
RC 19570 (85086) May 16, 1994
Mathematics

IBM Research Report

An Expression Compiler 

Michael E. Henderson
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
 

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research Report
for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



AN EXPRESSION COMPILER

MICHAEL E. HENDERSON�

Abstract. This paper describes a set of subroutines for compiling and evaluating string expres-
sions and their derivatives. The expression is �rst translated into \object code", which consists of a
symbol table, and a list of operations which evaluates the expression. Subroutines are provided for
querying and �lling in the symbol table, for constructing object code for derivatives of the expression,
and for executing the object code.

1. Introduction. This document describes a set of subroutines which take an
expression and generate a set of instructions (\object code") which can be executed
to evaluate the expression and its derivatives. The routines are written in C, and are
callable from Fortran.

The \object code" includes a symbol table, which contains an entry for each non-
numeric identi�er in the expression. Entries in the symbol table may be set to real
or integer values, or when appropriate, to the address of an external routine. When
all identi�ers have been given values, the \object code" can be executed to return a
single oating point value. Routines are also included which take \object code" and
create new \object code" which evaluates the derivative with respect to one of the
non-numeric identi�ers in the expression.

To avoid unreasonable expectations, let me briey point out what this is not.
First, this is not a symbolic manipulation program. All identi�ers must be set before
an expression can be evaluated, and the di�erentiation provided never produces an
expression for the derivative. Second, this is not a programming language. The only
source statement allowed is a simple expression. No loops, no branches or assignments.

This set of routines can be used to provide the user with an easier interface to
programs which require user de�ned functions. As a simple illustration, consider a
program which plots a function. Here are three approaches to designing the code.

Method 1. The user is asked to write a subroutine called \f" which
returns the value of the function. This subroutine is linked (or dy-
namically loaded) into a program called \plotter" which calls \f" to
plot the function.

Method 2. The user writes a main program, which calls a subroutine
called \plotter" and passes the address of a subroutine which is called
by \plotter" to plot the function.

The routines provided here allow a third approach.

Method 3. The user runs a program called \plotter" which asks him
to enter an expression containing the function to be plotted (e.g.
\sin(x**2)/4.")

Evaluating the expression in this way is of course slower than optimized compiled
code, so the third approach may not always be appropriate. For the routines described
here evaluation is about a factor of 5 slower than executing source compiled in \C"
with the -O ag.

� IBM T.J. WATSON RESEARCH CENTER, P.O. BOX 218, YORKTOWN HEIGHTS,
NY 10598

1



These routines provide users with a programming-free interface to de�ne func-
tions to a program. This eliminates the need for the developer to dynamically load
user subroutines, or provide \object code" so that the user can link in his own rou-
tines. Two programs using this approach are included as examples in the examples

subdirectory) (plotter.f and calc.c).

2. Basic Routines. Three sets of routines are provided, which perform the fol-
lowing functions:

� Compilation of a string
� Filling in the symbol table
� Evaluation of the \object code"

The Compilation routine \compiles" a character expression into \object code". The
routines which Fill in the symbol table assign values to the non-numeric identi�ers in
the expression, and query the symbol table. The Evaluation routine computes the
value of the expression.

2.1. Compilation. The ECCompileExpression routine compiles a string con-
taining an expression into \object code". A zero return code indicates that the com-
pilation was successful. (Appendix A gives the error codes and their meaning. The
ECGetErrorMessage routine returns the text of a message corresponding to the return
code.)

For example, to compile an expression which evaluates the function \sin(x)"

#include <ExpCmp.h>

int rc;

struct ECObjectCode *object;

main()

{

rc=ECCompileExpression("sin(x)",&object);

if(rc!=EC_NO_ERROR)

{

printf("%s\n",ECGetErrorMessage(rc));

return;

};

};

Note that the \object code" is passed as a pointer to a pointer. This was done
so that if compilation fails the pointer can be set to NULL, rather than to an \object
code" with a ag indicating failed compilation. The compile routine takes care of
allocating memory for the \object code". The \object code" data structure should be
free'd when it is no longer needed using the routine ECFreeObjectCode. This assures
that the storage pointed to by the structure also gets free'd.

The syntax of the expression is similar to Fortran.
� Identi�ers are case sensitive, so that \x" and \X" are di�erent identi�ers.
� The characters [a� z; A� Z;%] are valid in Identi�ers. The % was included
to distinguish special identi�ers like � (%pi).

2



� The binary operations +, �, �, = and �� (exponentiation) are allowed, along
with unary negation �.

� All arithmetic is done in single precision oating point, and all values are
converted to oating point before the expression is evaluated. So for example,
2=3 = :666667 6= 0.

� Parentheses ( and ) are used for grouping in the normal fashion.
� Embedded blanks are ignored except in identi�ers. So \x * y" is ok, but \x
y" is not legal, since it is parsed as \identi�er identi�er".

� Function calls are allowed, with either zero or one argument. The syntax is
\identi�er ( )" or \identi�er ( expression )".

� Real constants expressed in exponential notation are not legal.
Some examples of valid expressions are

4*x-6.

x**2

x**ln(x)

x**ln(x)/A+2/(-4+atan(%pi*x))

while the following expressions are invalid

4*x y-6.

x**2*(

x**ln(x,y)+1.e5

The compilation produces a structure containing \object code". This consists of
a symbol table and a list of instructions for evaluating the expression. The symbol
table contains each identi�er in the source, its type and value. Before the object code
can be executed all identi�ers must be set (see Section 2.2).

It is not necessary to inspect the \object code". However, a routine ECPrint-

ObjectCode has been provided, which prints a textual version to stdout. For the
previous example

ECPrintObjectCode(object);

produces the following output:

Object Code:

6 statements

2 identifiers

1 real constants

1 integer constants

Executable Code:

Register 1 = Identifier "x"

Register 2 = IntegerConstant 2

Register 3 = Register 1 ** Register 2

Register 4 = Call Identifier "sin" ( Register 3 )

3



Register 5 = RealConstant 4.000000

Register 6 = Register 4 / Register 5

Return(Register 6)

2.2. Filling in the Symbol Table. There are four types of Identi�er: unde-
�ned, real (oat), integer (int), and function (ECPointerToFunction, a type de�ned
in ExpCmp.h). The following routines set the type and give values to the Identi�ers
in the symbol table.

ECSetIdentifierToUndefined

ECSetIdentifierToReal

ECSetIdentifierToInteger

ECSetIdentifierToFunction

ECSetIdentifier

The ECSetIdentifier routine takes a string of the form \left=right". The iden-
ti�er name is read from the string \left" (using sscanf(left,"%s",identifier)).
The string \right" is compiled, evaluated, and the identi�er is set to the result
with ECSetIdentifierToReal. Before the right hand side is evaluated the rou-
tines ECSetStandardMathConstants and ECSetStandardMathFunctions are called
(see Section 2.2.1). Examples are

ECSetIdentifier("x=5.4/3.1", object);

ECSetIdentifier("x=3.*sin(-1.8*%pi)",object);

ECSetIdentifierToReal("x",3.14,object);

ECSetIdentifierToInteger("x",3,object);

2.2.1. \Standard" Identi�ers. There is a group of identi�ers that I have found
that I set all the time. Two routines are provided for setting these \standard"
identi�ers: ECSetStandardMathConstants and ECSetStandardMathFunctions. The
\standard math functions" and \standard math constants" are listed in Tables 1 and
2.

Identi�er Function
sin sin
sinh hyperbolic sin
asin arcsin
cos cos
cosh hyperbolic cos
acos arccos
tan tangent
tanh hyperbolic tangent
atan arctangent
sqrt square root
abs absolute value
exp exponential
log natural log
ln natural log
log10 log base 10

4



Table 1. Standard Math Functions

Identi�er Value
%pi �
%e e

Table 2. Standard Math Constants

2.2.2. Querying the Symbol Table. An interactive program can print the
symbol table using the routine ECPrintSymbolTable, and then ask the user to set
the identi�ers. Continuing our previous example,

rc=ECSetStandardMathFunctions(object);

if(rc!=EC_NO_ERROR)

{

printf("%s\n",ECGetErrorMessage(rc));

return;

};

ECPrintSymbolTable(object);

printf(" Set which Identifier?\n");

scanf("%s",identifier);

printf(" to what value?\n");

scanf("%f",&value);

rc=ECSetIdentifierToReal(identifier,value,object);

produces the following output:

Symbol Table:

Identifier "sin", is a Function

Identifier "x", is Undefined

It may also be necessary for a program to access the symbol table and set the identi�ers
directly. A second set of routines is provided which allows access to information in
the symbol table. These include

5



ECNumberOfIdentifiers

ECGetIdentifierName

ECGetIdentifierType

ECIsIdentifierSet

ECNumberOfUnsetIdentifiers

ECGetUnsetIdentifierName

ECNumberOfRealIdentifiers

ECGetRealIdentifierName

ECGetRealIdentifierValue

ECNumberOfIntegerIdentifiers

ECGetIntegerIdentifierName

ECGetIntegerIdentifierValue

ECNumberOfFunctionIdentifiers

ECGetFunctionIdentifierName

ECGetFunctionIdentifierValue

The routine ECGetIdentifierType returns a string containing \Float", \Integer",
\Function", or \Unde�ned" according to the type of the identi�er. If the identi�er is
not present in the symbol table an empty string is returned and the return code is
set. (see Appendix A and the ECGetErrorMessage routine.)

2.3. Evaluation. After all identi�ers have been given values, the routine EC-

EvaluateExpression can be used to execute the \object code" and evaluate the
expression. For the previous example,

rc=ECSetIdentifierToReal("x",1.0,object);

f=ECEvaluateExpression(object,&rc);

if(rc==EC_NO_ERROR)printf("sin(1.)=%f\n",f);

3. Derivatives. There is a algorithm for constructing the derivative of a pro-
gram (e.g. [1]). For our expressions, the \program" stored in the \object code" is very
much simpler than most programming languages, and this is a very simple operation.

For example, the \object code" for computing the product of two numbers is
Register 1 = Identifier "x"

Register 2 = Identifier "y"

Register 3 = Register 1 * Register 2

Return(Register 3)

The algorithm for computing the derivative duplicates each Register. This duplicate
stores the derivative of its associated Register. For example, the object code below
evaluates the derivative of the code above.

Register 1 = Identifier "x"

DRegister 1 = 1.

Register 2 = Identifier "y"

6



DRegister 2 = 0.

Register 3 = Register 1 * Register 2

DRegister 3 = DRegister 1 * Register 2 + Register 1 * DRegister 2

Return(DRegister 3)

Without some sort of optimization, this is not an e�cient process. However, it is
simple to implement, and does calculate the correct result.

The routine ECCreateExpressionDerivative constructs \object code" for the
derivative from \object code" for an expression. The symbol table is copied, and for
each function call in the original expression a function identi�er is added with a \D"
prepended to the identi�er. A \log" identi�er is also added if it is not present (it is
needed for di�erentiating exponentials). For example, the \object code" for the deriv-
ative of \cos(x)" with respect to the symbol \x" will have extra identi�ers \Dcos" and
\log". The ECSetStandardMathFunctions sets the derivatives of the standard func-
tions. It does not set the second derivatives. Di�erentiating a derivative will generate
valid \object code", but executing it will fail because of unde�ned identi�ers. For
\cos(x)" the user would have to call ECSetIdentifierToFunction for the identi�er
\ �DDcos".

For example,

rc=ECCompileExpression("sin(x)",&object);

rc=ECCreateExpressionDerivative("x",object,&derivative);

rc=ECSetStandardMathConstants(object);

rc=ECSetStandardMathConstants(derivative);

rc=ECSetStandardMathFunctions(object);

rc=ECSetStandardMathFunctions(derivative);

rc=ECSetIdentifierToReal("x",1.,object);

rc=ECSetIdentifierToReal("x",1.,derivative);

printf("sin(1.)=%d, d/dx(sin)(1.)=%d\n",

ECEvaluateExpression(object,&rc),

ECEvaluateExpression(derivative,&rc));

7



4. Examples. Two example codes are supplied in the examples subdirectory.
These demonstrate the C and Fortran interfaces.

4.1. Calc. The C program calc takes an expression as an argument, and allows
the user to interactively set identi�ers and evaluate the expression. An abbreviated
version of the source is listed below. The full source is located in examples/calc.c.

#include "ExpCmp.h"

main( int *argc, char *arg[])

{

struct ECObjectCode *object;

char assignment[256];

float Value;

int i,n;

int rc;

/* Retrieve the argument string and compile it */

if(ECCompileExpression(arg[1],&object)!=EC_NO_ERROR)exit(8);

/* Set the standard identifiers */

rc=ECSetStandardMathFunctions(object);

rc=ECSetStandardMathConstants(object);

if(ECNumberOfUnsetIdentifiers(object,&rc)==0)

{

/* If all identifiers have been set, execute the object code */

Value=ECEvaluateExpression(object,&rc);

printf("%e\n",Value);

}else{

/* Otherwise, prompt for assignment statements or other commands. */

while(TRUE)

{

printf("calc: ");

scanf("%s",assignment);

if(!strcmp(assignment,"quit"))exit(0);

if(!strcmp(assignment,"execute"))

{

n=ECNumberOfUnsetIdentifiers(object,&rc);

if(n==0)

{

printf("\n");

8



Value=ECEvaluateExpression(object,&rc);

printf(" \"%s\"=",arg[1]);

printf("%e\n",Value);

printf("\n");

};

}else{

ECSetIdentifier(assignment,object);

};

};

};

ECFreeObjectCode(object);

};

The listing below shows the output of a session using the calc program.

$calc "sin(abs(x)**sin(3*x)-A)+A/abs(ln(abs(y)))"

calc: ?

Source Code:

sin(abs(x)**sin(3*x)-A)+A/abs(ln(abs(y)))

Symbol Table:

Symbol "sin", is a Function

Symbol "x", is Undefined

Symbol "A", is Undefined

Symbol "abs", is a Function

Symbol "ln", is a Function

Symbol "y", is Undefined

Enter one of the following commands at the calc: prompt:

Identifier=value assign a value to an Identifier

execute evaluate the expression

quit

? print this information

calc: A=1.

calc: x=%pi/2.

calc: execute

1 Identifier has yet to be set.

y

"sin(abs(x)**sin(3*x)-A)+A/abs(ln(abs(y)))"

calc: y=4.

calc: execute

9



"sin(abs(x)**sin(3*x)-A)+A/abs(ln(abs(y)))"=0.365912

calc: x=9.

calc: execute

"sin(abs(x)**sin(3*x)-A)+A/abs(ln(abs(y)))"=1.501058

calc:quit

4.2. Plotter. plotter is a Fortran program which prompts the user for an ex-
pression, and then plots it and its derivatives. It assumes that the identi�er which is
used to plot the function is \x". A simpli�ed source for this program is listed below.
The full source can be found in examples/plotter.f.

program plotter

character*256 sourceCode

character*256 inputString

character*256 format

integer object

integer derivative

logical equalSignPresent

c Compile a default function

sourceCode='sin(x)'

call ECCompileExpression(sourceCode,object,ierr)

if(ierr.ne.0)then

write(6,*)' Compilation of default source failed!',ierr

call exit

endif

call ECSetStandardMathFunctions(object,ierr)

call ECSetStandardMathConstants(object,ierr)

defaultObject=object

call ECCreateExpressionDerivative(object,'x',derivative,ierr)

call ECSetStandardMathFunctions(derivative,ierr)

call ECSetStandardMathConstants(derivative,ierr)

defaultDerivative=derivative

c Prompt the user for commands

1 continue

write(6,'(a)')'Command:'

10



read(5,'(a)')inputString

if(inputString.eq.'quit')call exit

if(inputString(1:7).eq.'symbols')then

call ECPrintSymbolTable(object)

go to 1

endif

if(equalSignPresent)then

call ECSetIdentifier(inputString,object,ierr)

call ECSetIdentifier(inputString,derivative,ierr)

go to 1

endif

if(inputString(1:4).eq.'plot')then

ip=3

dx=(xmax-xmin)/nsteps

do i=0,nsteps

x=xmin+i*dx

call ECSetIdentifierToReal('x',x,object,ierr)

call ECSetIdentifierToReal('x',x,derivative,ierr)

y=ecevaluateexpression(object,ierr)

f=ecevaluateexpression(derivative,ierr)

if(ip.eq.2)then

call move(x0,y0)

call line(x,y)

call move(x0,f0)

call line(x,f)

endif

ip=2

x0=x

y0=y

f0=f

enddo

go to 1

endif

sourceCode=inputString

if(object.ne.defaultObject)call ECFreeObjectCode(object)

call ECCompileExpression(sourceCode,object,ierr)

call ECSetStandardMathFunctions(object,ierr)

call ECSetStandardMathConstants(object,ierr)

if(derivative.ne.defaultDerivative)

* call ECFreeObjectCode(derivative)

11



call ECCreateExpressionDerivative

* (object,'x',derivative,ierr)

call ECSetStandardMathFunctions(derivative,ierr)

call ECSetStandardMathConstants(derivative,ierr)

go to 1

end

The listing below shows the output of a session using the plotter program.

$plotter

Command:

?

Enter:

? For this help

quit Exits the program

print Prints the current state

symbols Prints the symbols in the current expression

Dsymbols Prints the symbols in the derivative

clear Clears the screen

plot Plot using the current values

xmin=value Sets the left side of the plot

xmax=value Sets the right side of the plot

ymin=value Sets the top side of the plot

ymax=value Sets the bottom side of the plot

nsteps=value Sets the number of steps

symbol=value Sets the symbol to value

expression Makes this the current expression

Command:

xmin=-%pi

Command:

xmax=%pi

Command:

sin(abs(x)**sin(3*x)-A)+A/abs(ln(abs(y)))

Command:

A=1.

Command:

y=4.

Command:

plot

Command:

quit

12



Fig. 1. The output from the plotter program, with the input given in Section 4.2.

The result is shown in Figure 1.

13



5. Conclusion. We have described a set of routines for compiling and evaluating
expressions. The preceding sections should serve as a user's guide, and together with
the provided examples, should enable you to use the subroutine library.

The following appendices describe
� Appendix A { the error codes returned by the various routines.
� Appendix B { a detailed description of the interface to each subroutine.

14



6. Appendix A. Error codes

Constant name (ECMessages.h) code Message text
EC NO ERROR 0 No Error.
EC INVALID OPCODE 1 Invalid opcode.

IN DERIVATIVE
EC INVALID EXPRESSION 2 Expression is invalid.
EC EXTRA CHARACTERS 3 Extra characters following valid

expression.
EC LONG SOURCE 4 sourceCode is longer than 256

characters.
EC NULL SOURCE 5 sourceCode is NULL.
EC TOO MANY TOKENS 6 sourceCode contains more than

256 tokens.
EC INVALID CHARACTER 7 Invalid character in source.
EC TOO MANY IDENTIFIERS 8 sourceCode contains more than

256 Identi�ers.
EC TOO MANY INTEGERS 9 sourceCode contains more than

256 integer constants.
EC TOO MANY REALS 10 sourceCode contains more than

256 real constants.
EC BAD CONSTANT TYPE 11 Invalid ConstantType.
EC IDENTIFIER NOT FOUND 12 Identi�er not found.
EC IDENTIFIERS NOT SET 13 Some Identi�er not set.
EC INVALID OPCODE 14 Bad opcode in object code.
EC NO STATEMENTS 15 No Statements in object code.
EC IDENTIFIER NOT FUNCTION 16 Identi�er not a Function.
EC INVALID ASSIGNMENT 17 Invalid assignment string.
EC NULL OBJECT CODE 18 objectCode is NULL.
EC INVALID CONSTANT TYPE 19 Invalid constant type.
EC INVALID IDENTIFIER TYPE 20 Invalid Identi�er type.

15



7. Appendix B. Subroutine Reference

ECCompileExpression 17
ECCreateExpressionDerivative 19
ECEvaluateExpression 20
ECFreeObjectCode 21

ECGetErrorMessage 22

ECGetFunctionIdentifierName 23
ECGetFunctionIdentifierValue 24
ECGetIdentifierName 25
ECGetIdentifierType 26
ECGetIntegerIdentifierName 28
ECGetIntegerIdentifierValue 29
ECGetMessagePrint 30
ECGetRealIdentifierName 31
ECGetRealIdentifierValue 32
ECGetUnsetIdentifierName 33
ECIsIdentifierSet 34
ECNumberOfFunctionIdentifiers 35
ECNumberOfIdentifiers 36
ECNumberOfIntegerIdentifiers 37
ECNumberOfRealIdentifiers 38
ECNumberOfUnsetIdentifiers 39

ECPrintObjectCode 40
ECPrintSymbolTable 41

ECSetIdentifier 42
ECSetIdentifierToFunction 43
ECSetIdentifierToInteger 44
ECSetIdentifierToReal 45
ECSetIdentifierToUndefined 46
ECSetMessagePrint 47
ECSetStandardMathConstants 48
ECSetStandardMathFunctions 49

16



ECCompileExpression

Purpose

Compiles an expression from a string.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

rc=ECCompileExpression(source, &object);

char *source Speci�ed by user. Source code
struct ECObjectCode *object Returned to user. Object code, or NULL

if the compilation fails.
int rc Returned to user. Return code.

Fortran Syntax

call ECCompileExpression(source, object, rc)

integer rc Returned to user. Return code.
character source Speci�ed by user. Source code.
integer object Returned to user. Object code, or NULL

if the compilation fails.

Description

Use ECCompileExpression to create \object code" that can be evaluated by ECEval-
uateExpression. The source code consists of a Fortran-like expression.

Note that the \object code" is passed as a pointer to a pointer to the struc-
ture. ECCompileExpression allocates space for the \object code", but the user must
allocate space for the pointer.

Constants may be integer or oating point. Exponential notation for real constants
is not supported.

Identi�ers may contain the characters

[a-z,A-Z,%].

Identi�ers may not contain embedded blanks. The expression \a b" contains two
identi�ers, \a" and \b" (and is not a valid expression).

There is one unary operation
-expression,

and there are �ve binary operations (with the usual order of precedence):

17



expression1+expression2,
expression1-expression2,
expression1*expression2,
expression1/expression2,

and expression1**expression2.

Functions may have either with one or no arguments. The syntax of a function call is

identi�er()
or identi�er(expression).

Examples of valid expressions are

a+5.
a+sin(b**3)
sin(a**(x*ln(x)))/my()

Return Codes

EC NO ERROR 0 No error.
EC INVALID EXPRESSION 2 Expression is invalid.
EC EXTRA CHARACTERS 3 Extra characters following valid

expression.
EC LONG SOURCE 4 sourceCode is longer than 256

characters.
EC NULL SOURCE 5 sourceCode is NULL.
EC TOO MANY TOKENS 6 sourceCode contains more than

256 tokens.
EC INVALID CHARACTER 7 Invalid character in source.
EC TOO MANY IDENTIFIERS 8 sourceCode contains more than

256 Identi�ers.
EC TOO MANY INTEGERS 9 sourceCode contains more than

256 integer constants.
EC TOO MANY REALS 10 sourceCode contains more than

256 real constants.
EC BAD CONSTANT TYPE 11 Bad value for ConstantType.

18



ECCreateExpressionDerivative

Purpose

Creates \object code" which evaluates the derivative of the expression associated with
another piece of \object code".

Library

libExpCmp.a

C Syntax

rc=ECCreateExpressionDerivative(object, variable, &derivative);

int rc Returned to user. Return code.
struct ECObjectCode *object Speci�ed by user. Object code to be dif-

ferentiated.
char *variable Speci�ed by user. Identi�er with respect

to di�erentiate.
struct ECObjectCode *derivative Returned to user. Object code for de-

rivative, or NULL if compilation failed.

Fortran Syntax

call ECCreateExpressionDerivative(object, variable, derivative, rc)

integer rc Returned to user. Return code.
integer object Speci�ed by user. Object code to be dif-

ferentiated.
character variable Speci�ed by user. Identi�er with respect

to di�erentiate.
integer derivative Returned to user. Object code for de-

rivative, or 0 if compilation failed.

Description

Use ECCreateExpressionDerivative to create \object code" which evaluates the
derivative of an expression with respect to an identi�er. It uses a code di�erentiation
algorithm, which never constructs source code for the derivative.

Note that the derivative \object code" is passed as a pointer to a pointer to the
structure. ECCreateExpressionDerivative allocates space for the derivative \object
code", but the user must allocate space for the pointer.

Return Codes

EC NO ERROR 0 No error.
EC INVALID OPCODE 1 An unknown opcode was found in

object.
IN DERIVATIVE

EC NULL OBJECT CODE 18 Input object has been deleted by
ECFreeObjectCode, or was re-
turned by a failed compilation.

19



ECEvaluateExpression

Purpose

Executes a piece of \object code" and returns the result.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

value=ECEvaluateExpression(object, &rc);

float value Returned to user. Result of evaluating
the code.

struct ECObjectCode *object Speci�ed by user. Object code to be
evaluated.

int rc Returned to user. Return code.

Fortran Syntax

value = ECEvaluateExpression(object, rc)

real value Returned to user. Result of evaluating the code.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECEvaluateExpression to execute a piece of \object code". All identi�ers must
have been set before the \object code" can be executed.

If an error code is set, ECEvaluateExpression returns QNaN.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIERS NOT SET 13 There are unset identi�ers in the

\object code".
EC INVALID OPCODE 14 An unknown opcode was found in

\object code".
EC NO STATEMENTS 15 No statements in \object code".
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

20



ECFreeObjectCode

Purpose

Frees the storage associated with a piece of \object code".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

ECFreeObjectCode(&object)

struct ECObjectCode *object Speci�ed by user. Object code to be free'd

Fortran Syntax

call ECFreeObjectCode(object)

integer object Speci�ed by user. Object code to be di�erentiated.

Description

Use ECFreeObjectCode to free the storage associated with a piece of object code.
ECFreeObjectCode sets the pointer to NULL or 0 so that subsequent attempts to use
the \object code" result in an error. Each expression compilation allocates storage,
and if it is not freed the user may eventually run out of storage.

Note that the \object code" is passed as a pointer to a pointer to the structure.
ECFreeObjectCode sets the pointer to NULL, and does nothing if passed a pointer to
NULL. Freeing an \object code" twice is therefore harmless, but pointless.

Return Codes

EC NO ERROR 0 No error.

21



ECGetErrorMessage

Purpose

Retrieves a the text of a message associated with a return code.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

message=ECGetErrorMessage(rc);

char *message Returned to user. Message text.
int rc Speci�ed by user. Return code.

Fortran Syntax

call ECGetErrorMessage(rc, message)

integer rc Returned to user. Return code.
character message Speci�ed by user. Message text.

Description

Use ECGetErrorMessage to retrieve the text of a message associated with a return
code. For the C interface, a pointer to a static character string is returned, so it
should not be freed. For the Fortran interface the text is truncated to the length of
the character string provided, or is padded with blanks.

Return Codes

None.

22



ECGetFunctionIdenti�erName

Purpose

Returns the name of a function identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

identi�er=ECGetFunctionIdentifierName(number, object, &rc);

int number Speci�ed by user. Number of the re-
quested identi�er.

char *identi�er Returned to user. Name of the re-
quested identi�er.

struct ECObjectCode *object Speci�ed by user. Object code to be
queried.

int rc Returned to user. Return code.

Fortran Syntax

call ECGetFunctionIdentifierName(number, object, identi�er, rc)

integer number Speci�ed by user. Number of the requested
identi�er.

character identi�er Returned to user. Name of the requested
identi�er.

integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECGetFunctionIdentifierName to get the name of a function identi�er. The
identi�er number must be positive and less than the number returned by ECNumber-

OfFunctionIdentifiers.
The C interface returns a point to the character string in the symbol table. It is

only valid until the \object code" is free'd, and should not be freed by the user.
For the Fortran interface, the name is truncated to the length of the character

string provided. The string is blank �lled, and is not zero terminated.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

23



ECGetFunctionIdenti�erValue

Purpose

Extracts the value of a function identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

value=ECGetFunctionIdentifierValue(number, object, &rc);

int number Speci�ed by user. Number of the re-
quested identi�er.

ECPointerToFunction value Returned to user. Value of the requested
identi�er.

struct ECObjectCode *object Speci�ed by user. Object code to be
queried.

int rc Returned to user. Return code.

Fortran Syntax

value=ECGetFunctionIdentifierValue(number, object, rc)

integer number Speci�ed by user. Number of the requested identi�er.
integer value Returned to user. Value of the requested identi�er.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECGetFunctionIdentifierValue to get the name of a function identi�er. func-
tion. The identi�er number must be positive and less than the number returned by
ECNumberOfFunctionIdentifiers.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

24



ECGetIdenti�erName

Purpose

Returns the name of an identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

identi�er=ECGetIdentifierName(number, object, &rc);

int number Speci�ed by user. Number of the re-
quested identi�er.

char *identi�er Returned to user. Name of the re-
quested identi�er.

struct ECObjectCode *object Speci�ed by user. Object code to be
queried.

int rc Returned to user. Return code.

Fortran Syntax

call ECGetIdentifierName(number, object, identi�er, rc)

integer number Speci�ed by user. Number of the re-
quested identi�er.

character identi�er Returned to user. Name of the re-
quested identi�er.

integer object Speci�ed by user. Object code to be
evaluated.

integer rc Returned to user. Return code.

Description

Use ECGetIdentifierName to get the name of a identi�er. The identi�er number
must be positive and less than the number returned by ECNumberOfIdentifiers.

The C interface returns a point to the character string in the symbol table. It is
only valid until the \object code" is free'd, and should not be freed by the user.

For the Fortran interface, the name is truncated to the length of the character
string provided. The string is blank �lled, and is not zero terminated.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

25



ECGetIdenti�erType

Purpose

Returns the type of an identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

value=ECGetIdentifierType(number, object, &rc);

int number Speci�ed by user. Number of the requested
identi�er.

char *value Returned to user. Type of the requested
identi�er.
\Unde�ned"
\Real"
\Integer"
\Function"
\" if return code not zero.

struct ECObjectCode *object Speci�ed by user. Object code to be queried
int rc Returned to user. Return code.

Fortran Syntax

call ECGetIdentifierType(number, object, value, rc)

integer number Speci�ed by user. Number of the requested identi�er.
character value Returned to user. Type of the requested identi�er.

\Unde�ned"
\Real"
\Integer"
\Function"
\" if return code not zero.

integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECGetIdentifierType to query the type of an identi�er. The identi�er number
must be positive and less than the number returned by ECNumberOfIdentifiers.

The C interface returns a pointer to a static character string, which should not
be free'd by the user.

The Fortran interface truncates type to the length of the character string provided,
or pads with blanks.

Return Codes

26



EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

27



ECGetIntegerIdenti�erName

Purpose

Returns the name of a real identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

identi�er=ECGetIntegerIdentifierName(number, object, &rc);

int number Speci�ed by user. Number of the re-
quested identi�er.

char *identi�er Returned to user. Name of the re-
quested identi�er.

struct ECObjectCode *object Speci�ed by user. Object code to be
queried.

int rc Returned to user. Return code.

Fortran Syntax

call ECGetIntegerIdentifierName(number, object, identi�er, rc)

integer number Speci�ed by user. Number of the requested
identi�er.

character identi�er Returned to user. Name of the requested
identi�er.

integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECGetIntegerIdentifierName to get the name of an integer identi�er. The iden-
ti�er number must be positive and less than the number returned by ECNumberOfInt-
egerIdentifiers.

The C interface returns a point to the character string in the symbol table. It is
only valid until the \object code" is free'd, and should not be freed by the user.

For the Fortran interface, the name is truncated to the length of the character
string provided. The string is blank �lled, and is not zero terminated.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

28



ECGetIntegerIdenti�erValue

Purpose

Extracts the value of a real identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

value=ECGetIntegerIdentifierValue(number, object, &rc);

int number Speci�ed by user. Number of the requested
identi�er.

int value Returned to user. Value of the requested
identi�er.

struct ECObjectCode *object Speci�ed by user. Object code to be queried
int rc Returned to user. Return code.

Fortran Syntax

value=ECGetIntegerIdentifierValue(number, object, rc)

integer number Speci�ed by user. Number of the requested identi�er.
real value Returned to user. Value of the requested identi�er.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECGetIntegerIdentifierValue to get the name of an integer identi�er. func-
tion. The identi�er number must be positive and less than the number returned by
ECNumberOfIntegerIdentifiers.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

29



ECGetMessagePrint

Purpose

Returns a value indicating if error messages are printed.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

value=ECGetMessagePrint();

int value Returned to user. 0 if messages are not
printed. 1 if messages are printed.

Fortran Syntax

value=ECGetMessagePrint()

integer value Returned to user. 0 if messages are not
printed. 1 if messages are printed.

Description

Use ECGetMessagePrint to determine the fate of error messages. This value defaults
to 0 (no messages printed), and can be changed using ECSetMessagePrint. The
return code of a command is always set.

30



ECGetRealIdenti�erName

Purpose

Returns the name of a real identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

identi�er=ECGetRealIdentifierName(number, object, &rc);

int number Speci�ed by user. Number of the re-
quested identi�er.

char *identi�er Returned to user. Name of the re-
quested identi�er.

struct ECObjectCode *object Speci�ed by user. Object code to be
queried.

int rc Returned to user. Return code.

Fortran Syntax

call ECGetRealIdentifierName(number, object, identi�er, rc)

integer number Speci�ed by user. Number of the re-
quested identi�er.

character identi�er Returned to user. Name of the re-
quested identi�er.

real object Speci�ed by user. Object code to be
evaluated.

real rc Returned to user. Return code.

Description

Use ECGetRealIdentifierName to get the name of a real identi�er. The identi�er
number must be positive and less than the number returned by ECNumberOfReal-

Identifiers.
The C interface returns a point to the character string in the symbol table. It is

only valid until the \object code" is free'd, and should not be freed by the user.
For the Fortran interface, the name is truncated to the length of the character

string provided. The string is blank �lled, and is not zero terminated.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

31



ECGetRealIdenti�erValue

Purpose

Extracts the value of a real identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

value=ECGetRealIdentifierValue(number, object, &rc);

int number Speci�ed by user. Number of the re-
quested identi�er.

int value Returned to user. Value of the requested
identi�er.

struct ECObjectCode *object Speci�ed by user. Object code to be
queried.

int rc Returned to user. Return code.

Fortran Syntax

value=ECGetRealIdentifierValue(number, object, value, rc)

integer number Speci�ed by user. Number of the re-
quested identi�er.

real value Returned to user. Value of the requested
identi�er.

real object Speci�ed by user. Object code to be
evaluated.

real rc Returned to user. Return code.

Description

Use ECGetRealIdentifierValue to get the name of a real identi�er. function. The
identi�er number must be positive and less than the number returned by ECNumber-

OfRealIdentifiers.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

32



ECGetUnsetIdenti�erName

Purpose

Returns the name of an identi�er that hasn't been set.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

identi�er=ECGetUnsetIdentifierName(number, object, &rc);

int number Speci�ed by user. Number of the re-
quested identi�er.

char *identi�er Returned to user. Name of the re-
quested identi�er.

struct ECObjectCode *object Speci�ed by user. Object code to be
queried.

int rc Returned to user. Return code.

Fortran Syntax

call ECGetUnsetIdentifierName(number, object, identi�er, rc)

integer number Speci�ed by user. Number of the re-
quested identi�er.

character identi�er Returned to user. Name of the re-
quested identi�er.

real object Speci�ed by user. Object code to be
evaluated.

real rc Returned to user. Return code.

Description

Use ECGetUnsetIdentifierName to get the name of an unde�ned identi�er. The
identi�er number must be positive and less than the number returned by ECNumber-

OfUnsetIdentifiers.
The C interface returns a point to the character string in the symbol table. It is

only valid until the \object code" is free'd, and should not be freed by the user.
For the Fortran interface, the name is truncated to the length of the character

string provided. The string is blank �lled, and is not zero terminated.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

33



ECIsIdenti�erSet

Purpose

Queries an identi�er to see if it is set.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

answer=ECIsIdentifierSet(number, object, &rc);

int number Speci�ed by user. Number of the re-
quested identi�er.

int answer Returned to user. 1=identi�er set.
0=identi�er not set.

struct ECObjectCode *object Speci�ed by user. Object code to be
queried.

int rc Returned to user. Return code.

Fortran Syntax

answer=ECIsIdentifierSet(number, object, rc)

integer number Speci�ed by user. Number of the re-
quested identi�er.

integer answer Returned to user. 1=identi�er set.
0=identi�er not set.

real object Speci�ed by user. Object code to be
evaluated.

real rc Returned to user. Return code.

Description

Use ECIsIdentifierSet to determine if a particular identi�er has been given a
value. The identi�er number must be positive and less than the number returned
by ECNumberOfIdentifiers.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 The requested identi�er doesn't

exist.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

34



ECNumberOfFunctionIdenti�ers

Purpose

Returns the number of function identi�ers in an \object code".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

number=ECNumberOfFunctionIdentifiers(object, &rc);

int number Returned to user. Number of identi�ers.
struct ECObjectCode *object Speci�ed by user. Object code to be queried
int rc Returned to user. Return code.

Fortran Syntax

number=ECNumberOfFunctionIdentifiers(object, rc)

integer number Returned to user. Number of identi�ers.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECNumberOfFunctionIdentifiers to determine the number of identi�ers in an
\object code" that are functions.

Return Codes

EC NO ERROR 0 No error.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

35



ECNumberOfIdenti�ers

Purpose

Returns the number of identi�ers in an \object code".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

number=ECNumberOfIdentifiers(object, &rc);

int number Returned to user. Number of identi�ers.
struct ECObjectCode *object Speci�ed by user. Object code to be queried
int rc Returned to user. Return code.

Fortran Syntax

number=ECNumberOfIdentifiers(object, rc)

integer number Returned to user. Number of identi�ers.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECNumberOfIdentifiers to determine the number of identi�ers in an \object
code".

Return Codes

EC NO ERROR 0 No error.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failedcompilation.

36



ECNumberOfIntegerIdenti�ers

Purpose

Returns the number of integer identi�ers in an \object code".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

number=ECNumberOfIntegerIdentifiers(object, &rc);

int number Returned to user. Number of identi�ers.
struct ECObjectCode *object Speci�ed by user. Object code to be queried
int rc Returned to user. Return code.

Fortran Syntax

number=ECNumberOfIntegerIdentifiers(object, rc)

integer number Returned to user. Number of identi�ers.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECNumberOfIntegerIdentifiers to determine the number of identi�ers in an
\object code" that are integers.

Return Codes

EC NO ERROR 0 No error.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

37



ECNumberOfRealIdenti�ers

Purpose

Returns the number of real identi�ers in an \object code".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

number=ECNumberOfRealIdentifiers(object, &rc);

int number Returned to user. Number of identi�ers.
struct ECObjectCode *object Speci�ed by user. Object code to be queried
int rc Returned to user. Return code.

Fortran Syntax

number=ECNumberOfRealIdentifiers(object, rc)

integer number Returned to user. Number of identi�ers.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECNumberOfRealIdentifiers to determine the number of identi�ers in an \object
code" that are reals.

Return Codes

EC NO ERROR 0 No error.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

38



ECNumberOfUnsetIdenti�ers

Purpose

Returns the number of unde�ned identi�ers in an \object code".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

number=ECNumberOfUnsetIdentifiers(object, &rc);

int number Returned to user. Number of identi�ers.
struct ECObjectCode *object Speci�ed by user. Object code to be queried
int rc Returned to user. Return code.

Fortran Syntax

number=ECNumberOfUnsetIdentifiers(object, rc)

integer number Returned to user. Number of identi�ers.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

Use ECNumberOfUnsetIdentifiers to determine the number of identi�ers in an \ob-
ject code" that are unde�ned.

Return Codes

EC NO ERROR 0 No error.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

39



ECPrintObjectCode

Purpose

Prints a textual version of an \object code".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

ECPrintObjectCode(object);

struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECPrintObjectCode(object)

integer object Speci�ed by user. Object code.

Description

Use ECPrintObjectCode to print a textual version of an object code. The text is
written to stdout.

40



ECPrintSymbolTable

Purpose

Prints the symbol table of an \object code".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

ECPrintSymbolTable(object);

struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECPrintSymbolTable(object)

integer object Speci�ed by user. Object code.

Description

Use ECPrintSymbolTable to print the symbol table of an \object code". The text is
written to stdout.

41



ECSetIdenti�er

Purpose

Uses an assignment statement in a string to set an identi�er.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

rc=ECSetIdentifier(assignment, object);

int rc Returned to user. Return code.
char *assignment Speci�ed by user. Assigment statement.
struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECSetIdentifier(assignment, object, rc)

character assignment Speci�ed by user. Assigment statement.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

The routine ECSetIdentifier takes a string of the form \left=right". The identi�er
name is read from the string \left" (sscanf(left,"%s",identifier)). The \right"
string is compiled, and evaluated to give the value to which the identi�er is set with
ECSetIdentifierToReal. For example, the assignment might be \x=5.4/3.1", or
\x=3.*sin(-1.8*%pi)".

Return Codes

EC NO ERROR 0 No error.
EC INVALID ASSIGNMENT 17 Invalid assignment string.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFree ObjectCode, or was re-
turned by a failed compilation.

EC INVALID IDENTIFIER TYPE 20 Attempt to assign a function.

42



ECSetIdenti�erToFunction

Purpose

Changes the type of an identi�er to function, and sets the value.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

rc=ECSetIdentifierToFunction(identi�er, value, object);

int rc Returned to user. Return code.
char *identi�er Speci�ed by user. Identi�er to set.
ECPointerToFunction value Speci�ed by user. Value for identi�er.
struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECSetIdentifier(identi�er, value, object, rc)

character identi�er Speci�ed by user. Identi�er to set.
external value Speci�ed by user. Value for identi�er.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

The routine ECSetIdentifierToFunction sets the value of a function identi�er.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 Identi�er not found.
EC IDENTIFIER NOT FUNCTION 16 Identi�er is not used as a func-

tion.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

43



ECSetIdenti�erToInteger

Purpose

Changes the type of an identi�er to integer, and sets the value.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

rc=ECSetIdentifierToInteger(identi�er, value, object);

int rc Returned to user. Return code.
char *identi�er Speci�ed by user. Identi�er to set.
int value Speci�ed by user. Value for identi�er.
struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECSetIdentifierToInteger(identi�er, value, object, rc)

character identi�er Speci�ed by user. Identi�er to set.
integer value Speci�ed by user. Value for identi�er.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

The routine ECSetIdentifierToInteger changes the type of an identi�er to integer,
and sets the value.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 Identi�er not found.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

44



ECSetIdenti�erToReal

Purpose

Changes the type of an identi�er to real, and sets the value.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

rc=ECSetIdentifierToReal(identi�er, value, object);

int rc Returned to user. Return code.
char *identi�er Speci�ed by user. Identi�er to set.
float value Speci�ed by user. Value for identi�er.
struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECSetIdentifierToReal(identi�er, value, object, rc)

character identi�er Speci�ed by user. Identi�er to set.
real value Speci�ed by user. Value for identi�er.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

The routine ECSetIdentifierToReal changes the type of an identi�er to real, and
sets the value.

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 Identi�er not found.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

45



ECSetIdenti�erToUnde�ned

Purpose

Changes the type of an identi�er to \Unde�ned".

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

rc=ECSetIdentifierToUndefined(identi�er, object);

int rc Returned to user. Return code.
char *identi�er Speci�ed by user. Identi�er to set.
struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECSetIdentifierToUndefined(identi�er, object, rc)

character identi�er Speci�ed by user. Identi�er to set.
integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

The routine ECSetIdentifierToUndefined changes the type of an identi�er to \Un-
de�ned".

Return Codes

EC NO ERROR 0 No error.
EC IDENTIFIER NOT FOUND 12 Identi�er not found.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

46



ECSetMessagePrint

Purpose

Returns a value indicating if error messages are printed.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

ECSetMessagePrint(value);

int value Speci�ed by user. 0 if messages should
not be printed. 1 if messages should be
printed.

Fortran Syntax

call ECSetMessagePrint(value)

integer value Speci�ed by user. 0 if messages should
not be printed. 1 if messages should be
printed.

Description

Use ECSetMessagePrint to determine the fate of error messages. This value defaults
to 0 (no messages printed), and can be queried using ECGetMessagePrint. The return
code of a command is always set regardless of the vaule given.

47



ECSetStandardMathConstants

Purpose

Sets some of the common mathematical constants.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

rc=ECSetStandardMathConstants(object);

int rc Returned to user. Return code.
struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECSetStandardMathConstants(object, rc)

integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

The routine ECSetStandardMathConstants gives values to the identi�ers %pi and
%e.

Return Codes

EC NO ERROR 0 No error.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

48



ECSetStandardMathFunctions

Purpose

Sets some of the common mathematical constants.

Library

libExpCmp.a

C Syntax

#include <ExpCmp.h>

rc=ECSetStandardMathFunctions(object);

int rc Returned to user. Return code.
struct ECObjectCode *object Speci�ed by user. Object code.

Fortran Syntax

call ECSetStandardMathFunctions(object, rc)

integer object Speci�ed by user. Object code to be evaluated
integer rc Returned to user. Return code.

Description

The routine ECSetStandardMathFunctions gives values to the identi�ers
Identi�er Function
sin sin
sinh hyperbolic sin
asin arcsin
cos cos
cosh hyperbolic cos
acos arccos
tan tangent
tanh hyperbolic tangent
atan arctangent
sqrt square root
abs absolute value
exp exponential
log natural log
log10 log base 10

and their �rst derivatives (same names with \D" prepended).

Return Codes

EC NO ERROR 0 No error.
EC NULL OBJECT CODE 18 Input object has been deleted by

ECFreeObjectCode, or was re-
turned by a failed compilation.

49



REFERENCES

[1] A. Griewank and G. Corliss, eds., Automatic Di�erentiation of Algorithms: Theory, Imple-

mentation, and Application, Philadelphia, 1991, SIAM.

50


