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Abstract. L-moments and L-moment ratios are quantities useful in the summa-
rization and estimation of probability distributions. Hosking (J. R. Statist. Soc. B,
1990) describes the theory and applications of L-moments. Here we give an expanded
discussion of some of the theory in Hosking (1990), including in particular proofs of
Theorems 2.1, 2.2 and 2.3 of that paper.






1. L-moments: definitions and basic properties

Let X be a real-valued random variable with cumulative distribution function F(z)
and quantile function z(F'), and let X1, < X5, <...< X,,., be the order statistics of
a random sample of size n drawn from the distribution of X. Define the L-moments
of X to be the quantities

_ -1
P =T 12 ( L )EXT,W, r=12,.... (1)

The L in “L-moments” emphasizes that A, is a linear function of the expected order
statistics. Furthermore, as noted in Hosking (1990, section 3), the natural estimator
of A\, based on an observed sample of data is a linear combination of the ordered data

values, i.e. an L-statistic. The expectation of an order statistic may be written as

rl

BXjo = iy ] SF@Y - F@)y @

(David, 1981, p. 33). Substituting this expression in (1), expanding the binomials in

F(z) and summing the coefficients of each power of F(z) gives

1
A :/ o(F)P* (F)dF, r=1,2,..., 2)
0
where .
F) = ZP:k F*
k=0
and

o)1)

P*(F) is the rth shifted Legendre polynomial, related to the usual Legendre polyno-
mials P.(u) by P}(u)= P,(2u—1). Shifted Legendre polynomials are orthogonal on
the interval (0,1) with constant weight function (Lanczos, 1957, p. 286—though his
Px(.) differs by a factor (—1)" from ours). The first few L-moments are

M =EX :/x.dF
/\ZZ%E(X2:2—X1:2) :/ (2F —1)d
/\3:%E(X3:3—2X2;3+X1:3) :/ 6F2 6F +1)dF,

/\4:iE(X4:4—3X3;4+3X2;4—X14 / (20F® —30F*+12F — 1) dF .



The use of L-moments to describe probability distributions is justified by the

following theorem.

Theorem 1. (i) The L-moments \,, r=1,2,. .., of a real-valued random variable
X exist if and only if X has finite mean.

(ii) A distribution whose mean exists is characterized by its L-moments {\,:r =
1,2,...}

Proof. A finite mean implies finite expectations of all order statistics (David,
1981, p. 33), whence part (i) follows immediately.

For part (ii), we first show that a distribution is characterized by the set { EX,.,,
r=1,2,...}. Thishas been proved by Chan (1967) and Konheim (1971): the following
proof is essentially Konheim’s. Let X and Y be random variables with cumulative

distribution functions F' and G and quantile functions z(u) and y(u) respectively. Let
£ = gX,. =r / {F(2)y WdF(z), €Y =EY,, =r / 2{G(z)} "G (z).

Then
65— 68 = [+ 2w = (r+ )} o) du

—/ u" . u(l—u)de(u) by parts

—/u Sdzx(u

where zx(u), defined by dzx(u) =u(1 —u)dz(u), is an increasing function on (0, 1).
If X =¢M) r=1,2,..., then

/OlquzX(u):/:u’"dZY(u), r=0,1,....
Thus zx and zy are distributions which have the same moments on the finite interval
(0,1); consequently (Feller, 1970, pp. 222-224), zx = zy. This implies that z(u) =
y(u).
We have shown that a distribution with finite mean is characterized by the set
{&:r=1,2,...}. Using (2), we have

T
Ar = ZP:_1,k_1k_1€ka
k=1

whence
- E=1)r!(r—-1)!
= T (3)

k=1




Thus a given set of A, determines a unique set of &, so the characterization of a
distribution in terms of the latter quantities extends to the former.

Thus a distribution may be specified by its L-moments even if some of its con-
ventional moments do not exist. Furthermore, such a specification is always unique:
this is of course not true of conventional moments. Indeed, the proof of Theorem 1
shows (in a sense) why L-moments characterize a distribution whereas conventional
moments, in general, do not: characterization by L-moments reduces to the classical

moment problem on a finite interval (the Hausdorff moment problem)
1
“given s, = / u"dz(u), r=0,1,..., find z(u)”,
0

whereas characterization by conventional moments is the classical moment problem

on an infinite interval (the Hamburger moment problem)
o0
“ogiven s, = / u"dz(u), r=0,1,..., find z(u)”.
— 00

Only the Hausdorff problem has a unique solution.

As shown in Hosking (1990), A, is a measure of the scale or dispersion of the
random variable X. It is often convenient to standardize the higher moments A, r > 3,
so that they are independent of the units of measurement of X. Define, therefore,

the L-moment ratios of X to be the quantities
T, = A/ g, r=3,4,....

It is also possible to define a function of L-moments which is analogous to the coef-
ficient of variation: this is the L-CV, 7= \y/\;. Bounds on the numerical values of

the L-moment ratios and L-CV are given by the following theorem.

Theorem 2. Let X be a nondegenerate random variable with finite mean. Then
the L-moment ratios of X satisfy |7.| <1, r>3. If in addition X >0 almost surely,
then 7, the L-CV of X, satisfies 0 <7 < 1.

Proof. Define Q,(t) by

- 0.0 = LT -y

Q.(t) is the Jacobi polynomial PtV (2t —1). From Szegd (1959, chap. 4) it follows
that

d *
%{t(l —1)Q-(t)} = —(r+1)Pr4(2),



so integrating (2) by parts gives
A = [P (@){1 = F@)}r—1)Q, o(F(z)]
+/F(x){1 ~F(@)}(r —1)1Q,o(F()) dz

The integrated term vanishes, for finiteness of the mean ensures that

cF(z){1—F(z)} — 0 as « approaches the endpoints of the distribution: thus

A = /F(IL‘) {1-F(2)}(r—1)7Qra(F(2)) dz. (4)
Since Qo(t) =1 the case 7 =2 gives

A = /F(x){l ~ F(z)}dz.

Now 0 < F(z) <1 for all z, and because X is nondegenerate there exists a set of
nonzero measure on which 0 < F(z) <1: thus Ay >0. Since F(z){1— F(z)} >0 for
all z it follows that
M <=1 sup 1Qua(0)] [ Fl@){1 - Fle)}da
0<t<1
=(r—1)7" sup |Qr—2(t)] Xe.

0<t<1
From Szegd (1959, p. 166) it follows that

sup |Q(t)|=r+1

0<t<1
with the supremum being attained only at ¢t =0 or t = 1. Thus |\, | < Ay, with equality
only if F'(z) can take only the values 0 and 1, i.e. only if X is degenerate. Thus a
nondegenerate distribution has |\,| < Ay, which together with Ay > 0 implies |7,.| < 1.

If X >0 almost surely then Ay = EX >0 and Ay >0, so 7 = Ay/A; > 0; furthermore
EXi.5>0, s0
T—1=A—A\)/ A\ =—-EX;5/\ <0.

We consider the boundedness of L-moment ratios to be an advantage. Intuitively,
it seems easier to interpret a measure such as 73, which is constrained to lie within
the interval (—1,1), than the conventional skewness, which can take arbitrarily large
values.

More stringent bounds on the 7, can be found. The proof of Theorem 1 implies
that a sequence &1, &5, ..., can be the “EX,..,.” of some random variable X if and only

if there exists an increasing function z such that

1
Gro—r = [ Wdi(w), T=01...



Establishing conditions for the existence of the function z is part of the classical
“moment problem”, and was solved by Hausdorff (1923). Akhiezer (1965, p. 74)

shows that z exists if and only if the following quadratic forms are nonnegative:

m m
Z (Eivjrs — Eijra) Ti Ty, Z (—&ijes + 2802 — Cigjy1) Ti Tj
i,j=0 4,j=0

for r=2m —1, and

m m—1
> (Eivjio — Civjr) T T, D (—ivjra + 2iyjs — Eivjen) Ti Ty,
i,j=0 4,j=0

for r=2m — 2. These conditions can be expressed in terms of the nonnegativity of
the determinants of certain matrices whose elements are linear combinations of the &,.

Mallows (1973) gives an exact statement of the result.

Theorem 3 (Mallows, 1973, Theorem 2(ii)). The sequence &, ...,&, may be
regarded as the expectations of the largest order statistics of samples of size 1,...,n
of a real-valued random variable if and only if either (a), A, >0, k=2,...,n, and
B, >0, k=3,...,n, or (b), for some even m, 2<m <n, we have Ay, >0 and By, >0
fork=2,...,m, A,,=0, B,,>0and A, =By=0 for k=m+1,...,n. Here A; and

By, are determinants of matrices, as follows:

Ao =det [y — §i+j—1]i,j:1,...,k ’

[
Agprr =det [€i1j41 — fz‘+j]i,j:1,...,k ’
Bop =det [=&ivj+ 2811 — &irj—ali joy 4
Bogy1=det [—&iyji1+2645 — fi+j—1]i,j:1,...,k :

From Theorem 3 and equation (3) we can obtain the possible values of the
L-moments of a distribution. In particular, for a nondegenerate distribution the

constraints on &, &, &3 and &, are that
£ — & >0, £ — & >0, =83+ 28 — & > 0,

(e — &) (& — &) — (& —&)* >0, —&4 + 285 — & > 0,

and so the constraints on A\, Ay, 73 and 74 are that

0 < Ay, —-1<m<1, 16m - 1) <m < 1.



Here for good measure are the constraints on 75 and 74:

T(1—74) (14474 —573) T(1—74) (14474 —573)

s73(T1y — 2) — <715 < tm(Try —2) +

5(1+473) - 5 5(1+73) ,
6(273 — 7374 + 575)> 15(73 — 75)°
L4272 — 141, — 3 <1 < E(B34Tn) — ———22
25 (4278 = s = 3) i —a) = S 0BT T

Equality in these bounds can be attained only by a distribution which can take a
finite number (m say) of distinct values. Such a distribution satisfies the lower bound

on Ty, and both the lower and upper bounds on 7., r > 2m.

L-moments as measures of distributional shape

Oja (1981), extending work of Bickel and Lehmann (1975, 1976) and van Zwet (1964),
has defined intuitively reasonable criteria for one probability distribution on the real
line to be located further to the right (more dispersed, more skew, more kurtotic)
than another. A real-valued functional of a distribution that preserves the partial
ordering of distributions implied by these criteria may then reasonably be called a
“measure of location” (dispersion, skewness, kurtosis). The following theorem shows

that 73 and 74 are, by Oja’s criteria, measures of skewness and kurtosis respectively.

Theorem 4. Let X and Y be real-valued random variables with cumulative distri-
bution functions F' and G respectively, and L-moments )\$X) and )\9/) and L-moment

ratios 7X) and 7(¥)

'/ respectively.
(i) f Y =aX +b, then A =X 4 A = |a|/\§X), 7 =75 and (") =7,
(i) Let A(z) =G Y(F(z)) — 2. If A(z)>0 for all z, then A" > A If A(z) is
an increasing function of x, then /\gy) > )\gX). If A(z) is convex, then T3EY) > T3EX). If
X and Y are symmetric and A(z) is convex of order 3 (Oja, 1981, Definition 2.1),

then Tiy) > TiX).

Proof. Part (i) is trivial. Part (ii) was proved by Oja (1981) for A; and A, in
Oja’s notation i (F) and ;o1 (F) respectively.

For 73, assume that X and Y are continuous, with probability density functions
f and g respectively, and let r(z)= f(z)/g{G *(F(z))}: because A(zx) is convex,
r(z) =dA(z)/dz + 1 is increasing. Now by (4) and the substitution y = G™*(F(z)),

MY =[Gt - Gwldy = [ F@){1 - F@)}r(z)do,
and similarly
AP = /F(x){l ~ F(z)} {2F(z) — 1} () dz .



Thus )\gX)/\gY){T;,EY) - TgEX)} = /\gY)/\gX) — )\gx))\gy) may be written as

/F(l—F)(2F—1)r./F(1—F)—/F(l—F)(2F—1)./F(1—F)r, (5)

wherein F(1 — F)) is a positive function of z and 2F — 1 and r are increasing. Cheby-
shev’s inequality for integrals (Mitrinovi¢, 1970, p. 40, Theorem 10) implies that (5)
is positive. Because /\gX))\gY) > 0 it follows that 73(Y) > T:EX). A discrete random vari-
able can be approximated arbitrarily closely by a continuous random variable, so the
result is also valid for discrete random variables.

The proof for 74 is similar.

Approximating a quantile function

Sillitto (1969) derived L-moments, without so naming them, as coefficients in the
approximation of a quantile function by polynomials. As a matter of taste, we prefer
to regard (1) as the fundamental definition; the approximation to the quantile function
then becomes an inversion theorem, expressing the quantile function in terms of the

L-moments.

Theorem 5 (Sillitto, 1969). Let X be a real-valued continuous random variable
with finite variance, quantile function z(F) and L-moments \,, r >1. Then the

representation

z(F)=Y 2r—1)A\ P (F), 0<F<I,
r=1
i1s convergent in mean square, i.e.

Ry(F) = a(F) = 3 (2r — DA Py(F),

r=1

the remainder after stopping the infinite sum after s terms, satisfies

1
/ {R,(F)}*dF — 0 as s — 00.
0

Proof. We seek an approximation to the quantile function z(F') of the form

o(F)~ Y a, P’ (F), O0<F<L1. (6)
r=1



The shifted Legendre polynomials P* ; (F') are a natural choice as the basis of the ap-
proximation because they are orthogonal on 0 < F' <1 with constant weight function.

To determine the a, in (6) we denote the error of the approximation (6) by
R(F) = o(F) = Y. a, Py, (F
r=1

and seek to minimize the mean square error [} {R,(F)}?dF. The condition that X

has finite variance ensures that the mean square error is finite. We have
/ (R,(F)}2dF = / {2(F)}dF — 2 ZaT/ (F)dF
—i—ZZarat/ P* (F) P ((F)dF

r=1 t=1

:/Ol{x(F)}zdF— 2 ; a A +; a2/(2r —1)

(where we have used the orthogonality results [y P*(F)P*(F)dF =0 if r+#s,
Jo{P*(F)}?dF =1/(2r + 1)), which is minimized by choosing
=2r—1)\,.

That
/{R )}2dF — 0 as s — 00,

i.e. that the set of orthogonal functions P ;(F') is complete, is a standard result in

Sturm-Liouville theory. A proof is given by Titchmarsh (1946, chap. 4).
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