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STACKS AND TREES AND STRINGS AND BITS AND PIECES
C. J. Stephenson

This report comprises a collection of short papers On
divers programming techniques which T have stumbled on
over the past twenty years while working on the experi-

mental operating system EM-YMS.

The word "paper" is perhaps pretentious, and I use
it only for want of a better word. By no means all of the
items are suitable for publication in gcientific journals.
One reason for assembling them here is to place the ideas
in the "public domain”. This is intended to dissuade any-
one who might independently discover the same techniques

from attempting to obtain patents for them.

cseveral of the papers explicitly note that the work was
done jointly with one or two other people. All of the work
reported here has however penefitted from long-term collab—
oration, both formal and informal, with some Very talented
colleagues at IBM Research —— particularly Walter Daniels,

Michel Hack, Paul Kosinski (now at Digital Egquipment COrp-

oration), and cerald Spivak.

Although one motivation for producing this report is to

protect the ideas in it, I hope it may also make enjoyable

reading. Regard it as a collection of short stories.

By the way, I use first and second person pronouns in

the following way. The first person singular refers to me
the writer; the second person (plural) refers to you the

reader; and the first person plural refers to the fleet-

ing collaboration that exists between us.

cJS, Yorktown Heights, September 1996. cjs@vnet.ibm.com
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GLOSSARY

Complex Instruction Set Computer. This simply means

"non-RISC". Before the mid-1980s nearly all computer
architectures were CISC —- though they did not know

it at the time, since the term was not yet establi-

shed. CISC programs tend to occupy less space than

RISC programs, but the hardware is more complicated.
IBM S/370 and Intel "x86" are examples of CISC arch-
itectures.

Extended machine. This is the "lower" layer of EM-
YMS. It contains a file system, a paging manager, IO
programs, interruption handlers, debugging facilities
and so on.

An experimental two-layer operating system at IBM
Research. The system runs on IBM mainframes and
S/370 workstations.

Beginning address + length.

10g2x
logeX

Reduced Instruction Set Computer. This has been a
popular trend in machine architectures since the mid-
1980s. Compared with CISC, RISC is characterized by

a reduced repertoire of instructions referring to mem-
Oory, and in addition all the instructions usually have
the same length. Advantages include simpler hardware
and faster clock cycles. The IBM RS/6000, the "Sparcn
station (by Sun Microsystems), and the "PowerPC" (by
IBM, Motorola and Apple) are examples of RISC.

System/370. This was the name of IBM's mainframe
architecture from 1970 to 1987. The name was ad-
justed several times during the 1980s, and at the
time of writing it has been renamed the "Enterprise
Systems Architecture/390". In this report I mostly
use the older name, since it is widely known, and
the examples given here do not depend on features
that postdate the name change.

Yorktown Monitor System. Thig is the "higher" lay-

er of EM-YMS. It supports a runtime environment
for application programs.
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DEFERRED INTERRUPTION HANDLING

1. BACKGROUND

gystems usually contain a few sensitive structures whose
update requires special care. Consider for example a linked
l1ist or tree which records the disposition of memory and is
maintained by the memory allocator. Suppose an application
program has called the memory allocator to reqguest an area
of memory. The allocator has identified a suitable piece
and is in the process of updating the list or tree to re-
cord the new state of affairs. Temporarily (until the up-
date is complete) the structure in memory will present an
inconsistent picture if it is viewed by an observer that
does not know what is going on. Now Suppose there is an
external event, such as a keystroke, which interrupts the
memory allocator. The interruption handler must add an ele-
ment to the keystroke gqueue —-— tO be consumed later —— and
to do this it needs a few words of memory. The obvious way
to obtain these is to call the memory allocator. Normally
this would work fine; but it cannot be done safely in the
present situation since at the moment of the interruption
the structure describing memory is partially updated and
presents an inconsistent picture.

The conventional way to circumvent this problem is to
run the memory allocator disabled for interruptions. This
postpones the reporting of external events. After the mem-—
ory structure has been updated, and possesses a new consist—
ent state, the allocator reenables for interruptions. Any
pending event is then presented to the interruption handler
—— which can happily call the memory allocator if it needs
to. Finally (of course) the interruption handler resumes
execution (enabled) from the point of interruption.

(In systems with several processors and shared memory,
additional mechanisms are required to prevent the memory
structure from being updated by two Or more processors
simultaneously. This is outside the scope, and the sub-
ject matter, of the present note.)

Fig. 1 shows the relationship between an application
program, a gervice routine that runs disabled, and an in-
terruption handler. §/370 assembler notation is used (see

{11 .



Application (enabled)

LA RZ,BL
BAL R15,$GET ——f—
™| 8TM R1,RZ,ADLEN Call
service
routine

User programs

T TN TN TN T TN TN

Runtime support

Service routine

Save state and disable

Execute

disabled
sequance

Restore saved state
BR R13 |

l Return

Intrptn handler (disabled)

Save interruption addr
Handle the interruption

Resume (enabled) using
the saved addrese

Fig. 4. Conventional intarruption handling.




2. PERFORMANCE PROBLEM

The trouble with constantly disabling and reenabling is
that it can be expensive.

If the memory allocator rumns in supervisor state, it can
disable and reenable the processor by executing special-pur-—
pose machine instructions. These instructions are often guite
slow. On some machines they take about 10 times longer than
ordinary instructions such as Load and Branch.

Things get worse.

In modern systems the application programs, along with
service routines such as the memory allocator, run in prob-
lem state. These programs are not allowed to disable the en-—
tire processor. Instead they tell the supervisor (or kernel)
that they must not be disturbed for a while; the supervisor
then gueues their interruptions intermally, for presentation
later. This has the desired effect; but the cost of asking
the supervisor to hold the interruptions (or of cancelling
the request) may be 30 or 100 times greater than the cost
of an ordinary machine instruction. And since interruptions
at this level in the system are fairly rare, the application
program may call the memory allocator hundreds or thousands
of times per interruption. Therefore these expensive opera-
tions nearly all turn out to be unnecessary.

(on some machines the act of disabling, and the act of
restoring the prior state, can be combined with the calling
mechanism and the return mechanism. In S/370 the SVC instruc-
tion (Supervisor Call) is intended for this purpose. If the
machine is prepared appropriately, this instruction can trans-
fer control, disable, and change privilege mode, all at the
came time. The difference between this method of changing
state and the explicit method is not however germane to the
present discussion, and for gimplicity I will consider only

the explicit method.)

1 have been citing the memory allocator as an interruption-
sensitive routine. It is a good example, but in reality there
are usually several such system services. Another one is the
routine that delivers a queued keystroke, which must prevent
the interruption handler from appending a new keystroke to
the queue at the same instant that it is removing the last

one already there.

3. OPTIMISTIC INTERRUPTION HANDLING

If a soldier is patrolling a combat zone, he should not
wait until he has been shot before taking steps to protect

o
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himself from bullets. But when designing computer systems we

can sometimes finagle matters so that it is safe to live dan-

gerously. It is in fact possible for an interruption-sensitive
service routine to allow itself to be shot, and obtain protec-—
tion only if it turns out to have been necessary.

The basic idea is this. An interruption-sensitive service
routine (such as the memory allocator) begins in the same state
as its caller, i.e. enabled or disabled. If it is called from
an application program, it begins enabled. Usually it will run
to completion without being interrupted, and without incurring
any extraordinary costs (see below). Occasionally however an ev-
ent will occur while the service routine is running. When this
happens, the supervisor transfers control (disabled) to a small
nevent stub". (The mechanism for doing this does not concern us
here; it is the same mechanism that would conventionally be used
to transfer control to the interruption handler.) The event stub
observes that an interruption-sensitive service routine is run-
ning, and immediately resumes execution (disabled) at the point
of interruption, inside the service routine. The service routine
is therefore not affected by the interruption, except that after
the event it runs disabled. (Remember that this is what it al-
ways wanted to do, but was inhibited by cost.) The actual hand-
ling of the interruption is deferred until the service routine

has run to completion.

From the point of view of the interruption handler, an event
that occurs while a service routine is running appears to have
occurred just as the service routine was about to return to its

caller.

: The net effect is that the service routine runs as if it was
disabled, but without incurring the cost of disabling. Physic-
ally it runs enabled most of the time.

If a second event occurs before the first one has been hand-
led, it will be held by the supervisor, since the program con-
tinues to run disabled until the first event has been handled.
(Remember that this is the behaviour we originally wanted for
all events ... but we were inhibited by cost.)

Fig. 2 compares the transitions that occur during conven-
tional interruption handling with those that occur when in-
terruption handling is deferred.

4. IMPLEMENTATION AND OTHER DETAILS

It turns out that this scheme can be implemented elegantly,
at low cost, and without using any fancy synchronization feat-
ures, provided the machinery supports the following two prob-
lem-state instructions:



0I loc,imm Set the byte at the given location to
the "or" of its old value with the 8-
bit immediate field in the instruction

NI loc,imm Set the byte at the given location to
the "and" of its old value with the 8-
bit immediate field in the instruction,
and set the condition code to 0 if the
resulting value is 0, or to 1 otherwise

We will use these instructions to maintain a flag byte which
is reachable from all the programs that comprise the runtime
support, i.e. the service routines, the event stub and the in-
terruption handlers. (In S/370 the flag byte can be placed in
page zero of the applicable address space.) The bits in this
byte will be used as described below to record (a) whether

an interruption-sensitive service routine is running, and

(b) whether there is a deferred interruption. Let me be
specific, and define the flag bits thus:

FLAG:
Name of bit: S0 51 82 53 34 S5 86 KG
Usual value: 0 0 0 0 0 0 0 1
Here S0, 81, ..., stand for "Service flag 0", "Service flag

1", etc., and "KG" stands for "Keep Going".

There is one more thing to be done before describing how
these flags are actually used. The system designer must as-—
sign each interruption-sensitive service routine to one of 7
groups, numbered 0, 1, ..., 6, such that the groups reflect
the calling hierarchy. Service routines in group 3 (for ex-
ample) may call service routines in groups 4, 5 and 6, but
no others.

Now this is how deferred interruption handling can be
implemented.

L Before a service routine in group "j" enters its crit-
ical sequence, it sets bit Sj (using the OI instruction).
This publicizes the fact that an interruption-sensitive
routine is running.

(If the service routines have been properly assigned,
bit 83 will always be 0 on entry to a service routine

in group j.)

P If an event occurs, the supervisor transfers control
to the event stub. On arrival here the program is dis-
abled. The event stub clears the "KG" bit (using the NI



instruction), in order to publicize the fact that there
is an interruption to be handled, and it examines the

resulting condition code.

If the condition code is 0, then 80,51,...,56 must all
be 0, which means there are no interruption—-sensitive
gervice routines in execution. In this case the event
stub immediately passes control to the interruption
handler (remaining disabled). The interruption hand-
ler restores the "KG" bit to 1 (using the OI instruc-
tion) and handles the interruption. While doing so
it may call interruption-sensitive service routines
if the need arises. Finally it resumes execution
(enabled) at the point of interruption. This is

the simple (and typical) case.

1f the condition code is 1, then one or more of SO0,
s1,...,86 are evidently set, which indicates that at
least one interruption-sensitive service routine is
running (and possibly several). In this case the ev-
ent stub resumes execution from the point of interrup-
tion, inside the service routine. From this point on
+he service routine runs disabled, so any subsequent
interruptions will be held at bay by the supervisor.

When a service routine in group "j" is ready to re-
turn control to its caller, it clears bit Sj (using
the NI instruction) and examines the resulting con-

dition code.

If the condition code is 1, then one or both of the
following statements must be true:

a. The "KG" bit is set. This indicates that neither
this routine, nor any routines it may have called,
has been interrupted by an event, and therefore no
deferred interruption exists. In this case the pro-
gram should simply "keep going", i.e. the service
routine should return to its caller in the ordin-

ary way.

b. One or more of Si are set (i<j), meaning that this
service routine was called from some other interrup—
tion-sensitive service routine. In this case this
service routine must return to its caller, irre-
spective of whether there has been an event; for
the system will not be in a fit state to handle a
deferred interruption until the last interruption-—
sensitive routine has run to completion.

So if the condition code is 1, the service routine re-
turns directly to its caller, without needing to know
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the precise reason why this is the right thing to do.

On the other hand, if the condition code is 0, both of
the following statements must be true:

a. The "KG" bit is 0. This means that this service
routine, or some other service routine called by
it, was momentarily interrupted by an event, and
a deferred interruption exists.

b. None of S80,81,...,86 is set. This means that
there are no interruption-sensitive routines
remaining in execution.

In this case the service routine that thought it was
about to return to its caller must instead proceed as
follows:

it must save its own return address for use by
the interruption handler (see below);

it must then pass control to the interruption
handler.

The interruption handler restores the "KG" bit to 1
(using the OI instruction), and handles the interrup-
tion. While doing this it may call interruption—sens-—
itive service routines if the need arises. Finally it
resumes execution (enabled) at the return address of
the service routine that passed control to the inter-

ruption handler.

Fig. 3 depicts the technique graphically.

LIMITATIONS AND FINE POINTS

The technique as it is described above does not allow
an interruption-sensitive service routine to pass in-
formation to its caller in the condition code —- which
is used for other purposes. This restriction can easily
be lifted. Doing so requires a few more instructions at
the end of the service routines. It alsc requires that
the interruption handler be capable of resuming execu-
tion with an explicitly saved condition code (as well
as with an explicitly saved address) .

This technique will not handle interruption-sensitive

routines that are recursive. This is because each rout-
ine must be assigned ahead of time to a specific group,
and is not allowed toO call interruption-sensitive rout-

ines in the same group OF in groups with a lower number.



When
ful.

The number of service routine groups could if necessary
be increased beyond 7. In the case of 8/370, instructions
exist which can atomically set a bit (or clear a bit) in
a string of up to 2048 bits and at the same time set the
condition code (0C, NC). These instructions are function-
ally akin to the 0OI and NI instructions shown above, but
the immediate field is replaced by an operand in memory.
Using these instructions, the number of groups could be
increased to 2047 without any impact on program complex-—
ity. (In practice this would usually be overkill.)

This technique works best when there is a single class
of asynchronous interruptions -- or when (if there is
more than one clasgs) the classes are all enabled and
disabled together as if they formed a single class.

I do not know whether the technigue could be extend-
ed to handle situations in which some classes of in-
terruptions may be enabled while others are disabled.

The advantages of this technique diminish if the service
routines require different privileges from those enjoyed
by the application programs. Suppose for example that so-
called storage "keys" are used, and the service routines
have access to regions of memory that are out of bounds
to the application programs. Then an interaction with
the supervisor is unavoidable (to change the privilege),
and conventional disabling (or reenabling) can be hand-
led at the same time, at little extra cost.

the limitations are acceptable, the technigue 1s power-
It allows a set of service routines to handle interrup-—

tions in a fairly general way, while exhibiting performance

that

6.

is about the same as that of compiler runtime libraries.

ARCHITECTURAL IMPLICATIONS

Deferred interruption handling is easy to implement on
the §/370, which supports OI and NI instructions similar to
+hose described above. As far as I know, the technigue has
never been implemented on a "RISC", where usually the only
way to gain access to memory is via registers. This pre-
sents a symmetric pair of problems, at the beginning and
end of each interruption-sensitive service routine:

On a "CISC", service routines in the same group can
share a static register save area. This can be protect-
ed simply by setting the appropriate service flag (Sj)
before the caller’s registers are stored —— effective-
ly treating the save area as a part of the sensitive

10



structure. On a RISC, however, the act of setting
§j requires a scratch register; so it is impossible
to set the 8j bit (and also save all the registers)
unless some more complicated scheme is used for sup-—
plying dynamic save areas.

b. on a CISC, a service routine can get ready to re-—
turn to its caller, including reloading all the re-
gisters, and then modify (and examine) the flag byte
at the last moment. On a RISC, the act of modifying
(and examining) the flags requires a scratch regist-—
er, so it is impossible to restore all the caller’s
registers —— unless (as before) a dynamic save area

is supplied.

on a RISC, therefore, it seems necessary to adopt a com—
promise, such as one of the following:

compromise A  The rules for calling interruption-sensit-—
ive service routines must permit at least’
one register to have undefined contents

on return.

Each caller of an interruption-sensitive
service routine must supply at least one
word of scratch space, thus driving the
hard part of the problem back to the ap-
plication programs (and the other parts
of the system that call the services).

Compromise B

If one of these compromises 1is acceptable, then the tech-
nigue can be implemented on & RISC, though the details are
not as clean as on a CISC. In order to be specific, let me
adopt Compromise A. This is consistent with the AIX link-
age conventions, which leave several registers (including
GPR 0) undefined after a call: see [2]. (Here I will let
the undefined register be named "scratch".) Then this is

how we might proceed:

e the "KG" bit in a different byte from

1. We must plac
s0,s1,... . This allows the event stub to update the
wgG" bit reliably —— without tripping over a service

routine that is in the process of setting or clearing

one of the "service" bits, which on a RISC is perforce
a non-atomic operation. It is convenient to place the

two flag bytes in contiguous locations, in the same

halfword, e.g. thus:

FLAG:
Name of bit: 50 S1 82 s3 g4 85 56 —
Usual value: o0 0 0 0 0o o 0 0

11
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FLAG+1:
Name of bit: e e e (€
Usual value: 0 0 0 © 0 0 0 1

At the beginning of an interruption-sensitive service
routine, replace the OI instruction that sets bit 5j
(e.g. J = 3) by the sequence:

lbz scratch, FLAG # Fetch first flag byte
ori scratch, scratch,bit3 # Set my service bit
stb scratch, FLAG

Here and in the following notes I use 32-bit PowerPC
assembly language notation with a "big endian" model
of memory (see [2,3]).

Remember we are not considering multiple processors
with shared memory. Also the event stub and the in-
terruption handler do not modify S80,81,... . These
facts explain why it is not necessary to use fancy
synchronizing instructions when setting bit Sj.

In the event stub, replace the NI instruction and
the conditional branch by the sequence:

stw any,private # Save a GPR in static

lhz any, FLAG # Fetch both flag bytes
andi. any,any,65535-01 # and clear the KG bit
stbh any, FLAG+1

+H

lwz any,private Quietly reload the GPR
beg HANDLE # Br i1f FLAG = FLAG+1 = (

Here the symbol "any" stands for any general-purpose
register.

At the end of an interruption-sensitive service rout-
ine, replace the NI instruction and the conditional

branch by the sequence:

lbz scratch, FLAG # Fetch first flag byte
andi. scratch,scratch,65535-bit3 # Clear my bit
stb scratch, FLAG

lhz scratch, FLAG # Fetch both flag bytes
or. scratch, scratch, scratch # Examine all bits
bnelr # Ret unless deferred int

Note that there is no point is inspecting the "KG"
bit in FLAG+1 until after bit Sj has been cleared
in FLAG. Were the old value of "KG" used, the pro-

12



gram might reach the wrong conclusion i1f the event
stub happened to gain control during execution of
the first three instructions above.

5. Tn the interruption handler, replace the OI instruc-
tion by the sequence:

lbz any, FLAG+1 # Fetch 2nd flag byte
ori any,any, 01 # and set the KG bit
stb any, FLAG+1

These instructions must of course be executed after
the "any" register has been saved. (The registers
will usually need to be saved anyway, in order to
handle the interruption.)

My colleague Michel Hack observes that, given the need for a
scratch register, and given that the "KG" bit must be stored

separately, the ngervice" bits could be replaced by a full-
word counter. This would allow the scheme to be used even

when recursion was involved.

Historical note e

The technique described in this paper has been used since
1976 to handle interruptions in YMS.
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THE SELF-ADJUSTING STACK

1. BACKGROUND

Program call stacks are used to support subroutine calls
and function invocations in compiled code, runtime libraries,
interpreters, editors, operating systems, etc. To call a sub-
routine, for example, the linkage code typically proceeds

thus:

a. obtain a new stack frame of sufficient size,

b. save the necessary parts of the old state in
the new stack frame, including the address of
the previous stack frame,

c. prepare the new state for the subroutine, and
commence execution;

and to returmn:

d. restore the prior state from the current stack
frame (including the address of the prior stack
frame), and vacate the current frame, thereby
rendering the memory reusable,

e. resume execution following the point of call.

A "frame" is an area of memory within the stack. It is
a physical entity. Consecutively assigned frames may or may
not be contiguous in memory.

on the other hand, a "stack" is a notional entity. There
are many different ways to implement a stack. But whatever
the details, all stacks have one very handy property, which
allows certain short cuts to be taken in their implementa-

tion:

Frames are vacated in the opposite
order from that of their acquisition.

Because a stack is involved on every subroutine call and
every return, the performance of stack operations can be

very important.

156
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Fig. 1. Program call stack with one frame per chunk. "L" stands For "length of chunk".
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2. CONVENTIONAL METHODS OF STACK MANAGEMENT

I will briefly review several commonly used methods of
stack management.

pPerhaps the simplest approach is to preallocate a single
area of memory, which becomes dedicated to the stack. Frames
are then suballocated sequentially from within this area, and
the program is terminated 1f the stack ever overflows. This
can certainly be made to run fast. It may be adeqguate in cer-
tain constrained situations, e.g. when the frame gize and the
maximum stack depth are known in advance, Or when there is a
large private segment of virtual memory dedicated to the task.

In the remainder of this paper, however, I will consider
unbounded stacks. These possess no predefined limits, either
on the frame size or the stack depth. Such stacks are still
capable of failing, e.g. if the address space fills up; but
they do not impose a separate constraint of their own. They
will fail only if there is an impending crisis of a more’

general nature.

When implementing unbounded stacks, the following tech-

niques are widely used.

Conventional Method 1 -— One frame per chunk

The memory reguired for each frame is acquired separately,
from the memory allocator, and deallocated when the frame is
vacated. This is sometimes done when calling programs in

operating systems.

In its simplest form this method can be expensive, since
the time taken by the memory allocator may exceed the time
required by the subroutine that needs the frame.

A more sophisticated variant avoids deallocating the
memory when a frame is vacated, in the hope that the same
piece will be usable again, for another stack frame. Each
frame must now be preceded by a short prefix which is used
to chain the '"chunks" together and to record their lengths.
When a new frame is required, the first idle chunk (if. any)
is examined, and reused if it is big enough. This greatly
reduces the number of trips through the memory allocator.

The technique is illustrated in Fig. 1.

This variant is not completely straightforward, since
different frame sizes may be required on different occasions,
and the chunk left over from an o0ld frame may be insufficient
for the next one. There are various ways around this. The

17



‘ L Frame 1 Frame 2 Frame 3 244 dle 24/

i | | L Frame & Frame 5 | Frame 6| Frame 7 | /////
| |
[ | s s s
1 1 / Current chunk
i L I Frame Free space ...
¢ P
L
I L (Waiting in reserve)

Fig. 2. Program call stack with several Frames per chunk. "L" stands For "length of chunk".
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strategy that I like best is this:

If the first idle chunk is too small for a
new frame, the chunk is simply deallocated
and replaced by one that is sufficient.

During typical program loops, each chunk in the chain will soon
reach the maximum size required of it; and thereafter frames will
be assigned (and vacated) without any need to call the memory al-
locator. This method is used in the S/370 interpreters for Exec

2 (see [1]).

In practice this usually works quite well, but there are some

disadvantages:

Since the chunks are allocated separately, they may

a.
end up scattered through memory, with undesirable
effects on fragmentation and working set.

b. It is possible to devise pathological scenarios in
which each chunk grows to a great size, even though
the typical and average requirements may be small.

ol Every time a frame is assigned or vacated, several

instructions are required to chain to the adjacent
chunk. Also, when chaining down, it is necessary to
check whether the adjacent chunk exists at all (and
to allocate it if it does not).

The last consideration weighs against the use of this method

in compiled code, where there is usually a desire to cut the
cost of the calling sequence to its bare bones.

Conventional Method 2 —— Several frames per chunk

This method is often used in compiled code.

A moderately sized chunk of memory is obtained from the mem-
ory allocator, and stack frames are suballocated from within it.
Usually a frame can be assigned by incrementing an "available"
pointer by the frame length, and vacated by moving the pointer
back to the address of the vacated frame. (This takes advantage
of the fact that frames are vacated in the opposite order from

their assignment.)

When a frame is required whose length exceeds that of the

remaining free space in the current chunk, a new chunk is ob-

from the memory allocator and the next few frames are

tained
until it too becomes full, and so

suballocated from this

on.

We can use the same trick as before, and keep empty chunks
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for possible reuse. This reduces the number of trips through
the memory allocator.

The technigue is illustrated in Fig. 2.

This method works well most of the time. Only three or four
machine instructions are required to determine whether a frame
can be accomodated in the current chunk (and usually it can be),
and two or three additional instructions are sufficient to as-
sign the frame and adjust the "available" pointer. But on those
occasions when the frame cannot be accomodated in the current
chunk, there is noticeably more work to do: :

Is there another chunk of sufficient size already
in hand? (If not, obtain a new chunk and append
it to the chain.)

Acquire the address of the free space in the next
chunk, and its length, and store these in a con-—
venient place for subsequent size checking.

(Assign the stack frame, adjust the "available"
pointer, etc., as in the typical case.)

The shortest path through these checks (represented by the
parts not in parentheses) involves 7 to 10 extra instruc-
tions on most machines.

Similarly, when a frame is vacated, only three or four
instructions are required in the common case; but on those
occasions when the vacated frame is the last remaining one
in the chunk, three or four additional instructions are re-
quired to step back to the previous chunk, and to store the
"available" pointer and the chunk length in a convenient
place for subsequent checking.

So typically a frame may be assigned in about 7 instruc-
tions (and vacated in about 3); but occasionally the assign-
ment may take about 15 instructions (and the vacation about

6).

A problem therefore arises if a small subroutine is call-
ed in a tight loop, and through bad luck there is insufficient
room for its stack frame in the same chunk as that of its call-
er. Now the extra work for crossing chunk boundaries is incur-
red on every call and every return, and the performance is in-—
sidiously degraded. The explanation for the degradation is not
usually apparent to the user, and it may appear capricious or
random. It can be pernicious when making performance measure-
ments —— especially as the effect is not reduced, proportion-
ally, by increasing the number of iterations.
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3. THE SELF-ADJUSTING STACK

I will now describe a method of stack management which
exhibits nearly the same best-case performance as Conven-—
tional Method 2, but automatically adjusts the shape of
the stack so that the transition from one chunk toO anoth-
er never OCCcurs repeatedly, in a loop.

The basic idea 1is as follows.

We start off in roughly the same way as Conventional
Method 2, with a single chunk that is expected to be suf-
ficient for several stack frames. The ravailable" pointer
(and several other pieces of information) are maintained

in a static anchor.

When a stack frame is required, the frame is placed at
the beginning of the available space (and the "available"
pointer 1is advanced appropriately}, provided there is suf-
ficient free space. When there is insufficient free space
in the chunk, we proceed as follows:

1. Return the unused tail of the chunk to -
the memory allocator.

2 Obtain a new bigger chunk from the memory
allocator, having (say) twice the original
cize of the previous (now full) chunk.

3. Reinitialize the navailable" pointer and
the other information in the anchor, ready
to use the new chunk.

4, Try all over again.

When a stack frame is vacated, what happens depends upon
whether the frame lies within the current chunk (i.e. the one
most recently acquired) . If the frame lies within this chunk,
the space it occupies is potentially reusable (for subsequent
frames), and the wavailable" pointer is simply set to the ad-
dress of the vacated frame. otherwise the space ig deemed not
reusable, and is immediately returned to the memory allocator,

as an isolated piece; in this case the navailable" pointer is

not changed.

Therefore all the frames that are not in the current chunk
ne at a time. AC first sight this may seem

are deallocated O
But the

an extravagant proposition —- and in a sense it is.
saving grace is that it cannot occur in & loop.

consider for example the seguence:
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(Prefix) Initial chunk (alse current chunk) 1, Two frames have been assigned and
are both housad in the initial chunk.

Frama 1 Framea Z |Free space ...

Six more frames hove bean assignad.

Whan the initial chunk hos insufFici=

ent room, its unusable tail is return-

) ed to the system and o new (larger)
current chunk is obtained.

Dangling Frames 2

Frama 1 Frome 2 Frame 3 | Frame &

( New current chunk (bigger than initial chunk)

| | Frame 5 Frame & Frame 7 Frome 8 | Free space ...

Dangling frames 3. Frames 8,7,6,...,3 have beén vacated.
The current chunk is now empty and

Frame 1 Frome 2

the memory occupied by Frames L and
} 3 has bean returned to the systam.

( Current chunk (empty)

[ | Free space ...

k. Six new frames have been assigned.
They are all housed together in the
current chunk.

Dangling Frames

Frame 1 Frome Z

$

( Current chunk (occupied again)

| | Frame 3 Frame & Frame 5 |Frame & | Frame 7 |Frame 8| Free space ...

5. The sequence may be repeated or expanded. Eventually frames that
are assigned repeatedly will be housed together in the same chunk.

Fig. 3. An example of the self=adjusting staock.
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calls B;
calls C;
returns;
returns.

(55 I T w « B =

Suppose that when A first calls B, B's stack frame nearly
reaches the end of the original chunk. When B calls C, a
new chunk is therefore required, and C’'s frame is placed
at the beginning of it. (Assigning this particular frame
is expensive.) When C returns to B, its frame is vacated
(which is cheap) and the current chunk becomes empty (but
is retained). When B returns to A, the vacated frame is
not in the current chunk, so it is returned to the memory
allocator. (This is expensive.)

Now imagine doing it all again. This time, B's frame is
placed at the beginning of the new chunk; and C's frame is
placed immediately after this. Both these operations are
cheap. Vacating these frames is also cheap. So a loop that
contains this sequence runs at full speed after the first
iteration, without involving any further chunk crossing.

The reusable space is all in the current chunk. The cur-
rent chunk is replaced when necessary, becoming bigger each
time, so that it eventually contains sufficient space for
the deepest sequence of repeated calls that occurs in the

program.

The technique is illustrated in Fig. 3.

4. IMPLEMENTATION
Here is an implementation of the self-adjusting stack.

The prefix areas of the chunks are laid out as shown in
Fig. 3. There is also a 4-word anchor, which resides at a
fixed location, as shown in Fig. 4. The last word of the
anchor contains the total length (in bytes) of the current
chunk, including its two-word prefix.

I will describe two subroutines: "advance' supplies the
address of a new frame, and "retreat" vacates the current
frame. I will specify the important parts in detail, using
§/370 assembler notation, so that we can count the instruc-

tions (see [2]). The rest will be described informally, in

English.
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To dangling Frames j

Current chunk

| i Frame Frame Frame |Free space ...

L —

L The "available" pointer

0 \\ / 15
These fields are constant
during the life of the chunk

ANCHOR

Fig. k. Layout of anchor for self-adjusting stack. "L" stands For "length of chunk".

To dangling frames j

—

Current chunk

I | Frame Frame Frome |Free space ...
, /
R
S J | 5 L K = L (normally) or O
AL H if tracing is enabled
¢} L3 g 12 15

These fields are constant
during the life of the chunk

Fig. 5. Anchor for alternative implementation (see section
& of poper). As before, "L" stands for "length of chunk®.
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* % % % * % 0+ * *

*

*

ADVANCE is a subroutine which supplies
a stack frame of the specified length.

call is:
BAL R15,ADVANCE

On entry:
R2 = required frame length

(must not be 0)

On return:
RO has an undefined value
R1 = addr of stack frame

ADVANCE LM RO,R1,ANCHOR+4 Ending addr, "available"

SLR RO,R1 Length of the free space

CLR RO,R2 gufficient room in chunk?
LA RO, 0(R1,R2) Tentative new "available"
sT RO, BNCHOR+8 Optimistically set anchor
BNLRE RI15 Return very gquickly if so
ST R1,ANCHOR+8 Repair the damaged anchor

(arrive here if there is insufficient free space
in current chunk, in order to obtain new chunk.)

Ssave necessary registers in private save area.

Tf current chunk is empty (i.e. if "available"
pointer is equal to ending address of prefix),
copy prefix of current chunk to 1lst two words
of anchor: this describes prior chunk if any;
return entire current chunk to memory alloc-—
ator, including 1its prefix;
else
return unused tail of current chunk to memory
allocator.
copy "available" pointer to ANCHOR+4: this
i= ending address of last surviving frame.

Obtain new chunk from memory allocator: new chunk must
be bigger than prior chunk (whose length still resides
at ANCHOR+12), and big enough for the requested frame.

Terminate program if insufficient memory is available.

Copy lst two words of anchor to prefix of new chunk:

these contain beginning and ending address of sur-
viving frames from prior chunk.

Update anchor to describe new current chunk.

Reload saved registers and go back to ADVANCE.

25



* % *+ * * % * o ¥

*

*

*

RETREAT is a subroutine which vacates the
memory occupied by the given stack frame.

Call is:
BAL R15,RETREAT

On entry:
Rl = addr of stack
frame to be vacated

On return:
R1 has undefined wvalue

RETREAT ST R1, ANCHOR+8 Optimistically set anchor

SL R1, ANCHOR Offset of the given frame
CL R1, ANCHOR+12 Is frame in current chunk?
BLR R15 Return if so (common case)
L R1, ANCHOR+8 Regain given frame address

(Arrive here i1f frame being vacated does not reside
in current chunk, in order to return given frame to
memory allocator as isolated piece.)

Save necessary registers in private save area.

Set "available" pointer to ending address of prefix
in current chunk: this repairs damage done above when
optimistically setting anchor. (Since given frame be-
longs in prior chunk, current chunk must be empty, so
free space starts immediately after prefix.)

Obtain beginning and ending address of prior chunk
from prefix of current chunk, and derive length of
given frame (i.e. ending address of chunk - given
address of frame).

If this is only surviving frame from prior chunk
(i.e. if frame address = ending address of prefix),
copy prefix of prior chunk to prefix of current
chunk: this describes the penultimate chunk 1if
any;
return entire remains of prior chunk to memory
allocator, including its prefix;
else
return given frame to memory allocator as an
isclated piece;
store given frame address in 2nd word of prefix
in current chunk: this is new ending address
of last surviving frame in prior chunk.

Reload saved registers and return to caller.
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NOTES AND OBSERVATIONS

The short path in "advance" contains 6 instructions,
or 7 on a RISC which does not support a general "Load
Multiple" instruction (see for example [3]1). This is
the same number as in the corresponding sequence for
Conventional Method 2.

The short path for "retreat" contains 4 instructions, or
6 on a RISC which does not support Addition or Comparison
with the contents of memory. I believe this is one more
instruction than the corresponding sequence for Conven-
tional Method 2, or two more on a RISC.

(In Conventional Method 2 the given frame address can be
compared for equality with the ending address of the pre-

fix in the current chunk —- which can easily be included
in the anchor -- and a subtraction is therefore not nec-
essary.)

So in the common case the extra cost of the self-adjust-
ing stack is one extra instruction when vacating a frame
(or 2 on a RISC). The advantage is that the amortized
performance will often be better. Also the performance
will be more reproducible and exhibit a smaller variance.

The self-adjusting stack requires that the system memory
allocator be capable of deallocating the talil of a piece
of allocated memory without affecting the contents (or the
address) of the surviving head. This does not usually pre-
sent any difficulty in 5/370 operating systems; but there
are varying traditions in other environments. In "malloc",
for example (which is the allocator used by the C runtime
environment), a piece of allocated memory retains an id-
entity and must be handled as a unit; and while it is pos-
sible to "reallocate" an existing piece and thus increase
or decrease its length, the address may be changed as a
side-effect. This presents serious difficulties when

implementing a stack.

Some implementations of vmalloc" guarantee that the ad-

dress will not be changed during a reallocation provided
the new length is less than the old (e.g. AIX release 3.2
on the RS/6000: see [4]). This permits a self-adjusting

stack to be implemented.

The implementation given above permits the use of the
following idiom, which is useful in some contexts:

Obtain stack frame of ample size;
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prepare contents and incidentally
derive the exact size required;

vacate the unwanted tail.

In terms of the actual code, this might be written
thus:

L& RO, 128 Obtain ample stack frame
BAL R15, ADVANCE

LA R2,80(,R1) Address of unwanted tail
5T R2, ANCHOR+8 Reset "available" pointer

Sometimes it is convenient if the linkage code in a pro-

gram can vacate several stack frames at once. This may hap-—
pen after certain exceptions, or if a "goto" statement pas-
ses control from a deeply nested subroutine to a label that
resides in a routine that is "higher" in the calling chain.

It turns out that the "retreat" subroutine shown above
could easily be adapted to handle this -- without affecting
the fast path. Rl on entry would now contain the address of
the oldest frame to be vacated. If the given frame resides
in the current chunk, "retreat" will handle the situation
correctly without ever realizing that something odd is go-
ing on. If the given frame resides in a prior chunk, "re-
treat" must identify this chunk (which will not necessarily
be the immediately preceding one), and deallocate its tail;
It must also deallocate all the intervening chunks in toto.
This involves chaining back through the prefix areas of

the prior chunks (details omitted).

My colleague Stephen Watt made the following observation
and the following suggestion.

Consider a program which is not iterative but is deeply
recursive. Such a program has two phases. First it "winds
up", during which it acquires stack frames (without vacat-
ing any); then it "winds down", during which it wvacates
these frames (without acquiring new ones). At the peak,
the stack depth may be large (perhaps thousands).

When the program starts to wind down, a substantial pro-
portion of its stack frames will lie outside the current
chunk. The exact proportion depends on the amount by which
each new chunk is bigger than the prior one, and the full-
ness of the current chunk at the transition —-— but in any
event there may be many such frames, perhaps occupying on-
ly a few words each. It would be foolish to return each of
these frames individually to the memory allocator, since
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the cost of doing so might exceed the entire cost of every-
thing else in the program.

This problem can be avoided by introducing a threshold for
the minimum frame size to be deallocated as an individual
piece. Recall that the "retreat" subroutine, when passed -
a frame that lies in a prior chunk, computes the length of
the frame by subtracting the given frame address from the
ending address of the last surviving frame in this (same)
prior chunk. Well, if this length is less than the thres-
hold, the deallocation can be deferred (and of course the
ending address of the last surviving frame is not adjust-—
ed). Then when the next frame from the same chunk is vac—
ated, its apparent length will include that of the frame
whose deallocation was deferred. Eventually the apparent
length will reach the threshold (or the last surviving
frame in the chunk will be vacated), and then the accum-—
ulated frames will be deallocated as one piece.

The value of the threshold is not at all critical. Pract-
ical values might perhaps lie in the range 4K bytes to 64K
bytes, depending on the size of the memory and the perform-
ance of the allocator. The maximum length of memory that
can at any time be tied up due toO deferred deallocation

is bounded by the value of the threshold.

6. In the code sequences above, I have not worried about

alignment issues. In practice, each stack frame must be
aligned on a word boundary Or a double-word boundary (de-
pending upon the underlying machinery) . If the caller of
nadvance" always reqguests a length that is a multiple of
this alignment, no extra work is required. But if the
caller is allowed to request a length of (say) 11 bytes,
a few extra instructions must be inserted at the begin-

ning of "advance" in order to round up the given length.

6. ALTERNATIVE IMPLEMENTATION WHICH PERMITS DYNAMIC TRACING

The implementation described above was selected for its

gpeed, i.e. for the minimum number of instructions in the

short paths.

While I was preparing this paper, it struck me that there
ie an alternative implementation, which requires only one more
instruction in the fast path for nadvance", and which has the
following interesting property. It permits dynamic tracing of
igall" and "return" atatements with no extra overhead (other
than the one instructions), except when tracing is actually
enabled. Furthermore, tracing can be enabled and disabled
dynamically, and asynchronously, while the program is run-—

ning.
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Since program designers are often willing to sacrifice a
little speed in order to provide optional "call" tracing, it
is interesting to find that, when a self-adjusting stack is
used, this facility can be provided for a very modest cost.

The trick, of course, is to combine the test for tracing
with the existing size check (in "advance") and the existing
address check (in "retreat"). Then when tracing is disabled,
and there is nothing else unusual, the short path will be fol-
lowed. But when tracing is enabled, and/or something unusual
is afoot, a longer path will be followed. The longer path is
more complicated than in the first implementation —- but its
performance is of no great importance.

For this alternative implementation we will use a slightly
different anchor, as shown in Fig. 5. The alternative anchor
does not contain an "available" pointer; instead it contains
the offset of the free space. (Note however that the chunk
prefix is the same as before, and still contains the begin-
ning and ending address of the prior chunk.)

Normally, the third word of the anchor (which i1s shown
as "K" in Fig. 5) contains the same value as the fourth word
(which is shown as "L" and contains the length of the current

chunk) .

To enable tracing, "K" is set to 0. To disable tracing, it
is reset to the contents of the fourth word. These changes may
be made by an interruption handler while the program is running
-— and possibly while the anchor is in the process of being up-
dated for a new chunk (see below for details).

Note that the alternative "advance" subroutine uses slightly
different linkage rules. The required length is now passed in
RO instead of in R2. (This is unadulterated expediency: I sim-—

ply want the short path to come out as prettily as possible.)

Here, then, are the alternative subroutines.
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*

ALTADVA ("alternative advance") is a subroutine
which supplies a stack frame of the specified
length, and traces the call statement if trac-
ing is enabled.

% %

*

*

Call is:
* BAL R15,ALTADVA

*

*+

On entry:
RO = required frame length

(must not be 0)

On return:
Rl = addr of stack frame
R2 has an undefined value

* % * ¥ % * %

ALTADVA LM R1,R2,ALTANCH Chunk addr, free offset

ALR R1,R2 Tentative stack frame addr
ALR R2,R0 Tentative new free offset

ST R2,ALTANCH+4 Optimistically update anchor
BC 3,*+10 Goto "SLR R2,R0" if no room
CL R2,ALTANCH+8 Complete the size check

BNHR RI15 Return quickly if room

SLR R2,R0 Regain available offset

ST R2, ALTANCH+4 Repair damaged anchor

(Arrive here if there appears to be insufficient
free space in current chunk, in order to obtain
new chunk and/or handle tracing, as appropriate.)

gave necessary registers in private save area.

If ALTANCH+8 = 0, repeat the assembler sequence
above using ALTANCH+12 in place of ALTANCH+8, and
WBNH tracecall" in place of "BNHR R15". This dis-—
tinguishes between (a) current chunk is adeguate
and tracing is enabled, and (b) current chunk is
inadequate (with tracing enabled or disabled) .

(Arrive here if there is insufficient free space
in the current chunk.)

Tf current chunk is empty (i.e. if offset

of free space is equal to length of prefix),
copy prefix of current chunk to 1lst two words
of anchor: this describes prior chunk if any;
return entire current chunk to memory allocat-
or, including its prefix;

else
return unused tail of current chunk to memory

allocator.
temporarily set ALTANCH+4 to ending address of
surviving part of current chunk (see below}.
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Obtain new chunk from memory allocator: new chunk must
be bigger than prior chunk (whose length still resides
at ALTANCH+12), and big enough for the requested frame.
Terminate program if insufficient memory is available.

Copy 1lst two words of anchor to prefix of new chunk:
these contain beginning and ending address of sur-
viving frames from prior chunk.

Update anchor to describe new current chunk. This re-
quires synchronization with interruption handler that
clears or sets ALTANCH+8 to enable or disable tracing.
The following sequence shows how this can be done with
Compare-and-Swap (without looping) . When control reach-
es the Compare-and-Swap instruction (CcSs), ALTANCH+8
will contain one of the following possible values:

0 Tracing enabled
Length of old current chunk Tracing disabled
Length of new current chunk Tracing has just

been disabled

Here is the update seguence:

Set ALTANCH, ALTANCH+4 for new current chunk
Set ALTANCH+12 to length of new current chunk

Load R3 with the length of the old current chunk
Load R4 with the length of the new current chunk

Cs R3,R4, ALTANCH+8 Update ALTANCH+8 if stale
(This last instruction can be read as follows. "If R3
equals the value at ALTANCH+8, store R4; else place the
value from memory in R3, without changing the contents

of memory". The entire thing is executed as an atomic
operation.)

Reload saved registers and go back to ADVANCE.

tracecall:

save R1 (address of new stack frame).
Trace the call (details are omitted).

Reload saved registers, reload Rl {the new
stack frame address), and return to caller.
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*

ALTRETR ("alternative retreat") is a subroutine
which vacates the memory occupied by the given
stack frame, and traces the "return" statement

* if tracing is enabled.

*

* call is:

* BAL R15,ALTRETR

*

* On entry:

¥* R1 = addr of stack frame to be vacated

*

* On return:

* R1 has undefined value

*

ALTRETR 5L R1,ALTANCH Tentative new avail offset
ST R1, ALTANCH+4 Optimistically set anchor
CL R1,ALTANCH+8 Is frame in current chunk?
BLR R15 Return if so (common case)
AL R1,ALTANCH Regain given frame address

(Arrive here if frame being vacated does not appear
to reside in current chunk, in order to return given
frame to memory allocator and/or handle tracing, as

appropriate.) W

=R

Save necessary registers in private save area.

If contents of ALTANCH+4 < contents of ALTANCH+12,
goto "tracereturn", since given frame resides in
current chunk after all.

Set ALTANCH+4 to length of prefix: this repairs damage
done above when optimistically setting anchor. {Since
given frame belongs in prior chunk, current chunk must
be empty, so free space starts immediately after pre-—

fix.]

Obtain beginning and ending address of prior chunk
from prefix of current chunk, and derive length of
given frame (i.e. ending address of chunk - given
address of frame).

If this is only surviving frame from prior chunk
(i.e. if given frame address = ending address of
prefix),
copy prefix of prior chunk to prefix of current
chunk: this describes the penultimate chunk if
any;
return entire remains of prior chunk to memory
allocator, including its prefix;

else
return given frame to memory allocator as an

isolated piece;
store given frame address in 2nd word of prefix
in current chunk: this is new ending address
of last surviving frame in prior chunk.
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If ALTANCH+8 -= 0, reload saved registers and re-
turn to caller (else fall through to "tracereturn").

tracereturn:

Trace return statement (details are omitted).

Reload saved registers and return to caller.

Historical note

The self-adjusting stack was devised in 1989 and
has been eploited in the YMS editor "Ed" since 1992.
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CALENDRIC PROGRAMMING

Joint work with James H. Davenport® and Paul R. Kosinski t

1 BACKGROUND

"The ancient Roman year commenced with March, as is indicat-
ed by the names September, October, November, December, which
the last four months still retain. July and August, likewise,
were anciently denominated Quintilis and Sextilis ..." (from

[11).

At the time of Julius Caesar, the months contained 29 and
30 days alternately. Every second year (with some exceptions),
an additional short month was inserted between February 23 and
February 24 in order to keep the civil and solar years more Or

less in step.

In 47 B.C. Julius Caesar revised the lengths of the months,
as shown in Fig. la, eliminated the occasional short month, and
decreed that there should be one extra day in February every 4 o
years. Note that each alternate month contained 31 days. It _

was sensible and regular.

Unfortunately, in recognition of this calendric contribution,
Quintilis was renamed in honour of Julius Caesar. This was harm-—
less in itself, but it had the following regrettable repercussion.
Some years later, Augustus resolved a minor confusion concerning
the extra day in February; and following precedent, Sextilis was
renamed for him. But Augustus was miffed that "his" month was
shorter than the one named after Julius; so the months were re-—
sized, as shown in Fig. 1b, to the lengths that we still use.

The next part of the story that concerns us here took place
in the 16th century, when Pope Gregory XITIT made a correction to
the frequency of leap years, and established the calendar we fol-
low today. According to his rule, February in year Y contains the

following number of days:

D = 28 + (Y% 4 xor Y % 100 xor Y % 400),

where "P % Q" evaluates to 1 if P is exactly divisible by Q (or

to 0 otherwise}.

* bresent address: School of Mathematical Sciences, Bath University, Bath, England

% present address: Digital Equipment Corporation, 334 South Street, Shrewsbury, Mass.
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March ! 31
April L 30
May | o
June l 30
July l o5 |
August l 30
Septembar ] 31
October l 30
November l i
December | a0
January | 31
February | 29 or 30

Fig. 1a. The lengths of the months.as defined under Julius Caesor.
The picture uses an origin of March in order to expose the repaating
pattern and to place the variable month at the end.

March J H
April I 30
May _! 31
June | 30
July 21
August 31
September i 30
October l jex |
Movember 30
December H
Jornuory 31
February J 28 or 29

Fig. 1b. The lengths of the months as redefined under Augustus.

36



2. COMPUTER TIME STAMPS

Most computers maintain a clock which can be read by the pro-
gram. In S5/370, for example, a clock reading comprises a 64-bit
unsigned integer in which the high-order 52 bits represent the
number of microseconds that have elapsed since A.D. 1900-01-01
00:00:00.000000 GMT (see [2] )&

Microseconds since 1900-01-01 00:00:00 JI1I1 7

0 52 63

The low-order 12 bits do not necessarily represent accurate frac-—
tions of microseconds. (Some of these bits may be set in order to
guarantee that clock readings on any machine are unique within the

epoch.)

It is usually convenient to store internal time stamps in the
format supplied by the clock. When recording the time—of-last-
change for a file, for example, the current clock reading can
simply be stored in the file directory. This is more compact
than a human-readable date and time, and for most programming

purposes it is more convenient.
Fa

There is however a potential performance problem, e.g. when
listing files. When files are listed, their names, sizes and time
stamps are obtained from the file directory and laid out in human-
readable format. The results are placed in (say) an edit file. The
program that handles this should certainly be capable of format-
ting the information for thousands of files in a fraction of a

second.

gimilar requirements exist for records in data bases, event

logs, etc.

It is therefore important that conversion of an internal
time stamp to a human-readable date and time should run fast.

35 OBTAINING MONTH AND DAY-IN—MONTH FROM DAY-IN-YEAR

Suppose we have computed the day-of-the-year, and we want
the month and the day-of-the-month.

At first glance you might think that Augustus made things
difficult for us. If the monthe had retained their lengths as
assigned under Julius Caesar, it would be possible, by adjust-
to determine the month-pair, and the

ing the origin to March 1,
day in the month-pair, from the quotient and remainder of an in-

teger division (by 61) . Thence the precise month and the day—-of-
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the-month would emerge after one comparison and a conditional
subtraction —- without any looping.

But as it happens, Augustus did us no great harm. If you ex-
amine Fig. 1b, you will see that, using the same origin of March
1, the year is divided into just under 2.4 regular 5-month inter-
vals, each of which exhibits the following pattern:

31, 30; 31, 30, 31.

As a result, a division operation could be used to select the
correct 5-month interval and also the day within that interval.
Then we would be left with the problem of choosing the correct
month in the group of 5, and the day in that month, using the
technique that worked for Julius'’ calendar.

But things get even better. By choosing an appropriate "quasi-
reciprocal®, it is possible to avoid the division operations and
perform multiplications instead. These run substantially faster
on most machines,

Division by a constant can be converted to multiplication by a
quasi-reciprocal as follows. Suppose we wish to divide X (a vari-
able) by U (a constant). We can instead multiply X by V, where:

v = 2k/U approximately

and extract the (w-k) high-order bits, where w is the total number
of bits in the result. There is some flexibility in the value of
k, but it should be chosen so that:

lgU < k < w- 1g @,
where Q is the maximum quotient.

In some situations the k low-order bits of the result are also
useful. These comprise the remainder, in the form of a fraction.

This trick can be used only when the range of wvalues for X is
suitably restricted -— but that is indeed the situation we face
when handling calendric numbers.

The word "approximately" is of course significant. Except in
the uninteresting case where U is a power of 2, V cannot be exact.
Tt is therefore necessary to find an approximation for V that pro-
duces the desired result for all relevant values of X. A thorough
discussion of this topic in given in [3].

In the present application X is the day-of-the-year, so there
are only 366 possible values, and it is easy to find a suitable
value for V by performing a search.
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While making this search, my colleagues and I found to our de-
light that Augustus did us no harm at all! By adjusting the ori-

gin by half a day it is possible to find a constant which breaks
up the day-of-the-year into the month-of-the-year and the day—-of-
the-month, just as easily as if Julius had held sway. In the end
we need one multiplication by 21%/61 approximately, and one multi-

plication by 61 exactly (the number of days in a 2-month interval),

along with a little bookkeeping. This is how it can be written in

§/370 assembly language:

* Rl = day of year (0 = Marl, 1 = Mar2, ...).

LA R1,1(R1,R1) Adjust origin half a day
MH R1,=Y(1071) Mult by 2**16/61 approx
LR RO,R1 Extract high-order bits
SRL RO, 16 RO := month (0,1,2,...)
N R1,=A(2**16-1) Extract low-order bits
MH R1,=Y(61) Mult by days-in-2-months
SRL R1,17 Discard the surplus bits

*
* Now RO = month number (0=Mar,1=Apr,...)}.
* and Rl = day-of-the-month (0,1,2,3,...).
*

The second multiplication (by 61) can be replaced if des-—

ired by a shift and three subtractions (since 61 = 64-3).

4. OBTAINING YEAR AND DAY-IN-YEAR FROM DAYS—-SINCE-1900

The previous section assumes that we have already com—
puted the day-of-the-year. This section describes how to

do that.

The epoch of the §/370 clock runs from A.D. 1900-01-01
00:00:00.000000 to A.D. 2042-09-17 23:53:47.370495. This
includes one centennial year that is not a leap year (1900),
and one centennial year that is a leap year (2000) . The fact
that the latter is a leap year simplifies matters consider-
ably, for it means that after February 1900 each four-year

interval contains the same number of days.

The best way to handle this part of the calculation is to
bias the origin to 29 February 1896. Then every four—-vear in-
terval will contain the same number of days, and the only re-
maining nuisance will be that dates in January and February

1900 will be off by one.

The same trick can be used as before to avoid a division
operation. Here however we need more than 32 bits of informa-
tion from the first multiplication, so we must use a fullword
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multiplication instruction, which supplies a 64-bit result in
two consecutive registers:

*

Rl = days since 1 Jan 1800 (0,1,2,...)

LA R1, (4*365+1)—(31+28)+1(,R1) Orig = 1896-02-29

M RO,=A(11758976) Times 2*%*32/365.25 approx
SRL R1,12 Multiply the remainder
MH R1,=Y(2922) by 365.25 (exactly)
SRL R1,23
5 RO,=A(4) Years since 1900-03-01
BNL *+6 Skip if after Feb 1500
BCTR R1,0 Adjust for Jan-Feb 1900

*

* Now RO = whole years since 1900-03-01 (-1,0,1,...),

* and R1 day-of-the-year (0 = Marl, 1 = MarZ, daly 3

5. CONVERSION FROM S/370 CLOCK TO YYYY-MM-DD HH:MM:SS.MMMMMM

Appendix A contains a $/370 subroutine that does the entire
job of converting a S/370 clock reading to a human-readable date
and time. It employs the methods described above, although the
detailed tactics are different —— in order, for example, to ob-
tain "01" for January and "03" for March (rather than treating
January as month 10 and March as month 0 as in the fragments
above) .

When deriving the time-of-day (in hours, minutes, seconds),
division operations can be replaced by multiplications in the
same way as when computing the date. It is a little less devi-
ous in this case, since the time units are uniform.

Tn the end, the subroutine contains 60 instructions (includ-
ing those which save and restore the caller’s registers). There
are no branches except for the "return" statement. Among the
potentially expensive instructions there are 2 divisions, 12
multiplications, 3 instances of the "Convert to Decimal" in-
struction and 3 instances of "Unpack". If desired, 8 of the
12 multiplications can easily be replaced by shifts and sub-
tractions; this is advantageous on machines that do not sup-—
port fast multiplication (and it is almost never harmful) .

On an IBM 9021 mainframe, model 941, the execution time
of the subroutine as given is under 1.3 microseconds.

Appendix B contains informal descriptions of the 5/370

nConvert to Decimal" and "Unpack" instructions for readers
who are not familiar with them.
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Historical note

The method described here for converting clock readings
to human-readable date and time has been used in YMS since
1979-11-05 10:34:26.402003 GMT.

APPENDIX A

Subroutine to convert S/370 clock reading to date and time

* GREG is a subroutine which converts a $/370

* clock reading to date and time in characters.

*

% Call is:

* L R15,=A(GREG)

* BALR R14,R15

*

* On entry:

* RO = addr of 64-bit clock reading

* R1 = addr of a 26-byte reply area

*

* On return:

¥ The date and time are stored in

® the reply area, laid out thus:

*

¥ e v Tampem o B acnati

¥ yyyy-mo—dd hr:mi:ss .mmmmmm

*

* where "mmmmmm" represents the

* residual microseconds (within

* the second)

*

* RO-R15 are unchanged from entry

* The condition code is undefined

*

* Notes:

*

* g B The constant multipliers from which the year

* and the day-in-the-year are derived produce the
* correct results through 2100-02-28. If, there-
* fore, the §/370 clock were to be extended (with
* an additional high-order bit), this subroutine
* could easily be modified to use it. After 2100-
* 02-28, the results will initially be off by one
* day. (The behaviour beyond this date has not

* been investigated.)

*

* 2. The result area (addressed by R1) is not mod-

* ified until after the complete answer has been
* computed. Therefore the areas addressed by RO
* and R1 may overlap.

*

* 3. This routine requires a 6-word register save

* area and a double-word named SCRATCH. Address—
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* ability to these is regarded as a packaging

* issue and is not specified here.

*

GREG DS OH {The entry point)
USING *,R15 Local program cover
STM R2,R7,... Save needed registers
LR RZ2,R0O Addr of given time stamp
LM R2,R3,0(R2) Put the value into R2,R3
LR R5,R3 Save the low-order part
SRDL R2,12+12 Remove low-order bits
D R2,=A((24*%60*60/64)*(1000000/64))
LR R4,R2 Restore discarded bits
SLL R5,8 and hence set R4,R5 to
SRDL R4,8+12 microsecs sgince midnight
D R4,=A(1000000) R5 = secs since midnight

LR R7,R4 R7 = remaining microsecs

*

Derive time-of-day in hours, minutes and seconds.

* At this point:

*

* R3 = whole days since 1900-01-01 (0,1,...)

* R5 = whole secs since midnight (0,1,...)

* R7 = the residual microseconds. (0,1,...)

*
M R4,=X'00123460' Times 2**32/3600 approx
LR R6,R4 Whole hours since midnight
MH R6,=Y (1000} (Prepare for the CVD instr)
SRL R5,1 Make sure remainder is +ve
M R4, =A(2*60) R4 = whole mins since hour
ALR R6, R4 Add in the residual minutes
MH R6,=Y(1000) (Prepare for the CVD instr}
SRL R5,1 Make sure remainder is +ve
M R4,=A(2%60) R4 = whole secs since min
ALR R6,R4 Add in the residual secs

*

* Derive the year number and the day-of-the-vear,

* by using an origin of 1896-02-29. At this point:

*

* R3 = whole days since 1900-01-01 (0,1,...)

* R6 = 10**6 x hour + 10**3 x minute + second

* R7 = the residual microseconds (0,1,2,...)

LA RS, (4*365+1)—(31+28)+1(,R3) Orig = 1896-02-29

M R4,=X’00B36DB0’ Multiply by 2**32/365.25 approx
SL R4 ,=A4(4) Yrs since 1900-03-01 (-1,0,...)
SRL R5,3 Mult remainder by 365.25 exactly
LA R3,B*365+2

MR R2,R5 R2 = tentative day (0=Marl,...)
LR R5,R4 Years since 1900-03-01 (-1,0,...)
SRL R4,31 R4 = 1 if it is before 1500-03-01
SLR R2,R4 Decr day-of-year if Jan,Feb 1990
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*

* % 4 %

Derive the year (1900,1901,...), month (01,02,...)

and day-of-the-month (01,02, ..

R2
R5
R6
R7

ALR
LA

LA

SRL

LA

SRL
M
LA
ALR

.} . At this point:

= the day-of-the-year (0=Marl,1=Mar2,...)
= whole years since 1900-03-01 (-1,0,...)
= 10**6 x hour + 10**3 x minute + second
= the residual microseconds (0,1,2,...)

Perform scaling (fishy business)
R3,4*61+43 (R2,R2) Fudge origin, scale some more
R2,=X'002CSE00’ Mult by 2+#*32/(24x61) approx
R5,1900(R2,R5) Add century, incr if Jan or Feb

R2,R2

R5,=Y (1000) (and prepare for the CVD instr)
R3,1 Make sure the remainder is +ve
R2,=A(2%12) R4=month (0=Jan,l=Feb, 2=Mar,...)
R5,1(R2,R5) Ensnare month (1=Jan,2=Feb,...)
R5,=Y(1000) (and prepare for the CVD instr)
R3,1 Make sure the remainder is +ve
R2,=A(61) R2 = day of the month (0,1,...)
R2,1(,R2) Adjusted day of month (1,2,...)
R5,R2 Into low bits of R5 (see below)

Store the answer in the caller’s reply area. s

At this point:

R5
RE
R7

Also:

RO,

CVD

CVD
oI
UNPK

LM
BR

S

= 10**6 x year + 10**3 x month + the day
= 10**6 x hour + 10*+*3 x minute + second
= the residual microseconds (0,1,2,...)

R1 are unchanged from entry

Convert the date to decimal
(and fix up the lousy sign)
YYYY*MO*DD (*=junk)

R5, SCRATCH
SCRATCH+7,15
0(10,R1),SCRATCH(8)

L{R1) ;L8 Insert pretty separators
4#3(R1}, G4~

10 (R1) ;€% ! Separate date from time
R6, SCRATCH Convert time to decimal

SCRATCH+7, 15
11(8,R1),SCRATCH(8) HR*MI*SS (*=junk)
11+2(R1),C" ' smooth and polish

11+2+3(R1),C’':"’

19 (R1).,C".' Separate secs,microsecs

R7, SCRATCH Handle the microseconds

SCRATCH+7,15
20(6,R1) ,SCRATCH(8)

R2,R7j 4
R14

Reload caller’s regs
and return happily
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APPENDIX B
Informal description of the S/370 CVD and UNPK instructions
Convert to Decimal

CVvD gpr, loc Convert the 2's—complement value in the
given GPR to an B-byte "packed" decimal
number and store the result at the given
location. A packed decimal number con-
taing 2 digits per byte except for the
rightmost digit (which shares a byte
with an encoded sign nibble).

Unpack

UNPK locl(lengthl),loc2{length2)

Unpack the packed decimal number that
resides at loc2 (having length length2)
and store the result at locl (with length
lengthl). An unpacked decimal number oc-
cupies one byte per digit. It is human-
readable except possibly for the right-
most digit (which shares its byte with
the encoded sign nibble).
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This paper comprises notes on the following coding

FIVE CODING TECHNIQUES

Page crossing

The navel pointer
Interleaved arrays
Eccentric loop control

Deriving a single-bit mask
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PAGE CROSSING

In the low-level parts of operating systems, the following
situation quite often arises:

A program knows the virtual address and the length of
an area of memory in some address space, and it needs:

a. to find out whether the area involves more than
one page frame, and if it does:

b. the length that projects beyond the first page
boundary.

This can arise when copying data from one address space to
another, or when performing an IO operation to or from an
address space that is mapped to discontiguous page frames.

There is a beautiful way of handling this, which works
elegantly on many computers.

Suppose Rx contains the real or virtual address of the
area (it does not matter which), and Ry contains the length
of the area. Using S/370 notation (see [1]), and the symbol
PAGE for the page—-size, we can write:

0 Rx, =A(-PAGE) -Length to end of 1lst page
ALR Rx, Ry Hence the length that spills
BC CROSSES Branch if more than one page

The conditional branch ("BO") is taken if (a) the "Add log-
ical" instruction sets carry and (b) the result (in Rx) 1is

non-zero. When the branch is taken, Rx contains the length

that spills beyond the first page.

This method depends upon the fact that the page-size is a
power of 2, and that addresses are assigned (both in real and
virtual address spaces) so that pages are aligned on a multiple
of their size. (The proof will not be given here; it emerges
straightforwardly from the properties of binary number repre-

sentation.)

Note that, despite the comment on the OR instruction above
("0"), the address and the length are both treated as unsigned
numbers, and their high-order bit may be 1.

Architectural note

Unfortunately some modern machines do not support any equi—
valent of the "BO" instruction, and require the carry bit and
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the arithmetic result to be tested separately. On the PowerPC,
for example (see [2]), gix instructions are needed, e.g. thus:

bne cr2, $+8
bne CROSSES

Skip if only 1 page touched
Branch if more than 1 page

1i Rz, -PAGE # - (Length per page frame)
or Rx,Rx,Rz # -Length to end of lst page
addc. Rx,Rx,Ry # Hence the length that spills
merxr 2 # Place carry bit in cond reg
3
#

Historical note

This technique was devised circa 1976 and has been used
extensively in EM since then.
References

[1] 1IBM System/370 Principles of Operation, GA22-7000, IBM
(1972..1987)

[2] May, C. et al. (editors), The PowerPC Architecture, 2nd

edition, IBM and Morgan Kaufmann (1994)

CJS, 199%4-12.

48



THE NAVEL POINTER

There are various ways of terminating a linked list of control
blocks. A popular convention is to store a null pointer (or 0)
in the last forward pointer field. In some situations, however,
it can be more convenient to store a pointer that points to it-

self.

T call this a "navel" pointer, by allusion to the object of

contemplation.

Assume that the pointer field resides at the beginning of
the control block. A navel pointer can then be set without re-
quiring any registers other than the one that contains the ad-
dress of the block itself. Let us use 5/370 assembler notation
(see [1]), and suppose that R1 contains the address of a con-
trol block. Then the following instruction terminates the

§ ER 1= o
8T R1,0(,R1) Terminate the linked list

It is equally easy to test whether the current block is R
the last in the list. Suppose as before that Rl contains the

address of the block:

CL R1,0(,R1) The last block in the list?
BE NOMORE Branch if so (add another)

Finally, it is easy to find the end of the list. This too
requires only one register. Suppose R1 contains the address
of any block in the list -- possibly the last one; then the
following three-instruction loop finds the last block in
the list and places its address in R1:

L R1,0(,R1) Chain to next block maybe
CL R1,0(,R1) The last block in the 1list?
BNE *—8 Loop if not (back to Load)

(As a general rule, it is preferable to record the address

of the last block in a list separately rather than searching

for it. There are however situations where the chain is known
to be short and it is not worth maintaining a separate datum.
An example arises in file systems, when handling the "levels"
of a file tree, where it may be known a priori that the tree

depth does not exceed 4 Or 5.)

Architectural note

some of the advantages of the navel pointer disappear on
a RISC, where memory accesses are confined to Load and Store

49



instructions, and a second register ig always required to make
a comparison.

Historical note
Navel pointers have been used in the EM file system since
1975.
Reference
[1] IBM System/370 Principles of Operation, GA22-7000, IBM

(1972..1987)

CJs, 1895-01-15.
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INTERLEAVED ARRAYS

Suppose two integer arrays of equal size are allocated dynam-
ically and enlarged as necessary to handle the most demanding
situation that arises during executiom. Consider for example
the job of constructing the ndelta2" table for a Boyer—Moore
string search in a text editor (see [1], appendix). When the
editor begins execution, a modest area of memory is allocated,
sufficient for two integer arrays containing (say) 32 entries
each. When this proves insufficient, a larger area is estab-
lished, and retained thereafter (unless there is a shortage
of memory). The array origins, and thelr current size "k",
can be maintained in a static anchor, as depicted in Figs L

If the program is to exhibit the best possible performance,
it must, when using the arrays, devote a separate register to
each array origin. Assume that the element width is 4 bytes;
then on a byte-addressed machine a "fetch" operation from
(say) B[j] involves the following steps:

derive the offset of B[j] from B[0] by multi-
plying j by the array width (4 in this case);

fetch word residing at B[0] + derived offset.

If the program were to maintain only one pointer (say to A[0]),
then every time it required an element of B, it would need to
add the array length (4xk) to the offset. I am here assuming
that the machinery allows at most two registers to participate
directly in the formation of an operand address.

The need for two separate "origin' registers can be obvi-
ated by interleaving the arrays, as shown in Fig. 2. Now the
program can maintain a single pointer, to A[O0]; and a "fetch"
operation from B[j] can be handled as follows:

derive the offset of B[j] from B[0] by multiply-
ing j by the combined array width (8 in this case);

fetch word residing at A[0] + 4 + derived offset.
A fetch from A[j] is similar (with the 4 omitted) .
The same trick can be used with three or more arrays. It

is not confined to integers, or even to arrays which have the

same width. The only requirement is that the arrays all have

the same number of entries.

Obviously this technique can be used only if the arrays
are private to the program that creates and uses them. An
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Anchor

Two contiguous

arrays A ond B

=1 Afo]

Af1]

Alk=1]

e B[0]

B[1]

B[k=1]

Fig. 1.

Two arrays A and B of equal size placed contiguously in memery.

Two interleaved

arrays A and B

Anchor
r ey sAle] B[0]
7 Al1] B[1]
k
A[k=1] B[k=1]
Fig. 2. The same two arrays interleaved in memory.
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interleaved array cannot very well be passed to a Fortran
program.

Architectural note

This technique is beneficial on a machine that allows two
registers and a displacement to participate directly in the
formation of an operand address. This is a property of many
traditional architectures, including S/370 (see [2]). It is
not always true on a RISC, however. In the case of PowerPC,
for example, the operand address can be formed from two re-
gisters, or from a register and a displacement, but not from
all three (see [3]). On the other hand, PowerPC has plenty
of general-purpose registers ... so perhaps it has less need.

Historical note

I devised this technique in 1996 while preparing a note
on the latency of Boyer-Moore search (see [1]).
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ECCENTRIC LOOP CONTROL

In S/370, the instruction "BALR Ra,Rb" transfers control to

the address contained in Rb (provided b -= 0), and then places
in Ra the ending address of the "BALR" (see [1]). This instruc-
tion is intended for calling subroutines.

There is a widely known trick for executing a sequence of
code exactly twice:

BALR Rx,0 Rx = head of 2-times loop
Code seguence

BALR BRx,Rx Loop back once, reset Rx

There is a related trick which sandwiches a second sequence
(executed once) between two executions of a first sequence:

BAL Rx, SEQA Rx = head, and enter loop

Sequence B Executed once (inner layer)
SEQA Sequence A Executed twice (outer layers)

BALR BRx,Rx Loop back once (and reset Rx)

This has the same effect as:

Seguence A Layer 1
Sequence B Layer 2
Sequence A Layer 3

The idea can be extended to a many-layered sandwich. Sup-
pose for example that the following flow is desired:

Sequence A Layer 1

Sequence B Layer 2

Sequence A Layer 3

Sequence C Layer 4

Sequence A Layer 5

This can be programmed as:

BAL Rx, SEQA Rx = lst head, enter loop
Sequence B Layer 2 (is executed once)
BAL Rx, SEQA Rx = 2nd head, reenter 1loop

Sequence C Layer 4 (is executed once)

SEQA Seguence A Layers 1, 3 and 5 (3 times)

BALR Rx,Rx Loop back twice, reset RX
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The same effect could have been obtained by writing Se-
guence A as a discontiguous subroutine and calling it three
times:

BAL Rx, SEQA Execute layer 1
Seguence B Execute layer 2
BAL Rx, SEQA Execute layer 3
Sequence C Execute layer 4
BAL Rx, SEQA Execute layer 5

SEQA Sequence A Execute Sequence A and
BR Rx then return to caller

Sometimes, however, it is structurally undesirable to sep-
arate related sequences. Also this last version occupies
one more word than the previous version.

Historical note

These techniques were devised during the 1970s.

Reference
[1] IBM System/370 Principles of Operation, GA22-7000,

IBM (1972..1887)

CJS8, 1994-12.
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DERIVING A SINGLE-BIT MASK

Suppose a machine word contains W bits, and the bits in the
word are numbered 0,1,..,W-1 from the left, big endian style.
If W = 32, for example, the bits are numbered thus:

Now suppose Rx contains the number of a bit in a word, and
imagine that a mask is required containing a 1 in this posi-
tion and 0’s elsewhere. If W = 32 and Rx = 10, for example,

the mask would be:
00000000 00100000 00000000 00000000

On machines with parameterizable shift instructions, the mask
can be derived from the bit number, and placed in (say) Ry, by
setting bit 0 of Ry to 1 (and the rest of Ry to 0), and then
shifting Ry to the right by the value in Rx. Consider 8/370,
for example, which has a 32-bit word (see [1]). The mask can

be derived thus:

L Ry,=A(2**31) Bit 0=1, other bits 0
SRL Ry, 0 (Rx) Ry = the required mask

Now here is a variant which puts the mask in Rx, replac-
ing the given bit number, without involving any other reg-—

isters:

0 Rx,=A(2#%*31) Bit 0=1, rest unchanged
SRL Rx, 0 (Rx) BRx = the required mask

This has the desired effect because on S/370 only the low-—
order 6 bits of the second operand are used by the machinery

to compute the shift amount. SO the high-order bit is shifted,
without ite presence affecting the amount by which it is shift-
ed. Meanwhile the low-order 1-bits (which appear in the shift
amount) are shifted out and discarded. This is true for all
valid values of Rx. (Proof. For a shift amount exceeding 0,

it is true because the number of bits required to represent

the shift amount never exceeds the shift amount itself since

N > lg N. For a shift amount of 0, it is true because there

are no 1-bits in the first place.)

The technique can easily be extended to a 64-bit double—-word.

Tn this case we need one extra register (but not two). SuppoOse
Rx is an even register, and Rx+l contains the bit-number (0 <=
Rx+1 <= 63). The following seguence puts the mask in Rx || Rx+1l:
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L Rx,=A{2**31) Bit 0=1, other bits 0
SRDL Rx, 0 (Rx+1) Rx| |Rx+1 = needed mask

There is a closely related trick which computes the mask for
a bit within a byte. In this case we do not even need a literal
(or any memory reference). Suppose Rx contains the bit number
(0 <= Rx <= 7). The following segquence puts the mask in the
low—order 8 bits of Rx, replacing the bit number:

LA Rx%,128(,Rx) Bit 24=1, rest unchanged
SRL Rx, 0 (Rx) Now bits 24..31 = mask

This can be useful when handling the block allocation map in
a file system, or the page allocation map for a backing store.

Architectural note

These methods do not work if the bits are numbered from
the right, little endian style.

Historical note
I believe this technigue was devised in 1975, but it
may have been two or three years later.
Reference
[1] 1IBM System/370 Principles of Operation, GA22-7000,

IBM (1972..1987)

CJS, 1994-12.
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PRACTICAL METHODS FOR HANDLING
SELF-ADJUSTING BINARY SEARCH TREES

This paper describes and reviews four different methods
for constructing binary search trees. The second, third
and fourth methods build ngelf-adjusting" trees. The ori-
ginal papers on these techniques were published in 1980,
1983 and 1985, by me, by Vuillemin, and by Sleator and
Tarjan. My intention here is to elucidate and compare
the methods, to describe them in practical terms, and

to show some experimentally obtained performance data.

L BACKGROUND

A binary tree is a structure of nodes which are connect-
ed such that all but one of them possess a father, and all of

them have zero, one or two soms. (If A is B's father, B is a

son of A.) The node which does not possess a father is called
A node that possesses no sons is called a "leaf".

the "root".
In a tree of size 1, the

An empty tree contains no nodes.
root is a leaf.

Any node in a tree can be regarded as the root of the
nsubtree" comprising it and its descendants.

A binary "search" tree is a binary tree in which each
node possesses a value (sometimes called its "key"), and
in which the connections satisfy the following constraints:

For each node X,

the value of X equals or exceeds that of
its descendants on the left (if any), and

the value of X does not exceed that of
its descendants on the right (if any) .

The values are not necessarily distinct.

Binary search trees are useful for sorting (especially
when the number of items is not known in advance), for sym-—
bol tables, for dynamic memory allocation, and for various

other applications.

Let all nodes possess the following three named fields:
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Fig. 1. An example of o binary search tree. The highlighted nodes are the ones
whose values are examined if the tree is searched for o nede with the value "E”.
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left pointer to the left son
(null if son is missing)

right pointer to the right son
(null if son is missing)

value the "value" of this node
Note that a node does not possess a pointer to its father.

Using these definitions, we can search a binary search
tree for a node possessing any desired value (say "V") by
descending from the root, as follows:

X := addr of root;

while ¥ -= null do

begin
if value(X) = V then
goto found; [X¥X = addr of winning node]

if value(X) > V then
X = left(X)
else
X := right(X)
end;

goto notfound; [There is no winning nodel]
As an example, imagine searching for the value "E" in the
tree shown in Fig. 1. The search will examine the high-

lighted nodes (G,B,D,F), and then fail.

In this paper I use an Algol-like notation in which:

a. the function "addr of" yields the address of its
argument;

b. the notation "name(X)" refers to the "name" field
in the node that is addressed by the pointer "X";
and

c. the notation "0(X)" refers to the field (of any

name) that is addressed by the pointer "X".

Here is how a binary search tree is used to sort a
sequence of items. The tree starts empty. As each item
arrives, a new node is obtained, the value of the item
is copied to the node, and the node is inserted into the
tree. Finally the tree contains one node for each item.

A binary search tree can also be used to support a
symbol table. In this application the usual operation
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LEAF INSERTION

Mew link

MNeaw
node

Fig. Z. The node "E" is inserted os o leaf into the tree shown in Fig. 1.
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is "find or insert". If the given symbol is already present,
the effect is to find the existing nodr (without inserting a
new one); otherwise the effect is to insert a new node (and
supply its address). Finally the tree contains one node for

each distinct symbol.

2. METHODS OF NODE INSERTION

Clearly there are numerous valid ways of building a bi-
nary search tree from a given set of nodes. For 3 items with
distinct values there are 5 legal trees; for 7 items, there
are 429 trees; for 1000 items, there are more than 2.046 X
10597 trees! So the question arises as to how best to build
the tree, i.e. where each node should be placed.

Method 1 —— Leaf Insertion

The easiest way to insert a node is to descend the exist-—
ing tree from the root, pretending to search for a matching
node, but actually treating any matches as if the old match-
ing node possessed a marginally smaller value. When this
search "fails", the new node is attached to the last old
node visited, becoming its left or right son (as appropri-
ate). See for example [1,2]. I call this method "Leaf
Insertion", because each new node starts out as a leaf.

Suppose that memory for a new node has already been
allocated, and the "value" field has been set. Let the
static pointer variable "anchor" contain the address of
the existing root (null if none). We can then perform a

leaf insertion thus:

7 := addr of new node;
v := addr of anchor;
X = 0(Y);

while ¥ -= null do

begin
if value(X) > value(Zz) themn
Y := addr of left(X) [Descend to the left]
else
v := addr of right(X); [Descend to the right]
X = 0(Y)
end;
oY) := Z; [Attach the new node]
left(Z) = null; ‘[Clear pointer fields]
right(2z) := null;

Fig. 2 shows the result of inserting the node "E" as a leaf
into the tree that is shown in Fig. 1. The highlighted nodes

are the ones whose values are examined during the insertion.
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o LEAF INSERTION

o Items arrive in ordar:
A, By Cy wery %5 Y, Za

° ; N(N=1)
Comparisons = .
A

Fig. 3. Bad case for Leaf Insertion (items already sorted).
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This method is simple, and has good "average" performance.
To sort N randomly ordered items, the expected number of com-—
parisons approaches 2N 1ln N (for large N), which is within a
factor of 1.39 of the information-theoretic minimum. It has

several disadvantages, however:

T In the worst case, the number of comparisons required
to sort N items is N(N-1)/2. This (or a number close
to it) occurs when the items are already sorted or re-
verse sorted (or nearly so). Unfortunately such cases

arise often in practice.

Fig. 3 shows what happens when the items A,BiCr vewanXy
Y,z arrive in order. For each new node inserted, all
the previous ones must be examined.

sadly, there is no complementary "good" sequence which
performs much better than average. The best case occurs
when the order of arrival is such that the tree is per-
fectly balanced —-- and then the performance is only
1.39 times better than for an average random sequence.

P The first few nodes to be inserted are placed at or near
the root and are never moved during the life of the tree.
Therefore the number of comparisons required to insert the
later nodes is strongly influenced by the order of arrival
of the first few. Suppose for example that when sorting
1000 items, the 100 lowest—valued ones arrived first (in
order). Then the piece of the tree containing them would
degenerate to a list (with each node possessing a right
son only), and every insertion (after the 100th) would
involve 100 futile comparisons before reaching the first
interesting node. Because of this, the variance is large.

3. When Leaf Insertion is used to maintain a symbol table,
the overall performance is strongly influenced by the
order in which the symbols are first encountered. If a
frequently used symbol "X" ig declared after numerous
seldom-used symbols, it will be placed low in the tree,
and every reference to "X" will give rise to many com-—

parisons.
Method 2 —— Root insertion

It is possible to place a new node at the root (see [3]).
Doing so is only slightly more complicated than placing Tt
as a leaf.

The method of Root Insertion can be described as follows.
The node to be inserted becomes the new root, and a descent is
made through the old tree, starting at the old root, searching
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1.

Left /®\ Right

hook hool

2 naw node "N" is to be inserted at the root
of an old tree (with old root “00"). The hooks
are initially placed on the "left" and "right"
pointer Fields of the new node.

Right
hook

@ Laft

hook

Ramaining
subtree
(S1R)

Suppose the value of "00" is less than that

of "N"., Then "00" (with its left subtree) is
attached at the left hook, ond the left hook
descends to the "right" pointer Field of "00".

Right
hook

Remaining
subtree
(SZR)

Suppose "01" (the root of the remaining sub=
trae) olso has a value less than that of "N".
Then "04" (with its left subtree) is attached
at left hook, and left hook descends again.

Remaining
subtree
(S3L)

Suppose value of "DZ" (next old node) exceeds
that of "N". Then "02" (with right subtree) is
attached at right hook and right hook descends
.+ ond. so on until remaining subtree is empty.

Fig. k.
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for a matching node. Each node visited is treated as follows.
TIf the node has a value exceeding that of the new root, the
node (with its descendants on the right) is attached on the
right-hand side of the tree, and its left son becomes the
next node to be visited; otherwise the node (with its des-—
cendants on the left) is attached on the left-hand side of
the tree, and its right son becomes the next node to be vis-
ited. The two points of attachment (on the left and right

of the tree) move down during the insertion so that the

new tree is properly ordered.

The points of attachment are maintained as pointer vari-
ables named "left_hook" and nright_hook". When an insertion
begins, they point to the "left" and "right" fields of the
new node. As the insertion proceeds, the hooks move down the
inner edges of the new developing tree. To be precise, after
a node has been attached on the left (i.e. connected to the
left hook), the left hook descends to the "right" field in
the node that was just attached, and vice versa.

When the next node to be visited does not exist, the
fields addressed by the two hooks are set to null. The
new tree is then complete.

s

The operation is illustrated in Fig. 4. Here is the

algorithm:
7 := addr of new node;
X := anchor; [The addr of the old root]
anchor := Z; [New node becomes new root]
left_hook := addr of left(Z); [Initialize hooks]

right_hook := addr of right (Z);

while X -= null do
if value(X) > value(z) then

begin
0(right_hook) := X; [Attach old node on right]
right_hook := addr of left(X); [Maintain hook]
X := left(X) [Descend to next old node]
end
else
begin
0(left_hook) := X; [Attach old node on left]
left_hook := addr of right (X); [Maintain hook]
X := right(X) [Descend to next old node]
end;
0(left_hook) := null; [Complete the new tree]
0 (right_hook) := null;

Fig. 5 shows the result of inserting the node "E" at the root

of the tree shown in Fig. 1. As before, the highlighted nodes
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ROOT INSERTION

Naw

New link

Mew link

Fig. 5. The node "E" is inserted at the root of the tree shown in Fig. 1.

68




indicate the ones whose values are examined during the inser-

tion.

For random data, this method has exactly the same average
performance as leaf insertion (see [3]). The limiting cases
are however quite different:

1 When the items are already sorted or reverse sorted,
the method works at its best, and requires only N-1

comparisons.

Fig. 6 shows what happens when the items A,B,C,...,%Z
arrive in order. For each node inserted (after the

first), one comparison in required.

This is nice in two ways. (a) The popular case of sort-
ed or partly sorted data elicits unusually good perform-
ance instead of unusually bad, and (b) the good perform-
ance is extraordinarily good —- instead of being only
slightly better than average.

Sadly, there is still a worst case which requires 0 (N?)
comparisons. It occurs when the sequence comprises a so-
called "cut deck". The situation is illustrated in Fig.
7. When N is large, the number of comparisons required

to sort a cut deck is N2/4 + O(N) .

2 gince the tree is constantly being rearranged, the first
few nodes to be inserted do not dominate the subsequent
performance. Because of this, the variance is much smal-

ler than for Leaf Insertion.

Fig. 8 shows experimentally obtained histograms for sort-—
ing 1000 random items using Leaf Insertion and Root Inser-—
tion. The means are the same, but clearly the variances

are very different.

2 When Root Insertion is used to maintain a symbol table,
the "find or insert" operation is implemented as follows.

Assume that the given symbol has not been seen before,

and start to insert a new node for it at the root of the
tree. If an old matching node is not encountered during
the insertion, the assumption was correct, and the inser-
tion is completed. On the other hand, if an 0ld matching
node is encountered, the old node is promoted to the root,
the new node is thrown away, and the fields addressed by

the two hooks are set to null.

Tn either case, the act of referring to a symbol has the
side—effect of placing its node at the root of the tree.
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ROOT IMNSERTION

Items arrive in order:

B BB wwiaYy &

Comparisons = N = 1.

Fig. 6. Good case for Root Insertion (items already sorted).

70




ROOT INSERTION °

Items form a "cut deck”: o e

N30 3P 30X, Y5 2Z58,8,8 5 000,K,L,M

Nz + OC(N). ° °

Comporisons = —
b

Fig. 7. Bad case for Root Insertion (cut deck).
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Frequency

Root

insertion
Best case for
Root insertion Leaf
insertion
Best case for
Leaf insertion
L
— 4 \— —
2000 w000 £000 8000 10000 12000 14000 16000 18000
Comparisons

Fig. B. Experimentally obtained histegrams for sorting 1000 random values us=
ing two different tree=bosed mathods. Theoretical best cases are also shown.
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Therefore the tree adjusts itself automatically so that
popular symbols gather near the root, and the initial ord-
er has little effect on the overall performance. This is
highly desirable.

A pause to take stock

In a tree that is built by Leaf Insertion, the nodes are
ordered vertically such that later arrivals lie "below" earlier
arrivals (or, to be precise, sons are always younger that their
fathers). In a tree that is built by Root Insertion, the oppos-—
ite is true: even though the tree is constantly rearranged, an
older node will never become an ancestor of a newer one (see

(31).

As a result of these properties, a combination of Leaf In-
sertion and Root Insertion provides the ability to control the
vertical position of each node -— 8O that the height of a node
need not be purely a function of the order of arrival or the
order of reference. This observation was made by Vuillemin
(see [4]), who coined the term ncartesian" tree for a binary
search tree in which the vertical order is significant. The
insertion of a node at an intermediate depth can be accom-—
plished simply by starting the insertion as if the new node
was to be attached as a leaf; then changing strategies part
way down, and inserting the new node at the root of the re-
maining subtree!

Fig. 9 shows the three intermediate points where the node
nE" can be inserted in the tree of Fig. 1.

Cartesian trees have proved useful in dynamic memory alloca-
tion (see [5]). The available pieces of memory can be connected
such that the "values" of the nodes are simply their addresses,
and the nodes are ordered vertically such that no son is longer
than its father. The vertical ordering helps the job of alloca-
tion, since it allows a suitable piece to be identified without
visiting any nodes of inadequate size (which are often numerous) .
The horizontal ordering helps the job of deallocation, since the
neighbours of the deallocated piece can be found by performing a
binary search (which does not usually need to visit many nodes) .

So the fact that the existing nodes in a tree do nof reverse
their relative vertical positions as a side-effect of inserting
a new node can be a valuable property.

some applications, however, do not benefit from the property.
Examples are sorting and symbol tables.

The following guestion therefore arises. If we were willing
to give up the property, and allow nodes to migrate up and down
the tree, would there be some other benefit we could extract in

exchange?
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Fig. 8. Three intermediate positions where the node "E" can be inserted in the
tree of Fig. 1 by using o combination of Leaf Imsertion and Root Insertion.

74




The reason I know this is a good question to ask is because
the answer has already been provided by the invention of "Splay
Trees", due to Sleator and Tarjan [6,7,8].

Method 3 —- Splayed Root Insertion

I approach Splay Trees from a somewhat different starting
point from that of Sleator and Tarjan. Their ingenious analysis
assesses the changes in state of the tree by working from the
bottom up. Here I will consider the variety of Splay which
they call "Top-Down Simple Splay". This operates during a
descent from the root —— without needing to climb back up the
tree or perform a second descent. It is most easily described
(and programmed) as a variant of Root Insertiom.

The node to be inserted becomes the new root, and a descent
is made through the old tree, starting at the old root, search-
ing for a matching node. To a first approximation each node vis-
ited is treated in the same way as for ordinary Root Insertion.
If the node has a value exceeding that of the new root, the
node (with its descendants on the right) is attached on the
right-hand side of the tree, and its left son becomes the next
node to be visited; otherwise the node (with its descendants on
the left) is attached on the left-hand side of the tree, and its
right son becomes the next node to be visited. The two points of
attachment (on the left and right of the tree) move down during
the insertion so that the new tree is properly ordered.

The points of attachment are maintained as pointer variables
(left_hook and right_hook) which are adjusted in the same way as
for ordinary Root Insertion. When an insertion begins, they point
to the "left" and "right" fields in the new node. As the inser-—

tion proceeds, the hooks slide down the inner edges of the new

developing tree.

When the next node to be visited does not exist, the fields
addressed by the two hooks are set to null. The new tree is

then complete.

The difference between Splaved Root Insertion and ordinary

Root Insertion is as follows. When two consecutively visited
old nodes belong on the same side of the developing tree, an

extra step is performed. This is called a "Splay" step.

Suppose that two consecutively visited nodes (Cl1 and C2)
both belong on the left of the new node. Then the Splay step
consists of the following local rearrangement:

€1, C2 and the left son of C2 are "rotated".

In this process, C2 is promoted to the position previously
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SPLAY STEP

Remaining
subtree

Remaining

subtree

Splay
step

Fig. 10, & Splay step is performed when two consecutive nodes (C1
and C2) belong on the same side with respect to the mew node (N).
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occupied by Cl; Cl1 (with its left subtree if any) is demoted
so it becomes the left son of C2; and the old left son of C2
becomes the new right son of Cl.

The hooks are not affected by the Splay step. In this
example, the left hook is placed on the right pointer field
of C2 -- which is where it would have been if the Splay step

had not been performed.

The Splay step is illustrated in Fig. 10. The triangular
subtrees are of arbitrary shapes and sizes, and in particular

any or all of them may be empty.

A similar description, mutatis mutandis, applies to the
case in which two consecutively visited nodes belong on the

right.

During an insertion, each node visited participates in at
most one Splay step. If the son of a promoted node belongs on
the same side of the tree as its father, it is not deemed to

be consecutive with its father.

The net effect is that some of the nodes visited during
the course of an insertion move away from each other, and

the tree becomes "splayed".

Here is one way of writing the algorithm. We need two more
variables than for ordinary Root Insertion. These are named
wleft_father" and "right_father", and when necessary hold the
addresses of the fathers of the nodes to which the hooks are
currently attached. These variables are set when a non-splay-
ing attachment is made and referred to when a Splay step is
performed. (Since there is at least one of the former be-
fore the first of the latter, these variables do not need

to be initialized.)
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Z := addr of new node;

left(2) := null;
right(Z) := null;
X := anchor;
anchor := Z;

left_hook := addr of left(Z);

right_hook := addr of right(Z);

while ¥ -= null do

if value(X) > value(Z) then
if 0(right_hook) -= X then
begin
0 (right_hook) := X;

right_father := right_hook;

[Clobber pointer...]
[...fields in new node]

[The addr of the old root]
[New node becomes new root]

[Initialize the hooks]

[If node belongs on right]
[(Unless 2nd consecutive...]
[...perform Root Insertion]

[Remember old hook]

right_hook := addr of left(X);

X = left(X)
end
else
begin [Perform a Splay step]
0 (right_hook) := right(X);
right {¥X) := 0(right_father);

0 (right_£father) := X;

right_hook := addr of left (X);

X = left(X);

[Maintain hook]
[Descend to next old node]

0 (right_hook) := null [And clobber this pointer]

end

else [same thing on the left]
if 0(left_hook) -= X then

begin
0(left_hook) := X;
left_father := left_hook;
left_hook := addr of right(X};
X = right(X)

end

else

begin
0(left_hook) := left(X);
left({X) := 0(left_father);
0(left_father) := X;
left_hook := addr of right (X);
X = right (X);
0(left_hook) := null

end;

0(left_hook) := null; [Complete the new tree]
0({right_hook) := null;

In this description of Splay the
cutively visited nodes belong on
made by examining the pointer in
are other ways of accomplishing this.

test for whether two conse-
the same side of the tree is
the appropriate hook. There
(The test can in fact
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be eliminated altogether by "unrolling" the loop and examin-—
ing two nodes at a clip.)

Fig. 11 shows the result of "splaying" the node "E" into
the tree shown in Fig. 1. As before, the highlighted nodes
indicate the ones whose values are examined during the in-

sertion.

Why is this extra complexity desirable? What does it buy?

I The amount of work required to build a tree using Splay
has the following beautiful and remarkable property. Al-
though an individual insertion may involve many compari-
sons, the total number of comparisons required for the
entire sequence of N insertions (in any order) is prov-
ably no greater than O(N log N) .

So the "average" performance for sorting N random items
is O(N log N), and the worst case performance is also

O(N log N).

Furthermore, the best case is N-1. This is the same
as for ordinary Root Insertion, and it occurs for the
same sequences (i.e. when the items are already sorted

or reverse sorted).

2y Like Root Insertion, Splay constantly rearranges the
tree. The first few nodes to be inserted are incap-
able of dominating the subsequent performance.

Fig. 12 shows experimentally obtained histograms for
sorting 1000 random items using Leaf Insertion, Root
Insertion and Splay. (The first two are the same as
in Fig. 8.) On average, Splayed Root Insertion re—
quires about 5 per cent more comparisons than Leaf
Insertion or ordinary Root Insertion. In most pro-—
gramming situations this small loss in average per-—
formance is however less important than the guaran-—
tee that there are no very bad cases.

s When Splay is used to maintain a symbol table, the
wfind or insert" operation is implemented as follows.

Assume that the given symbol has not been seen before,
and start to insert a new node for it at the root (us-
ing vsplay"). If an old matching node is not encount-
ered during the insertion, the assumption was correct,
and the insertion is completed. On the other hand, if

an old matching node is encountered, the old node is

promoted to the root, the new node is thrown away, and
the fields addressed by the two hooks are set to null.
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SPLAYED ROOT IMSERTION

Mew link

Fig. 4. The node "E" is "splayed" into the tree shown in Fig. 1.
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Tn either case, the act of referring to a symbol has
the side-effect of placing its node at the root of the
tree. Therefore the tree adjusts itself automatically
so that popular symbols gather at or near the root, and
the initial order cannot affect the subsequent perform-

ance very much.
Method 4 — Spliced Root Imsertion

The method I call "Spliced Root Insertion" (or "Splice" for
short) is related to Splay, and was inspired by it. I believe
it is algorithmically eqguivalent to the variety of Splay that
Sleator and Tarjan refer to as "Top—Down Semisplay" [7,8].

As with Splay, the procedure for inserting a node is the
same as for ordinary Root Insertion until two consecutively
visited nodes belong on the same side of the developing tree.
When this happens, a "Splice" step is performed. What takes
place during a Splice step is not however the same as what
takes place during a Splay step. In the case of Splice, the

rearrangement is not purely local.

Suppose that two consecutively visited nodes (Cl and c2)
both belong on the left side of the new node. Then the re-
sulting Splice step performs the following rearrangement:

The new node (which was placed at the root)
is moved down and attached to the right hook;

the left son of C2 becomes the right son of C1;

the right son of C2 is detached and comprises

the remaining subtree;
C2 is promoted to the root of the tree; and

a brand new root insertion is started in order
to insert the new node in the remaining subtree.

If during the newly started insertion two consecutively visited
nodes both belong on the same side, the entire procedure is re-
peated, and so on, until the tree has been completely rebuilt
(i.e. until the next node to be visited does not exist). The
fields addressed by the two hoocks are then set to null.

The triangul-

The Splice step is illustrated in Fig. 13.
and in parti-

ar subtrees are of arbitrary shapes and sizes,
cular any or all of them may be empty.

A similar description, mutatis mutandis, applies to the
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Fig. 12, Experimentally obtaoined histograms For sorting 1000 random walues us-
ing three different tree=bosed mothods. Theoretical best coses are also shown.
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SPLICE STEP

Remaining subtree

Fig. 413. A Splice step is performed when two adjacent nodes (C1
and C2) belong on the same side with respect to the new node (M).

case in which two consecutively visited nodes belong on the
right.

The net effect is that some of the old nodes visited in the
course of inserting a new node are ngpliced" into higher levels
of the tree.

Here is one way of writing the algorithm. We need two more
variables than for ordinary Root Insertion. One is named "father":
this holds the address of the point of attachment for the subtree
currently being constructed; it is initialized to the address of
the anchor, and descends after every Splice step. The other is
a (very) temporary variable named "Y".
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Z i= addr of new node;

left(Z) := null; right(z) := null; [Clobber pointers]
X = anchor; father := addr of anchor;

left _hook := addr of left(Z); [Initialize the hooks]
right_hook := addr of right(Z);:

while ¥ -= null do

if value(X) > value(Z) then [If node belongs on right]
if 0(right_hook) -= X then [Unless 2nd consecutive...]
begin [...perform Root Insertion]
0 (right_hook) := X;
right_hook := addr of left(X);
X = left(X)
end
else
begin [Perform a Splice step]
0{right_hook) := right(X); Y := left(X);
left(X) := left(Z); right(X) := right(Z);
0(father) := X; father := left_hook; [Promote "C2"]
left_hook := addr of left(Z); [Start new insertion]
right_hook := addr of right(Z);
if father = left_hook then [Handle null subtree]
father := addr of left(X);
X =Y [Left son of "C2"]
end
else [same thing on the left]
if 0(left_hook) —-= X then
begin
0(left_hook) := X;
left_hook := addr of right(X);
X := right(X)
end
else
begin
0(left_hook) := left({X); Y := right(X);
left(X) := left(Z); right(X) := right(Z);
0(father) := X; father := right_hook;
left_hook := addr of left(Z);
right hook := addr of right(Z);
if father = right_hook then
father := addr of right(X);
X =Y
end;
0(father) := Z; [Attach the new node]
0(left_hook) := null; 0(right_hook) := null;

In this description of Splice the test for whether two con-
secutively visited nodes belong on the same side of the tree is

made by examining the pointer in the appropriate hook.

the same as in Splay above,

(This is
and it can be eliminated in the same
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way if desired.) In addition, the Splice step tests whether the
subtree is empty on the other side of the tree from "Cl"; since
if it is, the point of attachment for the next phase of the in-
sertion must be adjusted so that it lies in the promoted node,
not the new node. (These tests can also be eliminated if desir-
ed, by using two alternate temporary nodes as "working" roots,
and postponing copying the tree pointers to "C2" until after
the next phase of the insertion. This requires several extra
variables, however.)

Fig. 14 shows the result of "splicing" the node "E" into
the tree shown in Fig. 1. As before, the highlighted nodes
indicate the ones whose values are examined during the in-

sertion.
What are the properties of Splice?

iy The amount of work regquired to build a tree using Spliced
Root Insertion has the same beautiful property as Splayed
Root Insertion, viz. that although an individual insertion
may involve many comparisons, the total number of compari-
sons required for the entire sequence of N insertions (in
any order) 1is provably no greater than O(N log N) .

The best case is N-1. This is the same as for ordinary Root
Insertion and for Splay, and occurs for the same seguences
(i.e. when the items are already sorted or reverse sorted) .

2. Like ordinary Root Insertion and Splay, "gplice" constantly
rearranges the tree. The first few nodes to be inserted are

incapable of dominating the subsequent performance.

Fig. 15 shows experimentally obtained histograms for sorting
1000 random items using all four methods described here. (The
first three are the same as in Fig. 12.) Notice that whereas
Splayed Root Insertion requires (on average) about 5 per cent
more comparisons than Leaf Insertion or Root Imnsertion, Splic-
ed Root Insertion requirés (on average) about 8 per cent fewer
comparisons. The practical benefit of this depends upon the
relative costs of making a comparison and the other operations
involved (see below). The variance of Spliced Root Insertion
is clearly even smaller than that of ordinary Root Insertion

or Splayed Root Insertion.

3 When Splice is used to maintain a symbol table, the "find
or insert" operation is implemented as follows.

Assume that the given symbol has not been seen before, and
start to insert a new node for it (using "Splice"). If an
old matching node is not encountered during the insertion,
the assumption was correct, and the insertion is completed.
on the other hand, if an old matching node is encountered,
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SPLICED ROOT INSERTION

Maw link Mew link

Fig. 14. The node "E" is "spliced" intc the tree shown in Fig. 1.
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the old node is promoted to the root of the current sub-
tree, the new node is thrown away, and the fields addres-
sed by the two hooks are set to null.

In this way the tree adjusts itself automatically so that
popular symbols eventually gather near the root, though in
general it requires more than one reference to a symbol be-
fore it reaches this privileged area. As with Splay, the
initial order cannot affect the overall performance very

much.

Whether this behaviour is more or less desirable than
that of Splay probably depends upon the reference pat-
tern. I have not investigated this point in detail.

Table I summarizes the characteristics of the four methods
described in this paper.

3% OBSERVATIONS AND FINE POINTS

i When used for sorting, all the methods discussed in this
paper are "stable". This means that if several items have
the same value, their arrival order is preserved. The arb-
oreal rearrangements never give rise to a reversal of node

positions, left-to-right.

1. In thie paper I have not discussed how to use the three
varieties of Root Insertion to search a tree without also

being prepared to insert a new node.

The good performance guarantees of (say) Splayed Root In-—
sertion will not provide much advantage if search-without-
insertion is a common operation and the classical method

of search is used.

Suppose for example that we use Splayed Root Insertion
to construct a tree from the already-sorted sequence B,C,
D,...,X,Y,2. Only 24 comparisons will be executed while
building the tree. But if what follows is 1000 (failed)
gearches for "A", the total number of comparisons exec-—
uted during the entire sequence of operatioms will be

24 + 1000 x 25 = 25024.

This is easily remedied. When searching for a value, be-
have as though the intention was to insert it, i.e. place
a temporary node for it at the root, and proceed to insert
this into the o0ld tree (using whichever method seems the
most suitable). If a match is found, the old winning node
is promoted and the temporary node is discarded: this is
the same as for "find or insert". If a match is not
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Method Best case Average Worst case other properties
for sorting for sorting for sorting
Leaf C = 0(NlogN) C = O(NlogN) c = N2/2+O(N} Preserves vertical
insertion order: a son is al-
Occurs when Occurs when ways younger than
items are items already its father
"perfectly" sorted or re-
distributed verse sorted
ordinary ¢ = O(N) € = O(NlogN) Cc = N2/4+O(N) Inserts at root
root (or promotes to
insertion Occurs when Occurs for root)
items already "ocut deck"
sorted or re-— Preserves vertical
verse sorted order: a son will
always have been
referred to less
recently than
its father
Splaved c = 0(N) ¢ = O(NlogN) C = 0(NlogN) Inserts at root
root (or promotes to
insertion Occurs when root)
items already
sorted or re- Does not preserve
verse sorted vertical order
Spliced c = 0(N) C = O(NlogN) C = 0(NlogN) Node is inserted
root at (or promoted
insertion Occurs when to) a level that
items already is roughly half
sorted or re- the depth of the
verse sorted search that was
required for the
insertion (or re-
ference)
Does not preserve
vertical order

Tabl

search trees.

e I. Characteristics of four different methods for comstructing binary

The symbol "C" stands for "number of comparisons".
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found, the last node visited is promoted to the root, and
its son (it has at most one) is attached in its old place.

This requires one extra pointer variable, to maintain the
address of the father of the current node (so that if the
current node turns out to be the last one visited, its son
can be attached in its place).

The number of comparisons executed for the awkward example
is then:

24 (while constructing the tree)
+ 25 (for lst unsuccessful search)
+ 998 (for remaining 999 searches)
= 1048 (total).

These counts apply to ordinary Root Insertion and Splaved
Root Insertion. Splice requires 26 extra comparisons; for
in this case several unsuccessful searches for "At are
needed before "B" migrates all the way to the root.

The average number of comparisons required to sort N ran-
domly ordered items with Leaf Insertion or Root Insertion
18

2N(1lnN - 2 + g) + O(logN)

where g is Euler’s constant (appproximate value Go5T77) »
see [3].

The average number of comparisons reqgquired to sort N ran-
domly ordered items with Splay or Splice is not known pre-
cisely. Judging from the experimentally obtained histograms,
Splayed Root Insertion reguires about 5 per cent more com—
parisons than Root Insertion, and Splice requires about 8
per cent fewer comparisons than Root Insertion. I have no
evidence that these differences disappear —- or even change
very much -- with increasing values of N.

If these ratios hold constant for large N, then the experi-
mental evidence suggests that the average number of compari-
sons required for sorting by Splice lies within a factor of
about 1.28 of the information-theoretic minimum.

Whether such constant factors are important depends upon
the circumstances. A spliced insertion involves slightly
more bookkeeping than a splayed insertion. Sometimes the
cost of this exceeds the cost of the comparisons, and then
Splay would probably be preferable to Splice. But if the
values comprise long strings, comparisons between them may
dominate the running time. On some mainframe computers, a
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long string comparison costs 100 times as much as an ord-
inary instruction such as Load or Branch -- even if there
is a mismatch on the first character [9]. In such cases,
Splice would usually beat Splay. (Actually this is an ex-
treme situation, which should preferably be attacked by
other means, such as avoiding the badly performing in-

structions altogether.)

When a tree is constructed for a purpose other than sort-
ing, there may of course be a good reason for wanting to
place the "winning" node at the root (use Splay), or for

not doing so (use Splice).

4. In the 1960’s and 1970's there was a lot of work on AVL
trees and other fairly complicated methods for explicitly
rearranging trees to maintain balance —- or even bias (see
reviews in [2,8]). In my opinion there is little remaining
reason to use these techniques, which require extra fields
in the nodes, and additional bookkeeping. Self-adjusting
trees constructed with Splay or Splice vield an amortized
performance that is close to what is obtainable with ex-
plicit balancing, and they yvield even better performance
when the sequence exhibits order or a skewed reference
pattern. Similar advice is given in [8].

Historical notes

Oordinary root insertion was devised by me in 1976 and was
immediately used in the YMS sorting program "Sort". My col-
league Walter Daniels promptly ported the program to VM/CMS,
where it became widely used in IBM, under the name "TSORT".

Eventually (in 1993) the program was made available to cus-

tomers. Some things take a long time.

Ordinary root insertion has also been used for the symbol
table in the YMS program binder since 1979.

The use of cartesian trees for dynamic memory allocation
was originated by me in 1980, and has been used in YMS since
1981. Subsequently this method of memory allocation has be-
came widely adopted, and it (or variants of it) are used by
Sun Microsystems; in IBM’s runtime support for 0s/400, MVS,
ATY and 08/2; in VM networking; in the research program
nTierra", which studies evolution of digital organisms;
and in several other experimental systems.

spliced root insertion has been used in the YMS editor

since 1985, both for sorting the lines of an edit file and

for maintaining edit "variables". In 1986 the YMS sorting

program was rewritten to use the same method.
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A combination of Spliced root insertion and hashing is
used for the symbol tables in "Phantasm", an experimental
S/370 and 8/390 assembler written by me in 1994,
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ON TRAVERSING AND DISMANTLING BINARY TREES
Joint work with Paul R. Kosinski®

Let each node in a binary tree possesses the following fields, in
addition to those containing the "value" of the node and any other
associated information:

left pointer to the left son
(null if son is missing)

right pointer to the right son
(null if son 1is missing)

tag flag bit (normally O0)

such a tree can be traversed, without the use of additional memory,
by the technique known as "pointer reversal".

CONVENTIONAL METHOD

Suppose we want to visit the nodes of a binary tree from left to
right (technically called "postorder"). While descending to the left,
the "left" pointer field is taken over temporarily to record the ad-
dress of the father; and when descending to the right, the "right"
pointer field is taken over for this purpose. In the latter case,
the flag is also set. The flag is examined when climbing back up,
to find out whether the ascent is from the left son (in which case
we repair the "left" pointer, handle this node, and descend to the
right), or from the right son (in which case we repair the "right"
pointer and continue the ascent).

Here is the method Knuth gives for doing this, in [1] page 562,
transcribed to an Algol notation (see [2]). The static pointer named
wanchor" contains the address of the root, and the subroutine named
vhandle" does whatever is appropriate (for the particular situation)
when visiting a node. The comments are mine.

*Present address: Digital Eguipment Corporation, 334 South Street, Shrewsbury, Mass.
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¥ := anchor;

if ¥ = null then
goto finis;

Y := addr of anchor;
descend_to_left:
Z := left(X);

while Z -= null do

begin
left(X) = Y;
Y 1= X;
X 1= Z;
7 := left(X)
end;
vigit:
handle (X) ;
Z := right(X);

if Z == null then
begin
right(X) := ¥;
tag(X) = 1;
Y = X;
X 1= Z;
goto descend_to_left

end;
ascend:

if ¥ = addr of anchor themn
goto finis;

if tag(¥) = 0 then

begin
Z = left(¥Y};
left (Y) = X;
X :=Y;
Y = Z;
goto visit
end;

Z := right(Y);
right (Y) := X
tag (YY) := 0;

X = Y;

Y = Z;

goto ascend;

finis:

[Addr of the root]

[Do nothing if...]
[...tree 1s empty]

[The root’'s "father"]
[Find leftmost descendant]
[The addr of my left son]

[While there are still...]
[...descendants on my left]
[Save my father’s addr...]
[...and step down to left]

["Vigit" the current node]

[* Do whatever is needed *]
[The addr of my right son]

[Descend to the right]
[Save father’s addr...]
[...and set needed flag]
[I am my rt son's father]
[Descend to my right son]
[Loop back to handle this]

[Climb back up the tree]

[Leave the loop if the...]
[...traversal is complete]

[ITf climbing from the left]

[Ascend from left son...]
[...and repair left ptr]

[Go back to handle node]

[Ascend from right som...]
[...and repair right ptr...]
[...and clear the flag here]

[And loop back for more]

[End of the traversall]
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Knuth offers the conjecture that it is impossible to traverse
a binary tree without using at least one flag bit per node -- in
addition to the two pointers. &as far as I know this conjecture
has not been refuted.

SIMPLIFIED METHDD

The purpose of this paper is to point out that a simpler
method of pointer reversal exists for left-to-right (or "post-
order") traversal, provided we relax the rules and allow the
original tree structure to be destroyed as a side-effect of
the traversal. This may seem a preposterous condition; but
in practical situations it is often acceptable or even de-
sirable. Here are two examples:

Lia A binary search tree has been used to sort a seqguence
of items. When the sort is complete, the nodes must be
visited from left to right, and the values emitted in
sorted order. We have no use for a node once its value
has been emitted. (In fact, if the memory for the node
was allocated as an individual piece, it can be return-
ed to the memory allocator at the same time —— as soon
as the value has been emitted; then when the traversal
is complete, there will be nothing left at all, which
is exactly what we want.)

24 A set of binary search trees has been used to construct
a symbol table. (The roots of the trees may be addressed
from a pointer array which is indexed with a hash code de-
rived from the symbol: see for example [3].) When the sym-—
bol table is complete, the trees must be merged so that the
symbols can be emitted in alphabetical order. The easiest
way to do this (and probably the most efficient way) 1s to
transform each tree to a linked list, to merge the lists,
and then to step through the final combined list. We have
no interest in the shapes of the trees after their nodes

have been chained into linked lists.

The simpler method makes use of the following observation.
The only reason for returning from a right son to its father is
to repair the father’s right pointer field. If this pointer does
not need to be repaired, we can bypass the immediate father and
proceed directly to the father of G, where G is the closest an-
cestor that is a left son. This assumes (of course) that we
know the address of this node. Well, it turns out that, when
descending to a right son, it is just as easy to supply the ad-
dress of this (remote) node as to supply the address of the im-
mediate father. In fact we do not need to tamper with the "right"
pointer fields at all, unless we want to use them for something
else, as in Version 2 below. Also we do not require a flag.
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Here are two versions of the simpler method. The first ver-
sion visits the nodes in order and destroys the tree. As before,
the static pointer named "anchor" contains the address of the
root, and the subroutine "handle" does whatever is necessary
when visiting a node, which may include deallocating the mem-
ory 1t occupies.

Version 1 —— Visit nodes in order and destroy tree
X := null; [Root has no father]
¥ := anchor; [Address of the root]
goto middle; [Enter the loop below]
top: [Head of the outer loop]
handle (X) ; [* Do whatever is reqgd *]

Y := right(X);
X = left(X);

middle:
while ¥ -= null do
begin
Z = left(Y);
left(Y) = X;
X :1=Y;
Y = Z
end;

if X == null then
goto top;

[Descend to right son...]
[...and ascend to father]

[Enter outer loop here]

[Find leftmost descendant]
[Step down to left and...]
[...save my father’s addr]

[Tentative current nodel
[New paternal address]

[Loop around unless the...]
[...traversal is complete]

The second version (below) visits the nodes in order, and also
transforms the tree to an ordered doubly-linked list. In each node,
the "left" pointer field finally contains the address of the next
node in the linked list and the "right" field contains the address
of the "left" pointer field in the previous node. The anchor, which
initially contains the address of the root, finally points to the
first node in the linked list. (The back-pointer in the first node
points to the anchor, and the forward-pointer in the last node is

set to null.)
Fig. 1 shows an example of the transformation.

The subroutine "handle" does whatever is necessary when visit-
ing a node -- which may be nothing at all. Obviously in this case
the subroutine must not deallocate the memory occupied by the node.
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Version 2 —-—- Visit nodes in order and linearize tree

W := addr of anchor; [Chain list from here]
X := null; [Root has no father]

Y := anchor; [Address of the root]
goto middle; [Enter the loop below]
top: [Head of the outer loop]
handle(X) ; [Omit if nothing to do]

Y t= right(X): [Descend to right son]

right (X) := W; [Omit for one-way list]

W := addr of left(X); [This 1s new predecessor]

X = left(X); [Now ascend to my father]
middle: [Enter outer loop here]

while Y -= null do [Find leftmost descendant]

begin
7 i 1eft(¥);: [Step down to left and...]
left(Y) := X; [...save my father’s addr]
X = ¥: [Tentative current node]
v 1= % [New paternal address]
end;
0(wW) = X; [Chain me to predecessor]
if ¥ -= null then [Loop around unless the...]
goto top; [...traversal is complete]

The storing of the back-pointer ("right(X) := W") may be omit—
ted if a singly-linked list is desired. The "right" pointer
fields would then have undefined contents after the traversal.

OBSERVATIONS AND FINE POINTS

1 Pointer reversal (of any variety) can be used only when
it is acceptable for the tree to be in a mutilated state
for the duration of the traversal. The method is not al-
ways suitable for "real-time" programs that require pre-
dictable performance for search or insertion operations.

2. The simplified method described here is easier to pro-
gram than the general method. It is also slightly more
efficient. For one thing, the "left" pointer field does
not need to be repaired, and the "right" pointer field
does not need to be reversed (or repaired). Also, in
Knuth’s general method, a node is "touched" P times,

where:
p = 1+ L + R.

1 if the node possesses a left son (or 0 if

Here L =
and R = 1 if the node possess a right son

it does not),
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(or 0 if it does not). In the simplified method, a node
is touched only Q times, where:

g = 1+ L.

As a curiosity, note that it is possible to traverse a
binary search tree by the simplified method and end up
with a valid binary search tree —- though the resulting
tree will usually have a radically different shape from
before. This can be accomplished by transforming the tree
to a 1list, as in Version 2 above, except that the "right"
pointer fields are used for the forward pointers, and the
nleft" pointer fields are set to null. This list compris-
es a degenerate binary search tree in which all the nodes
(except for a single leaf) have a right son and no des-
cendants on the left. This is not usually a desirable
shape for a tree. If however the tree is maintained by
Root Insertion, "Splay" or "Splice" (see [2]1), it will
usually return to a jumbled state quite soon -— typic-—
ally after "about" log N search or insertion operations
(where N = total number of nodes) .

Historical note

The ideas described here were devised during the period

1976-
sorting program at the earlier date.

1985. The first version was incorporated in the YMS
The second version

has been incorporated in numerous YMS programs since the

later date.
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THE SKEWED FILE TREE

This paper reviews the symmetrical N-way tree that 1is
conventionally used in file systems, and describes an
alternative "skewed" structure which has certain ad-

vantages.

CONVENTIONAL STRUCTURE

When storing files (or file directories) in blocks on a disk,
a symmetrical N-way tree is sometimes used. The internal nodes of
the tree comprise pointer blocks, and the leaves contain the data.

Fig. 1 illustrates such a tree with a depth of 3. Imn the fig-
ure, pointer blocks are shown as deep rectangles, and blocks con-
taining data are shown as narrow horizontal ones. This is purely
for reasons of exposition; all the blocks usually have the same

size.

The disk blocks referred to in this paper are actually "logical™
blocks. A logical block comprises one or more contiguous physical
blocks which are read or written as a unit.

In the diagram, an unrealistically small blocksize 1is depicted.
In practice a block is usually large enough to hold many pointers,

not just 8 as shown.

The "pointers" in a pointer block are not of course ordinary
pointers, to locations in memory. Instead, they are "disk" point-
ers. A disk pointer is simply a logical block number; it may have
a value of (say) 12 or 3456789, which identifies block number 12 or
block number 3456789. Pointers that lead to unoccupied regions (e.g.
beyond the end of a file) are represented by a reserved value such

as 0.

Thisg structure is used in (for example) IBM's Conversational

Monitor System for the "Extended Disk Format" file system (circa
1980) . Unfortunately I cannot give a useful reference, since the
documentation of the system internals has never been made gener-

ally available.

An important reason for using a tree (rather than a list) 1is so
that a randomly selected byte in a file (or file directory) can be
read or written without having to read all the preceding bytes in
the file (or directory) to find its location on disk. The number
of blocks that must be read to reach any given byte is equal to
1 + the depth of the tree (D = 0,1,2,...), which is a logarithmic

function of file size, thus:
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D = (ioqu],

where p is the number of pointers per pointer block, and S is the
size of the file in blocks, i.e. the number of blocks occupied (or

partially occupied) by data (8§ = 1,2,...).

The tree depth is not usually large. Consider a blocksize of 1K
bytes, and suppose disk pointers occupy 4 bytes each. We then get:

File size in bytes Depth of tree
1w 1K 0
1K+1 .. 256K 1
256K+1 .. 64M 2
64M+1 .. 16G 3

(In practice not all file systems employ such regular structures.
In Unix, for example, the "i-node" for a file contains pointers to
a short list of blocks containing data, followed (as necessary) by
a single pointer to a pointer block, a single pointer to a second-
level pointer block, and a single pointer to a third-level pointer
block (see for example [1]). So a file is mapped as a short list
followed if necessary by one, two or three trees having different

(but fixed) depths.)

READING A RANDOMLY SELECTED BYTE

Let the bytes of data in a file be numbered sequentially 0,1,...,
N-1. This is called the "file address". NOw suppose an application
program wants to see the byte at file address X. Let us examine how

the file system sets about getting it.

This can be regarded as is a two-step process. Step 1 constructs
a "path" from the root to the byte at X. The path is a list of off-
sets into disk blocks. Deriving it is a purely computational pro-
cedure; it is a function of the tree shape and the value of X —-—
but it has nothing to do with the contents of the file. Step 2
uses the path, together with a disk pointer to the root, to read
the necessary disk blocks, chaining through pointer blocks until

it reaches the data.

To be specific, consider the situation depicted in Fig. 1. Let
us imagine (unrealistically) that all the blocks have a length of
8 bytes and disk pointers occupy 1 byte each. Then p = 8, and X
as marked has a file address of 93. Step 1 would compute the path
by dividing X by p, D+1 times, and storing the remainders, from
right to left. The result would be the following path:

Ty By B

The first number (1) is the offset into the root from which the
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next disk pointer is to be fetched; the second number (3) is the
offset into this next pointer block from which the next disk point-
er is to be fetched; and the last number (5) is the offset of byte
X in the datum block.

Now suppose the (untyped) variable Y holds the block number of
the root. Then Step 2 could obtain the needed byte as follows:

read block Y from disk to buffer;
D := first number from the path;

while path is not exhausted do
begin
Y := ptr from offset D of buffer:;
read block Y from disk to buffer;
D := next number from the path
end;

Y := byte from offset D of buffer;

Y now contains the byte at file address X.

(Actually this general method is not used for most file read
operations. In practice most file operations are sequential, i.e.
the byte or bytes read or written logically succeed the previous
byte or bytes read or written. File systems handle these cases
specially, bypassing the general method. This is not however
relevant to the issues discussed here.)

A MESSY COMPLICATION

This all seems reasonably straightforward. There is however
a complication that I have glossed over. The path that is con-
tructed during Step 1 is a function of the file size, as well
as the blocksize and the values of p and X. For small files,
there will be only 1 or 2 numbers in the path; for large files,
there will be 4 or more. This is an intrinsic property of the

symmetrical tree.

Suppose that 11 more blocks of data are appended to the file
shown in Fig. 1. It will then be necessary to increase the depth
of the tree. This can be done by creating a new root, demoting
the old root to be the first offspring of the new one (effective-
ly shifting the entire old picture to the right), and then alloc-
ating two new pointer blocks and one new datum block for the new
part of the tree. Thereafter (until the depth changes again) the

path to X is:

even though X has not moved at all!
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The fact that the path is a function of the file size can be

a nuisance when a file grows and shrinks. Consider a long write
operation that enlarges a file. Suppose it turns out that the tree
depth must be increased. A new root is created and the tree is ad-
justed. Now suppose a problem arises that prevents the operation
from completing, such as an insufficiency of free blocks. Correct-
ly aborting the write operation can be complicated. Obviously any
new pointer blocks that have been optimistically allocated but end
up unused must be pruned from the right. But depending on exactly
when the insufficiency occurs, it may also be necessary to remove
the new root and restore the tree to its old shape and size. (In
the case of very long write operations, it may be necessary to re-
move more than one new root, though this depends on the atomicity
of file operations and the detailed semantics of the file system.)
All this is possible; but it can be messy.

The changing tree depth also interferes with the optimum as-
signment of blocks on disk. As a general rule, it is desirable
to place logically proximate blocks as close as possible to each
other, so that they can be read back (sequentially) with the min-—
imum of "seek" delays. When the tree depth grows, and a new file
root is created, the file system will try to place the new root
near the prior root. But by the time this happens, the blocks
near the prior root will almost always be occupied already, SO
the file system will be forced to place the new root far away.
(It would not be a good idea to leave a gap, ready for a few
later roots, since this would fragment the block-space when
files are small, which is common in practice.)

Note in passing that the offsets that comprise the "path"
to a byte are somewhat analogous to the digits of a number in
Arabic notation. If we continue with the unrealistic one-byte
pointers postulated above, and let p = 8, the path to a byte
in a file of depth 6 comprises an "octal" list such as:

Notice however that, unlike the situation with an Arabic num-—
ber, we are not entitled to elide leading zeros. The length of
the path depends on the file size, and all the digits are sig-—

nificant.

The directions you follow to find the 7th apple in a row of
apples depends on the total number of apples. If there are 8
or fewer, all you will need is the number "7". But if there

are more than 8, you will need ng7", or "007", ...

AN ALTERNATIVE STRUCTURE

It is possible to map the bytes of a file (or file directory)
into a regular but skewed tree instead of a symmetrical one. The
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skewed tree has roughly the same desirable performance for ran-
dom accesses in large objects, but there are some interesting

differences.

The skewed tree can be described as follows.

The root of the tree is said to be at level 0. The root

is divided into two equal parts: the first half contains

disk pointers to the first generation of datum blocks {in
level 1 of the tree), and the second half contains point-
ers to a second generation of pointer blocks (also in

level 1).

The second generation of pointer blocks (in its entirety)
can be regarded as a pointer-space, which is conceptually
divided into two equal parts: the first half contains
pointers to a second generation of datum blocks (in level
2 of the tree), and the second half contains pointers to
a third generation of pointer blocks (also in level 2).

This third level of pointer blocks (in its entirety)
can be regarded as a pointer-—space, which is concept-
ually divided into two equal parts, and so on.

Fig. 2 illustrates such a tree, showing the same file (and

blocksize) as Fig. 1.

In practice the maximum depth is not much greater than when
Consider as before a blocksize of

a symmetrical tree is used.
We then

1K bytes and disk pointers that occupy 4 bytes each.
get the following capacities for the nlayers" in the tree:

Capacity Depth
128K L
16M 2
2G 3
256G 4

The skewed structure favours the low-numbered bytes in the
file, which always reside at a tree depth of 1. This may or
may not be desirable in its own right, depending on the refer-
ence patterns. But the interesting point is this. The path to
a byte of data is a function of the file address (and of course

the blocksize and pointer size), but it is independent of the

file size.

To be specific, consider the situation depicted in Fig. 2.
that all the disk blocks have a length of

Imagine (as before)
= 8 and X

8 bytes and disk pointers occupy 1 byte each; so p
= 93, The path to byte X is now:
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and this remains constant for as long as the byte at X survives.

EVALUATION

This alternative structure is certainly not a panacea for
file system designers. Compared with the symmetrical structure,
it has some advantages and some disadvantages; but in any case
its impact is insufficient to make file systems "easy".

The principal advantages are the ones I have already alluded
to. The root never needs to be reassigned just because a file
grows or shrinks. Pruning a tree is consequently straightforward.
Pointer blocks with no descendants can be discarded; others must
be kept. The root does not have to be treated as a special case.

(There may of course be other reasons for reassigning the root,
having nothing to do with the structure that is used. In a "safe"
file system, any update to an existing file requires that all the
pointer blocks lying on the path to an updated datum block be re—
assigned, so that no blocks that appear in the "old" view will be
overwritten by the "new" one. A skewed tree does not magically
make this unnecessary.)

The fact that the path to a byte is independent of the size of
the tree can be particularly beneficial when the structure is used
for a file directory (as distinct from a file). As a general rule
it is desirable to write only those parts of a directory tree which
have been changed since they were last written. (Otherwise it would
be expensive to make a small change to a small file in a large dir-
ectory.) But when the directory was last written, it may have had
a different size -— as well as different contents. It is hard to
figure out which blocks need to be written if the path to an old
leaf node is subject to change as a side-effect of directory
growth or shrinkage.

The skewed tree has a few disadvantages.

The computation of a "path" to a byte at file address X is
more complicated than with a symmetrical tree, since the data
are in general distributed among several "layers" of the tree.

Another snag is that very small files require 2 blocks (rath-
er than 1), since the root always contains pointers only. This
can of course be circumvented by handling one-block files as a
special case, and storing them on disk without a root. But spe-
cial cases bring their own costs and complications, and a sys-—
tem designer is almost never entitled to claim they are "free".

Note in passing that a path to a byte in a skewed tree has

108



(l1ike an Arabic number) the property that leading zeros will
not occur (except in the case of a path of length 2 to the
first block of data). The directions vou follow to find the
7th apple no longer depend on the number of apples.

The analogy with numbers is not however exact. In a path
through a skewed tree, the first number in the path already
provides some information about the length of the path: off-
sets that reach into the second half of the root cannot for

example appear at the beginning of a path of length 2.

Historical bote

The skewed tree described here has been used in the EM
file system since 1975.

REFERENCE
[1] Bach, M., "The Design of the Unix Operating System",

Prentice—-Hall (1986)

CJS, 1995-01-18; revised 1996-05-13.
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BULK HASHING OF FILE DIRECTORIES

This paper describes a method for fast searching
of a file directory which does not impose any re-
quirements on the format of the directory itself.

BACEKGROUND

A file directory consists wof a set of file directory
"entries". An entry describes a file, and usually has a
length of around 50 to 100 bytes. It contains the name of
the file, its size, flags, time stamp, a disk pointer to

its root, and so on.

A file directory usually occupies several or many "logic-—
al" disk blocks. A logical disk block typically has a length
of between 512 and 4K bytes, and consists of one or more con-
secutive physical disk blocks which are read and written as
a unit. Henceforth in this paper, the word "block" implies

"logical block".

A file directory is written on disk, along with the files
that are described in it.

At some stage, during the course of its operations, the
file system reads a file directory from disk to memory. The
directory may thereafter remain in memory, or the copy in
memory may be discarded and the directory read anew each
time it is needed. 1In either case the directory will from
time to time need to be searched (to satisfy enquiries), and
it may also need to be updated and written back to disk (if
changes are made to the files).

When a file directory is updated, it is usually desirable

to write only those blocks whose contents have changed since
they were last written. Otherwise it would be expensive to
change a small file in a large directory. This argues for
retaining the block structure (as on the disk) when a dir-
ectory is read into memory, and for "treading lightly" when
making changes, e.g. avoiding unnecessary rearrangement when

an old file is erased or a new file is created.
And of course it argues against keeping a file directory
in sorted order, since the entire thing would then have to

be written to disk every time a file whose name began with
the letter "a" was created or erased!

But now the following question arises. If a file direct-
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ory is not (and should not be) maintained in sorted order,
how should it be searched?

SEARCH METHOD 1 —- SUPERIMPOSED BINARY SEARCH TREE

It would be possible to construct a binary search tree in
memory, containing one node for each file in the file directory.
A node would contain "left" and "right" tree pointers, and also
a couple of words for the location of the associated entry in
the file directory (e.g. the address of the directory block and
the offset of the entry in it). The tree would be ordered by
file name.

Then the expected search time would be O(log N), where N is
the number of files in the directory.

Obviously this makes sense only if we can afford to keep
a copy of the directory permanently in memory. Otherwise we
would be unable to search the tree.

Provided we can afford the memory -- for the directory it-
self, plus 4 words per file for the tree —— this scheme would
probably work quite well. If a file is erased, the correspond-
ing node must of course be removed from the tree (in addition
to the entry being removed from the directory itself). And if
the last entry in the directory is then moved up, to f£ill the
vacated slot, we must find the node for this file too, so we
can update the node, to point to the new location. None of
this is particularly difficult or expensive.

Although this proposal seems workable, I do not know of
any system that employs it.

SEARCH METHOD 2 -—- HASH MASKS
Here is a completely different method, which uses hashing.

When the file system first reads a file directory, it allocc-
ates and clears a hash mask for each directory block. For the
time being, let us say there are about are 10 bits in a mask per
file in the directory block; so if a directory block contains
about 50 file entries on average, the masks might contain about
500 bits each. (More on this later.) Now for each file in the
block, the system computes several independent hash codes with
values in the range 0 through K-1, where K = the number of bits
in the mask, and for each of these hash codes it sets the cor-
responding bit in the mask. Let us designate the number of hash
codes per file as H, and for the time being let us say that H
has a value of 4. (More on this later.) If none of the hash
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codes were used more than once, about 40 per cent of the bits
would finally be set; but in reality some hash codes will be
repeated, and typically about a third of the bits will be set.

Now the copy of the file directory in memory may be dis-
carded if necessary; but the file system keeps the hash masks
in memory, and records which directory blocks they refer to.

Fig. 1 shows the relationship between the hash masks and
the associated directory blocks.

When the file directory needs to be searched, this is what
the file system does. :

The system computes H hash codes for the file name that
is desired, using the same hash function. Then for each hash
mask, it inspects the bits corresponding to these hash codes.
If any of these bits are zero, it immediately knows that the
associated directory block cannot possibly contain the des-
ired file: but if all the bits it inspects are one, it must
visit the directory block and examine the entries in it.

So a hash mask is a sort of "template". It contains in-
formation on all the file names in the directory block "in
bulk". The masks can be used to filter out most of the dir-
ectory blocks. Usually, by inspecting at most 4 bits, the
file system can avoid examining any of the entries in a dir-
ectory block. For the remaining blocks, nothing is saved,
but little is lost.

The effect of this is to improve the speed of a search by
a "mere" constant factor —- but the factor may be large, and

should not be sneezed at.

If the hash codes are uniformly distributed, and we use
the parameters suggested above, the proportion of false hits
will be about (1/3)*%, or 1 block in 81.

Furthermore, since very few blocks need to be visited, the
penalty for not keeping a copy of the directory permanently in
memory may be acceptable —- for search performance anyway. The
occasional directory block that needs to be visited can simply
be read anew from disk when it is required. (There are however
other good reasons for keeping a copy of the file directory in
memory if it is at all feasible, e.g. to handle file list op-

erations.)

PARAMETERS FOR A HASH MASK

Let us define the "leverage" provided by a set of hash

masks as:
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Directory blocks

Entey 1
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Fig. 4. Relotionship between hash masks and their associoted directory blocks.
The pointers may be ordinary memory pointers (if a copy of the directory is
maintained in memory) or disk pointers (otherwise).
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where: D = the number of blocks in the directory
(or the number of blocks preceding the one
containing the desired file name, if this

exists),

E = the number of false hits, i.e. the num-
ber of directory blocks whose contents are
examined (but which do not contain the de-
sired file name) .

So a hash mask that provides no useful information has a
leverage of 1; and a hash mask that works perfectly exhib-

its an infinite leverage.

In the previous section I suggested the following para-
meters as a rough guide:

B = 10,
H = 4,
where: B = number of bits in hash mask

per file in the directory block,
H = number of hash codes per file;

and I stated that with these values:
L = 81 approximately.

This assumes (or course) that the hash codes are distributed

uniformly.

Let us now look more closely at how the leverage depends
on the values we choose for B and H.

For any given value of B, the maximum leverage obtains for
that value of H which ends up setting half the bits in the mask.
Using a larger value of H is counterproductive, since (a) it re-
duces the leverage, and (b) it demands more work —— to compute
the additional hash codes, and to set and examine the addition-

al bits.

In fact it is usually desirable to use a value of H which
ends up setting somewhat fewer than half the bits, since the
loss in leverage can be small, and less work is involved.

Fig. 2 shows how the leverage of a hash mask depends on
the values of B and H -~ assuming as before that the hash
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Fig. 2. The leverage of a hash mosk as o function of B (bits in mask per
item) and H (hosh codes per item) assuming uniformly distributed hash codes.
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codes are uniformly distributed.

consider the case in which B = B8 bits per file. The maxi-
mum leverage (of about 46) occurs when H is 6. But little is
lost if H is 4, which yields L = 42.

Similar conclusions apply to the other cases. If B = 16
bits per file, the maximum leverage (of about 2175) occurs
when H is 11. But the leverage is almost as good if H is 8,
which yields L = 1737.

Actually, if a leverage around this value is desired, it
might be even better to set B = 24 and H = 4, which vields L
= 1799. (This assumes memory is made of silicon, not gold,
and an extra byte per file will not break the bank.)

OBSERVATIONS AND FINE POINTS

T To be effective, bulk hashing requires a good hash
function which vields a reasonably uniform ditribu-
tion of hash codes. A universal hash function would

be desirable (see [1]).

2. In practice it may not be necessary to compute H sep-—
arate hash codes for each file name. Suppose for ex-
ample that the number of bits in a hash mask is 1024;
then the "short" hash values reguired to set (or test)
the bits will be only 10 bits long. If the hash func-
tion yields (say) a 32-bit number, up to 3 short hash
values can be extracted from a single result.

3 Hash masks can be constructed discontiguously from the
file directory blocks, and do not depend on the detail-
ed structure of the directory. They can be used with
almost any existing file directory, without requiring
changes to the layout on disk or the handling of the

directory itself.

4, A potential disadvantage of bulk hashing (as so far
described) is that the entire mask for a directory
block must be recomputed from scratch after a change
to any file name in the associated directory block.

On most machines the time required to recompute the

hash mask for a directory block is less than the time
required to update the directory on disk, so the main-
tenance of the hash mask is not normally a performance

issue.

1f however the file system is capable of supplying a
private "read-only" view of a directory, and it allows
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files to be "erased" from this view, or "renamed", with-
out affecting the persistent picture, then there exists
the possibility that many such erasures or rename opera-
tions might be performed without reading or writing the
disk. In these circumstances a noticeable proportion of
the time required to perform these operations could be
spent maintaining the hash masks.

This disadvantage can be alleviated by allowing the hash
masks to become slightly "stale". When a file is renamed,
or when entries have to be shuffled around and a new name
is brought into a directory block, the hash codes for the
new name are computed, and the corresponding bits are set
in the mask; but no attempt is made to clear the bits for
the old name (the one that is no longer present). Gradu-
ally, as such changes are made, the hash masks will be-
come increasingly polluted, and the leverage will suffer.
A pollution count can be maintained, and the mask can be
recomputed from scratch occasionally, before the lever-
age falls to an unacceptable level.

Historical note
Bulk hashing has been used in the EM file system since
1976.
REFERENCE
[1] Carter, J.L. and Wegman, M.N., Universal classes of hash

functions, J. Computer and System Sciences, 18, 2 (1979)

CJs, 1995-01-26.
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WARPED HASHING

Hashing can be "abused" so that it selects among homonyms
in addition to playing its usual role of improving search

performance.

BACEKGROUND

A good way to organize a symbol table is to use a combina-
tion of hashing and binary search trees. The hash table con-
sists of an array of pointers to the roots of a set of disjoint
binary search trees. To find (or enter) a symbol, a cheap hash
code is computed for it, and used to index into the array. This
selects the appropriate tree, which i1s then searched by one of
the tree methods that yields good amortized performance, such
as "Splay" or "Splice" (see [1]}.

It is desirable, but not necessary, for the hash codes to
be uniformly distributed. The binary search trees can be made
to perform well even when there are many symbols in the same
class. The hashing may be regarded as an "almost free" bonus,
which usually distributes the symbols among several trees of
moderate size (instead of having them all in one big tree).
It provides a useful performance benefit, with little com-

putational penalty.

For example, the hash code may simply comprise the low-
order k bits of the sum of the EBCDIC or ASCII characters
comprising the symbol name, where k = 5 or 6 (say). This
can be computed cheaply, while the symbol is being parsed.

Finally, if the entire symbol table is required in alpha-
betical order (e.g. for inclusion in a program listing), the
trees can be transformed to ordered lists, which can then be
merged into a single linked list (see [2]). An explicit sort

is never required.

HOMONYMS

Sometimes the same name can stand for more than one thing.

Here is an example.

In S/370 and S§/390 assembler language, a "blank" name can
be used for a control section, a dummy section and a common
area (see [3,4]). 1In fact all three of these "symbols" may
appear in the same program. The language is defined such that
when a reference is made to a blank name, it is known from
context which of the three entities 1s being referred to.
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How should an assembler handle such homonyms in its symbol
table?

Tt would not do to have three separate symbol tables, one
for control sections, a second for dummy sections and a third
for common areas, since most symbols (such as X) can be used
for at most one entity, and the assembler would be constantly

searching all three tables.

Perhaps the obvious answer is to handle a blank name as a
special case, and maintain the information on the three entit-
ies in three symbol table entries which are not stored in the
main symbol table. This would certainly work, but it would re-
quire special handling in several places. The most annoying
one concerns the preparation of the symbol table for the list-—
ing. How and when should the blank names be put into the main
symbol table so that they will be listed (correctly positioned)
with the other symbols? Should we insert them on the fly, while
linearizing or merging the trees? (Sounds expensive.) Or should
we postpone the issue until the main symbol table has been lin-
earized, and then employ a separate traversal to find the right
place to insert the blank names at the last moment? (Sounds

messy.)

There is a simpler method.

PERVERTING THE HASH CODE

The primary purpose of hashing is to direct attention to
the tree that contains (or will contain) some required symbol,
and away from the other trees, which cannot possibly contain

it —— gince all the symbols in these other trees have a dif-
ferent hash code.

But there is nothing to stop us from "perverting" the hash

deliberately putting some particular symbol into the

code, and
wrong tree! Of course this will do us no good —- since the sym-
bol will never be found —-— unless we always pervert the hash code

for this symbol in the same way, and always visit the same wrong

tree.

This suggests an elegant golution to the "homonym" problem
outlined above. We can add a ngelection code" S to the hash code
for a blank name, where (say) 8 = 0 for the blank control section,
1 for the blank dummy section, OT 2 for the blank common section.
Then as far as the symbol table is concerned, they will be treat-—
ed as three different symbols, in three different trees. There

will never be a clash.

0of course this reguires that the number of hash classes be
at least as great as the maximum number of homonyms for a name.
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When the trees are linearized and merged, the blank names
will automatically be merged with the other names, and will ap-
pear in the right order. The linearizing and merging procedures
have no interest in the hash codes: they will not even notice
that some names appear more than once, and some instances are
in the "wrong" trees.

The technique is depicted in Fig. 1.

Historical note

Warped hashing has been exploited in "Phantasm", an experi-
mental assembler which runs under EM-YMS, since 1994 (see [4]).

REFERENCES
[1] Stephenson, C.J., Practical methods for handling self-
adjusting binary search trees, IBM Research Report RC

20542 (1996)

[1] Stephenson, C.J., On traversing and dismantling binary
trees, IBM Research Report RC 20542 (1996)

(3] High Level Assembler for MVS & VM & VSE Language Reference
5C26-4940, IBM (1995)

[4] Stephenson, C.J. and Hack, M., Phantasm: An experimental
assembler for System/390; available on request (1995)
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DOUBLE-ENDED MEMORY ALLOCATOR
Joint work with Paul R. Kosinski*

This paper describes an easy way of managing two log-—
ical pools of memory in a single linear address space.

POOLS OF MEMORY

Operating systems and complicated application programs often
find it desirable to maintain more than one "pool" of dynamically
allocated memory. An operating system may for example maintain
one pool for satisfying requests from application programs (call
this Pool A), and another for satisfying reguests from the sys-

tem itself (call this Pool B).

One reason for doing this is that the characteristic lengths
and lifetimes tend to be quite different. A system control block
may occupy a few hundred bytes and survive for months; whereas a
compiler work area may OCCUpY several megabytes and live for a f}
few seconds. Allocating both these from the same pool could '
give rise to be unnecessary long-term fragmentation of memory.

In some situations two pools of memory are sufficient. When
this is the case, an obvious way to manage the pools is to start
one of them at the "high" end of memory (and work down), and to
start the other at the "low" end (and work up). Between them
lies a "wilderness" which is gradually consumed from the two ends.
Neither of the pools need have a rigid limit to its growth; so the
system will report an insufficiency only if (a) there is insuffici-
ent free space in the reguired pool, and (b) the remaining length

of the wilderness is also insufficient.

When a piece of memory abutting the wilderness is deallocated
(in either pool), the pool can shrink, allowing the wilderness to

regain some of its lost ground.
Fig. 1 illustrates the arrangement.

This usually works tolerably well in practice. There are how-
ever pathological situations in which an insufficiency is reported
when there is still plenty of available memory —— but in the wrong

pool.

Let Pool A begin at 0 (and work down), and let Pool B end at 100

MB (and work up). Initially the wilderness occupies the entire space

*?resent address: Digital Equipment Corporation, 334 South Street, Shrewsbury, Mass.
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(from 0 to 100 MB). Suppose that 90 MB of short-term memory is al-
located from Pool A (its address will be 0), followed by a separate
piece of length 1 MB (its address will be 90M). The wilderness now
occupies the region from 91 MB to 100 MB. Almost immediately the 50
MB piece is deallocated, leaving plenty of free space in Pool A. Next
a request is made for 10 MB from Pool B -- which cannot be satisfied.

In principle it would be possible for the Pool B manager to make
an emergency request to the Pool A manager for the needed space, but
for a variety of reasons this is not always feasible. The two pools
must usually remain distinct (so that the boundaries with the wilder-
ness can be properly handled). Also the memory that the Pool B man-
ager obtained from Pool A might end up near the beginning of Pool A,
or in the middle of Pool A, depending on the condition of the pool
at the time. Then even if all the memory that has been intentionally
allocated from Pool A is deallocated, Pool A may develop more-or-less
permanent "holes", caused by emergency requests from the Pool B man-—
ager ... so that ultimately the Pool A manager may also be unable to

satisfy reasonable requests.

THE CARTESIAN TREE

A nice way to manage a pool of dynamically allocated memory is
to maintain the available pieces of memory in a "cartesian" tree. A
cartesian tree is a binary search tree in which the "values" of the
nodes are ordered horizontally (as in any binary search tree), and
their "weights" are ordered vertically such that no son is heavier
than its father (see [1]). In this application the "values" of the
nodes are simply their addresses, and their "weights" are their

lengths (see [2]).

The vertical ordering helps the job of allocation, since it al-
lows a suitable piece to be identified without visiting any nodes
of inadequate size (which are often numerous). The horizontal ord-
ering helps the job of deallocation, since the neighbours of the
deallocated piece can be found by performing a binary search
(which does not usually need to visit many nodes) .

Fig. 2 shows a small example of such a tree.

It is possible to allocate the leftmost adequate piece from
guch a tree by sliding down the left-hand branch until reaching
a node whose left son is insufficient. This is called "leftmost"
fit; it is functionally equivalent to nfirst fit" from a list,
but it is usually much faster in execution.

Alternatively (and just as easily) it is possible to allocate
the rightmost adequate piece, by sliding down the right—hand branch
until reaching a node whose right son is insufficient. We will call
this "rightmost" fit; it is functionally equivalent to nfirst fit"
from a list chained in reverse address order (but again it is much

faster) .
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Fig. 2. Use of “cartesian” tree for dynomic memory allocation.
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THE DOUBLE-ENDED ALLOCATOR

It is possible for two memory allocators to use the same cart-
esian tree, and allocate from opposite ends, using leftmost fit

and rightmost fit.

There is no explicit wilderness. Initially all the memory re-
sides in the root of the tree. The Pool A manager removes pleces
as near as possible to the left-hand end, and the Pool B manager
removes pieces as near as possible to the right-hand end. When
pieces are deallocated, they are coalesced with their neighbours,
if any, without regard to which Pool manager allocated them.

If memory gets tight, or becomes fragmented, it may happen
that some of the pieces allocated by the Pool A manager have a
larger address than some of the pieces allocated by the Pool B
manager (and vice versa). But this will happen only when it is
the sensible thing to do; and it will then happen without the
two managers needing to take special action to achieve it —-
or even being aware that it has happened.

and when this happens, it will cause the minimum of disruption.
Consider the same scenario as before. When the Pool B manager is
asked for 10 MB, it finds it at 80 MB, thereby keeping the pileces
of memory it allocates far away from the end of the tree that is

favoured by the Pool A manager.

In any case, an insufficiency is reported only if it is phys-
ically impossible to satisfy a memory request.

If this technique were used with an allocator that employed
a list instead of a tree, the list would need to be doubly-linked
(or employ exclusive-or pointers), so that it could be traversed
from either end. (I do not recommend this. List-based allocators

perform badly when the number of fragments is large: see [2].)

Historical note

2 double-ended memory allocator as described here has been in

use in YMS since 1985.
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ON THE LATENCY OF BOYER-MOORE SEARCH

In 1977 Boyer and Moore described an 1ngenlous algorithm

for searching a string for the first instance of a pattern.
Before beginning the search, the program inspects the pat-
tern and prepares an integer array Q[0], Q[1], ..., Qlg-1],
where g is the size of the alphabet. This array is used dur-
ing the search to advance through the string with a variable
istride" whose size depends upon the characters encountered.

The algorithm usually avoids having to examine all the char-
acters in the string preceding“tﬁe match, and handsomely out—
performs simpler methods. There is ‘however a disadvantage.
Even for short patterns and short strings, the program must
prepare the entire array Q, whlch typlcally contains 256
entries. There are situations ln which the time reguired

for this preparation may exceed the time required to per-
form the entire search by a more straightforward method.

This paper describes a way of reducing the fixed overhead
and thereby rendering the Boyer-Moore algorithm more widely
applicable. It also contains several more or less unrelated
observations on the 1mplementatlon of Boyer—-Moore search.

1. BACKGROUND

Here is a review of the basic ideas involved in a Boyer—Moore

string search (see [1])

Instead of examining the string from left to right, looking for
a match with the head of the pattern and working forwards (as in a
"brute force" search), a Boyer-Moore search darts to and fro in the
string, first looking for a match with the tail of the pattern, and
then when necessary scanning backwards to check the preceding char-
acters. The beauty of this is that, as a side-effect of encounter-—
ing a mismatching character in the string, the program can usually
determine that there is no possibility of another tail-match in the
next few characters (following the mismatch). Most of the time it
can stride ahead without having to examine all the characters in

the string, even once.

What follows comprises a slightly more formal description.

We will treat the string and the pattern as indexable arrays of
characters. Specifically, we will search string[1], stringl2], ...,
string [stringlen] for the first instance of pattern[l], pattern(2],

., pattern[patlen]. For simplicity we assume that 0 < patlen <=

stringlen.
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Phase 1. Preparation.

The integer array QI[0], Q[1], ..., Qlg-1l] contains one entry
for each character in the alphabet. If a character occupies
a byte (as is typically the case), then q = 256.

Before a search, Eﬁfé'array is prepared, from the pattern, so
that its entries contain the lengths of the strides that will
be taken during the search when the corresponding character
is encountered in the string (see below).

Specifically, all the entries in the array Q are first set to
patlen, the length of the pattern. Then those that correspond
to characters that appear in the pattern are adjusted as fol-
lows.

We visit the characters pattern[j] from left to right (j =
1,2,...,patlen). For each one:

the bits comprising the pattern character are treated
as an unsigned radix 2 integer which is used to index
into the array Q;

the indexed entry is set to patlen-j.

An exception is made for the array entry that corresponds to
the very last pattern character, which is set to the maximum
unsigned integer (all ones). For the other pattern characters,
the value in the array represents the distance of the charact-
er from the rightmost character of the pattern. If a charact-
er appears more than once in the pattern, the value in the ar-
ray is determined by the position of the rightmost instance.
For characters that do not appear in the pattern, the value

in the array remains set to patlen.

Phase 2. Search.

In this phase we stride through the string, without usually
visiting all the characters, and stop to check only when nec-
essary.

We will use "i" to index into the string. We start with i1 =
patlen; so the first character to be visited is string[patlen].
This is the first one that stands any chance of lining up with
the last character of the pattern.

a. "Fast" loop. Stride boldly through string.
The array Q supplies the lengths of the "bold" strides that
may safely be taken, without risking that a match might be

missed. (In the previous literature, what I am calling a
"hold stride" is usually referred to as "deltal".) Here
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is how it works.

The bits comprising string[i] are treated as an unsigned
radix 2 integer which is used to index into the array Q.
The wvalue of the indexed entry is added to i. The new
string[i] is then visited and handled in the same way.

This "fast" loop continues until i > stringlen (or until the
addition vields a "carry" out of the high-order bit position).
This occurs when either (1) we run off the end of the string
without having found a match (end of search), or (2) we visit
a character in the string that matches the last character of
the pattern. This is a "tail-match",

The latter situation is distinguishable by the fact that the
last stride has the special value of all ones. As a result

of the last addition (which yielded "carry"), 1 now contains
the index of the character preceding the last one visited.

In this case we fall through to "b" below.

b. U"Slow" loop. Check for complete match.

At this point we know that string[i+1] = pattern([patlen].
Now the possibility exists that string[i] = pattern[patlen-1],
string[i-1] = pattern[patlen-2], and so on, yielding a complete

match starting at string[i-patlen+2]. To check for this, we scan
backwards through the string, beginning at string[i], comparing
the characters one by one with the corresponding characters of
the pattern. This "slow" loop stops when either (1) we estab-
lish that there is a complete match (end of search), or (2) we

encounter a mismatching character.
In the latter case, we fall through to "c" below.

Note in passing that when striding forwards in the "fast" loop
the array Q is used and the pattern itself is not referred to.
When scanning backwards in the "slow" loop, examining the char-
acters preceding a tail-match, the pattern is used and the ar-

ray is not referred to.
¢. Stride hesitantly and continue search.

Arrive here if a mismatching character is found when scanning
backwards in the "slow" loop.

Before restarting the "fast" loop, we must adjust the string
index i: otherwise we might repeatedly trip over the same tail-

match, which we now know is bogus.

I will call this adjustment a "hesitant" stride (since it is
preceded by the "slow" loop, which scans backwards) .
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Fig. 1. Example of Boyer=Moore search. The First hesitont stride is obtained from the entry

For "M" in the array Q.

The second one is obtained from the Sth entry of the "deltaZ" table.
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It is always permissible to set i1 to 1 + the index of the tail-
match. This results in starting the "fast" loop on the follow-
ing character. It is sometimes safe, however, to take a longer
hesitant stride, which yields better average performance and
helps some awkward cases (see below for details).

In any event, having adjusted i by the appropriate hesitant
stride, we restart the "fast" loop (see "a" above).

Fig. 1 shows an example of a Boyer-Moore search in action.

Determination of hesitant stride after a bogus tail-match

The determination of the longest safe hesitant stride (follow-
ing a bogus tail-match) is the most complicated and difficult part

of the Boyer-Moore algorithm.

This part of the algorithm is only marginally relevant to the
topic of this paper. The following information is included mainly

for reasons of completeness.

Here are three strategies for determining the hesitant stride,
in increasing order of complexity and efficacy.

Resume on character following tail-match

As noted above, it is acceptable to resume on the character
following the tail-match, but it can be wantonly inefficient.
Congider for example a search for "AAABB" in "XXX BA BA BA BA
...", It turns out that every A, B and blank in the string

will be visited, the A‘s and the B’s in the "fast" loop and
the blanks in the "slow" loop.

Try to use the bold stride from the array Q

If the mismatching character in the string does not appear in
the pattern (or if it appears, but not very close to the right
end), we may be able to make better progress by pretending we
encountered the mismatch in the "fast" loop instead of in the

"gslow" one.

Specifically, the bits comprising the mismatching character

are treated as an unsigned radix 2 integer which is used to

index into the array Q. The indexed entry supplies the length
of the bold stride that would have been taken if the character
had been encountered in the "fast" loop. If this stride, added
to the index of the mismatching character, takes us beyond the
character following the tail-match, then it makes sense to set

i to this wvalue.

The algorithm that uses this method of determining the hesitant
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stride is sometimes called the "simplified" Boyer-Moore algorithm.

Now a search for "AAABB" in "XXX BA BA BA BA ..." visits only half
the A’s, B's and blanks in the string -- which represents a worth-

while improvement. This approach does not however vyield good re-
sults for all awkward cases. Consider for example the search for
"ABBBB" in "BBBBBBB...". The mismatching string character is al-
ways "B"; the bold stride in the array Q is unusable; and most of
the characters in the string will be visited 5 times. In general
the cost of such a search is O(patlen x stringlen), which is very
bad.

Use "delta2" table (in addition to the array Q)

Consider the last example above. After the "slow" loop has found
a "B" where an "A" was desired, it is clear to you the reader that
it would be safe to set i to 5 + the index of the tail-match, for
you know there are no instances of "A" in the substring that has
been examined by the "slow" loop.

It is possible to codify this knowledge in an additional table
containing patlen integers. Boyer and Moore called this "delta2".
Like the array Q, this table is prepared ahead of time by examin-
ing the pattern. Entry j of the table (j=1,2,...,patlen-1) speci-
fies how far it is safe to advance after finding a mismatch at
pattern position j, irrespective of the string character that
caused the mismatch. See the Appendix for more information on
deltaZl.

Now the hesitant stride can be determined by examining the ap-
propriate entry in the array Q (corresponding to the mismatching
character), and also the appropriate entry in delta2 (correspond-
ing to the point of mismatch), and using the one that moves furth-
er to the right.

This is the "complete" Boyer-Moore algorithm.

The time required to construct the delta2 table is O(patlen), and
is independent of the alphabet size. This will be relevant later.

2. SEARCH TIME AND PREPARATION TIME

Notice that the expected speed of the search phase increases
with the pattern length. If the pattern length is 10, the average
bold stride may with luck be 8 or 9; but if the pattern length is
2, the bold stride will be at most 2. If the pattern length is 1,
the method offers no algorithmic advantage over brute force.

Observe also that some patterns (and some strings) inherently

favour Boyer—-Moore, while others do not. The Boyer—Moore algor-
ithm behaves very nicely if we search for:
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"aaab" in "aaa—aaa-aaa';
but it is hard to beat brute force if we look for:

"abot in ll__bc "
DY "abbb" in "bbbbbbbb'.

Happily, it has been proved that the worst running time for the
search phase of the complete Boyer—Moore algorithm is O(stringlen):
see Knuth, Morris and Pratt [2]; Guibas and Odlyzko [3]; and most
recently Cole [4]. To be more precise, Cole showed that the maximum
number of character—comparisons required for a failed string search
is less than 3 x stringlen. (In this context, the use of a character
to index into the array Q counts as a "comparison".) This kind of re-
sult is important, for it tells us that the search performance of the
algorithm, when faced with the most unfavourable pattern and string,
is comparable with that of the best other known methods (not count-
ing those that preprocess the string). So the algorithm has excel-
lent typical performance, and acceptable worst-case performance.

This is not, however, the whole story. Even in its simplified
form, a Boyer-Moore search entails preparing the array Q[1..g-1],
where g = alphabet size. The time required for this preparation
is O(g + patlen). Typically g is 256. When many short searchesfm
are performed, with patlen << g, the accumulated time taken to
prepare this array may exceed the total time required to locate
the patterns (or to fail) by brute force.

There are two effects at work here. For one thing, short pat-
terns derive the least benefit from the method. For another, short
patterns are likely to occur more often in the string, and there-
fore require the shortest searches.

The original authors were aware of these points and warned that
it may not be advisable to use the method when the search is expect-
ed to be short. There have been a number of subsequent performance
studies, which inter alia have investigated the correlation between
pattern length and search time, e.g. when using text editors [5,6,7,
8]. These conclude that the Boyer-Moore algorithm (or a derivative)
is to be preferred when the pattern length exceeds a threshold (such
as 2 or 4), but they all express reservations about using it uncon-
ditionally, when the pattern is very short, because of the initial

overhead.

The following section describes how the preparation time can
be reduced to O(patlen), thereby eliminating these difficulties.

Note that the problem to be solved is to reduce the preparation
time for the array Q. The delta2 table is more complicated, but re-
gquires only time O(patlen) for its preparation. We can be a little
more precise. If the new algorithm given in the Appendix for prepar-—
ing delta2 is hand-coded, it executes about a dozen instructions be-
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fore entering the first loop and about two dozen x (patlen-1) in-
structions thereafter. (These are all fairly simple instructions.
The counts are not much affected by the particular instruction set
provided that a byte or a word can be fetched or stored in a single
operation.) For a pattern length of 2 or 3 we therefore get a total
of roughly 36 or roughly 60 instructions. This may not be neglig-
ible, but it is a lot cheaper than preparing the array Q for an
alphabet of 256 —-- which requires about 300 instructions, more

or less, depending on how much we unroll the "store" loop.

Actually the previous literature suggests that many experiment-
alists eschew the complete Boyer-Moore algorithm, and use the sim-
plified one (or a close relative), which does not use delta2. The
main advantage of the complete algorithm is that it limits how bad
the performance can be in pathologically awkward cases, which (it
is said) do not arise very often in practice.

3 IMPLEMENTATION OF "FAST" LOOP

We must make sure that whatever changes we make to improve
the latency do not interfere with the speed of the "fast" loop
—— since this dominates the typical search performance. I will
therefore approach the problem by examining the implementation
of the "fast" loop.

Version 1. Straightforward transliteration of the Boyer-Moore
"fast" loop.

In their paper, Boyer and Moore describe how the "fast" loop
can be cunningly implemented in three instructions on DEC’s PDP-
10, which was a word-addressed machine. The following represents
a straightforward transliteration to S/370, which is a byte-ad-
dressed architecture (see [9]). We need one more instruction, in
order to guadruple the value of the character (treated as a radix
2 integer) and index into the integer array Q, which contains one

word per entry.

Note that the string is addressed by a register that contains
its ending address (i.e. the address+l of the last byte) and in-
dexed by a register which (if regarded as a 2’s-complement integ-
er) contains a negative value. This results in a "carry" out of
the index register when the string 1s exhausted, or when a match
is encountered with the last pattern character.
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*

————————— Fast loop, version 1 —-—=——=——-—

On arrival here:

0 <= RO < 256 {in readiness for "IC")

0 <= R1 < 2*%+*30 (in readiness for "SRDL")

R2 = (patlen - stringlen - 1) mod 2**32 =
offset (from right end of string) of the
lst character to be visited in the string

R3 = ending addr of string to be searched

0% ®F O o+ F % % * * % %

Also:

0[0..255] is an integer array containing
the bold strides for the particular pat-
tern (see text for details)

* o+ % ¥

*

FAST1 TG RO, 0(R2,R3)} Character from string
SRDL RO,32-2 RO := 0; Rl = 4 x char
AL R2,0Q(R1) Take a bold stride and
BL FASTL loop unless "carry"

Fall from loop when either (a) we encounter a
character in the string that matches the last
pattern character (in which case Q(R1) is all
ones), or {(b) the string is exhausted (and
0(R1) contains some other value).

* o+ kK ok * *

The only tricky thing here is the use of the "double shift"
instruction, which multiplies the character value by 4, and
simultaneously clears RO in readiness for the next "Insert

Character" instruction.

Unfortunately shift instructions, and particularly double
shifts, are liable to take several machine cycles. Replacing
the shift by an explicit multiplication would only make mat-
ters worse. This leads us to version 2.

Version 2. Use a byte array (instead of a word array).

If we change the array Q so that it contains a byte per entry
(instead of a word), then we can index into it with the raw char-
acter code and avoid the multiplication.

There are two snags with using a byte-wide array. (a) We can-
not store long strides for long patterns. I will postpone this
issue and temporarily restrict the pattern length to 254. (b) We
cannot store a dummy stride (in the entry corresponding to the
last pattern character) that is large enough to force the addi-
tion operation in the loop to yvield a "carry" out of the high-
order bit position, and so set the condition code required for
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loop control. The latter problem can be circumvented as follows.

We will prepare the table to that the entries contain 1 + the
value of the bold stride (instead of the bold stride itself), and
store zero in the entry that corresponds to the last pattern char-

acter (insead of all ones).

not appear in the pattern are

characters that do

appear are

the last pattern character of
acter (d = 0,1,...,patlen-1);
to the last pattern character
lows that a value of 1 appears nowhere in the table.

So the entriesgs for characters that do

set to patlen+l, and the entries for
set to d+1, where d = distance from
the rightmost instance of the char-
except that the entry corresponding
is set to 0 (instead of 1). It fol-

In the "fast" loop, we will subtract 1 from the contents of
the array and so obtain the values we really want —-- with 0 be-

coming all ones.

Although this version contains five instructions instead of
four, it occupiles the same space (since BCTR and ALR take only
2 bytes each), and it runs faster on most machines.

i e Fast loop, version 2 —--—-——————-

#*

* On arrival here:

*

* 0 <= R1 < 256 (in readiness for "IC")

* R2 = (patlen - stringlen - 1) mod 2**32 =

* offset (from right end of string)} of the

* lst character to be visited in the string

* R3 = ending addr of string to be searched

*

* Also:

*

* Q[0..255] is a byte array containing 1 +

* the bold strides for the particular pat-

S tern (see text for details)

*

FAST2 Ic R1,0(R2,R3) Character from string
IC R1,Q(R1) Tentative bold stride+l
BCTR R1,0 Rl := R1-1 (bold stride}
ALR RZ,R1 Take a bold stride and
BL FAST2 loop unless "carry"

*

* Fall from loop when either (a) we encounter a char-

* acter in the string that matches the last pattern

* character (in which case R1 is all ones), or (b}

* the string is exhausted (and 1 <= R1 <= 254).

Now let us return to the issue I postponed.

Patterns having a length exceeding 254 can be handled simply
by pretending (for the purpose of preparing the array Q, and the
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"fast" loop) that they have a length of 254. The array entries for
characters that do not appear in the pattern are all set to 254+1,
and only the rightmost 254 characters of the pattern are visited
when setting the other entries. The only disadvantage is that the
stride is now limited to 254, even for a very long pattern. In
practice long patterns occur rarely; and even when they do occur,
the typical bold stride is limited to around q, the size of the
alphabet. This is an intrinsic property of the Boyer-Moore method,
and in particular of using the "value" of a character as an index.
Even when the pattern length exceeds g, bold strides that exceed
g can be expected only when there is a peculiar distribution of
characters, neither typical nor random, such that most characters
in the string do not appear among the last g characters of the

pattern.

Tt is advisable to retain a full integer per entry in the
delta2 table (if this table is used); otherwise we will under-
mine the guarantee on worst-—case performance.

Note in passing that the FAST2 loop above may if desired
be written with the last two instructions replaced by a BXLE
(Branch on Index Low or Equal). But doing this obscures the
points of algorithmic interest, and the resulting code does

not necessarily run faster.

The latency of Versions 1 and 2.

The word—-wide array used in Version 1 is the same as the
original array described by Boyer and Moore, and the cost of
preparing it is therefore the same (see section 2 above).

The byte-wide array used in Version 2 can be prepared more
cheaply, since it is smaller. The initial filling of the table
(with values of patlen+l) could for example be handled 4 entries
at a time with a "store" loop. Alternatively, in §/370, the MVC
instruction can be used, with overlapping operands, tO propagate
a value through memory. The propagation of a single byte, being
a popular case, 1is often handled especially fast by the hardware
or microcode. On some models, a 256-byte array can be thus fill-
ed in about the same time it takes for 5 turns through a simple
wgtore" loop. (The array could also be filled at about the same
speed by using a pad character with the MVCL instruction.)

In many cases this may be "good enough". Algorithmically,
however, it is not very satisfying. The improvement decreases
the preparation cost by only a constant factor. The cost still
contains a term that is proportional to the alphabet size (as
distinct from the pattern length). And the fancy §/370 pro-—
pagating MVC is no help on a RISC.
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Version 3. Low-latency implementation.

It is possible to use a byte-wide array Q, but with a differ-
ent numeric encoding, such that the array entries for characters
that do not appear in the pattern always possess the same const-
ant values. Then the preparation for any particular search needs
to modify only the entries that correspond to the characters that
do appear in the pattern.

The cost of preparation now increases with pattern length
(as it must), but is independent of the alphabet size. Of course,
the array must be "repaired" after a search, so that it is ready
to be modified anew, for the next pattern; but this also involves
touching only the entries for the characters that appear in the
pattern.

Happily, it turns out that an encoding exists which (a) satis-
fies these goals, and (b) affects neither the size nor the speed
of the "fast" loop. Here is how it works.

We initialize all the entries in the array Q to 255. This is
done once, when the program is loaded, or when it begins execution.
Then before a search we set the entries for characters that appear
within the last 254 characters of the pattern to 255-e+d, where e
= min(patlen,254), and (as before) d = distance from the last pat-
tern character of the rightmost instance of the character (d = 0,
1,...,patlen-1); except that (also as before) the entry correspond-
ing to the last pattern character is set to 1 less, i.e. to 254-e.
(another way of looking at this is that the entries are set to the
low—-order 8 bits of d-e-1, or —e-2 for the very last pattern char-
acter.) In the case of a long pattern, only the rightmost 254
characters are visited when preparing the array.

We can now write the "fast" loop as shown below.

¥ e Fast loop, version 3 ~————=———-

*

* On arrival here:

*

* R0 = 255-e, where e = min(patlen,254)

* 0 <= R1 < 256 (in readiness for "IC")

* R2 = (patlen - stringlen - 1) mod 2**32 =
¥ offset (from right end of string) of the
* 1st character to be visited in the string
* R3 = ending addr of string to be searched
*

® Also:

*

* Q[0..255] is a byte array (see above for
* details)
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FAST3 Ic R1,0(R2,R3) Character from string

Ic R1,0Q(R1) Entry from the array
SLR R1,RO The next bold stride
ALR R2,R1 Take bold stride and
BL FAST3 loop unless "carry"

Fall from loop when either (a) we encounter a char-
acter in the string that matches the last pattern
character (in which case R1 is all ones), or (b)
the string is exhausted (and 1 <= R1 <= 254).

I S S

*

This is my recommended implementation of the Boyer-Moore "fast"
loop on a byte—addressed machine.

4. MISCELLANEOUS OBSERVATIONS

This section contains several additional observations on
the implementation of Boyer-Moore search. Only the first is

concerned with latency.

Patterns of length 1

Tt is fairly clear the Version 3 of the "fast" loop can be
employed with advantage for patterns of length 2 or more. Con-
sider a pattern of length 2. Preparation involves setting (and
later repairing) 2 entries in the array Q, and setting 2 entries

in delta2 if this table is used. For this modest investment, we

are typically rewarded with skipping almost every other charact-
er in the string that precedes the first match.

It is interesting to ask whether Version 3 is good enough to
be employed with patterns of length 1 also. This would be nice,

since it would obviate the need for special cases and the imple-

mentation of more than one method. We will consider two situa-—

tions, having different programming constraints.

Situation 1

The program performing the search is permitted to
apply a temporary "patch" to the string in memory

TIn this case an instance of the character to be sought can be

temporarily placed at the end of the string. Then the search

is sure to succeed, and the inner loop can be reduced to some-

thing like this:

LOOP I RO,0(R2,R3) Character from string
ALR R2,R1 Increment index (R1=1)
CR RO,R4 Check char (R4=pattern)
BNE LOOP Loop back unless match
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On most machines this loop would find a one-character pattern
somewhat faster than Version 3 of the "fast" loop. Depending
on the organization of the particular machine, especially with
respect to the resolution of operand addresses and speculative
execution, it would probably run between 1.2 and 1.7 times the
speed of FAST3.

These estimates assume that the string already resides at the
top of the storage hierarchy (e.g. in the cache), or that the
cost of moving it there piecemeal is negligible. If this is
not the case, the performance would be reduced for both cases,
and the relative advantage would be smaller,

In any event, the advantage is not overwhelming.
Situation 2

The program performing the search is not permitted
to apply a temporary patch to the string in memory

This situation obtains if the string is shared by concurrent
processes, or if it is deemed undesirable to modify memory
unnecessarily because of the impact on the performance of
the memory hierarchy (such as paging).

In this case the inner search loop must test for the end of
the string, as well as for a match, e.g. thus:

LOOP IC RO,0(R2,R3) Character from string
CR RO, R4 Check char (R4=pattern)
BE FOUND Branch if perfect match
ALR R2,R1 Increment index (R1=1)
BL LOOP Loop unless exhausted

This usually offers little or no advantage over Version 3 of
the "fast" loop. 8o in this situation there is no cause to
handle a pattern of length 1 as a special case.

But these detailed analyses-are not always relevant. There
is a different and rather general argument which suggests that
the performance of the search phase for a pattern of length 1
is not very important, and therefore it usually makes sense to
employ the same method as for other pattern lengths -- even if
there is some loss in search performance —— provided the method
does not involve expensive preparation. The search performance
is unimportant in this case because the search is likely to be
short. For randomly distributed characters selected from an
alphabet of size 256, the first match has an expected offset
of 256. For English text, the typical offset is less than 50.
This argument breaks down if the alphabet is large (e.g. 64K);
if we are checking for a character we do not expect to find;
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or if we are searching for a special character which is inserted
between large blocks of text.

Unfavourable patterns

The speed of Boyer-Moore search is impaired if the string con-
tains many instances of the last pattern character, since the "fast"
loop will constantly yield control to the "slow" one. When searching
English text, for example, it usually takes longer to find a pattern
that ends with a blank than to find one of the same length (or even
slightly shorter) which ends with a "g".

For this reason it may be desirable to trim trailing blanks from
the pattern, before preparing the array Q and deltal (1f used). The
trimmed blanks are ignored in the "fast" and "slow" loops, and check-
ed only when the rest of the pattern has been matched. This trick is
most beneficial when the simplified algorithm is used. When the com-
plete algorithm is used, trimming blanks undermines the guarantee on
worst—-case performance, and may yield a reduction in speed, e.g. when
the given pattern contains many trailing blanks and the string con-
tains many instances of the trimmed pattern.

In a system debugging tool which is used to search raw memory,
it may be desirable to trim binary zeros as well as blanks. i

This technique is not of course useful for the all-blank pattern
(or the all-zero pattern). The best thing to do here is to keep all
the blanks (and zeros) and trim nothing.

More sophisticated techniques for selecting desirable pattern
characters for early examination are described in [10].

Backward search

The implementations described in section 3 can be adapted for
searching a string backwards.

When preparing the array Q, the pattern is traversed from right
to left; the values stored represent the distance from the left-
most character of the pattern; and the exceptional case applies
to the first pattern character (instead of the last). Corres-
ponding changes are required, mutatis mutandis, for the delta2

table (if used).

Before the "fast" loop, it is convenient to load the base re-
gister with the beginning address of the string, and initial-
ize the index to stringlen-patlen. In the loop, the index is
repeatedly decremented by the bold stride until the subtrac-
tion operation yields a borrow from the high-order bit posi-

tion.

The obvious corresponding changes must be made in the "slow"
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loop and in the resolution of the hesitant stride.

In situations where a Yes-No answer is required ("Does that
string contain this pattern?"), but the position of the first
match (if any) is not required, it may be desirable to choose
the direction of search based on the properties of the pattern.
Suppose for example that the pattern comprises the 12 charact-
ers "the ", If we trim trailing blanks and then search
forwards, we will progress with the following "bold" strides:

Character Stride

e 0
h L
t 2
All others 3

But if we search backwards (and keep the blanks), we can ex-
pect to make substantially faster progress:

Character Stride

t 0

h 1,

e 2
blank 3
All others 12

Choice of hesitant stride after a mismatch in the "slow" loop

When delta2 is used, it may be desirable to obtain the hesitant
stride (following a mismatch in the "slow" loop) from the delta2
table alone, without attempting to improve on it by also referring
to the array Q. In my programs the cost of selecting between these
exceeds the cost of a complete turm through the "fast" loop, and the
latter usually makes more progress. Similar advice is given in [10].
Fortunately this simplification does not undermine the linear worst-

case performance guarantee.

Fuzzy case search

The Boyer-Moore method can be adapted to support a fuzzy case
search. Perhaps the nicest rule for this is to allow a lower-—-case
pattern character (e.g. "a") to match a string character of either
case (i.e. "a" or "A") but require that other pattern chars match

exactly. This can be handled as follows.

When preparing the array Q, lower—case characters in the pattern
are deemed to stand both for themselves and for their upper-case
cousins. So the character "a" sets the array entry in Q for the
letter "a" and also for the letter "A" —-- whereas the character

"A" por "2" sets the entry for "A" or "2" only. During the search,
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the "fast" loop is oblivious to the chicanery, and proceeds as
before.

Some subtle adjustments are required when preparing delta2, if
this is used. Consider the pattern "xABCXABC". Suppose the "slow"
loop finds a match with the final ABC, which is preceded in the
string by an "x" (lower—case). The substring "xABC" is capable
of matching the first four characters of the pattern; therefore
the value of delta2[5] must be 7, and not 11 as it would be for
an "exact" match (see Appendix). The effect is not commutative:
for the pattern "XABCxXABC", delta2[5] may safely be set to 11.

Unfortunately these changes undermine the guarantee on worst-case
performance, and there exist patterns and strings which yield search
time O(patlen x stringlen) when mixed-case patterns are used. I have
been unable to improve on this without giving up useful function or

building additional tables.

5. CONCLUSION

There is a variant of the Boyer-Moore search algorithm which has
preparation time O(patlen), instead of O(g + patlen), where g is the
size of the alphabet. This reduces or eliminates the penalty of Boyer-—
Moore when faced with short patterns or short strings, and it has no
known disadvantages. It makes the algorithm more widely applicable
and almost always obviates the need for handling a short pattern as

a special case.

HISTORICAL NOTES

A low-latency implementation of Boyer-Moore search was written
by me in 1983 for the YMS text editor "Ed". (The exact form given
here was not however devised until this paper was being prepared!)
Fuzzy-case search and trimming of trailing blanks from the pattern

were devised at the same time.
Reverse search has been used by me since 1986 in Examine (a

read-only file editor), and Plod (a diagnostic tool for disks).
gince 1991 it has also been used in the debugging program Prowl.

To the best of my knowledge, the idea of basing the direction
of search on the properties of the pattern has not been exploited.

The material in the Appendix was assembled in 1996 while pre-
paring this paper.
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APPENDIX
Preparation of the Boyer-Moore "delta2" table

There has been a fair bit of muddle in the literature over
the preparation of the integer array "delta2". This may be one
of the reasons why experimentalists have tended to concentrate
on the simplified Boyer-Moore algorithm.

The delta2 table (hereafter referred to as "d2") is used in
the complete Boyer-Moore algorithm when determining the "hesit-
ant" stride after a failed tail-match. The table entry d2[j],

j =1,2,...,patlen, represents the maximum stride that can safe-
ly be taken after encountering a mismatch in the "slow" loop at
pattern position j (without regard to the identity of the mis-
matching character in the string).

Boyer and Moore [1] gave a procedural definition of the
values required in the table. A straightforward implementation
of their definition has running time O(patlen?). For an effici-
ent method of preparation, they referred to the contemporaneous
paper by Knuth, Morris and Pratt [2] —-- which in turn alluded to
an earlier version of the paper by Boyer and Moore that had been
distributed as a technical report.

In section 8 of [2], an algorithm is given for preparing the
d2 table in time O(patlen). It involves three outer loops (one of
which contains an inner loop), and uses a scratch integer array
(of size patlen). Unfortunately this algorithm gives wrong re-
sults for some patterns, including those consisting of a single
repeated character such as "aaaa".

The error was reported to Knuth by K. Mehlhorn, in a letter
dated 20 Oct 1977 [11]. Mehlhorn devised a repair, involving an
additional pair of nested loops which are appended to the orig-
inal algorithm in [2]. Eventually Mehlhorn’s repair appeared in
print, in the 1982 paper by Smit [6].

Meanwhile, in 1980, Rytter, without apparently knowing about
Mehlhorn'’s contribution, published a different repair which is
appreciably more complicated (see [12]).

In 1991 Hume and Sunday reported that Mehlhorn’s repair (which
they attributed to Smit) does not give optimal shifts, and implied
that Rytter’'s repair is to be preferred (see [10]). They did not
however offer any evidence for this observation. I have been un-
able to reprodice it; and at the time of writing (20 Sep 1996) I

have not succeeded in obtaining from them an example of a pattern
that demonstrates it. I believe the two repairs always give the

same (correct) results.
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As you may by now have surmised, the underlying reason for
all this confusion is that the efficient but imperfect algor-
ithm given in [2]) is hard to understand.

Here is a procedural definition of d2. Following Boyer and
Moore, but using different terminology, we describe the wvalues

required thus:

d21[3j] x + vy, for 1 <= j <= patlen,

where: x = patlen-j = length of tail, and

I

offset of tail from its nearest
quasi-tail-replica.

Y

The "tail" is the piece of the pattern that lies beyond
pattern[j].

A "quasi-tail-replica" is a substring in the pattern which
(a) comprises a replica of the tail, and (b) is preceded by a
character that is not a replica of the character preceding the
tail. It may overlap the tail.

For the purpose of identifying quasi-tail-replicas, the pat-
tern is deemed to be preceded by patlen wild cards (residing at
pattern[0], pattern([-1], ...). A wild card has the property that
it reliably replicates any character in the tail and it reliably
fails to replicate the character preceding the tail. Therefore,
for all tails in all patterns, a quasi-tail-replica exists whose-
last character lies at pattern[0]; but of course this is not al-

ways the nearest guasi-tail-replica.

The null tail is replicated at all points. This is relevant
only for j = patlen.

This procedural definition is expressed formally in section 8
of [2] by means of the equation:

da2[3j] =
min{patlen-j+s|s>=1 and (s>=j oOr pattern[j-s]=pattern[j])
and ((s>=i or pattern[i-s]=pattern[i]) for j<i<=patlen)}.

(In that paper d2 is designated dd’, and patlen is designated m.)
A straightforward implementation of either the procedural or form-
al definition yields execution time O{patlenz}. 211 the ensuing
muddle has been concerned with the desire for a more efficient

realization.
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Here, for ease of reference, are the three existing algorithms
for preparing d2([l..patlen] in time O(patlen). I have transcribed
them to a uniform Algol notation, and changed some of the variable
names so that each algorithm obtains the pattern from the charact-
er array pattern[l..patlen] and places its results in the integer
array d2[1l..patlen].

Original (incorrect) algorithm, given on page 342 of [21, 1977

for k := 1 step 1 until patlen do

d2[k] := 2 x patlen - k;
j = patlen;
t := patlen + 1;

while 7 > 0 do

begin
£03] = t;
while t <= patlen and
pattern[j] -= pattern(t] do
begin
d2(t] := min(d2[t],patlen-j);
t = £[t]
end;
£ =2 £ - 1;
A= g = )
end;

for k := 1 step 1 until £t do
d2[k] := min(d2[k],patlen+t-k};

Mehlhorn’s repair (1977), shown on page 62 of [6], 1982

This comprises a complete copy of the original algorithm fol-
lowed by a new assignment statement and a new nest of loops:

copy of original algorithm in toto (see above);

[ What follows is new material --—————- ]
tp = f[t];
while t <= patlen do
begin
while £t <= tp do
begin
d2([t] := min(d2[t],patlen+tp-t);
t =t + 1
end;
tp = fltpl
end;
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Rytter’s repair, given in [12], 1980

This includes most (but not all) of the original algorithm. The
last loop of the original algorithm is replaced by two new outer
loops (each with an inner loop). There are several new variables,
too. When necessary, the first new loop performs a second travers-—
al of the pattern (or some of it), and builds a second temporary
integer array f1[l..patlen] (or some of it). This second array
can if desired use the same space as the first temporary array;
+herefore extra array space is not required. Nonetheless this
algorithm is longer and more complicated than Mehlhorn’s, and

it does slightly more work:

for k := 1 step 1 until patlen do
d2[k] := 2 x patlen - k;

j := patlen; t := patlen + 1;

while § > 0 do

begin
£[i]1 = &5
while t <= patlen and
pattern[i] —= pattern[t] do
begin
d2[t] := min(d2I[t],patlen-3j);
t := £[t]
end;
o= =Ly =3 =l
end;
[ End of unmodified part: what follows is new ———=- ]
g := t; t = patlen + 1 - @; gl := 1;
j1 = 1; tl = 0;

while j1 <= t do
begin
f1[j1] == t1;
while t1 >= 1 and
pattern[j1] -= pattern[tl] do
£1 = £11tl];
BT s T % 1
jl = 41 + 1
end;

while g < patlen do

begin
for k := gl step 1 until g do
d2[k] := min(d2[k],patlen+qg-k);
ql =g+ 1;
gi=g+t- £filt]l;
t o= L£11[t]
end;
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Since I seem to be deeply inveolved in this, I propose toc add
to the confusion by giving a slightly simpler algorithm for pre-
paring the d2 table in time O(patlen). The new algorithm has only
two outer loops, each containing one inner loop. Like the other
algorithms, it reguires a scratch integer array (of size patlen).
The first outer loop combines the first two outer loops of the
original algorithm; and the second combines the last outer loop
of the original with Mehlhorn’s appendage. I do not have a proof
of correctness —— and if I did you would be wise to treat my proof
with extreme caution. I have however tested the algorithm with 50
million randomly generated patterns, having lengths in the range 1
to 16, selected from small biased alphabets. It has consistently
given the same results as Mehlhorn'’s repair, and the same as a
straightforward implementation that has running time O (patlen?).

New algorithm for d2

t = patlen;

f[patlen] := t + 1;

d2 [patlen] := patlen;

for i := patlen-1 step -1 until 1 do

begin

£03] := t;
d2[j] := 2 % patlen - Jj;
pattern[patlen+l] := patternl[j];

while pattern[j] -= pattern[t] do

begin
d2[t] := min(d2[t],patlen-j);
t = £[t]
end;
t =t -1
end;
j o= 1;

while ¢t < patlen do

begin
for ¥ := j step 1 until t do
d2 (k] := min(d2[k],patlen+t-k);
i o=t + 1;
£t o= £[t]
end;

Like the other algorithms, this one obtains the pattern from the
character array pattern[l..patlen], and places the results in the
integer array d2[l..patlen]. The last entry, at d2[patlen], is not
actually required during the search, but excluding it from the pre-
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paration is more trouble than it is worth. The sequence as written
uses the character location at pattern[patlen+l] in a devious ploy
(of no algorithmic importance) to simplify the inner "while" loop.

It can fairly easily be shown that the algorithm has running
time O(patlen) :

First outer loop

Clearly the outer "for" loop is executed exactly patlen-1

times.

Next I will prove that the first statement in this loop al-
ways sets f[j] to a value that exceeds j.

As long as the inner "while" loop is not executed, t remains
in step with j (having a value of j+1); so £[j] is set to j+1.

If and when the inner loop is first executed, t is loaded from
f[t] one or more times, and each time the value of t increases
by 1 (to a maximum of patlen+l). Consequently, in subsesequent
turns through the outer loop, t[j] is set to a value that ex-

4+1; and in subsequent turns through the inner loop, the

ceeds
of t increases by 1 or more every time it is loaded.

value

The argument is iterative; and it follows that f£[j] is always
assigned a value that exceeds j.

Now let p = the total number of times the inner loop is exec-

uted.

On entering the outer loop, t has the value patlen; and on
leaving, it has a value of at most patlen. Inside, it is in-
cremented by at least p, and decremented by exactly patlen-1.

Therefore p <= patlen-1.

Second outer loop

Each turn around the outer "while" loop, t increases by 1
or more, and the loop terminates when t reaches or exceeds
patlen. Since t >= 1 on entry, the outer loop 1s executed

at most patlen-1 times.

Finally, each time around the outer loop, the increment in
§ is equal to the number of turns through the inner "for"
loop. Since on entry j = 1, and finally j <= patlen, the
inner loop is also executed at most patlen-1 times.

This proof has been confirmed informally by counting itera-—
tions while processing 1 million randomly generated patterns.
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To end, here are some examples of d2. Example 1 is given as
a starting reference point: this pattern contains no repeated
characters, and is therefore unin eresting. Example 2 contains
plenty of repetition, but it has no effect on d2 since it does
not involve the tail of the pattern. The other examples show
the effects of repetition that does involve the tail. The last
example is taken from [2] and (to quote from that paper) "il-
lustrates most of the subtleties of the algorithm".

The examples can be checked by hand using any of these me-
thods:

(a) by reference to the functional definition of d2 (see [1)],
or the description above),

(b) by evaluating the formal equation for d2 (see [2], also
shown above),

(c) by stepping through the algorithm as repaired by Mehlhorn
(see [6], or "Mehlhorn’s repair" above),

(d) by stepping through the algorithm as repaired by Rytter
(see [12], or "Rytter’'s repair" above),

(e) by stepping through the new algorithm (see "New algor-
ithm for d2" above), and

(f) by devising yet another algorithm and stepping through
that.

I recommend the first exercise, and the last two.

Example 1. index 1 2 3 4 5 6 7
pattern a b (o d e £ g
d2 13 12 4 40 ] 8 1
Example 2. index 1 2 3 4 5 6 7
pattern a a
d2 13 12 11 10 9 B I;
Example 3. index 1 2 3 4 5 6 7
pattern a b c d -
dz2 13 12 11 10 3 3 3
Example 4. index 1 2 3 4 5 6 7
pattern a a a a a (%3
d2 7 7 7 7 7 7 T

(*) This is an example of a pattern for which the
original algorithm in [2]) gives wrong results.
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Example 5. index
pattern

d2

Example 6. index
pattern
dz2

Example 7. index
pattern
d2

Example 8. index
pattern
d2

Example 9. index
pattern

d2
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