

D1

The'nove occuls at one byte per cycIe. This is h61f the naxif iun Possible

speed on the plpel ined mdchine since a load a store of a word el lch takes

one cycl€. Data can b€ moved at c los€ !o two bytes per cycle by unrol l ing

the IooD.

lJe now discuss an spproach fo! t roving short chalacte! st l ings (< 9 bytes)

!6pidly. FiSule 6 descl ibes the basic hardware a18ori !hn. The move js

achieved by loading (at mosl) three Senela1 legi .sters
'

lotat ing the data

applopriately and s!o! ing i t l the !a!8et locdt ion. Let B = number of bytes

to be moved, S = the sonrce addr€ss, T = lhe target address, s = S nod

4, t=?Dod4, s '=4-s,6rrdtr =4 - t . t and t 'aro lecelculated

frol! T each tlne they are used. RoTATE LEFT/RIGm RO AND STORE RT is used

i[the floqchart to specj.fy haldlrate co$trols siDilar to the RoTATE in_

struct ion descl ibed previously excePt that the direct lon of rotat ion ls

expl ic l ! 6$d lhe amount !s calculated separ€ttely. In addit ion to Ml, a

4-bi t $ask !12 conslst j .ng of ls surrounded by 0s is genelated as fol lows:

The number of lef t hand zero bl t l = ! ; the nunbe! of r iSht hand 0 bi ts =

4 - (t + "nu$b6! of bytes stored"). ln the Dc cycle datd is select ively

stored in the cache, i .e. , of l Iy those bytes in the wotd ale stored for

ahich f l2 = 1. The reader should simulate lhe algori lhn i r Ei .gure 5 fo!

i0

YES

tEs

Y€S

(o q. I I

no,nr, 12

d0

Rotahoa:

e(.-L)

Rola[on:

a (t - 4)

a BffES aroasD
= t '

RararE RtaHr
t l^ , D siac€ Rl.

B = B-e'
Rr! Rr + t '

t SY'AS
'tt!l5tl
!a

Rt: Rirg

e cl rts s'oa

Ro,A,T LEF|
Ax zt SrEaE

^f

Rrz Rr i D

t E'rrCs SroacD
..3,

RotorE tEFr Ro
A tto st-o4e ar!

8= 8'* '

Rr. Rt , .31

xa-zacrt lo (ia

tr<'c '"rc. t 8o r4' i
DON€

Ft6oRE 6

an exanple nove j.8norin8

B and s), some controls

novq6 can be inpledented

hardrare considerat ions. l l l i th extra state (for

and an addi l iona1 br?ass, the alSori thh for short

eff lc ient ly on lhe pipel ined machine.

Characte! noves can be ini t iated by def lntnS a special instruct ion

RS contains S. RT contains T. dnd RB conteins

RTOP

The se$af l t ics are i

B.

ih€ (hardwired) a18or1thm for sholt

required state e Ise NOP,

I t RB < 9 then execute

mov€s aft€r selt lng the

The seqDence of instructions fol loeing this sould compare Rs and \ snd

branch to the appEopriate code for the long hoves,

Fixed Point Uult ipl, ication

one approach to f jxed point l rul t ip l icat ion is to use the modif led Booth s

algori thn [5] . The nult ip l ler Y is div ided i t r to 3-bi t groups, with ad-

Jscent gloups sharinS a common bi ! . X is the rnult ip l icand, 0, X, -X, 2X

or -2X is added to the pa.t ia l produc! in accordance with the table below;

(bi t 0 is.nost s igni f icant). Aft€. edch act ion, lhe part ial accumulal ion

Is shi f ted l ight two posi l lons si th respect to the new psrt ial product.

41

BIT

vvv' i - f i ' i+ l

000

00I

010

01r

104

101

110

111

OPERATION

+0

+x

+x

+2X

Special inst luct ions can be def ined !o implement mult ipl icat ion on the

pipel ined dschine using this 618o! i lhrn. ReSister posl t ions €tre numbeled

from left to l lght, 0 to 31. The SP reSis!6r is loaded with Y the nlul-

t ip l ier. An i$struct ion, I IULT Rl , R, executes one step of the modif ied

Booth alSori thn.

The seodntlcs of I IULT R1, R2 (r{here R2 contains the mult ipl icand) alel

For!| PARTIAL PRoD fro$ RZ as lndlcsted in table (with Y1-1, Yi, Y.+1, !e-

placed by SP30, SP3l, and C, ehele C 1s a f1a8).

SUtt + R1 + PARTIAL pRoD {34 btr sum}

R1 + 32 hiSh order bits of SUll

c + sP30

sP(2-31) + SP(0-29)

SP(0-1) . 2 low order bi ts of SU

42

Vith a one bit shift at the ioput of the ALU, the above steps cdn be done

1n the A! cycle.

The code for a 32-bit nult iply, with n3 contalni.nS the rult lpl ier 6nd R2

the nul ! iD l lcand. isr

SP-R3

INIT },IULT RT

truLT R1' R2

(Mult ip l ie!)

(Clea! R. and C)

16 t im€s

uuLT R1' R2

Thes6 18 instructions execute a 32-bit x 32-bit lult lply in 18 cycles.

On completion, th6 loo ord€r blts of the lesult are j .n the SP retister

8nd the hiSh order bits at6 in R1

It should be stressed that fo! epplicetions where nult iply t ine ls im-

portant, high speed mult iply should be i i lPlenented in har4rare,

5.4 Float ing Point operat lons

Several conpute intensive engineerj ,nS/scient i f ic appl icat ions contain a

large fract ion of f ioat ing point operat ions. obtaining very hiSh p€!-

fornance in such environmenls lequires that f l .oat ing point al i thnet ic be

executed in special , dedicated hard{aie. Soff i , rare simulat ion on RISC

lnachines, even wi lh specisl suppoit , is qui te inadequste. In this sect lon

we r i11 presen! an approach to achieving very hiSh perfolmance on

enginee! ing/scien! i f ic appl icat ions by usinS a RISC machine enhanced \r i th

plpel ined f loat ing point hardt are. l^,€ l { l l1 shos hotrr vector speeds can

be attained wi lhout a vector archl tecture, The approach is en extension

of the concepts presented lhus far in the paper: srchi tectural suppolt

for conculrency, careful branch and inter lock handl ing, and a st long em-

phasis on compi ler opt i .mizat ions,

To motivate the approdch, we w11l ldent l fy an i f i rpor!an! bot! leneck in

convent lonal sc6lar.dachines and i l lustrate hov vecto! archi tectures catr

al leviate this bott lef leck 1n special c ircuostances. This wt l l a lso

highl ight a fundanental di f ference b€lsee$ RISC snd vector archi tectules.

An inportant bot l leneck in convent ional oachines is a control bott leneck:

Each instruct ion must be decoded in the specif ied order !o ensure lhat

inter locks are placed so lhat the cornputat ion occurs as specj. f ied. The

overal l execut ion t ime"can be no less than the t ine to decode a1t lhe

instruct ions. This l in i lat ion can be clear ly i1lust laled i , r i th a simple

example. Consider the computat ion shoen belo{.r :

D0 10 I=I , 100

A(I ; = s , . P 111

10 CONIINI'E

The prif tary opelation is 6 f loatin8 point mult iply and the desiSn of

pipelined hardware to execute this lapidly is welI understood. The con-

t!o1 ploblem becotnes evident when a pipeli .ned mult iply unlt is palt of a

scalai piocessor, The conputation could be coded as belowi

L00P: Lodd

flult

Store

Compute Index

Test Index

Blanch Loop

The peak rate at t thich this cof iputat ion can execute assuninS one in-

struct ion inl t idt ion pe! cycle is six cycles. Advanced piPel ine

processols can actual ly sustaln lhls rate durinS the execut ion of the

1oop. The pipel ined mult ipl ie! can accept a pair of op€rands dnd del iver

a result evely cycle, The execut ion rate is thelefore one-slxth the peak

mul! ipl ier rate. C. l€arIy, RISC machtnes suffer f rom this besic I imi la-

t . ion. In a vector archi tectule the computat ion oould be coded using in-

struct ions that operate on ent i le vectors. I {hen a single vector

inslruct ion is decoded, the hardl 'are takes over and can ini l iate several

opelat ions autoinat icdl ly, The instruct ion decode bott l .eneck is thus re-

noved. The plevious computat ion r iould be coded as:

Ioad Vectot D

Uulriply Veclor D by C

Store Vector A

Using "chaining", vector plocessors can execute the conputatlon at a late

of one lesult pe! cycle, or 5 t incs fastet than the scalar processor.

The redl sp€ed-up on the loop ls less b€cause the peak sp€ed 1s sttaj.ned

only after vdrlous pipelines ate fu11 and is a conplex function of

stalt-up t ine, vector lenglhr and nain oett|oly bandoidth,

Assume that the compulat ion unde! discussion consl i tutes the odin p6!t

of an Bppl ic.at ion whlch lakes !00 seconds on e pipel lned scalar processor.

90 seconds l t re sp€nt in the loop and 10 secgnds on ovethead tasks such

6s sett ln8 up the arrays, input, and output. The 6ppl lc6t ion is now

"vector ized' ! , a vector unit 1s added to the scalar 6achine, and the vector

instruct iolrs execute in this unit . For the example under consideret ion,

lhe speed-up, V, is 6 (j .Snortng stal t up) and the 90 secorrds are reduc€d

!o 15. The net sp6ed-up is 100/25 = 4. Ve wl l l def ine percent

vector izat ion, f , as 90?i, s lnce goi of the ini t ia l wolkload was sffected

by vecto! izat ion.

Some is lportant points can noir be m€de 6bout vecto! processols. The reader

is referred to F18ure 7. The family of culves B represent a sidpl i f ied

<Eg
F

I

t !

N

toF

lrJ

LJ

u-
ru l

s
z
lrJ
C)

lrJ

N

t
t
?

\
I

h

+

\

'tt
Ig

8
tl

oo
ll

0a
I
lrJ

tr

C)
t

B
5
lrJa
Iz
z
Lo
lrJ
oz
(!

lal i
I
I
I

rl
\o

l t

q.-

I

33NV14Uoll3d cf zr'lvr^luoN

46a

view of lhe performance of vector nachines at several values of V (the

speed up, r t rhi le execut ing vector instruct ions): I f f consistenl ly l ies

in the 80 - 100i rsnge, the design point is f6i !1y evident i a very fast

vectol uni t , a hiSh band,r idlh nemory systen, and an adequate scalar

processor. The sophist icat ion of the hardeare is direct ly dependent on

cost considerat ions. Thus, noving from V=5, to V=10 may require doubl i .ng

lhe number of ar i thne! ic units and oenory bandwidth. At 80-1001

vector lzat ion, this added hardwar€ can be re11 ut i l izedi at 40-60% i t i { i11

Idle nost of the t lme.

Percent vec!o! iza! ion, thouSh cr i t ical to pe!formance, is di f f icul t to

pin doq,f l . I ! is a very complex funct ion of the appl icat ion, algor i thm,

compj. Ier sophist icat ion, and architecture. Let {1 be lhe fract ion of

paral le l ism j .n an appl icat ion. 0nly a f r6ct ion f2 of th is may be

vector izable dependlnS on ihe hlgorl thms choseII . Fnrthermore, a compi ler

tnay only detect a f tact{on f3 of this €ven assuninS an iof j .ni tely lobust

architecture. Final. ly, a fract lon (1 - fO) rnay be lost due to the ar-

chi tectures inabi l l ty to support 6l l forms of v€ctor lzat ion, I f each f

ts 90%, only 50% of the pslaI lel is lh ney be exploi table thlough

vecto! izat ion. Fo! some very 1a!ge, structured engineering/scient i f ic

ploblems each f may be albi trar i ly ctose io l making vecto! processing

an extremely al tract ive solut iolr . Nerrr i t rvent ions in a],8o! i thns and

problem refornulat ion can elso cause percent veclor izat iol !o go up,

Holrever, except for v.ry special conputal ions, vector izat ion in lhe 80%

to 100?; range ove! a 1on8 pel iod of l ime is the except ion rather lhan lhe

rule and sustained pelformance is often 1 to 2 orders of magnitude louer

;7

gant approach to high performance on sone conputat ions. Employing a

vector approach mote general ly incteases the complexi ty of algor i thn de-

si8n, compi l ing, lhe architectule, and rhe harderale and much of the ele-

gance is lost ,

oae Bpproach !o obtaining hlgh perfornance r i thout v€ctot inst luct ions

ls to dispatch mult iple inst luct j .ons !o the execut ion units every cyc1e.

This cor lesponds to a nole genelal though slso more l iat i ted forn of con-

curlency than vecto! lnstruct ions. By sl lowtng oui-of-sequence exe-

cut ion, special handl ing of blanch instruct ions, and providing pipel ined

execut ion hardr,rare, very high performance can be obtained on unst luctuled

code, l lJe c€11 such nachin€s superscalar processors. (Unstructured code

lypicaI ly does not veclor ize because of numerous data dependencies and

branches,) Since superscalats exploi t conculrency even on unstructured

corhputal ionB the performance can be expecled to be hjgher than a conven-

l ional scala! mdchine. In Fj ,gure 7, the perfornance is shown !o be a

factor of 2 better lhan a conv€nt ional scalar ptocesso! (se6 curve A).

once the inst luct ion issue rate is improved 6nd high perfornance f tost ing

point hardware is added, the processot executes st luctured computat lons

(the kind rha! nornal ly get vector ized) at vely high speeds. h fact,

the perfolmance on st luctured code is better lhan the perfolmance on un-

struclured code. The pelfordance of the nachine inc.eases ir i rh the per-

centaSe of structuted code as shoen in culve A, Figure 7. Scal.ar dachines

exhibi t ing such behavio! have been bui l t . Ar example is the IBl t 350/91.

than Peak pelformance. In our opinion, vector archi tectures are an e1e-

Culve A crosses culve B, V = L0 at approxinately 80% vectol izat ion. I f

f l ies in the range of 40-60%, clear ly the superscalar apploach has neri t .

To explain the ov€ra1l superscala! approach, ae si1l start l l i th lhe na_

chine o!8anr2st ion shol 'n in Figure 8. 0n the surface, this is a fai l ly

conmon block dia8ran. There ara sevelal uni ts: branch, f ixed Point,

f lo6t ing point, etc. Each unit has a queue to hold incolnlng inst luct ions,

6 decoder, reSisters, and pipel ined execut iol t haldqare. The goal is to

felch and dispatch N lnslruct ions evely cycle, one to each unit . I f th is

is attempted in a st raj .ght foreard |nanne! fo! an exist lnS l t rchi tecEure (ex.

IBl t System 370), the dispatcher quickly becomes the bott laneck. I t must

detect and set inte! locks belween several inst luct ions simultaneously.

In the superscsldr f iachlne, this bott leneck is al levlaled by moving some

of the uork f lom run t j .me to compi le l ime in a fai l ly s lraightforward

nanne!.

Some approaches (example I I IPS [3]) move aI l in lel lock handl ing to compi le

t ine. I t Is the comp{lerts responsibi l l ty to schedule i I Istruct lons in

such a [6nne! lhat t lhen a pdrt icular inst luct ion is se€n by the hardware,

i t ls gusrsnteed that al l opelands are aval lable. Thj.s is qui te con-

straining. I t is of ten possible to get s igni f icant improvements in Per=

formance by designing execut ion uni ls tha! cohpute an snswer vely lapidly

in 907" of lhe cases snd ooce in a i thj . le tak€ longe!. Such desiSts cannot

be used in the f l lPs approach. In envirorments wi lh caches and asynchro_

nous memory references i ! is no! possible to predict access t ines and

using the ! , ,orst case is not meaningful . I [ter locks must exist for these

49

l:

F.t
I'J
(J
I
{

z

F

N
2

t4z
L]
{

49a

reasons. In the suPerscalar aPptoach' interunit inter locks are set at

conpi le t ime and tested at lun t i&e. Hithin each unit , decodi l8 and

iI l ter lock handt ing is done in th€ usual
' tanner '

Thjs sj 'mp1e innovat ion

a1lows the dj .spatcher to j .ssue insiruct ions i t i thout being concel l led about

inte!1ocks. In effect lhe or iSinaL single i f lstruct ion st lean is broken

idto mult iple streams at lun t ime. These streans execute asynchronously

wlth hand-shakint on an 6s needed basis. Tl 'o forms of concurrency are

thus exploi ted. The decodels in lhe funct ional uni ts ate ect lve simul_

taneously ef ld l r i th in e6ch unit ' inst luct ions €xecute in a Pipel ined man'

The superscalar uses a

ful I f ixed and f loatlng

POrt for concullency.

reduced ins!ruct ion set apPloach augmented t i th

point a! i thmetic and Provides dlchI lectural suP-

In contrast !o sinPIe lmplemen!a! ions of leduced instruct ion set archl_

teclures, the suPefscala! has a lot of concurlency and i f ls l luct ions are

processed i t l a Plpel ine fashion. The rnain extension to the 801 archi-

tecture l ies ln the fact that this concurrency j .s exposed to the comPiler

in seve!41 ways. Inst luct ions are seParated into wel l def ined "archt-

t€ctural c lassesrr , Each class has i ts own set of lesisters Instruct ions

in or le class do rtot refer direct ly to re8islers of another class sPecial

instruct ions are provided to nove information f lom one class to another '

Architectural suppor; is provided for compi le t ime inter lock sett inS

The opcode assj .Snnef l ls are careful ly made so that i t is t l iv ial for the

dispatcher to recognize lhe architectural c lass of an instruct ion These

50

features nhich provide explicit architectutal support fo. mult iple exe-

cution units are key to obtainj.nS very high scalar pelfornance and a lean

cyc Ie,

In addit ion to the blsnch optlrnizations dlscussed in s€ction 3, tecnnrques

suah as Loop unrol l ing, loop jaotning, and loop spli t t ir lg [5] can be used

to further reduce the number of blanches executed. An ex6tnple of Jamnj,na

is Siven belot .

B€for6 Janmina

DO10I=I,N

IO CONTINUE

D0 20 I=1,N

s2

20 CONTINUE

After Janmina

D0 l0 I=l ,N

s2

rO CONT]NUE

Iet 51 (J) denote the execut ion of 51 vhen the loop cont lol var iable I

has a value J. The ex€cut ion sequence in the or iginal prograrn fragm€n!

is

51

s1(1), Sr(2), . . . s1(N), 52(1), 52(2), . . . 52(N).

Afte! ja[tming, the sequence rould be

s1(1), s2(1), S1(2), S2(2), . . . S1(N), 52(N).

This optirDlzatlon is legal i f and only i f , for 611 v61u€s J of the loop

control varlabl€ I, the inputs of S2(J) do not depend or Sl(J + l) . . .

Sf(N) and the outputs of S2(J) do not chanS€ the inputs of S1(J + 1), . . .

, s1(N).
:

A vely general forn of Loop unrollinS is sholrn ln FiSure 9. Though the

af iount of stat ic code ls 1ar8e, the main loop contalns e sin8le branch.

I f lhe loop bounds, Nl and N2, ale known at cor[Pi le t lme, much le56 code

need be generated.

52

D0 10 I=N1, N2

10 CONTINUE

Code for l , - l tav Unrol l ina

I = N1
TFN2 < Nl GO TO LO
P=N2 - Nl +1
J=PuoDI
(= (P-J)/ l '
M=0 AND K=0 G0 T0 L0
M=l G0 T0 L1
Ir J=2 G0 T0 L2

IF J=[,- l G0 T0 L -1
L0: S1

I=I+1
GO TO EXIT

Ll : S1
I=I+1
IF K=0 G0 T0 EXIT
GO TO ITAIN

LU- l ; S1
I=I+1
: U- l l im€s

l=1+1
IF K=O GO TO EX]T
GO TO IIAIN

MAIN: S1
I=I+ 1
: U t imes

I=I+1
IF I < N2 GO TO NAIN

EXIT:

i3

FIGURE 9

An exanple of usinS loop spli t t ing is shosn in Figure 10. The ain is ro

tedlove the branch inside the naln loop by handllnt 4 cases separ6!e1y.

:'he four casea are:

(1) J = Nf, The colresponding execut ion sequence ls

(3) J = N2. The corresponding execution sequence is

sl(N1), s3(N1), S1(N1 + 1), 52(N1 + 1), S3(N1 + 1), . . . ,S1(N2),

s2(N2), S3(N2)

(2) N1 < J < N2. The colresponding execut lotr sequence ls

s1(N1), 52(Nl) , 53(Nl) , . . . , 51(N2 - r) , 52(N2 - 1) , 53(N2 - 1) ,

s1(N2), 53(N2)

(4) J > N2. T'he corresponding execut ion sequence is

sr(N1), s2(Nl) , s3(Nl) , . . . , s1(N2), 52(N2), 53(N3)

Tlte lhain loop after spl i t t i lg is D0 f0 I = Ll , L2 and i t does not contain

a branch,

D0 10 I=N1, N2

II 1=JG0T020
s2

20 s3
rO CONTINUE
r 000

!-!_!5-l__i!-= ji_115

L2 = J- l
IF J = Nl THEN G0 T0 11
IFJ>N2THENL2=N2

r0l D0 10 | = Ll , L2
SI

s3
10 CONTINUE

M2 = N2 G0 T0 1000
1l L2=L2+1

S1
s3
I f L2 = N2 00 T0 1000
Ll=L2+I

GO TO IO1

1000

Before spl i t t ins

FIGURE 10

The superscalar apProach lras extensively evaluated through PaPer designs

al ld sinulat ion at the legistel t ransfer Ievel (including the Plocessol

and nemoly syslem). The results sere ext leo€ly high Perfodrance on un-

structured codputat ions (approxi tnately one cycle Per inst luct ion includ-

in8 f loat ing point instruct j .ons) and vecto! speecls on struclulecl

computat ions (one f loat ing point opelat ion pe! cycle; exlension to 2 is

fair ly st laightforwald) This is achieved with a lean cycle ln Pipe-

l ined ndchines the data f loo can be part i t ioned (within l imits) into very

lean slages. The controls ! l !e more di f f icul t to handle Thas€ are not

a bott leneck ln the suPorscala! nachine because of the dPPtoach to

inre!1ocks €nd Part l t ioning of funct ions

The supe!scaIs! approach can be sudoarized as fol lor. 's. The architeclule

largely preserves the basic Single lnstruct ion Strean Slngle Data Stream

(SISD) nodel. As e result , standald opt imlzat ions and local i ty (io-

struct ion buffers, data ceching, regi .ster usage) can b€ exPloi ted Fun-

danental bott lenecks to instruct ion disPatchins ale removed As a resul! ,

lhe machine is f looded et i th instruct j .ons (the nulnbe! act ive is a funct ion

of the anount of buffer ing provided). The instruct ions then execute based

on lhe avei labi l i ty of oPelands atrd execut ion resoulces one future

chal lenge is !o detelmine whether lhis aPprodch can be signi f lcatt t ly ex_

tended to oblain highe! degrees of f ine Srain pardl lel ism Mult iPIe

dispa!chels with suPer €ff ic ient hatdrare i l l te!1ock nechanisms is one

possibi l i tY.

56

6. lgllgr

V6ry 8enera1ly, the perfof iEnce of d pipeLined scalar processor that de_

codes a shSle lnstruct ion every cycle is Siven by

I + f (f . ' r pi) cycles p6! instruct ion

{hsre f . ls the frequency with shich cel tain pipel ine disrupt ions (such

as blanch€s, dependencies, c6che mlsses) occur and pi is the cot lesponding

penalty pe! dis.upt ion. This p6p€r h6s plesented co[lpi le l , alchl tecture,

atrd nechlne orSallzatiott approaches thet leduce the delays caus€d by the

disrupt ions,

Sectlons 2 and 3 d€scribed 6 serles of t6chn{ques to execule sinple in-

strucl ions very rapidly. The lesults are sumoarized below ohere sl l and

Pll denot€ the sinple and pipelined RISC machlnes snd C/I denotes cycles

Proce€sor Cache Functions/ CoElnents
Latency cycle(F/c)

Pe!formance
c/1 (c/ r)* (F/c)

sll

stt

Pu

Plt

P

Ptr

1 2 No schedul inS 1,38 2.16

1 2 Schedul inS 1. 1 2.2

1 I No cache bypass, 1,77 1.77

No schedulinS

t ' t No schedul lng 1,52 1,52

1 1 schedui ing I .23 1.23

1 1 Relat ive branches 1. 1 1. 1

57

By desiSning the architecture si th the nachine organizat ion and compi ler

i rr nind, inf ini te cache pe!forEance close to one cycle per instruct ion

can be achieved rr i lh nodest anoulr ls of hdldware and a lean cycle (8-10

levels of logic). whenever a new feature is consideled (to reduce cycles

pe! inst luct ion), the impact on cycle t ime must be analyzed. The mech-

6nism for le lat ive branches reduced the tolal cycles pe! inslrucl ion f lon

1.23 cycles pe! instruct ion to 1.11 cycles per inFtruct ion. Branch !e-

solut ion and late selec! in the decode cycle on. the blanch could cause

lhe cycl6 t i rne to incredse. I f the incledse is 101, (one nole level of

loglc in a 10 st6ge path), the m6ch6nism provides no advdntaSe.

As the plocessing speed of a pipel ined nachine is incleased, the effects

of f in i te caches becone vely signi f icant. An analysis of delsys and ap-

proaches to leducing lhem were presented in sect ion 4, Sof ie rel ief can

be obtained by proper archi teclule design.

Eff ic ient execut ion of long opelat ions eras discussed in Secl1on 5. l {e

plesented a reduced instruct ion set approach to charact€r str ing f toves

which achieves the moves at the maximum speed possible on the Siven data

psths (two bytes per cycle). Fixed point mult ip ly can be ex€cuted rea-

son6bly fast (18 cycles) with prop€r archi tecture suppolt . For very high

speed execut ion, special hardware must be used. Hi8h speed execut ion of

f loat inS point ar i lh l i let ic is not possible using single cycle]n-

srruct io[s. We preseited an approach that uses a RISC machine augnented

q' i th pipel ined f loal ing polnt hardnare. using an extension of the 801

phi losophy, this approach ut i l izes concurrency to obtain very h- igh per-

58

formance on unstructured computar ions and vecror speeds on srructured

computat ions without a veclor archi tecture.

59

7. Acknorrledeellents

Vle sle grateful to GeorSe Radln and flarly Hopkj.ls fo! numerous discussi.ons

on RISC archltectules. Rudy Rechtschaffen develoPed the basic PerfolE- i

ance analysis technique that :s used in this pEPer. Doug Decroot, 6reg

grohoski, and Dan Prener made siSnif icsnt contributions to the develoP-

ment and ev6lua!ion of !h6 supelscalar apProach.

l ie $ould l lke to thank Alvind, Dan Prene!, and l larold Stone for their

co|llnents on the paper.

a

,

60

E. References

2.

1.

5.

Patterson, D. A.,

Nunber 1, January

"Reduced Inst luct lon

1985.

Set Cooputcrs", CAC!{, VoI 28,

Rddin, G., "The 801 l, iniconputer'r , IBN Journal of Research snd De-

velopEent, Vol . 27, No, 3, [ay, 1983.

H6n€ssey, J., e! 6I, "Hdldwate/Sof tvare Tr6deoffs for Incr6ased

Perfornance", Symposiub on Architectural Support fot plogr6tt rrnt

LanSuages and Oper6! ing Systens, l ls lch l -3, 1982, palo Al to. CA.

Tick, E. l l , , "Design and Analysis of a MeDory Hieralchy for a Vely

HlSh Perfolnance Mult iprocessor Configurl i t ionrr , M.S. Thesis, l t l?,

January, 1982,

a

Tasser, 8. end Flynn, !1. J., "Introductlon to Ali thretic fo! Digital

Systehs De3l8ners", l lolt , Relnh6rt, and ginston, 1962, pp, 131-135.

6. AI1en, F. E. and Cocke, J., "A Catalogue of Optlni.zlng Transf-

orroationsrr, Design 6nd Optinization of Conputels, Rust{n, R. (Ed),

Plent ice Hsl I , Engleoood C] i f fs, N. J. , t972, t -30-

6l

Copies may bc r.qucsted from:

L IBM Thomas J. watlon R.search Cenler
Distribution Scrvices 73-Fl I
Post Offic. Box 218

{ Yorktown HeiShts. New Yo.k 10598

