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The focus of this paper is on high performance. In general purpose com-
puting environments, a very large fraction of instructions executed are
simple: load, store, add, shift, compare, logic, and branch. To obtain
high speeds, sequences of simple instructions must be executed as fast
as possible. This paper describes compiler, architecture, and machine
organization approaches that result in efficient use of hardware and very
high execution speeds. We show how pipeline disruptions can be (almost)
eliminated by proper architecture design and appropriate compiler opti-
mizations. The penalties due to cache misses can be significant, and
approaches to reducing these penalties are presented. We describe a se-
ries of techniques and show the effect of each one on performance.

We do not recommend a pure RISC approach for all applications and envi-
ronments. If complex operations (such as floating point arithmetic) are
important, direct hardware implementation of the functions may be neces-
sary to meet performance targets. Even in these cases, however, it is
possible to extend the basic RISC approach and expose the hardware to the
compiler to obtain better efficiencies. High speed executicn of three
important complex operations including movement of character strings in
memory and floating point arithmetic will be presented in this paper.
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1 Introduction

Reduced instruction sets contain carefully selected, simple instructions.
The choice is dependent on hardware and compiler considerations. It
should be possible to implement the instructions efficiently in hardware
and complex functions should be compilable as compact sequences of simple
instructions. This leads to an approach in which performance is obtained
by transferring as much work as possible from run time to compile time.
The basic characteristics, motivation, and evolution of reduced instruc-
tion set machines were very adequately covered in [1]). This paper also
provided an overview of three important projects: 801 at IBM [2], MIPS
at Stanford [3], and RISC at Berkeley, and touched upon the role of op-

timizing compilers and machine organization issues.

The focus of our paper is on high performance. In general purpose com-
puting environments, a very large fraction of instructions executed are
simple: load, store, add, shift, compare, logic, and branch. To obtain
high speeds, sequences of simple instructions must be executed as fast

as possible. This paper describes compiler, architecture, and machine



organization approaches that result in efficient use of hardware and very
high execution speeds. We show how pipeline disruptions can be (almost)
eliminated by proper architecture design and appropriate compiler opti-=
mizations. The penalties due to cache misses can be significant, and
approaches to reducing these penalties are presented. We describe a se-
ries of techniques and show the effect of each one on performance. The
overall utility of a given approach is, of course, dependent on the ap~

plication environment and design constraints.

For specialized functions such as fixed point multiply, floating point
arithmetic, garbage collection, and type checking, it is possible to
provide simple architecture support which can be used by the compiler to
provide better performance. In all such cases the impact on the machine
data paths and the expected performance gains must be carefully analysed.
We do not recommend a pure RISC approach for all applications and envi-
ronments. If complex operations (such as floating point arithmetic) are
important, direct hardware implementation of the functions may be neces-
sary to meet performance targets. Even in these cases, however, it is
possible to extend the basic RISC approach and expose the hardware to the
compiler to obtain better efficiencies. High speed execution of three
important complex operations including movement of character strings iE

memory and floating point arithmetic will be presented in this paper.

We will focus on an architecture similar to the 32-bit 801 architecture
described in [2]. The 801 has fixed length, 32-bit instructions, a 32-bit

word (4 bytes), and 32 general purpose registers (GPR). Character, half



word and word data types are supported. Load and store instructions use
Base/Index or Base/Displacement for effective address generation. 'Pro-
gressive indexing" can be used. In this case the effective address is
the sum of the contents of the base and index registers; the base register
is updated with the effective address. The usual complement of arithme-
tic, logical, and compare operations are provided as register to register
(RR} instructions. A 3-address format is utilized in RR operations. In
addition, a powerful set of shift and rotate operations with masking are
defined. A &4-bit condition register is provided together with "branch
on bit" instructions. The architecture uses a rich set of "immediate"

fields.

4l A Simple Machine

To achieve a sustained rate of one cycle per instruction (C/I) on a long
sequence of simple instructions, we start with the simple data flow shown
in Figure 1. Memory bandwidth greater than 1 word per cycle is required
since each instruction executed must be fetched, and typically 40% of the
instructions will reference memory. To achieve this, two high speed
caches are provided, one for instructions (I) and the other for data (D).
Each cache has a latency of l-cycle and can simultaneously deliver one
word every cycle. Split I and D caches are chosen over a dual-port or
interleaved cache design, since split caches are simpler to implement.
The architecture does not support storing into the instruction stream,
so the I and D caches do not have to be synchronized. Splitting the caches

also allows them to be separately optimized if so desired, (e.g., a small
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l-cycle I-cache and a larger 2-cycle D-cache). Data read from the data

cache is buffered in a temporary register (CREG) prior to use.

The general purpose registers (GPRs) require 3 read and 2 write ports.
Three simultaneous reads are needed to sustain 1 cycle per instruction
while executing a series of store instructions. Two writes are needed
to update the GPRs from the execution unit and simultaneously from the

data cache.

RR operations leave their result in the FR register. The GPRs are de-
signed so that at the start of an instruction execution cycle, FR is
written into a GPR and simultaneously "written through" to the execution
units if the GPR is being read by the current instruction. The CREG is
written through in the same way. Since the register addresses are always
in the same fields of the 32-bit instruction, three registers are always
read out at the start of each cycle. In parallel, the instruction is
decoded. Some or all of the values which were read out are utilized.
Progressive indexing does not require any extra data paths. The effective
address is left in FR and the standard data path is used to update the
base register. The remainder of the data flow is quite straight forward.
The timing of the 3 generic instruction types is given below. Updating
and accessing the GPRs always takes place simultaneously with the decode
of the instruction. For brevity we denote all three operations as 'de-

code" .



1 RR ops

| Decode , ALU/ROTATE -+ FR |
One Cycle
2a. Load
| ALU - DADDR |
| Decode , ALU * FR | D-CACHE -+ CREG

2b. Store

| ALU =+ DADDR | ' |

| Decode , ROTATE + DATA | DATA -+ D-CACHE

| ALU =+ FR | ' |
e Branches

| Decode , ALU ~ IADDR I~CACHE + IREG

The processor has 3 separate cycles. The first cycle of each instruction
will be called "AE" (for address generate or execute), the second cycle
of loads and stores will be called "DC" (for data cache access), and the
second cycle of branch instructions, "IC", (for instruction cache ac-
cess). Fetching of the next sequential instruction access occurs con-

tinuously, and this cycle is also called "IC".



2.1 Cycle Time

Cycle time is dependent on technology and packaging issues which are be-
yond the scope of this paper. Functions such as GPR access, shift, and
add have similar complexity. In ECL technology these functions can be
performed in somewhat less than 10 levels of logic, in TTL and NMOS, in
somewhat greater than 10 levels. Cache access time is dependent on cache
size and the speed and density of array chips. The simple machine has a

L]

"fat" cycle since 2 basic functions are performed sequentially, every

cycle.

2.2 Timing of Some Sequences

Timing diagrams in this paper have the following format: instructions
are labelled with alphabets, A, B, C,..... ; time increases horizontally
and the cycles are labelled 1, 2, 3, ..... ; the stages in the pipe are

represented vertically.
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At the end of cycle 3, the value destined for Rl is in FR. B can execute
in cycle 4 because of the write through from the CREG to the execution

units. Even so, a l-cycle penalty occurs.

(3) Compare Rl . R2 [A]

Branch Address [B]

(Next sequential instruction is C, and the target is T)

7 TR B VR R T
AE | & &) 2
DC



If the branch is not taken, C executes in cycle 4. If the branch is taken,

the target executes in cycle 5 for a l-cycle penalty.

2.3 Performance of the Simple Machine

Given the timing diagrams of important sequences of instructions, the
performance of the simple machine can be estimated. The machine has a
peak performance of one cycle per instruction. However, loads, stores,

1

and branches degrade the performance. Estimated frequencies® of occur-

rence of these instructions are given below:

Loads, stores, and one cycle RR operations have frequencies of 25%, 15%
and 40%, respectively. Branches account for the remaining 20%. A third
of these are unconditionally taken, a third are conditionally taken and

the remaining are not taken.

Throughout this paper we will make assumptions about code character-
istics, compiler optimizations, cache hit ratios, etc. These numbers
can vary substantially from application to application. We do not
claim that the numbers are typical. The estimates are based on ex-
perience with some large codes and allow us to discuss various per-
formance inhibitors and quantify the effectiveness of the performance
enhancement techniques discussed in this paper. We make this dis-

¢laimer once and will not repeat it everywhere,



The performance of the simple machine can be estimated as follows: Each
instruction takes at least 1 cycle. Based on the timing diagram for
branches immediately following a compare, there is no delay for a branch
that is not taken and a one cycle delay for branches that are taken. The
total penalty for branches, with a one-cycle cache is therefore 0.2 x
(2/3) x 1 =0.13 cycles per instruction. Similarly, loads incur a penalty

0.25 x 1= 0.25 cycles per instruction

Sustained performance assuming all memory references are satisfied by the
caches ("infinite cache performance") is therefore 1 + 0.13 + 0.25 = 1.38
cycles per instruction. If the cache latencies are I for the I-cache and
D for the D-cache, the performance is given by 1 + 0.13I + 0.25D. For
I=D=2, the performance degrades to 1.76 cycles per instruction. Cache

latencies are thus critical.

2.4 Instruction Scheduling

Performance can be improved by scheduling instructions to avoid penal-
ties. Such scheduling need be done only on a local basis and does not
involve global analysis. The first technique is to move loads back and
introduce instructions between a load and the instruction that needs the

data fetched by the load. "Branch and Execute'

(BEX) instructions can
be used to reduce branch penalties. The semantics of branch and execute
are: perform the branch test, generate the target address, and execute

the next sequential instruction (Subject). If the branch is taken, exe-

cute the target; else execute the instruction following the subject in-



struction. Load and branch scheduling allow useful work to be done during
otherwise empty cycles. We estimate the following statistics: 25% of
the load instructions cannot be scheduled, 65% can be moved back one or
two instructions and 10% can be moved back only one instruction. Almost
all the unconditionally taken branches can be scheduled as branch and
execute, as can 50% of the conditional branches. If I-cache and D-cache
latencies are each one cycle then only 25% of the loads will incur a
penalty (of one cycle) for a total contribution of 0.25 * 0.25 = 0.0625
cycles per instruction. Only half of the conditionally taken branches
will incur a penalty. The total branch delay is therefore 0.20 * 0.5 *
(1/3) = 0.0333 cycles per instruction. The sustained performance is then

1 + 0.0625 + 0.0333 = 1.1 cycles per instructicn.

More generally, the sustained performance is:

L% .25 (.85 <D=2% & L {(B=1) & .25D)

0200 1130 F (I=1) + (.5/3) % (I=1) +i(.5/3) % (1) )

where I and D are the instruction and data cache latencies, and <n>=0 if

n is negative.

With a single instruction decoded per cycle, the best performance that
can be obtained is 1 cycle per instruction. With scheduling, the simple
machine achieves a peiformance of 1.1 cycles per instruction. However,
the cycle consists of the time required to do twe basic functions, In

what follows, we will describe approaches that achieve close to one cycle

10



per instruction at a "'lean" cycle time; i.e., the cycle consists of the

time required to perform a single basic function.

=i A Pipelined Processor

The performance of the simple machine can be improved if the cycle time
is reduced by pipelining the simple data flow. Figure 2 is a variation
on Figure 1 where the processing of RR instructions is divided into 2

stages:

| Decode | ALU/ROTATE ~+ FR|
The pipeline for loads is

| Decode | ALU -+ DADDR | D-CACHE =+ CREG |
[ | ALU + FR | |

The pipeline for stores is
j | ALU + DADDR | D-CACHE *+ CREG |
| Decode | ROTATE = DATA | |
! | ALU + FR | |

The pipeline for branches is

| Decode | ALU »+ IADDR | I-CACHE -+ IREG |

The first cycle is now called RD. In this cycle, general purpose regis-
ters are accessed and staged in AREG , BREG , and DREG. In the next cycle,
address generation or execution takes place; the result is staged in FR
and can also be "bypassed" to AREG, BREG, or DREG. We assume for now that
the caches remain at 1 cycle latency (possibly by using faster arrays)
and will discuss the effect of increased latency later. Data from the

D-cache is staged in CREG and can be bypassed to AREG, BREG, or DREG.

11
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Both FR and CREG registers ''write through' the GPR file as before. The

reason for the separate adder with the IREG will be explained later.

The result and data bypasses improve performance. Consider the sequence

R, =K. "R [A]

e SRl
R, H SR 1E)
Ry # R By ()

The timing on the pipelined processor without bypasses is:
RD &l -t8i VE

AE (o S s L

The timing on the pipelined processor with bypasses is:
RD | &4} B4 C |
AE - S 1 R ol

1 2 3 4

In cycle 1, registers Rl and R, are accessed and staged in AREG and BREG.

2

In cycle 2, the add takes place; simultaneously, the access of R3 and R4

occurs. During the decode of instruction B in cycle 2, it is determined

that the correct value for R3 will be on bus R late in cycle 2. At thé

end of cycle 2, bus R is gated into AREG (instead of R3). During cycle
3, B executes and operands are accessed for instruction C. The correct

value of R, is now in FR. At the start of cycle 3, R

3 is being written

3
from FR and also being read. This will cause the contents of FR to appear

at the output port of the register file. This example illustrates that

12



whether an operand is in the register file, being computed or waiting in
FR for put away, it is available for use. The bypass from the cache is

required for the same reason. Consider the sequence:

Load R3, Address [A]

R, + R, * Rg [B]

By AR Ry 18]

The timing with the cache bypass is:

RD A B C
AE A 3¢
DC A

At the end of cycle 3, data on the cache bus is bypassed into AREG and
also latched in CREG. Without the bypass an additional cycle would be

lost. Ignoring the IREG adder, the timing for branches is given below.

CR Rl’ R2 [A]

Branch [B]

10 A B G T

RD A B G T

AE A B i

13



In cycle 4, address generation of the branch takes place. In cycle 5,
the target is fetched and a 2 cycle delay occurs. The next sequential
instruction, C, is conditionally decoded in cycle 4. (If this is not

done, a l-cycle delay will occur even if the branch is not taken).

3.1 Performance of the Pipelined Processor

Performance of pipelined processors can be estimated by examining any one
stage and accounting for empty cycles in that stage. This is particularly
important in the presence of instructions which execute for more than one
cycle in a given stage. For example, a branch delay may-not show up in
the AE stage if the latter is executing a multicycle operation when the
branch is encountered. The analysis in this section is based on activity
in the AE stage. To determine the benefits of various mechanisms being
proposed, three cases are discussed below. At the end of this section,
additional techniques to improve performance will be presented. The code

and scheduling statistics given earlier will be used here.

CASE 1 (No cache bypass and no scheduling of loads or branches)

The penalty for a load followed by a dependent operation is 2 cycles.
The total penalty due to loads is therefore 0.25 x 2 = 0.5 cycles per
instruction. The penalty for a taken branch is 2 cycles. With one con-
ditional decode, theré is no penalty for a branch which is not taken.

st

Since two thirds of the branches are taken, the branch penalty is 0.2



(2/3) * 2 = 0.27 cycles per instruction. The sustained performance is 1

4+ 0.5 4+ 0.27 = 1.77 cycles per instruction.

CASE 2 (Bypasses but no scheduling of loads or branches)

With both bypasses, the penalty due to loads is reduced to 1 cycle. The

performance is: 1 + 0.25 + 0.27 = 1.52 cycles per instruction.

CASE 3 (Bypasses and scheduling of loads and branches)

Seventy five percent of the loads can be moved back 1 or 2 instructions,
and in these cases there is no penalty. For the remaining 25%, the pen-
alty is 1 cycle. The penalty due to load instructions is 0.25 x 0.25 x
1 = 0.0625 cycles per instruction. A third of the branches (uncondi-
tionally taken) can be scheduled as branch and execute and the penalty
is 1 cycle; a third are conditionally not taken and these do not incur
any penalty; of the remaining third, 50% can be scheduled and the penalty
is 1 cycle. The remaining branches cause a 2 cycle penalty. The addi-
tional delay due to branches is therefore 0.2 * [ (1/3) * 1+ 0.5 x (1/3)
* 1 4+ 0.5 % (1/3) x 2 ] = 0.167 cycles per instruction. The performance

is: 1+ 0.063 + 0.167 = 1.23 cycles per instruction.

3.2 Relative Branches

The branch penalty (14% of the total cycles per instruction) can be re-

duced further by introducing branches relative to the program counter.



We estimate that 90% of all branches can be coded relative to the program
counter (with a range of * 32K words). This is important because target
address generation for relative branches can be done without GPR access.
The IREG adder is used to compute the target address for relative
branches. In the RD cycle of every instruction, while register access
and decode are proceeding, the displacement field of the IREG is added
tﬁ the Program Counter (PC). The PC is also incremented. Late in this
cycle, a decision is made to gate the next sequential instruction address
or the "guessed" target address. If the branch is not relative, a full
address generation occurs in the next cycle. This is best illustrated
by an example:
Compare Rl‘ R2 [A]

Branch Relative [B]

The timing on the pipelined machine is:

1C & B € T
RD A B T
AE A 3

Several things occur simultaneously in cycle 3. During the RD cycle, the
address adder always adds the displacement field to the PC; PC+4 is also
computed. During cycle 3, it will be determined whether instruction B
is a branch, and if so, whether it is relative. Late in cycle 3, the
compare will complete and the condition will be resolved. If instruction

B is not a branch, or if it is a branch but is not taken, PC+4 is gated

16



to the I-cache at the end of cycle 3. If B is a relative taken branch,
PC+displacement is gated. Otherwise, B is a taken non-relative branch
and a full AE cycle is required. This would occur in cycle 4. The penalty
for a taken branch can thus be reduced to 1 cycle for a majority of the
branches. We estimate that 90% of the branches in each category (uncon-
ditional, conditional taken, conditional not taken) are relative. The

branch penalty is then reduced to:

2 [€1/3) x 1 x 0.1 + (1/3) x .5 x .1 + (1/3) x

3 x 1 x 94 (1/3) x .5%x 2x .1 ] =0.047 cycles per instruction.

The overall performance with special handling of relative branches is: 1

+ 0.063 + 0.047 = 1.1 cycles per instruction.

The various techniques described in this section bring the performance
of the pipelined machine down to 1.1 cycles per instruction at a cycle
much leaner than that of the simple machine. A single basic function is

performed in each cycle.

3.3 Increased Cache Latencies

The effect of increased cache latencies is presented next for the sake
of completéness . Again, let I and D be the latencies of the instruction
and data caches, respectively. Load penalties are given by:

0.25 [ 0.65 <D-2> + 0.1 (D-1) + 0.25 (D) ] = (D-1.4)/4 for D > 1

17



Branch penalties can be calculated from the

CASE Freqg.

Condi-  Taken Relative BEX

tional
Y N - « 353}
N Y Y b e e R
N Y N b (1/3)%.1
Y X Y Y (1/3)x.9x%,
Y ) N Y (1/3)x.1x,
¥ ¥ Y N (L) 3%, 0,
Y Y N N (1/3)%. 1%,

The branch penalty is:

table below:

Penalty
1~Cache I~Cache
0 0
0 =1
1 I
0 1=]

1 I
1 I
2 I#1

(02) = CL/3) [ 10:-9 % (I=1) + 0.1 % I 4 0.9 x 0.5 % (T=1)

o0l ® DuE T 4+ 0,9 % 9.5 ® T 401w 0.5 ® (EEL) ]

= (0.4 - 0.26)/3 cycles per instruction

For I=D=2, the performance is 1.33 cycles per instruction and goes up to

1.71 cycles per instruction if the latencies are 3 cycles.

18



3.4 Additional Enhancements

Several additional techniques can be utilized to improve performance by
reducing branch and load delays. The total delay due to branches depends
on the number of branches dynamically encountered, the delay due to con-

dition resolution and the delay in fetching the target.

5 The branch and execute instruction can reduce the effect of the delay
in fetching the target by scheduling an instruction (which occurs prior
to the branch) as a subject instruction. Branch and execute can be ex-
tended to allow more than one subject instruction. This is useful if the
latency of the I-cache is greater than 1 cycle. For additional flexi-
bility, instructions from the target stream can be scheduled as subjects
by introducing a "branch and execute N or skip" instruction. If the
branch is taken, the N subject instructions are executed while the re-
mainder of the target is being fetched. If the branch is not taken, the
N subject instructions are skipped. If a skip can be implemented faster

than a target fetch, branch penalties can be reduced.

2. A standard loop closing instruction, "DBR COUNT, Address" has the

following semantics: 'Decrement COUNT. If the result is not equal to
zero then branch." The delay in condition resolution can be improved by
providing a more efficient instruction: "BRD COUNT, Address" which

specifies that "if COUNT is not equal to zero then branch and decrement
COUNT". 1In this case, the branch is immediately resolved after register

access and does not have to wait for a full addition. The BRD instruction

19



can be extended to allow subject instructions.

trates the code generation changes.

Program
bg 10 I = 1 ;N
A(I) = B(I)

10 CONTINUE

Pseudo Code Using Standard Loop Closing
COUNT = N

LOOP: A(N - COUNT + 1) = B(N - COUNT + 1)
DBR COUNT,LOOP

Pseudo Code Using New Loop Closing
COUNT = N -1

LOOP: A(N - COUNT) = B(N - COUNT)

BRD COUNT LOOP

The example below illus-

Finally, a generalization of "auto increment" index addressing can be used

to reduce load penalties.

the effective operand address is in R2.

In this case, "Load R1, R2, R3" specifies that

While the D-cache is being ac-

cessed, R2 and R3 are added and the result is placed in R2. The advantage

over progressive indexing is that the operand address is available imme-

diately after register access and a full address generation cycle is not

required.

by 1 cyecle without scheduling.

When this instruction can be used, the load penalty is reduced



3.5 Comments

It should be clear from the analysis in the previous sections that com-
piler scheduling is important. Like other processors, the pipelined ma-
chine described here benefits from compiler optimizations such as
register allocation, common subexpression elimination, reduction in
strength, constant propagation, etc. Except for "branch and execute N
or skip", the additional scheduling discussed in this paper is all done
locally within a basic block. Simple minded algorithms for load sched-
uling and branch and execute take O(nz) and 0(n) time, respectively, when
n is the number of instructions in a basic block. "Branch and execute N

or skip" requires global flow analysis.

In the remainder of this paper, we present techniques to execute long
operations efficiently and discuss the penalties incurred due to finite

caches together with approaches that reduce these penalties.

4. Caches

The performance of the pipelined machine described in section 3 is 1.1
cycles per instruction with a cache latency of one cycle. Increasing the
cache latency can have a large impact on performance. Moreover, all
performance estimates up to now have been "infinite cache', i.e. assuming
all references are satisfied by the cache. The finite cache penalty can

be calculated as:



FCP =m * P cycles per instruction

where m is the miss ratio (in misses per instruction) and P is the average
penalty per miss. If a miss occurs every 20 instructions and P is 20
cycles, performance decreases from 1.1 cycle per instruction to 2.1 cycles
per instruction. The finite cache penalty can thus be a first order de-
terminant of performance. In what follows, the_ constituents of this
penalty are analyzed in more detail. Architecture and machine organiza-

tion approaches to reduce the penalty are discussed.

The penalty per miss can be divided into two main parts: the leading edge
delay (LED) and the trailing edge delay (TED). The leading edge delay
is the number of cycles the processor is delayed until the requested word
is supplied by the memory system. Included in this is the access time
of the next level in the memory hierarchy and transmission time between
the two levels. The leading edge delay can be greater when the processing
of a miss is delayed because a previous miss is in progress ('cluster-
ing"). For a store-in-cache, a modified line must be written back to
memory ("cast-out"), before a line can be brought in ("put away"). De-
pending on the cache system design, this can increase the leading edge
delay. After the processor receives the requested word (which caused a
miss), it competes with the putaway and cast-out for cache cycles and can

be delayed further. This is the trailing edge delay.

The leading edge delay can be reduced by (1) accessing the requested word

first and bypassing it directly to the processor and (2) by placing an-
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other (larger and slower) cache between the first level and the main
memory. The delay due to clustering can be reduced by providing multiple
miss facilities and increased memory bandwidth, but this is expensive.
The trailing edge delay can be reduced by (1) reducing the size of the
cache line, but this can increase the miss ratio, (2) by increasing the
size of the unit that is putaway in the cache every cycle, or (3) by
buffering the requested line and storing it in the cache during free cy-

cles.

4.1 An Example of a Cache System

A particular cache system is presented and analyzed in this section as

an example.

I-CACHE D-CACHE LEVEL 2 MAIN MEM(L3)

Size (KB) 32 32 1024 1M

Line Size (B) 32 32 1024 4096

Associativity & & & Full
Latency (CYCLES) 1 1 4 20

Access rate (BYTES/CYCLES) 4 4 16 16

Putaway rate (BYTES/CYCLES) 4 4 16 16

Store-in ? No No Yes

13
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Comments

On an I-cache miss, words are continuously bypassed to the processor.
On a D-cache miss only the requested word is bypassed. The L2 cache has
a 1KB cast-out buffer. A modified line in L2 is first read out into this
buffer and then stored in main memory. The requested line from main
memory is placed in a 1KB read buffer and written into L2 after the cast
out, if any, is completed. For this system, various delays are estimated

below.
I-Cache

On an I-cache miss, the missing instruction is fetched from the L2 cache.
Assuming a hit in L2, the leading edge delay is 4 cycles. Subsequent
instructions are bypassed to the processor. If no branch instructions
are encountered during the putaway, there is no additional delay. A
second miss can be caused by a taken branch or sequential instruction
fetch across a cache line boundary. Figure 3 illustrates a specific
situation. Instructions B and E miss in the I-cache and F is a branch.
The instruction fetch of B misses in the I-cache in cycle 2. B is
available 4 cycles later., From cycle 7 to 14 the line containing B is
put away in the I-cache. The instruction E also misses in the I-cache
because it happens to be in a new line. The access of this line from L2
does not start until the previous put away is complete. E is available
for decode in cycle 18. The next sequential instruction, F, is a branch
whose target is in the I-cache. However, it cannot be fetched until cycle
27 because the I-cache is busy with a put away. In this example, the

penalty is 19 cycles for 2 misses or 9.5 cycles per miss.

ra
=



ICC ABXXXXPPPPRPPPPXXXXPPPPREPRPPPI

RD A BCD EF T

AE A====BCD========-= EF = === == T

10234 567 890123456778 903 234656789

B MISSES E MISSES BRANCH EARLIEST
DECODE  EXECUTION

OF TARGET

X : L2 ACCESS
P : LINE PUTAWAY

- : CYCLES LOST DUE TO I-CACHE MISSES

19 CYCLE PENALTY FOR TWO CLUSTERED MISSES

FIGURE 3: I-CACHE MISS PENALTY

24a



D-Cache

We will assume the worst case here. For example, the load which misses
is followed by another load (which requires a cache access). Since the
cache is busy for 8 cycles during the line putaway, the full &4+8=12 cycle
penalty is taken for the miss. There are no additional penalties due to

clustering.

L2 - Cache

The different L2 miss cases are illustrated in Figure 4.

In Case 1, there is no cast-out from L2 and there is no clustering (no
L2 miss occurs until the previous one is completely processed). Twenty
cycles after the L1 miss, the quadword (16 bytes) containing the requested
word (4 bytes) is available at L2 and is bypassed to L1. Complete access
of the 1KB line takes 64 cycles. Because of the bypass to L1 these 64
cycles do not show up as a delay in the processor. The L2 delay, seen

at the processor is 20 cycles.

In Case 2, the line being replaced in L2 has been modified and must be
cast out (written back to main memory). There is however, no clustering
of L2 misses. As soon as the main memory access is initiated, the re-
placed line is read out of L2, into a cast out buffer. This takes 64
cycles. When the read out from main memory is complete, the line buffered

in the cast out buffer is written into memory. Twenty cycles after the
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CASE 1 NO CASTOUT, NO CLUSTERING

L3 LATENCY

MAIN MEMORY ACCESS

W 64

L2 MISS BYPASS TO L1

CASE 2  CASTOUT, NO CLUSTERING

|98 64

| 64 I

CASTOUT TO BUFFER

CASE 3 NO CASTOUT, CLUSTERING

|20 64

t 1
L2 MISS 2ND L2 MISS

ADDITIONAL PENALTY FOR 2ND M

CASE 4  CASTOUT, CLUSTERING

|20 | 64

| 64 |

) —
L2 MISS 2ND L2 MISS

ADDITIONAL PENALTY FOR 2ND M

FIGURE 4: L2 MISS PENALTIES
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L2 miss occurred, the appropriate quadword returns to L2 and is bypassed

to L1. The L2 delay as seen by the processor is still 20 cycles.

In Case 3, there is no cast out but a second L2 miss occurs while the first
one is being processed. Assume that the second miss occurs midway between
the 64 cycle readout of the previous L2 line. The processing of the
second miss waits until the first has completed and is delayed for an

additional 32 cycles.

In Case 4, both cast out and clustering occur. We assume that the miss
occurs midway between the period when the main memory is busy with the
first request, i.e., just after the readout from main memory and just
before the write back of the line cast out of L2. In this case, the

processing of the second L2 miss is delayed an additional 64 cycles.

To estimate the finite cache penalty, the frequency with which various
events occur is needed., We assume that an I-cache miss occurs every 60
instructions, a D-cache miss occurs every 50 instructions, and an L2 miss
occurs every 300 instructions on the average. We further assume that due
to clustering, an instruction miss incurs a 9.5 cycle penalty as in the
example. We assume the probability of cast out from L2 is 0.25; when
there is no cast out, the second miss occurs half way through the main
memory access with probability 0.5 and after the main memory access with
probability 0.5; when there is a cast out, the second miss occurs imme-
diately after the main memory access with probability 0.8 and after the

main memory writeback with probability 0.2. We can now estimate the total



finite cache penalty. The instruction cache miss penalty is (1/60) * 9.5
= 0.16 cycles per instruction. The data cache miss penalty is (1/50) *
12 = 0.24 cycles per instruction. For L2 misses without castout the av-
erage penalty is 0.5 * 20 + 0.5 * 52 = 36 cycles. In the presence of
castout, the average penalty is 0.8 * 84 + 0.2 * 20 = 71 cycles. Since
the castout occurs with probability 0.25, the average L2 miss penalty is
0.25 * 71 4+ 0.75 * 36 = 45 cycles. The degradation due to L2 misses is
then (1/300) * 45 = 0.15 cycles per instruction. The total cache miss
penalty is the sum of the contributions from the I-cache, the D-cache and
L2 and is 0.16 + 0.24 + 0.15 = 0.55 cycles per instruction. Without the
Level 2 cache, the penalty would be approximately 1 cycle per instruction

with simple controls.

We stress that this exercise is for illustrative purposes only to identify

the various constituents of the finite cache penalty and a very crude

method of estimating this penalty. For a given cache system, accurate

estimates must be obtained through detailed trace driven simulation. It

should be clear from this example that finite cache effects are a first

order determinant of performance and that clustering, cast outs, and line

putaway can increase delays significantly, beyond basic memory latencies.

4.2 Architectural Support for Caches

Cache penalties can be reduced by providing explicit cache management
instructions [2]. This approach is very important for high performance

systems. Examples of such instructions are:



(1) Establish a line in the cache without moving any data from the next

level in the hierarchy.

(2) Invalidate a line.

(3) Write back a line if modified.

The first two can be used to reduce the traffic between the cache and the
next level. If a new temporary storage area is being created, instruction
(1) can be used. If computed values have been used and are no longer
required, instruction (2) can be used. With (2) and (3), I/0 can proceed
directly to main memory; cache lines can be flushed and invalidated only
when necessary. If this software approach is not used, hardware designers

have two options for handling I/0:

1. Move the I/0 data physically through the cache. This reduces the hit

ratio,

2. Interrogate the cache directories on every access and invalidate or
flush as necessary. This slows down the processor due to cache in-

terference created by the I1/0.

With IMB of L2 and 1GB of main memory (as in the example cache), a large
amount of mapping information must be maintained to control the caches.
Efficient mapping mechanisms can be designed if it is guaranteed, through

software conventions, that there is no aliasing: i.e. the same physical
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data will never be referred to by two different virtual addresses. One

such mapping mechanism is described below.

Let the virtual address be 32 bits V(0-31) where bit 31 is the least
significant bit and let the virtual page size be 4KB. Each of the I and
D-caches is 32KB, 4-way set associative and has a line size of 32B.
V(17-24) is used to access one of the 256 congruence classes. All &4 sets
in the directory and cache arrays are read out simultaneously in one cy-
cle. Late in the cycle, the information in the directory is compared
against the 17 high order bits of V to determine whether the requested
word is in the cache and if it is, one of the four words read out of the
cache arrays is transmitted to the processor. Virtual to real translation
is done on 4KB pages. The directory was accessed using 8 bits, of which
V(17-19) are subject to translation. If aliasing were allowed, 8
congruence classes would have to be searched to determine a cache miss.
In the absence of aliasing, a single search is sufficient. When the di-
rectory is organized as above, the cache is called a "virtual" cache since
it is accessed using a virtual address. If a virtual cache is used, cache
management instructions can specify virtual addresses and need not be
privileged operations. Program execution can then be optimized without

operating system calls.

L2 is 1MB, 4-way associative, and has a line size of 1KB. The same
mechanism can be used for L2 as well. A congruence class is accessed
using V(14-21). V(0-13) is compared against the directory entry contents

to determine a match and one of 4 lines is selected after the L2 arrays

K2
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are accessed. If L2 is not busy, the L1 and L2 directory accesses can
be done in parallel to reduce the leading edge delay on an L1 miss. The
corresponding main memory address can be kept in the L2 directory entries
to locate a line in main memory rapidly. In addition, a full inverted
page table for L3 can be maintained in memory and accessed by a small

finite state machine to provide full coverage of main memory [&4]

5. Long Operations

Consider a reduced instruction set processor with added instructions for
frequently performed complex operations such as "Move Characters' and
Multiply. Assume that the frequencies are: Branches 20%, Loads 25%,
Stores 15%, Multiplies 2%, and one cycle register to register instructions
35.95%. Assume further that short character string moves (< 8 bytes) are

2% and long moves (1000 bytes are 0.05%).

Assume that a multiply takes &4 cycles, a 1000 character move 500 cycles,
and the short move 5 cycles. The performance of the pipelined machine
of Section 3 can be calculated by adding the extra cycles for the long
operations (appropriately scaled by frequency) to the base performance
of 1.1 cycles per instruction. The performance is 1.1+ 0.02 x 3 + 0.0005
x 499 + 0.02 * 4 = 1.5 cycles per instruction where the instruction set
has both simple and complex instructions. If the complex functions are
coded using a sequence of simple instructions, the performance remains
close to 1 cycle per instruction, but the number of instructions executed

increases. In either case, the complex functions must be executed as
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efficiently as possible. In this section we discuss four categories of
complex instructions: Storage to register (RX) operations, character
moves, fixed point multiply, and floating point arithmetic. Architec-

tural support for character string moves and fixed point multiply was

defined in the original 801 architecture [2].

5.1 RX Instructions

RX instructions can be included in an architecture to improve performance,
reduce register usage and reduce code space. Since our focus is on per-=
formance, we will consider the first point in more detail. The computa-
tion J = I1 + I2 R + In requires n+2 instructions if RX adds are
used and 2n+2 if they are not. On some processors, this can result in
improved performance; on the processors discussed in this paper, it does
not. The RX add requires two additions, one for address generation and

the other for execution. Our pipelined machine has a single adder, and

an RX add will therefore take at least two cycles. The execution of se-

quence of RX adds (A, B, C, D, ....) on the pipelined machine is given
below:

IC A B C D

RD A B ¢ D

AE ) £ B A B.C D € D

DC A B € B
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To achieve this speed, control information about A must be maintained in
cycles & and 5. The same performance can be obtained on the pipelined

machine without RX instructions and simple controls by scheduling loads.

To obtain a speed of 1 cycle per instruction on RX adds, a processor with
2 fixed point adders is required. A straightforward approach is to

pipeline the processing into 5 stages:
| I FETCH | DECODE | AGEN | D FETCH | EXECUTE |

Though many variations are possible, one generic approach is discussed
in more detail. Two copies of the general purpose registers are provided,
one for the Address Generation adder and the other for the Execute adder.
The copies are kept identical by simultaneously updating both of them.
The instruction is fetched in the first stage. The decode and register
access for address generation takes place in the second stage. The ad-
dress is computed in the third stage. In the fourth stage, data is
fetched from the cache and the registers are accessed. Execution takes
place in the fifth stage. A simple RR add could execute in stage 2, but
this complicates the hardware. To keep the controls and data paths sim-
ple, all instructions go through the 5-stage pipeline, and execute in the
last stage. We will call this machine the two adder machine. The per-
formance of the pipelined machine and the two adder machine is compared

on two sequences to determine the advantages of RX operations.



Sequence 1

Add R, ADDRESS  [A]
Rg ¥ 8y ™ Ry, (5]
COMPARE R, R, (c]
BRANCH T (D]

(Branch is taken)

Timing on the two adder machine

IC go B e D 1

RD A * = D &L

AG Al = = D iy

DC A - - . T

EX & B € D T

1 S ;S R - (S S G el
Cycle 7 is the earliest point at which the target T can be fetched
(without branch prediction mechanisms). The target is fetched as soon
as the address is available but prior to branch resolution. This com-

plicates the controls. Execution completes in cycle 11.

Code for the pipelined machine after scheduling

Load R, ADDRESS [A]
B R R, (B)
R, R * R, [C]
COMPARE R,, R, [D]
BRANCH T (E]
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Timing on the pipelined machine

IC

RD

AE

DC

10

The target is fetched after branch resolution and is initiated one cycle

later.

Sequence 2

Add Rl
Rl + R
Add R1

R3 + R

L]

2

4

ADDRESS

R
(R

* R

3
)

3

[A]
[B]

(C]

Timing on the two adder machine

IC

RD

AG

DC

EX

However, the sequence completes one cycle earlier.



Ta

Code for the pipelined machine after scheduling

Load R&’ ADDRESS [A]
R, # R *R; [B]
R, + R, * Ry (C]
Load RS' (R3) [D]
Ry + R, Ry (E]
RS + Rl ¥ R1 [F]

Timing on the pipelined machine

IC A B g D E F

RD A B & D E F

AE A B €& B E ¥
DC A D

Though two more instructions are executed, the final add completes omne

cycle earlier.

RX operations require additional code points, and this can be significant
if the full cross product of {loads}x{RR operations} is supported. For
processors like the pipelined RISC machine, RX instructions can be in-
cluded to save code space if the code points are available. They should
be used only when nothing can be scheduled between a LOAD RZ’ ADDRESS and

R1+R2+R | Sequence. For machines like the two adder machine, significant
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performance improvement can be obtained on some sequences; on others the

utility is questionable.

5.2 Character String Moves

Moving an arbitrary string of bytes from one location to another is a
common operation. The preferred semantics are described below assuming
that the source and target have the same number of bytes, B. Let the
SOURCE string be in addresses §, S+1, ..., S+B-1 and let the TARGET string
be in addresses T, T+1, ..., T+B-1. The effect of the move, TARGET +

SOURCE, should be

TEMP « SOURCE

TARGET + TEMP

The 370 architecture has MVC and MVCL instructions for moving character

strings, neither of which has these semantics. The operation of MVC is:

FOR I =1 to B DO

T(I=1) + 8(I-1)

By setting S=T-1, the character in location S can be propagated throughout
memory. In the case of MVCL, no move takes place if S<T<S+B-1 (Destruc-
tive overlap). Otherwise, the move takes place according to the preferred

semantics. (MVCL is actually much more complex and general than described



{2

here). In this section we will discuss approaches to executing character

moves on the pipelined RISC machine.

The move can be implemented without use of a temporary string as follows:

IF T<S THEN
FOR I=1TO B DO
T(I-1) « S(I-1)
ELSE
FOR I =1TO B DO
TEB=1) € B(B~I)

END.

Thus, if T < §, the move starts from the beginning of the string and
proceeds forward. If T >S the move starts from the end of the string and

goes backward.

Figure 5 shows a character string move of 8 bytes. To accomplish this
on a register machine, two functions are required: "extended shift" and
"partial store". The extended shift function allows the entire source
string to be shifted left or right across word boundaries. In Figure 5,
the source and target strings are not aligned with respect to each other
or on word boundaries. The source string must be shifted left one posi-
tion beforg it can be stored at the target address. This is accomplished
by fetching a word, rotating it, leaving the result in a special register,

merging the rotated word with the previous contents of the register and
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storing the result. For the first and last words stored, only selected
bytes are changed (refer to figure 5). A partial store function is re-
quired to achieve this. Statistics indicate that most character moves
are quite long or very short. The approach for long moves is described
first. An instruction ROTATE AND STORE RC, RT, RN where register RC
contains the data (D), RT contains the target byte address (T), and reg-
ister RN specifies the rotation (N) is used. |[N| is always a multiple
of 8 and is the amount of the rotation (0, 1, 2 or 3 bytes). If N is
negative a left rotation is specified else a right rotation. A mask M1

is generated as specified below:

Generation of Mask M1

ROTATE AMOUNT DIRECTION MASK
0 Left 1111
8 Left 1110
16 Left 1100
24 Left 1000
0 Right 1111
8 Right 0111
16 Right 0011
24 Right 0001

The Rotate and Store instruction executes on the data paths of the pipe-

lined machine as specified below:

RD CYCLE

Access general registers RC, RT, and RN
AE  CYCLE

Rotate D as specified by N

Place the result Y in register SP
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Generate M1

Merge Y with the previous contents of SP to get X
(For each byte, select from Y if M1 is 1 else select from SP)

Increment T by 4
Place this value in FR for updating RT
DC CYCLE

Store X at the new value of T

Storage is addressed as shown in Figure 5. Let S and T be the source and
target addresses. Assume that T€ S, i.e., the move starts from the be-
ginning of the strings. Let s = 8 mod 4 and t = T mod 4. Let N = (t -
s) * 8. Let 8§, T - 4, and N be in general registers RS, RT, and RN, re-
spectively. Ignoring boundary conditions, the innermost loop for a long

move is given below:

LOOP: Load RC from address in RS; RS « RS + 4
ROTATE AND STORE RC, RT, RN
COMPARE RT, RLIMIT

BRANCH LT, LOOP

The loop can be optimized:

LOOP: Load RC from address in RS; RS + RS + 4 [A]
COMPARE RT, RLIMIT' [B]
BRANCH LT AND EXECUTE RELATIVE, LOOP [C]
ROTATE AND STORE RC, RT, RN [D]
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Where RLIMIT' = RLIMIT - &4 the timing on the pipelined machine is

1IC ] A1 | B1 | €1 ] D1 | A2 | | | | | | |

RD | | A1 | B1 | C1 | D1 | A2 | | | | | 1
AE | | | 41 ) B1 | €1 | D | 42 | | | | 1
DC | | | | Al | | | D1 | A2 | I | |

The move occurs at one byte per cycle. This is half the maximum possible
speed on the pipelined machine since a load a store of a word each takes
one cycle. Data can be moved at close to two bytes per cycle by unrolling

the loop.

We now discuss an approach for moving short character strings (£ 9 bytes)
rapidly. Figure 6 describes the basic hardware algorithm. The move is
achieved by loading (at most) three general registers, rotating the data
appropriately and storing in the target location. Let B = number of bytes
to be moved, S = the source address, T = the target address, s = S mod
4, t =Tmod 4, s' =4 - s, andt' =4 - t. t and t' are recalculated
from T each time they are used. ROTATE LEFT/RIGHT RO AND STORE RT is used
in the flowchart to specify hardware controls similar to the ROTATE in-
struction described previously except that the direction of rotation is
explicit and the amount is calculated separately. In addition to M1, a
4-bit mask M2 consisting of 1s surrounded by Os is generated as follows:
The number of left hand zero bit: = t; the number of right hand 0 bits =
4 - (t + "number of bytes stored"). 1In the DC cycle data is selectively
stored in the cache, i.e., only those bytes in the word are stored for

which M2 = 1. The reader should simulate the algorithm in Figure 6 for
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an example move ignoring hardware considerations. With extra state (for

B and s), some controls and an additional bypass, the algorithm for short

moves can be implemented efficiently on the pipelined machine.

Character moves can be initiated by defining a special instruction

OP RS RT RB

RS contains S, RT contains T, and RB contains B.

The semantics are:

If RB £ 9 then execute the (hardwired) algorithm for short

moves after setting the required state else NOP.

The sequence of instructions following this would compare RS and RT and

branch to the appropriate code for the long moves.

5.3 Fixed Point Multiplication

One approach to fixed point multiplication is to use the modified Booth's
algorithm [5]. The multiplier Y is divided into 3-bit groups, with ad-
jacent groups sharing a common bit. X is the multiplicand, 0, X, -X, 2X
or -2X is added to the partial product in accordance with the table below;
(bit 0 is most significant). After each action, the partial accumulation

is shifted right two positions with respect to the new partial product.
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BIT OPERATION

Yoot t i1
0 0 0 +0
0 0 1 +X
0 1 0 +X
0 1 1 +2X
1 0 0 2%
1 0 1 X
1 1 0 -X
1 1 1 -0

Special instructions can be defined to implement multiplication on the
pipelined machine using this algorithm. Register positions are numbered
from left to right, 0 to 31. The SP register is loaded with Y the mul-

tiplier. An instruction, MULT R R, executes one step of the modified

y 1 i)
Booth algorithm.
The semantics of MULT Rl, R

(where R, contains the multiplicand) are:

2 2
Form PARTIAL PROD from Rz as indicated in table (with Yivl, Yi’ Yi+1 re-

placed by SP30, SP31, and C, where C is a flag).

SUM +« Rl + PARTIAL PROD {34 bit sum}
Rl + 32 high order bits of SUM

¢ + SP30

SP(2-31) + SP(0-29)

SP(0~-1) + 2 low order bits of SUM

a2



With a one bit shift at the input of the ALU, the above steps can be done

in the AE cycle,

The code for a 32-bit multiply, with R3 containing the multiplier and R2

the multiplicand, is:

SP + R3 {Multiplier}
INIT MULT Rl {Clear Rl and C}
MULT Rl’ RZ

16 times
MULT Rl’ R2

These 18 instructions execute a 32-bit x 32-bit multiply in 18 cycles.
On completion, the low order bits of the result are in the SP register
and the high order bits are in Rl'

It should be stressed that for applications where multiply time is im-

portant, high speed multiply should be implemented in hardware.



5.4 Floating Point Operations

Several compute intensive engineering/scientific applications contain a
large fraction of floating point operations. Obtaining very high per-
formance in such environments requires that floating point arithmetic be
executed in special, dedicated hardware. Software simulation on RISC
machines, even with special support, is quite inadequate. In this section
we will present an approach to achieving very high performance on
engineering/scientific applications by using a RISC machine enhanced with
pipelined floating point hardware. We will show how vector speeds can
be attained without a vector architecture. The approach is an extension
of the concepts presented thus far in the paper: architectural support
for concurrency, careful branch and interlock handling, and a strong em-

phasis on compiler optimizations.

To motivate the approach, we will identify an important bottleneck in
conventional scalar machines and illustrate how vector architectures can
alleviate this bottleneck in special circumstances. This will also

highlight a fundamental difference between RISC and vector architectures.

An important bottleneck in conventional machines is a control bottleneck™
Each instruction must be decoded in the specified order to ensure that
interlocks are placed so that the computation occurs as specified. The
overall execution time.can be no less than the time to decode all the
instructions. This limitation can be clearly illustrated with a simple

example. Consider the computation shown below:



DO 10 T =1, 100
A(I) = C * D(I)

10 CONTINUE

The primary operation is a floating point multiply and the design of
pipelined hardware to execute this rapidly is well understood. The con-
trol problem becomes evident when a pipelined multiply unit is part of a

scalar processor. The computation could be coded as below:

LOOP: Load
Mult
Store
Compute Index
Test Index

Branch Loop

The peak rate at which this computation can execute assuming one in-
struction initiation per cycle is six cycles. Advanced pipeline
processors can actually sustain this rate during the execution of the
loop. The pipelined multiplier can accept a pair of operands and deliver
a result every cycle. The execution rate is therefore one-sixth the peak
multiplier rate. Clearly, RISC machines suffer from this basic limita-
tion. In a vector architecture the computation would be coded using in-
structions that operate on entire vectors. When a single vector

instruction is decoded, the hardware takes over and can initiate several
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operations automatically. The instruction decode bottleneck is thus re-

moved. The previous computation would be coded as:

Load Vector D
Multiply Vector D by C

Store Vector A

Using "chaining", vector processors can execute the computation at a rate
of one result per cycle, or 6 times faster than the scalar processor.
The real speed-up on the loop is less because the peak speed is attained
only after various pipelines are full and is a complex function of

start-up time, vector length, and main memory bandwidth.

Assume that the computation under discussion constitutes the main part
of an application which takes 100 seconds on a pipelined scalar processor.
90 seconds are spent in the loop and 10 seconds on overhead tasks such
as setting up the arrays, input, and output. The application is now
"vectorized", a vector unit is added to the scalar machine, and the vector
instructions execute in this unit. For the example under consideration,
the speed-up, V, is 6 (ignoring start up) and the 90 seconds are reduced
to 15. The net speed-up is 100/25 = 4. We will define percent
vectorization, f, as 90%, since 90% of the initial workload was affected

by vectorization.

Some important points can now be made about vector processors. The reader

is referred to Figure 7. The family of curves B represent a simplified
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view of the performance of vector machines at several values of V (the
speed up, while executing vector instructions): If f consistently lies
in the 80 - 100% range, the design point is fairly evident: a very fast
vector unit, a high bandwidth memory system, and an adequate scalar
processor. The sophistication of the hardware is directly dependent on
cost considerations. Thus, moving from V=5, to V=10 may require doubling
the number of arithmetic units and memory bandwidth. At 80-100%
vectorization, this added hardware can be well utilized; at 40-60% it will

idle most of the time.

Percent vectorization, though critical to performance, is difficult to
pin down. It is a very complex function of the application, algorithm,
compiler sophistication, and architecture. Let fl be the fraction of
parallelism in an application. Only a fraction fz of this may be
vectorizable depending on the algorithms chosen. Furthermore, a compiler
may only detect a fraction f3 of this even assuming an infinitely robust
architecture. Finally, a fraction (1 - fa) may be lost due to the ar-
chitectures inability to support all forms of vectorization. If each f
is 90%, only 60% of the parallelism may be exploitable through
vectorization, For some very large, structured engineering/scientific
problems each f may be arbitrarily close to 1 making vector processing
an extremely attractive solution. New inventions in algorithms and
problem reformulation can also cause percent vectorization to go up.
However, except for very special computations, vectorization in the 80%
to 100% range over a long period of time is the exception rather than the

rule and sustained performance is often 1 to 2 orders of magnitude lower
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than peak performance. In our opinion, vector architectures are an ele-
gant approach to high performance on some computations. Employing a
vector approach more generally increases the complexity of algorithm de-
sign, compiling, the architecture, and the hardware and much of the ele-

gance is lost.

One approach to obtaining high performance without vector instructions
is to dispatch multiple instructions to the execution units every cycle.
This corresponds to a more general though also more limited form of con-
currency than vector instructions. By allowing out-of-sequence exe-
cution, special handling of branch instructions, and providing pipelined
execution hardware, very high performance can be obtained on unstructured
code. We call such machines superscalar processors. (Unstructured code
typically does not vectorize because of numerous data dependencies and
branches.) Since superscalars exploit concurrency even on unstructured
computations the performance can be expected to be higher than a conven-
tional scalar machine. 1In Figure 7, the performance is shown to be a
factor of 2 better than a conventional scalar processor (see curve A).
Once the instruction issue rate is improved and high performance floating
point hardware is added, the processor executes structured computations
(the kind that normally get vectorized) at very high speeds. In fact,
the performance on structured code is better than the performance on un-
structured code. The performance of the machine increases with the per-
centage of structured code as shown in curve A, Figure 7. Scalar machines

exhibiting such behavior have been built. An example is the IBM 360/91.



Curve A crosses curve B, V = 10 at approximately 80% vectorization. If

f lies in the range of 40-60%, clearly the superscalar approach has merit.

To explain the overall superscalar approach, we will start with the ma-
chine organization shown in Figure 8. On the surface, this is a fairly
common block diagram. There are several units: Dbranch, fixed point,
floating point, etc. Each unit has a queue to hold incoming instructions,
a decoder, registers, and pipelined execution hardware. The goal is to
fetch and dispatch N instructions every cycle, one to each unit. If this
is attempted in a straightforward manner for an existing architecture (ex.
IBM System 370), the dis?atcher quickly becomes the bottleneck. It must
detect and set interlocks between several instructions simultaneously.
In the superscalar machine, this bottleneck is alleviated by moving some
of the work from run time to compile time in a fairly straightforward

manner.

Some approaches (example MIPS [3]) move all interlock handling to compile
time. It is the compiler's responsibility to schedule instructions in
such a manner that when a particular instruction is seen by the hardware,
it is guaranteed that all operands are available. This is quite con-
straining. It is often possible to get significant improvements in per~®
formance by designing execution units that compute an answer very rapidly
in 90% of the cases and once in a while take longer. Such designs cannot
be used in the MIPS approach. In environments with caches and asynchro-
nous memory references it is not possible to predict access times and

using the worst case is not meaningful. Interlocks must exist for these
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reasons. In the superscalar approach, interunit interlocks are set at
compile time and tested at run time. Within each unit, decoding and
interlock handling is done in the usual manner. This simple innovation
allows the dispatcher to issue instructions without being concerned about
interlocks. In effect the original single instruction stream is broken
into multiple streams at run time. These streams execute asynchronously
with hand-shaking on an as needed basis. Two forms of concurrency are
thus exploited. The decoders in the functional units are active simul-
taneously and within each unit, instructions execute in a pipelined man-

ner.

The superscalar uses a reduced instruction set approach augmented with
full fixed and floating point arithmetic and provides architectural sup-

port for concurrency.

In contrast to simple implementations of reduced instruction set archi-
tectures, the superscalar has a lot of concurrency and instructions are
processed in a pipeline fashion. The main extension to the 801 archi-
tecture lies in the fact that this concurrency is exposed to the compiler
in several ways. Instructions are separated into well defined "archi-
tectural classes". Each class has its own set of registers. Instructions
in one class do not refer directly to registers of another class. Special
instructions are provided to move information from one class to another.
Architectural support is provided for compile time interlock setting.
The opcode assignments are carefully made so that it is trivial for the

dispatcher to recognize the architectural class of an instruction. These
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features which provide explicit architectural support for multiple exe-
cution units are key to obtaining very high scalar performance and a lean

cycle.

In addition to the branch optimizations discussed in section 3, techniques
such as loop unrolling, loop jamming, and loop splitting [6] can be used
to further reduce the number of branches executed. An example of jamming

is given below.

Before Jamming

DO 19 &' =1, N
51

10 CONTINUE
DO 20 I =1, N
52

20 CONTINUE

After Jamming

DO 10 I =1, N
51
S2

10 CONTINUE

Let S1 (J) denote the execution of S1 when the loop control variable I
has a value J. The execution sequence in the original program fragment
is

$1(1), 51(2), ... BU(N), 82(1), B2(2), .. SIN):

L
s



After jamming, the sequence would be
S1(1), s2(1), S1(2), S2(2), ... S1(N), S2(N).

This optimization is legal if and only if, for all values J of the loop
control variable I, the inputs of S2(J) do not depend on S1(J + 1)
S1(N) and the outputs of S2(J) do not change the inputs of S1(J + 1), ...

, S1(N). _ &

A very general form of loop unrolling is shown in Figure 9. Though the
amount of static code is large, the main loop contains a‘single branch.
If the loop bounds, N1 and N2, are known at compile time, much less code

need be generated.
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Before unrolling

DO 10 I = N1, N2
S1
10 CONTINUE

Code for M-Way Unrolling

I =N1

IF N2 < N1 GO TO LO
P=N2 = N1 +1

J =P MOD M

K = (P-J)/M

IF J=0 AND K=0 GO TO LO
IF J=1 GO TO L1

IF J=2 GO TO L2

IF J=M-1 GO TO LM-1
Loz &1
I=1+1
GO TO EXIT
1y 53
I=1+1
IF K=0 GO TO EXIT
GO TO MAIN

LM-1:51
I = 1I+1

S1

I=1+1

IF K=0 GO TO EXIT

GO TO MAIN
MAIN:S1

I=1+1

S1

I=1+1

IF T < N2 GO TO MAIN
EXIT:

FIGURE 9

M-1 times

M times

[¥3]
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An example of using loop splitting is shown in Figure 10. The aim is to
remove the branch inside the main loop by handling &4 cases separately.

The four cases are:

(1) J = Nl. The corresponding execution sequence is

-

S1(N1), S3(N1), S1(N1 + 1), S2(N1 + 1), S3(N1 + 1), ...,S1(N2),

S2(N2), S3(N2)

(2) N1 < J < N2. The corresponding execution sequence is

STIENEY, SBEUNTY, BSNL), . oy SUGET = 10 8200 = 1Y, B30T = 13, S,
S30Jyy 81T + 1), 82(3 + 1), 53T + 1), ..., SLINZY, S2(N2), 53(N2)
(3) J = N2. The corresponding execution sequence is

SLONLY, SZINLY, S3(NYY, ..» o SLNZ « 13, S2(N2 = 10, 82IN2. = 1),

S1(N2), S3(N2)
(4) J > N2. The corresponding execution sequence is
STNLY, S2(N1), 83¢N1Y, ... , SL(M2), 82(N2), S3I(N3)

The main loop after splitting is DO 10 I = L1, L2 and it does not contain

a branch.
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Before splitting

DO 10 I =
S1

N1, N2

IF I =J GO TO 20

52
20 53
10  CONTINUE
1000

After splitting

L1
L2
IF
IF
101 DO
S1
52
83
10  CONTINUE

N1
J=1
=N
> N

= oo N

1
2
0I=

THEN GO TO 11
THEN L2 = N2
L1, L2

IF L2 = N2 GO TO 1000

11 L2 = L2 +
S1
S3
If 12
L1 L
L2 =N
GO TO 101

2
2

1000

FIGURE 10

1

N2 GO TO 1000

1
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The superscalar approach was extensively evaluated through paper designs
and simulation at the register transfer level (including the processor
and memory system). The results were extremely high performance on un-
structured computations (approximately one cycle per instruction includ-
ing floating point instructions) and vector speeds on structured
computations (one floating point operation per cycle; extension to 2 is
fairly straightforwar&}. This is achieved with a lean cycle. In pipe-
lined machines the data flow can be partitioned (within limits) into very
lean stages. The controls are more difficult to handle. These are not
a bottleneck in the superscalar machine because of the approach to

interlocks and partitioning of functions.

The superscalar approach can be summarized as follows. The architecture
largely preserves the basic Single Instruction Stream Single Data Stream
(SISD) model. As a result, standard optimizations and locality (in-
struction buffers, data caching, register usage) can be exploited. Fun-
damental bottlenecks to instruction dispatching are removed. As a result,
the machine is flooded with instructions (the number active is a function
of the amount of buffering provided). The instructions then execute based
on the availability of operands and execution resources. One future
challenge is to determine whether this approach can be significantly ex-
tended to obtain higher degrees of fine grain parallelism. Multiple
dispatchers with super efficient hardware interlock mechanisms is one

possibility.
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6. Summary

Very generally, the performance of a pipelined scalar processor that de-
codes a single instruction every cycle is given by

1+ (fi * pi) cycles per instruction

where fi is the frequency with which certain pipeline disruptions (such
as branches, dependencies, cache misses) occur and Py is the corresponding
penalty per disruption. This paper has presented compiler, architecture,
and machine organization approaches that reduce the delays caused by the

disruptions.

Sections 2 and 3 described a series of techniques to execute simple in-
structions very rapidly. The results are summarized below where SM and
PM denote the simple and pipelined RISC machines and C/1 denotes cycles

per instruction.

Processor Cache Functions/ Comments Performance
Latency Cycle(F/C) C/1 (C/I)*(F/C)
SN 3 2 No scheduling 1.38 2.76
SM 1 2 Scheduling 1.1 2.2
PM o 1 No cache bypass, L La77

No scheduling

PM 1 1 No scheduling L5 1.52
PM 1 1 Scheduling 1.23 1.23
PM 1 1 Relative branches =l 1.4
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By designing the architecture with the machine organization and compiler
in mind, infinite cache performance close to one cycle per instruction
can be achieved with modest amounts of hardware and a lean cycle (8-10
levels of logic). Whenever a new feature is considered (to reduce cycles
per instruction), the impact on cycle time must be analyzed. The mech-
anism for relative branches reduced the total cycles per instruction from
1.23 cycles per instruction to 1.11 cycles per instruction. Branch re-
solution and late select in the decode cycle on-the branch could cause
the cycle time to increase. If the increase is iO%, (one more level of

logic in a 10 stage path), the mechanism provides no advantage.

As the processing speed of a pipelined machine is increased, the effects
of finite caches become very significant. An analysis of delays and ap-
proaches to reducing them were presented in section 4. Some relief can

be obtained by proper architecture design.

Efficient execution of long operations was discussed in Section 5. We
presented a reduced instruction set approach to character string moves
which achieves the moves at the maximum speed possible on the given data
paths (two bytes per cycle). Fixed point multiply can be executed rea-
sonably fast (18 cycles) with proper architecture support. For very high
speed execution, special hardware must be used. High speed execution of
floating point arithmetic is not possible using single cycle in-
structions. We presented an approach that uses a RISC machine augmented
with pipelined floating point hardware. Using an extension of the 801

philosophy, this approach utilizes concurrency to obtain very high per-
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formance on unstructured computations and vector speeds on structured

computations without a vector architecture.

i ]
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