
Research Division
Almaden ● T.J. Watson ● Tokyo ● Zurich ● Austin

LIMITED DISTRIBUTION NOTICE
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its dis-
tribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication,
requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

RC 20694 (91338) 11/14/96
Computer Sciences/Mathematics 10 pages

Research Report

Compiler/Architecture Interaction in a
Tree-based VLIW processor

M. Moudgill, J.H. Moreno, K. Ebcioglu, E. Altman,

S.K. Chen, A. Polyak

IBM Research Division
T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

2

Compiler/architecture interaction in a tree-based VLIW processor

M. Moudgill, J.H. Moreno, K. Ebcioglu, E. Altman, S.K. Chen, A. Polyak

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218, Yorktown Heights, NY 10598

Abstract

This paper describes a compilation and simulation
environment designed to explore the interaction among
compiler and architecture for the case of a tree-based
very-long instruction word (VLIW) processor. The
environment is characterized by its flexibility and fast
turn-around time, allowing the exploration of
architecture/compiler trade-offs in several dimensions
over complete execution runs of standard benchmarks.
CHAMELEON, our research compiler, uses state-of-the-art
optimizing techniques to extract and exploit instruction-
level parallelism. FORESTA, the VLIW architecture, has an
instruction set which is based on the PowerPC
architecture. Results reported in the paper demonstrate
the suitability of the environment for the purposes of
evaluating trade-offs; in particular, the interactions
arising from the availability of three-input instructions in
the architecture are discussed. The exploration of such
interactions has led to the development of some novel
ideas in the architecture as well as in the compiler.

1. Introduction

The design of a new processor architecture and its
associated compiler is a complex process. For a
given set of requirements, designers must

• determine what attributes are important and
necessary;

• design an architecture implementing such
attributes; and

• fulfill implementation and cost constraints.

In general, the design process is an iterative one:
features are proposed, required changes are intro-
duced to the design environment, and the effective-
ness/performance of the features is evaluated. Such
a process, which requires adequate tools for simula-
tion and performance measurement, is necessary
due to the ever tighter interaction among compiler
and architecture. Consequently, the tools used
should be efficient, allow experimentation with
realistic workloads, be easy to reconfigure, and per-
mit the evaluation of a variety of features.

We have been researching the viability of a very-
long instruction word (VLIW) architecture in the con-
text of PowerPC and the AIX operating system. We
have been studying the potential features of such a
new architecture for exploiting instruction-level
parallelism (ILP), the appropriate compiler algo-
rithms, and the interaction among compiler and
architecture. The objective has been the develop-
ment of a compiler/architecture which reaches new
levels of ILP in branch-intensive programs. For these
purposes, we have developed an experimental envi-
ronment which provides reasonably fast turn-
around time from compilation to simulation, so that
compiler/architecture trade-offs are analyzed over
complete execution runs [1]. Our tools have similar
properties to those available in other simulation
environments [2-3], but a combination of features
make ours unique, including:

• highly modular organization;
• fast turn-around time for introducing optimiza-

tions to the compiler;
• fast turn-around time from compilation to simula-

tion;
• integration of simulator, trace generation, and

trace-driven timing analysis;
• timing complete execution of programs without

the need for storing traces;
• different levels of accuracy, with more accurate

results requiring longer simulation time;
• applicability to any type of processor architecture

or micro-architecture, but particularly well suited
to modeling wide-issue processors such as VLIW
due to lower simulation overhead.

In this paper, we describe our environment for com-
piler/architecture interaction in the context of our
target VLIW processor. We focus on features of the
instruction-set architecture and their relationship
with compiler optimization algorithms. The rele-
vance of the environment for experimental evalua-
tion is described, emphasizing its ability to quickly
incorporate and evaluate new features. Quantitative

3

results reported illustrate the abilities (or limita-
tions) of the compiler to exploit the architectural
features considered. In practice, the environment
allows evaluating alternative features over realistic
workloads; programs such as the SPECint bench-
mark suite and a set of AIX utilities are simulated in
their entirety. Simulation executables typically run
only 10 to 15 times slower than the optimized native
PowerPC code for the same program; this level of
performance in the simulator makes possible carry-
ing out complete experiments on a regular basis,
without having to resort to simplifications to reduce
their turn-around time.

The rest of the paper is organized as follows. We
first summarize relevant features of our environ-
ment. In Section 3, we briefly summarize the basic
properties of FORESTA, our tree-based VLIW architec-
ture, and in Section 4 we describe significant aspects
of CHAMELEON, the optimizing compiler. Then, we
describe architecture/compiler interactions which
are possible, illustrating some of them with quanti-
tative results. We finalize with some observations
regarding the interactions among compiler and
architecture as perceived in our context.

2. The development and simulation envi-
ronment

Our development and simulation environment has
been built around the architecture/compiler interaction,
leading to two paths as depicted in Figure 1:

• the exploratory (fast) path, which is characterized
by fast turn-around time but only instruction-set
architecture performance measurements; and

• the evaluation (slow) path, which is characterized
by longer turn-around time but performance
measurements that take into account
implementation aspects.

As their names imply, each path has a well-defined
objective. The exploratory path is used to test new
features by modifying the different components of
the environment as necessary, and by simulating at
the instruction-set architecture level (without taking
into account processor implementation issues such
as finite size caches, interlocks, and so on). In con-
trast, the evaluation path focuses on providing
accurate performance estimates, including the
implementation aspects.

The exploratory path has been built into a simula-
tion environment which comprises two phases, as
follows (see Figure 2):

Preparation phase, in which VLIW assembly lan-
guage code is translated into PowerPC assem-
bly code which emulates the behavior of the
VLIW program (on a file-by-file basis if the pro-
gram consists of multiple files).

Simulation phase, in which the VLIW program is
simulated, including the collection of run-time
profiling information.

This two-phase approach, which is common to
many simulation/profiling tools [2], offers several
special advantages in our case. For example, due to
the same layout of data and procedure call conven-
tions, the preparation phase allows mixing assem-
bly code from the VLIW and PowerPC architectures.
Since the translator generates PowerPC assembly

Figure 1: Iterative simulation/evaluation process

Feature
proposed

Compiler
modified

Simulator
modified

Verify
effectiveness

Evaluate
performance

evaluation
path

exploratory
path

4

code on a file-by-file basis, it is possible to compile
into code for the VLIW architecture only a subset of
the source files composing a program, and compile
directly into PowerPC assembly code the remaining
files. In this way, the program resulting from the
preparation phase only emulates and collects per-
formance data for the part of the program which
has been compiled for the FORESTA architecture, thus
permitting focusing only on critical parts of a pro-
gram.

As already stated, in this paper we do not address
the features of the processor at the implementation
level (e.g., alternative processor and memory orga-
nizations). However, implementation-related fea-
tures are easily incorporated into our environment
through specific program interfaces between a pro-
cessor model, a memory model, and the emulated
program. A complete description of the simulation
environment, including the cycle-by-cycle timing
capabilities, is given in [1].

3. FORESTA, a VLIW architecture based on
tree-instructions

Branch-intensive programs can be conveniently rep-
resented as sequences of tree-instructions [4-5], or
simply trees, each of which corresponds to an unlim-
ited multiway branch with multiple branch targets
and an unlimited set of primitive operations (see Figure
3).

The multiway branch is associated with the internal
nodes of the tree, whereas the operations are associ-
ated with the arcs. The multiway branch is the
result of a set of binary tests on condition registers: the
left outgoing arc from a tree node corresponds to
the false outcome of the associated test, and the
right outgoing arc corresponds to its true outcome.
All operations and the multiway branch are inde-
pendent and executable in parallel.

Based on the evaluation of the multiway branch, a
single path within a tree-instruction is selected at
execution time as the taken path (a tree-path starts
from the root of the tree and ends in a branch tar-
get). Operations on the taken path are executed to
completion, and their results placed in the corre-
sponding destinations (registers or storage loca-
tions). In contrast, operations not on the taken path
of the multiway-branch are inhibited from commit-
ting their results.

In FORESTA, our VLIW architecture [6], each tree-
instruction is represented in main storage as a con-
tiguous sequence of primitive operations which is
obtained from the depth-first traversal of the tree; in
contrast to traditional VLIW processors, this represen-
tation does not use no-ops in the encoding of pro-
grams. All possible next tree-instructions for a given
tree are stored as a block in adjacent memory loca-
tions. This representation allows achieving binary
compatibility among different implementations of
this architecture, each with varying degrees of par-
allel execution capabilities, by allowing the

Figure 2: Overview of the simulation environment

Preparation
phase

PowerPC
assembly
code

Translator

Compiler

Source code

Simulation
program

Simulation

Execution

Foresta
assembly code

Assembler, Linker

statistics

phase

5

dynamic decomposition of a large tree into subtrees
which are executed in different cycles [7].

The primitive operations in FORESTA are based on the
PowerPC architecture [8]; deviations from the Pow-
erPC instruction set include:

• larger register set than the 32 general-purpose, 32
floating-point, 8 condition registers* available in
the PowerPC architecture;

• support for speculative non-trapping load opera-
tions;

• some complex operations have been deleted,
including rotate-and-mask, update form and
indexed load/store, load/store multiple, and
string operations;

• the “record” form of operations allows specifying
any of the condition registers (instead of the
implicit Condition Register 0);

• the displacement field in memory operations has
been reduced from 16 to 11 bits;

• the encoding of some operations has been
extended to 64 bits;

• some operations can support 32-bit immediate
fields;

• some 3-input fixed-point operations have been
added, such as add&shift, and∨

• some support for conditional execution has been
added, in the form of conditional move and con-
ditional store operations.

* We treat the condition register fields in the PowerPC Condi-
tion Register as separate registers.

4. The CHAMELEON compiler

CHAMELEON, our research compiler (see Figure 4), has
been designed to support research into instruction-
level parallelism, and to evaluate the benefits of var-
ious architectural modifications when exploited
through appropriate compiler optimizations. CHA-
MELEON, which was designed to target VLIW architec-
tures that execute tree-instructions, is extensively
parameterized so that it can target processors with
different features, such as issue width, number of
functional units, instruction latencies, register set,
and so on. Supporting architectural explorations
and implementing aggressive optimizations geared
towards several different targets implies a compiler
in constant state of change. Consequently, the com-
piler has been designed with support for adding
code, verifying the modified compiler, and isolating
problems quickly (such mutability has led to its
name).

The input to CHAMELEON is object code (*.o files) pro-
duced either by a modified version of xlc, the stan-
dard RS/6000 C compiler [9], or a modified version
of gcc, the GNU C compiler. The object files are pro-
cessed by an “object-code translator” that generates
an assembly-like sequential representation (*.vinp
files). The output from CHAMELEON is a FORESTA pro-
gram (tree-instructions) in an assembly language
form (*.vasm files), which is either instrumented
and translated into PowerPC assembly code (*.s
files) that emulates the target FORESTA processor, or
is translated into PowerPC assembly code.†

The modifications to xlc and gcc fall into two cate-
gories: first, we have turned off phases such as
scheduling and loop transformations that would

Figure 3: A tree-instruction

f3 t3

E

CD

op1

A

L0:

C0

C2

C1

B

C3

op3

op5
op2

op1

op4

op5

op6
op7

f1

f2

t1

t2

f5 t5

C

op1
op4

Tests on
condition codes

Destination
targets

Primitive
operations

C4
f4 t4

6

tend to obscure the original code sequence; second,
we have added capabilities to convey information
such as alias classes, registers live at function call
and function return points, spill locations, etc. The
results reported in this paper have all been obtained
using xlc. Among other benefits, the modified xlc
allowed us to take advantage of an existing produc-
tion front-end.

Optimizations

CHAMELEON has a fairly aggressive suite of optimiza-
tions which can be grouped into the following cate-
gories (see Figure 5):

Traditional. These include constant propagation,
loop invariant code motion, dead-code elimina-
tion, and sub-expression elimination. These
optimizations are applied throughout the com-
pilation process. Moreover, since we use the

† The compiler can also be restricted to directly produce primi-
tive operations complying with the PowerPC architecture;
such code is suitable for a wide-issue implementation of the
PowerPC architecture.

output from xlc, we take advantage of xlc’s
excellent set of traditional optimizations [10].

ILP-increasing. Optimizations designed for increas-
ing the instruction-level parallelism, so that the
scheduler can pack instructions more tightly.
These include various loop transformations,
such as unrolling, re-writing loops with com-
mutative/associative operations (reductions),
re-writing cyclic dependences to reduce initia-
tion intervals, and memory disambiguation.

Architectural. Optimizations designed to exploit
various architectural extensions. For instance,
there is a phase that uses conditional move/
store operations to convert if-then-else struc-
tures to straight-line code.

Optimizations not in CHAMELEON but found in other
research compilers include profile-directed feed-
back and inter-procedural analysis. CHAMELEON has
the ability to use profiling information but it nor-
mally uses synthetic branch probabilities produced
by a variant of the Ball-Larus heuristics [11]. We
take no advantage of inter-procedural analysis;

Figure 4: The CHAMELEON compiler environment

Modified
xlc

Modified
gcc

Object
code
translator

CHAMELEON

VLIW
translator

PowerPC
translator

Instrumented
VLIW files
(in PowerPC
*.s format)

PowerPC
*.s files

*.o files *.vasm
files

Architectural
model

Figure 5: Phases in CHAMELEON

Initial phase:
dependence graph, loop
cleanup, memory disam-
biguation

Architectural
optimizations:
conditional instrs.,
3-input instrs.,
etc.

ILP-enhancing
optimizations:
unrolling, cloning
MII reduction,
etc.

Scheduling:
software pipelining,
local and global
scheduling

Register
allocation

Code
generation

7

even the inter-procedural phase of xlc has been dis-
abled.

The scheduler used by CHAMELEON is an enhanced
version of selective scheduling [5]; as a result, all
loops are subject to software pipelining, including
those containing multiple paths and other loops.
The original selective scheduling algorithm has
been considerably modified; the changes include:

• examining all instructions in a loop for scheduling
(instead of only instructions within a fixed
“window'');

• using heuristics for selecting the slot in which to
schedule an instruction (instead of a “greedy''
schedule); and

• sensitivity to register pressure (not scheduling an
instruction if that might cause a register spill).

Implementation

CHAMELEON is table-driven, so that adding a new
instruction and/or a new register class requires
localized changes. Its intermediate form, the depen-
dence flow graph (DFG) [12], provides an inte-
grated data/control flow information well suited
for incorporating advanced optimizations; such
optimizations are, with few exceptions, indepen-
dent of each other and permutable.

CHAMELEON is extensively parameterized; every-
thing from the processor resource model to the
instruction set is defined through tables, which are
usually modifiable at runtime. For instance, primi-
tive operations and their properties are in a table.
Thus, adding a new primitive means adding one
entry to the table, and possibly an evaluation func-
tion. After that, the primitive instruction is accepted
by the scanner, scheduled appropriately, and
printed out correctly. If the primitive has properties
such as associativity and commutativity, optimiza-
tions which use these properties are able to use
them. Similarly, if the primitive has an evaluation
function, the various constant propagation transfor-
mations are able to use it.

Transformations are written to be stand-alone. They
can be viewed as transformations on the DFG: they
accept any possible DFG and transform it into some
semantically equivalent DFG. A particular transfor-
mation may depend on a previous transformation
in terms of the instruction-level parallelism it
exposes, but not in terms of correctness.* The lack of
required ordering enables the application of some

subset of all optimizations, in an arbitrary order,
speeding up the process of error isolation.

CHAMELEON has extensive debugging support for
reducing the time to isolate and fix programming
errors, including built-in data-structure consistency
and checking for memory bounds/validity. A non-
optimized version of the compiler, with debugging
on, can spend up to 2/3 of its execution time in
asserts and data-structure integrity validation.
There has been a large payoff from this property;
when an optimization is implemented incorrectly, it
is usually the case that the compiler fails a self-
check in the offending optimization rather than pro-
ducing an incorrectly compiled program. Addition-
ally, even though we use C, we have had no major
pointer-related bugs (a minor miracle!).

The area where our compiler differs most from a
production compiler is compilation time, though
this is the result of conscious decisions. Whenever
there was a trade-off among compilation time and
other property such as robustness, maintainability,
extensibility, performance or programmer’s time,
we chose against compilation time. For instance, all
algorithms are global: entire interval or function,
even for very large functions; we use O(n2) algo-
rithms where necessary, even for large regions.
DFGs, while ideal for implementing optimizations,
are more memory intensive than other intermediate
forms.

5. Some examples of compiler/architec-
ture interactions

The range of architecture/compiler interactions
which we can be explored in our environment is
quite broad. Since we cannot describe the entire
range in detail, we list some examples of the archi-
tectural features which have been considered and
for which compiler algorithms have been devel-
oped; these include:

• number and type of operations per VLIW ;
• size of the register set;
• latencies of operations, including memory opera-

tions;
• availability/unavailability of specific instructions;
• three-input instructions;
• conditional move and conditional store instruc-

tions;

* This is not strictly true; some transformations must be per-
formed after register allocation.

8

• record form of instructions;
• length of displacement and immediate fields;
• static reordering of ambiguous memory refer-

ences, with run-time verification of incorrect exe-
cution;

• cache prefetch instructions.

We now describe two of these features in detail,
namely the exploration of issue-width with larger
register set, and the incorporation of three-input
operations in the architecture.

5.1 Instruction-level parallelism

Typically, studies on VLIW architectures assume a
fixed size register set and investigate the effects of
increasing the operations per VLIW [5][13-14]. In
addition to such studies, we have explored the
availability of instruction-level parallelism assum-
ing larger register set for wider-issue implementa-
tions. Such trade-offs are easily evaluated in our
environment. The compiler is simply invoked with
a parameters file describing the features of the tar-
get architecture. No changes are required in the
translator because that tool is capable of handling
very large configurations (1024 registers, unlimited
number of operations per VLIW).

We present results for three widths of a VLIW proces-
sor that uses all the instruction-set architecture
extensions described earlier; the three widths are,
respectively, capable of issuing any 8, 12 and 16
instructions per VLIW . The size of the register sets
considered are listed in Figure 6a; the experiments
reported have been performed using the operation
latencies listed in Figure 6b. The programs used are
from the SPECint 92 and 95 suites.

Table 1 reports the instruction-level parallelism
obtained in the VLIW code for different processor
configurations. This table indicates the ratio
between the number of instructions executed by a

RS/6000 processor running PowerPC code (i.e.,
with ILP=1) to the number of tree-instructions exe-
cuted by the FORESTA processor, for the different
issue-widths. The PowerPC instruction counts used
for these ratios are obtained from compiling the pro-
grams with xlc at optimization level -O2.

Note that we compute instruction-level parallelism
differently from many other results reported in the
literature. Usually, the results reported are obtained
by using the same compiler for both the parallel
implementation and the sequential implementation.
In contrast, the instruction counts for the sequential
implementations are obtained using the best com-
piler available for the PowerPC architecture [10].
This is motivated by our original research goal,
namely measuring the potential improvement in
instruction-level parallelism in a PowerPC-based
VLIW processor over existing PowerPC implementa-
tions. As can be inferred from Table 1, even under
this stringent condition, the improvement in ILP is
comparable to that previously reported in the litera-
ture.

Figure 6: Size of register set and latencies in primitive operations

(a) Register set

Register class
Issue width

8 12 16
General-purpose 64 96 128

Floating-point 64 96 128
Condition 16 24 32

(b) Instruction latencies

Operation Latency
Integer 1

Floating-point 3
Load 1

Integer divide 10
Integer multiply 3

Table 1: VLIW instruction ratio with respect to
sequential code

Benchmark
Issue-width

8 12 16

compress 4.14 5.14 5.79

eqntott 4.79 5.00 8.02

espresso 2.58 2.85 3.11

gcc 2.36 2.76 2.88

li 3.25 3.58 3.69

m88ksim 2.70 3.02 3.04

go 2.23 2.45 2.51

9

5.2 Three-input operations

Earlier work has shown that it is possible to build
hardware that can combine two arithmetic-logical
operations into a single one, and analysis of execu-
tion traces has indicated that there are opportunities
for taking advantage of such combinations [15-16].
For example, an add&shift instruction is a three-
input operation that performs the addition of two
operands followed by shifting the intermediate
result a number of positions specified by a third
operand; that is, r5=add&shift r3,r4,r7 is equivalent
to rx=add r3,r4 followed by r5=shift rx, r7. In fact,
contemporary architectures such as Hewlett-Pack-
ard’s PA-RISC [17] have some capabilities of this
type. Note that the potential benefit of adding three-
input instructions is subject to the capability (or
inability) of the compiler to hide the dependency
among the corresponding operations as part of the
execution of the entire program. Since a VLIW proces-
sor is characterized by having many functional
units, the execution of an instruction pair as two
separate instructions might not be detrimental as
long the pair is not in the critical path of the pro-
gram.

We have explored the benefits of including com-
bined operations in our VLIW architecture. Initially,
we considered the following classes of three-input
operations (a total of 67 additional instructions):

A: any combination of add/subtract with add/
subtract;

S: any combination of add/subtract with shift, or
shift with add/subtract;* and

L: any combination of logical with logical opera-
tions.

Moreover, for determining an upper-bound on the
potential performance achievable, we have also
allowed “recording” forms of each of these combi-
nations (i.e., setting a condition register in addition
to the result), as well as specifying an immediate
value for one of the operands. Due to encoding con-
straints, these combinations require using a double-
word for their representation in memory.

We first added these three-input operations to the
compiler and to the simulator. In CHAMELEON, this
required adding an entry for each instruction in the
opcode table (six lines), and an evaluation function.
The translator was modified to recognize the new

* This class does not include arithmetic shift.

operations, decompose them into their two-input
components, and emit suitable PowerPC assembly
code emulating the new instructions.

The next step was adding the necessary optimiza-
tions to CHAMELEON. We made three changes for
exploiting the availability of three-input operations:

• added a new phase that combines two operations
into a three-input operation when the two
operations are in the same basic block;

• modified the scheduling heuristics so that it
properly handles the single-cycle latency of a
three-input operation, thereby combining
instructions when such an action would produce
a better schedule; and

• altered the final peephole compaction phase so
that combining adjacent VLIW s also recognizes and
exploits the three-input operations.

Table 2 depicts the relative gain in instruction-level
parallelism arising from this interaction among
compiler and architecture, for the case of a proces-
sor capable of issuing up to 16 operations per VLIW

but restricted to 8 memory operations, 4-way
branch, and 2 floating-point operations, and whose
register set is 64/64/16 registers. As listed in the
table, only some programs exhibit significant gains,
whereas other reflect little variation.

Table 3 through Table 5 illustrate the distribution of
the most common three-input operations for bench-
marks compress, espresso and go, respectively; these
benchmarks are the only ones which exhibit real
gain from the availability of the new instructions. In
these tables, the static instruction count represents
the number of occurrences of the specific instruction
combinations in the VLIW program, whereas the
dynamic ratio corresponds to the ratio among the
dynamic count of the specific instruction combina-

Table 2: Relative ILP gain from three-input
operations in 16/8/4/2/16 processor

Benchmark Base ILP 3-in ILP Gain

compress 4.41 5.38 18.0 %

eqntott 7.88 7.91 0.4 %

espresso 2.78 2.90 4.1 %

gcc 2.65 2.68 1.1 %

li 3.48 3.53 1.4 %

m88ksim 2.80 2.84 1.4 %

go 2.08 2.39 13.0 %

10

tions to the total operations in the entire program
(specified either in the taken or in non-taken paths
of the tree-instructions).

As a final example of interaction among compiler
and architecture, Table 6 depicts the effects of the
three-input instructions grouped according to their
classes, for the same three benchmarks as above. In
the case of compress and go, the most relevant group
is A + S; the L group does not have any effect. In
contrast, in the case of espresso, each class contrib-
utes partially to the overall gain. However, this
example indicates that the gain arising from the
availability of two classes is not necessarily the
same as the sum of the individual gains; the com-
piler is able to schedule instructions in such a way
as to partially compensate for a missing class.

6. Concluding remarks

We have described our environment for studying
compiler/architecture interactions, in the context of
the FORESTA VLIW architecture, and have illustrated it
through the analysis of the effects arising from the
availability of three-input instructions in the archi-
tecture.

The CHAMELEON compiler uses state-of-the-art tech-
niques to reach new levels of ILP in branch-intensive
programs. The compiler and the simulation envi-
ronment have been developed with the objective of
supporting the interaction among compiler and
architecture, and have been designed primarily for
mutability. The run-time performance of the com-
piler has been sacrificed in those places where it
would have inhibited its suitability for modifica-
tions.

The simulation environment provides fast turn-
around time from compiler output to simulation
results, allowing rapid testing of new compiler algo-
rithms and new architecture features. Simulation
executables typically run only 10 to 15 times slower
than the optimized native PowerPC code for the
same program. This level of performance in the sim-
ulator makes possible carrying out complete experi-
ments on a regular basis, without having to store
execution traces or other simplifications to reduce
turn-around time.

In practice, the environment is allowing us to evalu-
ate alternative architecture/compiler features over
realistic workloads. Programs such as the SPECint
92 and 95 benchmark suites and a set of AIX utilities
are being simulated in their entirety, for different
processor configurations and different compiler
algorithms.

Table 3: Distribution of three-input
operations in benchmark compress

Operation
Static

instr. count
Dynamic ratio

slw,add 45 10.5 %

add,subf 23 8.1 %

add,add 56 3.0 %

srw,add 4 < 0.01 %

all others 1 0.0 %

Table 4: Distribution of three-input
operations in benchmark espresso

Operation
Static

instr. count
Dynamic ratio

add,add 1145 3.5 %

and,nor 86 1.7 %

slw,add 1496 1.7 %

and,and 38 0.5 %

all others 453 1.2 %

Table 5: Distribution of three-input
operations in benchmark go

Operation
Static

instr. count
Dynamic ratio

slw,add 10393 11.6 %

add,add 947 0.4 %

add,subf 341 0.2 %

slw,subf 83 < 0.01 %

srw,add 1 < 0.01 %

Table 6: Relative ILP gain from classes of three-
input operations

Instrs.
classes

Benchmarks
compress espresso go

A + S + L 18.0 % 4.1 % 13.0 %

A + S 18.0 % 3.2 % 13.0 %

A 11.2 % 2.2 % 0.5 %

A + L 11.2 % 2.8 % 0.5 %

S 7.3 % 1.3 % 12.1 %

S + L 7.3 % 2.2 % 12.1 %

L 0.0 % 0.8 % 0.0 %

11

Acknowledgments

We thank Brian Hall, Norman Cohen, Richard Gold-
berg, Peter Oden, and Balaram Sinharoy for their
contributions to different parts of CHAMELEON.

References

[1] J.H. Moreno et al., “Architecture, compiler and
simulation of a tree-based VLIW processor,”
Technical Report RC-20495, IBM T.J. Watson
Research Center, July 1996.

[2] T. Conte, C. Gimarc, editors, Fast simulation of
computer architectures, Kluwer Academic Pub-
lishers, 1995.

[3] B. Cmelik, D. Keppel, “Shade: a fast instruc-
tion-set simulator for execution profiling,” in
Fast simulation of computer architectures, T.
Conte, C. Gimarc, editors, pp. 5-46, 1995.

[4] K. Ebcioglu, “Some design ideas for a VLIW
architecture for sequential natured software,”
in Parallel Processing (Proceedings of IFIP WG
10.3, Working Conference on Parallel Processing),
M. Cosnard et al. (editors), pp. 3-21, 1988.

[5] S-M. Moon, K. Ebcioglu, “An efficient
resource-constrained global scheduling tech-
nique for superscalar and VLIW processors,”
Proceedings of 25th Annual International Sympo-
sium on Microarchitecture (MICRO-25), pp.25-71,
December 1992.

[6] J.H. Moreno et al., “FORESTA User Instruction
Set Architecture,” Technical Report (in prepa-
ration).

[7] J.H. Moreno, “Dynamic translation of tree-
instructions into VLIWs,” Technical Report
RC-20505, IBM T.J. Watson Research Center,
July 1996

[8] IBM Corporation, PowerPC Architecture, 1st.
edition, 1993.

[9] IBM Corporation, AIX XL C compiler, IBM 1993.
[10] M. Auslander, M. Hopkins, “An overview of

the PL.8 compiler,” in Proceedings of the 1982
SIGPLAN Symposium on Compiler Construction,
pp.22-31, June 1982.

[11] T. Ball, J. Laurus, “Branch prediction for free,”
in Proceedings of the 1993 SIGPLAN Conference
on Programming Language Design and Implemen-
tation, pp. 300-313, June 1993.

[12] Pingali et al., “Dependence flow graphs: an
algebraic approach to program dependen-
cies,” in Proceeding of 18th ACM Symposium on
Principles of Programming Languages, pp. 67-78,
1991

[13] T. Conte, S. Sathaye, “Dynamic rescheduling: a
technique for object-code compatibility in
VLIW architectures,” in Proceedings of 28th
Annual International Symposium on Microarchi-
tecture (MICRO-28), 1995.

[14] P. Chang et al., “IMPACT: an architectural
framework for multiple-instruction-issue pro-
cessors”, in Proceedings 18th Annual Interna-
tional Symposium on Computer Architecture, pp.
266-275, 1991.

[15] S. Vassiliadis, J.E. Phillips, B. Blaner, “Interlock
collapsing ALUs,” IEEE Transactions on Com-
puters, vol. 42, pp. 825-839, July 1993.

[16] S. Vassiliadis, B. Blaner, R.J. Eickemeyer,
“SCISM: a scalable compound instruction set
machine,” IBM Journal of Research and Develop-
ment, vol. 38, no. 1, January 1994.

[17] Hewlett-Packard Company, PA-RISC 1.1 archi-
tecture and instruction set reference manual, 2nd.
edition, 1992.

