
LIMITED DISTRIBUTION NOTICE
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been
issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its
distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publica-
tion, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

Research Division
Almaden ● Austin ● China ● Haifa ● Tokyo ● T.J. Watson ● Zurich

RC 20733 (91858) 2/17/97
Computer Sciences/Mathematics

IBM Research Report

ForestaPC (Scalable-VLIW) User Instruction Set Architecture

Jaime H. Moreno
jmoreno@watson.ibm.com

Kemal Ebcioglu
kemal@watson.ibm.com

Mayan Moudgill
mayan@watson.ibm.com

IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Dave Luick
luick@rchvmx.vnet.ibm.com

IBM AS/400 Division
3605 Highway 52 N
Rochester¸ MN 55901

ForestaPC (Scalable-VLIW)
User Instruction Set Architecture

Book I
Version 1.0

December 27, 1996

Copyright International Business Machines Corporation, 1996. All rights reserved

Preface

This document defines the ForestaPC User Instruction Set
Architecture. It covers the base instruction set and related
facilities available to the application programmer.

Other related documents are:

• Book II, ForestaPC Virtual Environment Architecture,
which defines the storage model and related instruc-
tions and facilities available to the application program-
mer;

• Book III, ForestaPC Operating Environment Architec-
ture, which defines the system (privileged) instructions
and related facilities; and

• Book IV, ForestaPC Implementation Features, which
defines the implementation-dependent aspects of a
particular implementation.

As used in this document, the term “ForestaPC Architec-
ture” refers to the instructions and facilities described in
Books I, II, and III. The description of an instance of the
ForestaPC Architecture in a given implementation also
includes the material in Book IV for that implementation.

Table of Contents

 i

Chapter 1. Introduction and Formats

1.1 Processor Overview... 1
1.1.1 Basic Description... 1
1.1.2 Basic Processor Organization 4
1.1.3 Semantics of a VLIW ... 5
1.1.4 Speculative Execution.. 6
1.1.5 Out-of-order Load Instructions........................... 7

1.2 Compatibility with the PowerPC Architecture..... 7

1.3 Instruction Mnemonics and Operands............... 8

1.4 Document Conventions 9
1.4.1 Definitions and Notation 9
1.4.2 Reserved Fields... 10
1.4.3 Description of Instruction Operation 11

1.5 Format of Tree-Instructions.............................. 12

1.6 Formats of Primitive Instructions 13
1.6.1 I0-Form .. 14
1.6.2 M0-Form .. 14
1.6.3 M1-Form .. 14
1.6.4 I1-Form .. 14
1.6.5 B2-Form... 14
1.6.6 D4-Form... 14
1.6.7 X4-Form... 14
1.6.8 D5-Form... 14
1.6.9 X6-Form... 14
1.6.10 D8-Form... 14
1.6.11 I8-Form .. 14
1.6.12 X8-Form... 14
1.6.13 B10-Form... 14
1.6.14 I10-Form .. 14
1.6.15 D10-Form... 15
1.6.16 X10-Form... 15

1.7 Instruction Fields ... 15

1.8 Classes of Instructions 17
1.8.1 Defined Instruction Class................................. 17
1.8.2 Illegal Instruction Class.................................... 17
1.8.3 Reserved Instruction Class.............................. 17

1.9 Invalid Instruction Forms.................................. 17

1.10 Optional Instructions.. 18

1.11 Exceptions ... 18

1.12 Delayed Exceptions ... 19

1.13 Storage Addressing ... 19
1.13.1 Storage Operands ... 19

1.13.2 Effective Address Calculation 20

Chapter 2. Registers in the ForestaPC
Architecture

2.1 General Purpose Registers 21

2.2 Floating-Point Registers................................... 21

2.3 Special Purpose Registers 21
2.3.1 Branch Registers ... 21
2.3.2 Count Register... 22
2.3.3 Condition Register ... 22
2.3.4 Fixed-Point Status Register 23
2.3.5 Floating-Point Status and Control Register...... 24
2.3.6 GPR Delayed Exceptions Register 29
2.3.7 FPR Delayed Exceptions Register................... 29
2.3.8 CR Delayed Exceptions Register..................... 30
2.3.9 Move Assist Register 30

Chapter 3. Branch Instructions

3.1 Fetching Tree-Instructions................................ 31

3.2 Branch Instructions Registers.......................... 32

3.3 Multiway Branch Facilities 32

3.4 Procedure calls .. 33

3.5 Branch Primitive Instructions 33
3.5.1 Skip Instruction .. 34
3.5.2 Branch Instructions .. 34
3.5.3 System Call Instruction 35

Chapter 4. Storage Access Instructions

4.1 Storage Access Registers 37

4.2 General Features ... 37
4.2.1 Effective Address ... 37
4.2.2 Floating-Point Storage Accesses..................... 37
4.2.3 Storage Access Exceptions 38
4.2.4 Speculative Load Instructions.......................... 38

4.3 Fixed-Point Load Instructions........................... 39

4.4 Fixed-Point Store Instructions 41

4.5 Floating-Point Load Instructions 42

4.6 Floating-Point Store Instructions...................... 43

4.7 Fixed-Point Load and Store with Byte Reversal
Instructions .. 44

4.8 Load Table of Contents Instructions................. 46

4.9 Load and Store String Instructions 47

 ii

4.10 Storage Synchronization Instructions 50

4.11 Conditional Store Extender Instructions 55

4.12 Store Extender Instructions 55

Chapter 5. Fixed-Point Instructions

5.1 Registers.. 59

5.2 General Features ... 59

5.3 Branch Register Instructions............................ 60

5.4 Condition Register Logical Instructions 61

5.5 Condition Register Field Instructions 64

5.6 Condition Register Instructions........................ 65

5.7 Extender Instructions 67

5.8 Fixed-Point Arithmetic Instructions................... 72

5.9 Fixed-Point Multiply and Divide Instructions 75

5.10 Fixed-Point Compare Instructions.................... 83

5.11 Fixed-Point Trap Instructions............................ 85

5.12 Fixed-Point Select Instructions......................... 88

5.13 Fixed-Point Logical Instructions 89

5.14 Fixed-Point Rotate and Shift Instructions......... 95
5.14.1 Fixed-Point Rotate Instructions 95
5.14.2 Fixed-Point Shift Instructions100

5.15 Fixed-Point Move Assist Instructions104

5.16 Fixed-Point Shift and Add Instructions107

5.17 Move To/From Special Purpose Registers
Instructions ..108

5.18 Move To/From FPSCR Instructions................110

5.19 Move Register Instructions114

5.20 Commit Instructions115

Chapter 6. Floating-Point Instructions

6.1 Floating-Point Overview117

6.2 Floating-Point Data ..119
6.2.1 Data Format ...119
6.2.2 Value Representation.....................................119
6.2.3 Sign of Result ..121
6.2.4 Normalization and Denormalization...............121
6.2.5 Data Handling and Precision122
6.2.6 Rounding ...122

6.3 Floating-Point Exceptions123
6.3.1 Invalid Operation Exception126
6.3.2 Zero Divide Exception....................................127

6.3.3 Overflow Exception ..128
6.3.4 Underflow Exception128
6.3.5 Inexact Exception...129

6.4 Floating-Point Execution Models....................129
6.4.1 Execution Model for IEEE Operations............130
6.4.2 Execution Model for Multiply-Add Type

Instructions...131

6.5 Speculative Execution of Floating-Point
Instructions...132

6.6 Floating-Point Instructions..............................133
6.6.1 Floating-Point Move Instructions133
6.6.2 Floating-Point Arithmetic Instructions.............134
6.6.3 Floating-Point Rounding and Conversion

Instructions140
6.6.4 Floating-Point Compare Instructions..............143
6.6.5 Floating-Point Select Instruction144

Appendix A. Book II and Book III Instruc-
tions

Appendix B. ForestaPC User Instruction Set
Sorted by Opcode

Appendix C. ForestaPC User Instruction Set
Sorted by Mnemonic

Introduction and Formats 1

Chapter 1. Introduction and Formats

This chapter gives an overview of the ForestaPC architec-
ture, discusses the compatibility among the ForestaPC
architecture and the PowerPC architecture, describes the
format of the ForestaPC instructions, the classes and for-
mat of primitive instructions, the exceptions, and the stor-
age addressing.

1.1 Processor Overview

1.1.1 Basic Description
The ForestaPC architecture defines the register set, the
instruction set, the storage model, and other facilities
described in this document. This architecture is tailored for
extensive exploitation of instruction-level parallelism (ILP)
in programs, that is, for executing many basic (primitive)
instructions at a time. ForestaPC is a scalable-VLIW archi-
tecture, which also allows implementations exploiting lim-
ited instruction-level parallelism (superscalar sequential
processors).

Implementations of the ForestaPC architecture contain
many functional units which are used simultaneously for
the execution of multiple primitive instructions.

The ForestaPC architecture allows the following types of
implementations:

• 64-bit implementations, in which all registers excepting
some Special Purpose Registers are 64 bits long, and
effective addresses are 64-bits long. All 64-bit imple-
mentations have two modes of computation: 64-bit
mode and 32-bit mode. This mode controls how the
effective address is interpreted and how status bits are
set. All instructions provided for 64-bit implementa-
tions are available in both modes.

• 32-bit implementations, in which all registers except
the Condition Register and the Floating-Point Regis-
ters are 32-bits long, and effective addresses are 32-
bits long.

The instructions defined in this document are provided in
64-bit and 32-bit implementations unless stated otherwise.
Instructions provided only for 64-bit implementations are
illegal in 32-bit implementations, and vice-versa.

The ForestaPC architecture has two distinct modes of
operation, each with a different user instruction set archi-
tecture:

• VLIW Native mode , in which programs in storage
have an explicit representation of ILP in the form of
tree-instructions, as defined in this document.

• PowerPC mode , in which programs comply with the
definitions in the PowerPC Architecture. In this mode,
a program in storage contains PowerPC primitive
instructions.

See Book I, PowerPC User Instruction Set Architecture, for
additional information regarding the user instruction set
architecture in PowerPC mode.

Unless explicitly stated otherwise, the description given in
this document refers to VLIW Native mode.

The base mode (VLIW Native mode or PowerPC mode) in
use for an instruction is determined by a bit in the Page
Table Entry for the page that contains the instruction. Thus,
a base mode change is accomplished by simply branching
to a page which contains instructions in the mode other
than the one in use at a given time. No synchronization
instructions are required. Normally, this branch should
occur at a function call boundary, so that programs in both

 2 Processor Overview

modes comply with standard call conventions. A base
mode change also occurs when sequential execution flows
to a page with instructions in a different mode, but this
would not usually be done.

64-bit Implementations

In 64-bit mode and 32-bit mode of a 64-bit implementation,
instructions that set a 64-bit register affect all 64-bits, and
the value placed in the register is independent of mode. In
both modes, effective address computations use all 64-bits
of the relevant registers, and produce a 64-bit result. How-
ever, in 32-bit mode, the high-order 32 bits of the computed
effective address are ignored when accessing data, and
are set to 0 when fetching instructions.

32-bit Implementations

For a 32-bit implementation, all reference to 64-bit mode in
this document should be disregarded. The semantics of
instructions are as shown in this document for 32-bit mode
in a 64-bit implementation, except that in a 32-bit imple-
mentation all registers other than the Condition Register
and the Floating-Point Registers are 32-bits long. Bit num-
bers for registers are shown in braces ({}) when they differ
from the corresponding numbers for a 64-bit implementa-
tion, as described in Section 1.4.1, “Definitions and Nota-
tion,” on page 9.

VLIW Native Mode

A program executed by a ForestaPC processor in VLIW
Native mode consists of a sequence of tree-instructions (or
simply trees), each of which corresponds to an unlimited
multiway-branch and an unlimited set of operations (primi-
tive instructions). The multiway-branch is associated with
the internal nodes of a tree, whereas the operations are
associated with the arcs (see Figure 1). The multiway-
branch is the result of a set of binary tests on conditions
codes; the left outgoing arc from a tree node corresponds
to the false outcome of the test, whereas the right outgoing
arc corresponds to the true outcome of the test.

Primitive instructions in a tree are subject to sequential
semantics for each path of the tree, as if each primitive
instruction were executed in the order in which it appears in
the tree-path (a tree-path starts from the root of the tree
and ends in a destination target). As a result, a primitive
instruction cannot use a processor resource which is the
target of a previous instruction in the same tree-path. This
requirement may not be checked nor enforced by the hard-
ware. If this requirement is not fulfilled within a tree-instruc-

tion, the results from primitive instructions having an
operand set by a previous instruction in the same tree-path
are undefined.

Architecture Note: Sequential semantics in each tree-
path is required to guarantee binary compatibility
among different implementations of the ForestaPC
architecture, with varying degrees of parallel execu-
tion capabilities, so that large trees can be decom-
posed into subtrees which are executed in different
cycles.

A tree-instruction is represented in main storage as a con-
tiguous sequence of primitive instructions, wherein each
primitive instruction is encoded in one memory word. The
sequence of primitive instructions is obtained from the
depth-first traversal of the tree-instruction (see Figure 2).

Figure 1: Tree instruction

L0: skip C0,t1

f1: skip C1,t2

f2: op3

 skip C3,t3

f3: op1

 op5

 b A

t3: op2

 b B

t2: op4

 skip C4,t4

f4: op5

 b C

t4: op1

 b D

t1: skip C2,t5

f5: op1

 op4

 b E

t5: op6

 op7

 b F

Figure 2: Sequential representation of tree-instruction
in Figure 1

L0:

C0

C1
C2

C3 C4

op3 op4

op1
op5

op2 op5 op1

op1
op4

op6
op7

f1 t1

f5 t5
f2 t2

f3 t3 f4 t4

A B C D E F

Test on
condition code

Operations

Destination
target

Introduction and Formats 3

A binary test on a condition code is performed with a skip
instruction, which corresponds to a flow-control operation
within the tree, and which indicates where the tree-path
corresponding to the true outcome of the test continues in
storage; as a result, a skip instruction is a branch with a
(short) positive displacement. All destination targets of the
tree are represented as unconditional branch instructions,
which specify the next tree to be executed when that path
of the current tree is selected. Consequently, the end of a
tree-instruction is delimited by an instruction that follows an
unconditional branch which is not reachable by any skip
instruction within the tree.

Note that any primitive instruction within a tree-instruction
can also correspond to the starting point of another tree.
As a result, branching into a tree-instruction leads to the
execution of a tree which is a subset of a larger tree.

A ForestaPC processor fetches tree-instructions from main
storage for execution. If the size of a tree-instruction
exceeds the resources in the processor (such as number
of branches, number of fixed-point or floating-point opera-
tions, and so on), then the tree-instruction is dynamically
decomposed (pruned) to fit the resources available in the
processor (see Figure 3). The resulting subtrees are exe-
cuted in successive cycles, unless the taken path is com-
pletely contained within the first subtree.

Programming Note: Better performance after pruning
might be obtained by allocating the most fre-
quently taken path to the left-most path in a tree-
instruction.

The pruning process transforms arbitrary-size tree-instruc-
tions into subtree-instructions which fit the resources avail-
able in a processor implementation. These subtrees have

the same general structure as the original trees (that is, a
multiway-branch tree with operations in the tree-paths), but
their size is limited. These subtrees correspond to Very
Long Instruction Words (VLIWs) which are directly exe-
cuted by the processor.

The primitive instructions are classified as follows:

• skip and branch instructions;

• storage access instructions;

• fixed-point instructions; and

• floating-point instructions.

Fixed-point instructions operate on byte, half-word, word,
and double-word operands. Floating-point instructions
operate on single-precision and double-precision floating-
point operands. Storage access instructions provide byte,
half-word, word, and double-word operand fetches and
stores between storage and a set of 64 General Purpose
Registers (GPRs). Storage access instructions also pro-
vide word and double-word operand fetches and stores
between storage and a set of 64 Floating-Point Registers
(FPRs).

Signed integers are represented in two’s complement form.

No primitive instructions other than store instructions mod-
ify storage. To use a storage operand in a computation and
then modify the same or another storage location, the con-
tents of storage must be loaded into a register, modified,
and then stored back to the target location.

Figure 4 is a logical representation of VLIW Native instruc-
tion processing. Tree instructions are fetched from storage
and fed into a Pruning Unit, which converts them into
VLIWs whose requirements fit the specific implementation.
The output from the Pruning Unit is placed in a VLIW Reg-
ister, which feeds a multiway Branch Processor and multi-
ple Fixed-Point and Floating-Point Processors. The Branch
Processor generates the storage address for the next tree-
instruction, whereas the Fixed-Point and Floating-Point
Processors perform the operations and interact with stor-
age to transfer data.

Figure 5 shows the registers available in VLIW Native
mode.

Figure 3: Pruning a tree-instruction

L0:

C0

C1
C2

C3

C4

op3

op4

op1
op5

op2

op5 op1

op1
op4

op6
op7

f1

t1
f5 t5

f2

t2f3 t3
f4 t4

A B
DC

E F

t1

t2

 4 Processor Overview

PowerPC Mode

Figure 6 is a logical representation of instruction process-
ing in PowerPC mode. PowerPC primitive instructions are
fetched from storage as blocks and fed into the Translation
Unit, which converts them into groups of VLIW Native prim-
itive instructions executable in parallel (based on depen-
dencies among the PowerPC instructions and the
resources in the processor). The resulting groups can be
regarded as single-path tree-instructions. The output from
the Translation Unit is placed in the VLIW Register, which
feeds the resources in the processor. The Branch Proces-
sor generates the storage address for the next PowerPC
instruction to be executed after the group, whereas the
Fixed-Point and Floating-Point Processors perform the
operations and interact with storage to transfer data.

Figure 7 shows the registers available in PowerPC mode
(the same ones as in the PowerPC architecture).

The description of the primitive instructions in PowerPC
mode is not given in this document; they are defined in
Book I, PowerPC User Instruction Set Architecture.

1.1.2 Basic Processor Organization

The basic components of a ForestaPC processor are as
follows (see Figure 8):

• a Pruning/Translation Unit

• a Very Long Instruction Word (VLIW) Register;

• a (multiported) General Purpose Register (GPR) file;

Figure 4: Logical processing model in Native mode

Figure 5: Native mode user register set

Pruning unit

Storage

Branch
proc.

Data to/
from storage

Fixed and
Floating-point
processors

VLIW Register

(tree-instructions, data)

Condition Register

0 63

Branch Registers

General Purpose
Registers

Floating-Point
Registers

CR

BR 0

GPR 00
GPR 01

FPR 00

FPR 63

GPR 63

GRDX

FPDX

General Purpose Delayed
Exceptions Register
Floating-Point Delayed
Exceptions Register

CRDX
Condition-Register Delayed
Exceptions Register

Move Assist RegisterMAR

FPR 01

0 15

XSR

BR 1
BR 2

Fixed-Point Status
Register

Floating-Point Status and
Control RegisterFPSCR

0 31

0 31

{31}

0 63

0 63

{31}0 63

Figure 6: Logical processing model in PowerPC mode

Translation unit

Storage

Branch
proc.

Data to/
from storage

Fixed and
Floating-point
processors

VLIW Register

(PowerPC instructions,data)

Introduction and Formats 5

• a (multiported) Floating-Point Register (FPR) file;

• a (multiported) set of Special Purpose Registers
(SPRs).

• a Multiway-Branch Processor;

• an implementation-dependent number of Fixed-Point
Processors;

• an implementation-dependent number of Floating-
Point Processors;

• a Storage Subsystem;

• an Input/Output Subsystem.

The Very Long Instruction Word register (see Figure 11) is
divided into slots or parcels of one word (32 bits each),
which are numbered from left to right (starting from 0). A
set of primitive instructions are allocated to the slots in the
VLIW register.

Fixed-Point and Floating-Point processors are associated
with slots within a VLIW, and are interconnected among
themselves in nearest-neighbor fashion; for example, there
is a path between the processor in slot k and the processor
in slot k-1, between the processor in slot k-1 and the pro-
cessor in slot k-2, and so on. However, there is no path
between the processor in slot 0 (the leftmost slot) and the
processor in the righmost slot. The existing paths are used
by some special Extender instructions which allow creating
multiparcel primitive instructions.

1.1.3 Semantics of a VLIW

Very Long Instruction Words specify a multiway-branch
(Skip and Branch instructions) and a number of Fixed-
Point, Storage Access, and Floating-Point instructions, all
executable concurrently. The semantics of this group of
instructions is as follows:

• Instructions that are on the taken path of the multiway-
branch (as determined by the outcome from the condi-
tions in the skip instructions) are executed to comple-
tion and their results placed in the corresponding
target registers or storage locations.

In contrast, instructions that are not on the taken path
of the multiway-branch are inhibited from committing
their results to storage or registers. Such instructions
do not produce any effect on the state of the proces-
sor, nor are they observed by other processors.

Figure 7: PowerPC mode user register set

Condition Register

0 63
Link Register

Count Register

General Purpose
Registers

Fixed-Point Exception

Floating-Point
Registers

Register

Floating-Point Status and
Control Register

CR

LR

CTR

GPR 00
GPR 01

XER

FPR 00

FPR 31

FPSCR

GPR 31

FPR 01

0 31

0 31

{31}

0 31

0 63

Figure 8: ForestaPC processor

Figure 9: Format of Very-Long Instruction Word
register

Pruning/Translation unit

Storage

Branch
proc.

Fixed and Floating-Point
processors

VLIW Register

GPR FPR SPR

I/O

0 1 2 3 n

 6 Processor Overview

• The following rules apply to instructions that are on the
taken path of the multiway-branch:
- All instructions are executed concurrently.

- The results from all instructions are subject to
sequential semantics. The results from an opera-
tion that uses a processor resource set by a previ-
ous operation in the path are undefined.

- If two or more instructions target the same mem-
ory byte, register, field or bit of certain special reg-
isters, the value placed in that target corresponds
to the instruction appearing later in the tree-
instruction (in sequential storage order).

1.1.4 Speculative Execution
Speculative execution is a technique usable by the com-
piler (programmer) for improving performance in VLIW
Native mode.

A speculative operation is one that has been placed above
a branch with respect to a sequential execution stream, on
the speculation that the result will be needed. If subse-
quent events indicate that the speculative instruction would
not have been executed, or the results of the speculative
instruction are not valid, any result produced by the instruc-
tion is not used. Typically, instructions are placed specula-
tively by the compiler/programmer when there are
resources that would otherwise be idle so that the opera-
tion is done without cost, or when it might lead to reducing
delays in the program.

Most fixed-point instructions (Arithmetic, Logic, Load
instructions including Floating-Point Loads) can be exe-
cuted speculatively. Store instructions should not be exe-
cuted speculatively, nor should other instructions that
produce unrecoverable effects.

An operand which has been loaded or computed specula-
tively, and any value derived from it, must be committed
before it can be used non-speculatively (usually, at the orig-
inal place in the sequential instruction stream). Special
instructions are available to commit speculative operands.

No error of any kind other than Machine Check is reported
due to the execution of a speculative instruction, until the
result from its execution (or any other result derived from it)
is committed. If there were errors, the instruction should be
re-executed at that point, as well as any other instructions
already executed that depend on the speculative opera-
tion.

Speculative execution is supported by the following
resources and procedures:

• Each GPR, FPR and CR Field has an associated
Delayed Exception bit, which is used to report (in
delayed manner) if an exception occurred during exe-
cution of a speculative instruction which targets the
corresponding register or field.

• Reading a register whose Delayed Exception bit is 1
either raises an exception or propagates the Delayed
Exception bit to the target register of the operation, as
follows:
- if the operation is a commit operation, then a

delayed exception is raised to the processor;
- if the register is used to generate the address of a

memory location accessed by a store operation,
then an invalid operation exception is raised to the
processor;

- otherwise, the Delayed Exception bit associated
with each target register of the operation is set to
1; the register contents become undefined.

• Placing in storage a register whose Delayed Exception
bit may be set to 1 requires storing the Delayed
Exception bit explicitly. Similarly, reading from storage
a value which may have associated a Delayed Excep-
tion bit set to 1 requires reading the Delayed exception
bit explicitly.

• Speculative load operations are identified as such
through a Speculative Flag bit SF=1 in the instruction.
No other speculative operations are explicitly identified
as such.

• Speculative load operations that succeed (i.e., that do
not raise an exception) are observed by other proces-
sors, as described in Book II, ForestaPC Virtual Envi-
ronment Architecture. Speculative load operations that
do not succeed set the Delayed Exception bit in the
target register, and are not observed by other proces-
sors.

• An operand which has been generated speculatively is
committed by executing a Commit instruction. The
architecture includes Commit instructions for General-
Purpose Registers, Floating-Point Registers, and Con-
dition Register Fields. These instructions copy a spec-
ulative register contents into another register (of the
same type), checking the Delayed Exception bit in the
process. If the Delayed Exception bit is not set, the
move register operation proceeds; otherwise, a
delayed exception is generated.

Introduction and Formats 7

• When a delayed exception is raised by a Commit
instruction, the exception handler activates recovery
code which re-executes the speculative instruction
which generated the exception as well as those
instructions that depend on it and which were exe-
cuted before the exception was raised. For these pur-
poses, the instructions executed between the
speculative instruction generating the exception and
the commit operation must not destroy the operands of
the instructions that are re-executed in the recovery
code.

• Speculation of other operations is managed by the
compiler (programmer), without explicit indication.

The Delayed Exception bits of General Purpose Registers,
Floating-Point Registers, and 4-bit Condition Register
Fields are kept in special purpose registers GRDX, FPDX,
and CRDX, respectively. GRDX contains the Delayed
Exception bits of General Purpose Registers 0 to 63, in left
to right order. FPDX contains the Delayed Exception bits of
Floating-Point Registers 0 to 63, also in left to right order.
CRDX contains the Delayed Exception bits of CR fields 0 to
15, also in left to right order.

1.1.5 Out-of-order Load Instructions

An out-of-order Load instruction is one that has been
placed above a Store instruction with respect to sequential
execution. Load instructions frequently start a sequence of
dependent operations that depend on the datum loaded, so
it is advantageous to initiate the loads as early as possible.
However, an out-of-order Load may conflict with a Store
operation over which it has been moved if the addresses of
the Load and Store cannot be disambiguated by the com-
piler (programmer).

A software-based coherence test allows reordering load
instructions relative to store instructions, in spite of the pos-
sibility of conflicts due to memory references which cannot
be disambiguated. Whenever a Load instruction is moved
earlier than a sequentially preceding ambiguous Store
instruction by the compiler(programmer), a coherence test
is inserted at the original position of the Load instruction in
the sequential instruction stream. The coherence test con-
sists of two instructions: a Load instruction from the same
memory location, followed by a Trap if not equal instruction
which compares the value just loaded with the value
loaded out-of-order. If the values are identical, then the
value loaded out-of-order and all other values derived from
it are correct, and execution can proceed normally. On the
other hand, if the value just loaded is different from the
value loaded out-of-order (which implies that the corre-

sponding memory location has been modified after been
read), then the value loaded out-of-order as well as all
other values derived from it are incorrect and must be
recomputed.

As in the case of speculative instructions that raise excep-
tions, when a trap is generated by the Trap if not equal
instruction that is part of the coherence test, the trap han-
dler activates recovery code which re-executes the out-of-
order load instruction as well as those instructions that
depend on it and which were executed before the trap was
generated. For these purposes, the instructions executed
between the out-of-order load instruction and the coher-
ence test must not destroy the operands of the instructions
that are re-executed in the recovery code.

1.2 Compatibility with the PowerPC
Architecture

In PowerPC mode, the ForestaPC architecture provides
binary compatibility with the PowerPC Architecture; the
User Instruction Set Architecture is the same.

In VLIW Native mode, the ForestaPC architecture does not
provide binary compatibility for PowerPC programs.
Instead, the ForestaPC architecture relies on object-code
translation into ForestaPC code; some primitive instruc-
tions in the architecture are intended to facilitate object-
code translation.

A summary of the incompatibilities among the PowerPC
Architecture and the ForestaPC Architecture in VLIW
Native mode is described in this section.

Many of the primitive instructions have the same function-
ality as PowerPC instructions, though they have different
instruction format and opcode encoding. In most of these
cases, the ForestaPC instruction name and mnemonics
are the same as those in PowerPC. Due to the differences
in architecture, some PowerPC instructions do not exist in
the ForestaPC architecture; their functionality is achieved
by several ForestaPC primitive instructions executed
sequentially or in parallel. In addition, some new instruc-
tions have been incorporated.

The register set is larger than the one available in the Pow-
erPC architecture; in particular, there are 64 General Pur-
pose Registers, 64 Floating-Point Registers and 16
Condition Register fields, in addition to several new Special
Purpose Registers. Some PowerPC Special Purpose Reg-
isters are not available, or are set differently.

 8 Instruction Mnemonics and Operands

Storage access instructions have a 11-bit signed displace-
ment field; this is in contrast to the PowerPC architecture,
wherein most storage access instructions have a 16-bit
signed displacement. Moreover, there is a single address
mode (register plus displacement); there are no indexed
mode nor update form of storage access instructions, as in
the PowerPC architecture.

Primitive instructions do not have the equivalent of the Rc
bit available in the PowerPC architecture to set CR0 or
CR1. In contrast, primitive instructions that set the Condi-
tion Register can directly set any of the sixteen Condition
Register fields. Fixed-point instructions that do not have a
CR field can be augmented with a special Extender instruc-
tion specifying a CR field.

XSR is the register corresponding to XER in the PowerPC
architecture. However, XSR is set only by special Move to
Special-Purpose Register instructions. All other fixed-point
instructions do not set XSR directly. Instead, all other fixed-
point instructions generate a value called Fixed-Point Sta-
tus Image (XSR-Image). Fixed-point instructions can be
augmented with a special Extender instruction specifying a
General Purpose Register; the Extender is used to place
the XSR-Image generated by the instruction being aug-
mented into the specified General Purpose Register. This
approach is used to enhance instruction-level parallelism
by allowing the simultaneous execution of multiple instruc-
tions that set fields of XSR (CA, OV).

FPSCR is set only by special Move to FPSCR instructions.
All other floating-point instructions do not set FPSCR
directly. Instead, all other floating-point instructions gener-
ate a value called Floating-Point Status Image (FSR-
Image). Floating-point instructions can be augmented with
a special Extender instruction specifying a General Pur-
pose Register; the Extender is used to place the FSR-
Image generated by the instruction being augmented into
the specified General Purpose Register. This approach is
used to enhance instruction-level parallelism by allowing
the simultaneous execution of multiple instructions that set
fields of FPSCR.

Floating-point instructions can be augmented with a spe-
cial Extender instruction which specifies the immediate
generation of exceptions arising from the execution of the
floating-point operations.

String, load/store multiple, and other complex PowerPC
primitives (such as rlwimi and rldimi) have been excluded
from the architecture; their functionality is implemented by
a series of simpler primitive instructions.

1.3 Instruction Mnemonics and
Operands

In PowerPC mode, each instruction has the same repre-
sentation and features defined in Book I, PowerPC User
Instruction Set Architecture. See that document for addi-
tional details; further information is not provided here.

For VLIW Native mode, the description of each primitive
instruction includes the mnemonics and a formatted list of
operands. Some examples are

• stw RS,D(RA)

• addi RT,RA,SI

• ldbz? RT,D(RA)

In most cases, the mnemonics are the same ones as in the
PowerPC architecture. A load instruction mnemonic ending
with the symbol “?” indicates that the instruction is specula-
tive.

The description of every tree-instruction starts with a label,
and includes the specification of skips, branches, and other
primitive instructions. Skip and branch instructions have an
associated label. An example of tree-instruction is depicted
in Figure 10.

L0: skip cr0.ne,t1

f1: skip cr1.gt,t2

f2: add r10,cr8,r14,r56

 skip cr3.eq,t3

f3: subf r12,cr9,r14,r44

 andi r22,r16,0x34

 b A

t3: or r16,cr10,r16,r17

 b B

t2: addi r21,r16,0x1234

 skip cr4.lt,t4

f4: andi r22,r16,0x34

 b C

t4: subf r12,cr9,r14,r44

 b D

t1: skip cr2.eq,t5

f5: subf r12,cr9,r14,r44

 addi r21,r16,0x1234

 b E

t5: lbz r23,64(r2)

 stw r24,32(r2)

 b F

Figure 10: Example of a tree-instruction

Introduction and Formats 9

ForestaPC-compliant assemblers will support the mne-
monics and operand lists exactly as shown, and will also
provide certain extended mnemonics. They may also pro-
vide high-level representations for multiway-branches,
such as nested if-then-else and goto constructs.

1.4 Document Conventions

1.4.1 Definitions and Notation
The following definitions and notation are used throughout
the ForestaPC Architecture documents.

• A VLIW Native program is a sequence of related tree-
instructions.

• A PowerPC program is a sequence of related Pow-
erPC instructions.

• A tree-instruction is a variable-length sequence of
primitive instructions; each primitive instruction is one
word long (32 bits per word).

• A tree-path is a path within a tree-instruction starting
at the first operation in the tree and ending in an
unconditional branch instruction.

• A tree-branch is a subtree starting at the target of a
skip instruction.

• The binary tests in a tree-instruction comprise a multi-
way-branch which, at run time, selects one out of sev-
eral tree-paths; the selected path is also called the
taken path. Only those operations on the selected
tree-path are actually executed.

• VLIW refers to a Very Long Instruction Word whose
length is implementation-dependent. A VLIW corre-
sponds to a tree-instruction not exceeding the
resources of the implementation.

• Primitive instruction (or just instruction) refers to a 32-
bit native or primitive instruction word.

• Slot or parcel refers to a 32-bit word within a VLIW,
which contains a primitive instruction. Slots are num-
bered from left to right, starting from slot 0.

• Quadwords are 128 bits, doublewords are 64 bits,
words are 32 bits, halfwords are 16 bits, and bytes are
8 bits.

• All numbers are decimal unless specified in some spe-
cial way.
- 0bnnnn means a number expressed in binary for-

mat.
- 0xnnnn means a number expressed in hexadeci-

mal format.

- Underscores may be used between digits.

• The symbol || is used to describe the concatenation of
two values. For example, 010 || 111 is the same as
010111.

• RT, RA, RB, ... refer to General Purpose Registers.

• FRT, FRA, FRB, ... refer to Floating-Point Registers.

• BRT, BRS refer to Branch Registers.

• (x) means the contents of register x, wherein x is the
name of an instruction field. For example, (RA) means
the contents of register RA, and (FRA) means the con-
tents of register FRA, wherein RA and FRA are
instruction fields. Names such as BR0 and XSR
denote registers, not fields, so parentheses are not
used with them. In addition, when register x is
assigned a value, parentheses are omitted.

• (RA|0) means the contents of register RA if the RA
field has the value 1-63, or the value 0 if the RA field is
0.

• Bits in registers, instructions, storage and fields are
specified as follows.
- Bits are numbered left to right, starting with bit 0.

- Ranges of bits are specified by two numbers sep-
arated by a colon (:). For example, the range 3:8
consists of bits 3 through 8.

- For registers that are 64-bits long in 64-bit imple-
mentations and 32-bits long in 32-bit implementa-
tions, bit numbers and ranges are specified with
the values for 32-bit implementations enclosed in
braces ({}). {} means a bit that does not exist in
32-bit implementations. {:} means a range that
does not exist in 32-bit implementations.

• Xp means bit p of register/field X.
Xp{r} means bit p of register/field X in a 64-bit imple-
mentation, and bit r of register/field X in a 32-bit imple-
mentation.

• Xp:q means bits p through q of register/field X.
Xp:q{r:s} means bits p through q of register/field X in a
64-bit implementation, and bits r through s of register/
field X in a 32-bit implementation.

• Xp q ... means bits p, q, ... of register/field X.
Xp q ... {r s ...} means bits p, q, ... of register/field X in a
64-bit implementation, and bits r, s, ... of register/field
X in a 32-bit implementation.

• ¬(RA) means the one’s complement of the contents of
register RA.

• 2n means 2 raised to the nth power.

 10 Document Conventions

• nx means the replication of x, n times (i.e., x concate-

nated to itself n-1 times). n0 and n1 are particular
cases:

- n0 means a field of n bits with each bit equal to 0.

Thus, 50 is equivalent to 0b00000.

- n1 means a field of n bits with each bit equal to 1.

Thus, 51 is equivalent to 0b11111.

• Positive means greater than zero.

• Negative means less than zero.

• A speculative instruction is an instruction that has
been moved above a sequentially preceding condi-
tional branch.

• An out-of-order Load instruction is an instruction that
has been moved above a sequentially preceding Store
instruction.

• A Load instruction mnemonics followed by the symbol
“?” indicates a speculative load instruction.

• A system library program is a component of the sys-
tem software that can be invoked by an application
program using a Branch instruction.

• A system service program is a component of the sys-
tem software that can be invoked by an application
program using a System Call instruction.

• The system trap handler is a component of the system
software that receives control when the conditions
specified in a Trap instruction are satisfied.

• The system error handler is a component of the sys-
tem software that receives control when an error
occurs. The system error handler includes a compo-
nent for each of the various kinds of errors. These
error-specific components are referred to as the sys-
tem alignment error handler, the system data storage
error handler, etc.

• Each bit and field in instructions, in status and control
registers (XSR and FPSCR), and in Special Purpose
Registers, is either defined or reserved.

• /, //, ///, ... denotes a reserved field in an instruction or
in an architected storage table.

• Latency refers to the interval from the time an instruc-
tion begins execution until it produces a result that is
available for use by a subsequent instruction.

• Unavailable refers to a resource that cannot be used
by the program. Data or instruction storage is unavail-
able if an instruction is denied access to it. See Book
III, ForestaPC Operating Environment Architecture.

• The results of executing a given instruction are said to
be boundedly undefined if they could have been
achieved by executing an arbitrary sequence of
instructions, starting in the state the machine was in
before executing the given instruction. Boundedly
undefined results for a given instruction may vary
among implementations, and among different execu-
tions on the same implementation, and are not further
defined in this document.

• The sequential execution model in VLIW Native mode
is the model of program execution described in
Section 3.1, “Fetching Tree-Instructions,” on page 31.

1.4.2 Reserved Fields
All reserved fields in primitive instructions should be zero. If
they are not, the instruction form is invalid (see Section 1.9,
“Invalid Instruction Forms,” on page 17).

The handling of reserved bits in status and control regis-
ters, and in Special Purpose Registers, is implementation-
dependent. For each such reserved bit, an implementation
shall either:

• ignore the source value for the bit on write, and return
zero for it on read; or

• set the bit from the source on write, and return the
value last set for it on read.

Programming Note: It is the responsibility of software
to preserve bits that are now reserved in status
and control registers and in Special Purpose Reg-
isters, as they may be assigned a meaning in
some future version of the architecture. In order to
accomplish this preservation in implementation
independent manner, software should do the fol-
lowing:

- Initialize each such register supplying zeroes
for all reserved bits.

- Alter (defined) bit(s) in the register by reading
the register, altering only the desired bit(s),
and then writing the new value back to the
register.

XSR and FPSCR are partial exceptions to this
recommendation. Software can alter the status
bits in these registers, preserving the reserved
bits, by executing instructions that have the side
effect of altering the status bits. Similarly, software
can alter any defined bit in the FPSCR by execut-
ing a Floating-Point Status and Control Register

Introduction and Formats 11

instruction. Using such instructions is likely to
yield better performance than using the method
described in the second item above.

When a currently reserved bit is subsequently
assigned a meaning, every effort will be made to
have the value to which the system initializes the
bit correspond to the “old behavior”.

1.4.3 Description of Instruction
Operation

The operation of all primitive instructions is described tex-
tually. In addition, the operation of most primitive instruc-
tions is described by a semiformal language at the register
transfer level (RTL). This RTL uses the notation summa-
rized below, in addition to the definitions and notation
described in Section 1.4.1, “Definitions and Notation,” on
page 9. RTL notation not summarized here should be self-
explanatory.

The RTL descriptions cover the normal execution of the
instructions, except that standard setting of the Condition
Register is not shown. (Non-standard setting of this regis-
ters, such as the setting of Condition Register Field 8 by
the stwc instruction, is shown.) Fields of the XSR-Image or
FSR-Image generated by an instruction are indicated. The
RTL descriptions do not cover cases in which the system
error handler is invoked, or for which the results are bound-
edly undefined.

The RTL descriptions specify the architectural transforma-
tion performed by the execution of an instruction. They do
not imply any particular implementation.

The following elements are used in the RTL descriptions:

Notation Meaning

← Assignment

←iea Assignment of an instruction effective
address. In 32-bit mode of a 64-bit
implementation, the high-order 32-
bits of the 64-bit target are set to 0.

¬ NOT logical operator

+ Two’s complement addition

- Two’s complement subtraction, unary
minus

× Multiplication

÷ Division (yielding quotient)

√ Square root

=, ≠ Equals and Not Equals relations

<, ≤, >, ≥ Signed comparison relations

<u, >u Unsigned comparison relations

? When used as a relation, unordered
comparison relation; when used as a
value, an implementation-dependent
0/1 (false/true) 1-bit value with imple-
mentation-dependent variability;
when used in an instruction mne-
monic, speculative operation

&, | AND, OR logical operators

⊕, ≡ Exclusive-OR, Equivalence logical
operators ((a≡b) = (a⊕¬b))

ABS(x) Absolute value of x

BR0, BR1, BR2 Branch Registers

CEIL(x) Least integer ≥ x

CRB Condition Register viewed as 64
independently-addressable bits

DOUBLE(x) Result of converting x from floating-
point single format to floating-point
double format, using the model given
in page 42

EXTS(s) Result of extending x on the left with
sign bits

FLOOR(x) Greatest integer ≤ x

FPR(x) Floating-Point Register x

GPR(x) General Purpose Register x

MASK(x,y) Mask having 1’s in positions x
through y (wrapping if x > y) and 0’s
elsewhere

MEM(x,y) Contents of y bytes of memory start-
ing at address x. In 32-bit mode of a
64-bit implementation, the high-
order 32-bits of the 64-bit value are
ignored.

ROTL64(x,y) Result of rotating the 64-bit value x
left by y positions.

ROTL32(x,y) Result of rotating the 64-bit value x||x
left by y positions, where x is 32 bits
long

Notation Meaning

 12 Format of Tree-Instructions

1.4.3.1 Precedence Rules
The precedence rules for RTL operators are summarized in
Table 1. Operators at higher rows in the table are applied
before those at lower rows. Operators at the same row in
the table associate from left to right, from right to left, or not
at all, as indicated in each case. For example, - associates
from left to right, so a-b-c=(a-b)-c. Parentheses are used to
override the evaluation order implied by the table, or to
increase clarity; parenthesized expressions are evaluated
before serving as operands.

1.5 Format of Tree-Instructions

All tree-instructions are aligned on a word (4-byte) bound-
ary. Whenever tree-instruction addresses are presented to
the processor, the two least-significant bits are ignored.
Similarly, whenever the processor produces a tree-instruc-
tion address, the two least-significant bits are zero.

The format of a tree-instruction consists of a sequence of
contiguous words (four bytes), as illustrated in Figure 11.

SINGLE(X) Result of converting x from floating-
point double format to floating-point
single format, using the model shown
on page 42

SPREG(x) Special Purpose Register x

TRAP Invoke the system trap handler

characterization Reference to the setting of status
bits, in a standard way that is
explained in the text

undefined An undefined value. The value may
vary among implementations, and
among different executions on the
same implementation

CIA Current Instruction Address, which is
the 64{32}-bit address of the primitive
instruction being described by a
sequence of RTL. In 32-bit mode of a
64-bit implementation, the high-
order 32-bits of CIA are always set to
0. Does not correspond to any archi-
tected register.

NIA Next Instruction Address, which is
the 64{32}-bit address of the next
primitive instruction to be executed.
In 32-bit mode of a 64-bit implemen-
tation, the high-order 32-bits of NIA
are always set to 0. Does not corre-
spond to any architected register.

XSR-Image XSR-Image generated by an instruc-
tion. The bit-definitions of this image
are the same as those in the XSR
register, excepting the Summary
Overflow bit which is not defined.
Does not correspond to any archi-
tected register.

FSR-Image FSR-Image generated by a floating-
point instruction. The bit-definitions
of this image are the same as the
status bits in the FPSCR register,
excepting the Summary bits which
are not defined. Does not correspond
to any architected register.

if ... then ... else Conditional execution, indenting
shows range, else is optional

do Do loop, indenting shows range. “To”
and/or “by” clauses specify incre-
menting an iteration variable, and a
“while” clause gives termination con-
ditions

leave Leave innermost do loop, or do loop
described in leave statement

Notation Meaning

TABLE 1. Operator Precedence

Operators Associativity

subscript, function evaluation left to right

pre-superscript (replication), post-
superscript (exponentiation)

right to left

unary -, ¬ right to left

×, ÷ left to right

+, - left to right

|| left to right

=, ≠, <, ≤, >, ≥, <u, >u left to right

&, ⊕, ≡ left to right

| left to right

: (range) none

← (assignment) none

Figure 11: Format of a tree-instruction

k k+16 k+32 k+48

Introduction and Formats 13

1.6 Formats of Primitive Instructions

All primitive instructions are one word (four bytes) long and
word aligned.

Bits 0:3 of a primitive instruction always specify the primi-
tive opcode (OP). Most primitive instructions also have an
extended opcode (XO). The remaining bits of the primitive
instruction contain one or more fields, as shown below for
the different instruction formats. In all cases, the value of
field OP determines the length of field XO.

Editor’s Note: The assignment of opcodes to instruc-
tions (enumeration of the instructions assigned to
each primary and extended opcode) is tentative.
The assignment might be revised in a future ver-
sion of the architecture.

The format diagrams given below show horizontally all
valid combinations of instruction fields. The diagrams
include instruction fields that are used only by instructions
defined in Book II, ForestaPC Virtual Environment Archi-
tecture, or Book III, ForestaPC Operating Environment
Architecture. See those Books for the definition of such
fields. The name of a format ends with a number which
specifies the length of the extended opcode field.

In some cases an instruction field is reserved, or must con-
tain a particular value. If a reserved field does not have all
bits set to 0, or if a field that must contain a particular value
does not contain that value, the instruction form is invalid
and the results are as described in Section 1.9, “Invalid
Instruction Forms,” on page 17.

Split Field Notation.

In some cases an instruction field occupies more than one
contiguous sequence of bits, or occupies one contiguous
sequence of bits which are used in permuted order. Such a
field is called a split field. In the format diagrams given
below and in the individual instruction layouts, the name of
a split field is shown in lowercase characters, once for each
of the contiguous sequences, followed by an identification
digit. In the RTL description of an instruction having a split
field, the name of the split field in uppercase characters
represents the concatenation of the sequences from left to
right in increasing order of identification digit. In all other
cases, and in certain places where individual bits of a split
field are identified, the name of the field in lowercase char-
acters represents the concatenation of the sequences in

some order, which need not be left to right, as described for
each relevant instruction

 14 Formats of Primitive Instructions

1.6.1 I0-Form

1.6.2 M0-Form

1.6.3 M1-Form

1.6.4 I1-Form

1.6.5 B2-Form

1.6.6 D4-Form

1.6.7 X4-Form

1.6.8 D5-Form

1.6.9 X6-Form

1.6.10 D8-Form

1.6.11 I8-Form

1.6.12 X8-Form

1.6.13 B10-Form

1.6.14 I10-Form

0 4 10 16

OP RT RA SI
OP RT RA UI

0 4 10 16 22 27

OP RT RA RB MB ME

0 4 10 16 17 22 27 31

OP RT RA me1 SH MB me0 XO

0 4 8 9 10 16 31

OP CRT si1 L RA si0 XO

OP CRT ui1 L RA ui0 XO

0 4 6 30

OP ADDR XO
OP BRT ADDR XO

0 4 10 16 27 28

OP RT RA D SF XO
OP RT dl1 dl0 SF XO

OP FRT RA D SF XO

0 4 10 16 22 28

OP FRT FRA FRB FRC XO
OP RT RA RB MB XO
OP RT RA RB ME XO
OP RT RA SH MB XO
OP RT RA SH ME XO
OP RT IA IB CB XO
OP RT IA RB CB XO
OP RT RA IB CB XO
OP RT RA RB CB XO

0 4 10 16 22 27

OP d0 RA RB d1 XO

OP d0 RA FRB d1 XO

OP RT RA D XO

0 4 10 16 22 26

OP RT RA RB CRT XO
OP RT RA SH CRT XO
OP RT RA RB / SH XO

0 4 7 10 16 24

OP d1 SCL RA d0 XO

OP d1 // RA d0 XO

0 4 8 16 24

OP CRT si1 si0 XO

0 4 10 16 20 24

OP RT RA CRT CRS XO

0 4 8 11 22

OP CRS BC ADDR XO
OP ADDR XO

0 4 6 16 22

OP // si1 si0 XO

Introduction and Formats 15

1.6.15 D10-Form

1.6.16 X10-Form

1.7 Instruction Fields

ADDR(4:29 or 6:29)
Field used to specify the target address of a Branch
instruction.

ADDR(4:21)
Field used to specify the block address of an Instruc-
tion Cache instruction.

ADDR(11:21)
Field used to specify the target address of a Skip
instruction.

BA(10:15) and BB(16:21)
Field used to specify a bit in CR to be used as a
source.

BC(8:10)
Field used to specify the condition tested in a Skip
instruction.

BFI(12:15)
Field used to specify a 4-bit constant in a Move to
FPSCR instruction.

BFS(16:18) and BFT(16,18)
Fields used to specify, respectively, a source and desti-
nation field in FPSCR.

BRS(10:11)
Field used to specify a branch register to be used as
the source of an operation.

BRT(4:5)
Field used to specify a branch register to be used as
the target of an operation.

BS(24:26)
Field used to specify an 8-bit (byte) portion of a regis-
ter to be used as the target of byte immediate opera-
tions.

BT(4:9)
Field used to specify a bit in CR to be used as the tar-
get of the result of an instruction.

CB(22:27)
Field used to specify a bit in CR to be used as a
source in the Select instructions.

CRI(16:19)
Field used to specify a 4-bit constant in a Move to CR
instruction.

CRS(4:7, 16:19 or 20:23)
Field used to specify a field in CR used as a source
operand.

CRT(4:7, 16:19, or 22:25)
Field used to specify a field in CR used as a target.

0 4 10 16 22

OP d1 RA d0 / XO

0 4 6 8 10 12 14 16 18 20 22

OP BT BA BB XO
OP RT RA RB XO
OP FRT FRA FRB XO
OP CRT // FRA FRB XO
OP CRT / L RA RB XO
OP RT RA CRT // XO
OP TO / RA RB XO
OP FRT FRA /// XO
OP FRT RA /// XO
OP RT FRA /// XO
OP RT RA // XM XO
OP RT /// FM XO
OP RT RA CRT XM XO
OP RT /// // XM XO
OP // spt1 RA spt0 XO

OP RT // sps1 sps0 XO

OP /// /// /// XO
OP CRT // RA FM XO
OP CRT // // BFI BFT // XO
OP RT /// CRT // XO
OP / FBT /// CRT // XO
OP RT RA /// XO
OP TO / RA /// XO
OP RT /// CRS // XO
OP CRT // RA /// XO
OP CRT // /// CRS // XO
OP CRT // /// CRI // XO
OP CRT // /// BFS // XO
OP RT /// L /// XO
OP /// /// L RB XO
OP RT /// /// XO
OP /// RA /// XO
OP BRT // BRS // /// XO
OP CRT // /// /// XO

 16 Instruction Fields

D(16:20||4:9, 16:23||4:6, 4:9||22:26 or 16:26)
Immediate field specifying an 11-bit unsigned integer
which is used as the displacement for storage access
instructions.

DL(16:26||10:15)
Immediate field specifying an 17-bit unsigned integer
which is used as the displacement for Load Table of
Contents instructions.

FBT(5:9)
Field used to specify a bit in FPSCR to be used as the
target of the result of an instruction.

FM(16:21)
Field mask used to specify fields of FPSCR.

FRA(10:15), FRB(16:21) and FRC(22:27)
Fields used to specify a FPR as a source of an opera-
tion.

FRT(4:9)
Field used to specify a FPR as a target of an opera-
tion.

IA(10:15) and IB(16:21)
6-bit signed immediate value used in the Select
instructions.

L(9 or 15)
Field used to specify whether certain instructions use
64-bit or 32-bit numbers, and to specify whether cer-
tain instructions use the most- or least-significant 32-
bits of a register.

MB(22:26, or 22:27)
Field used to specify the first 1-bit of a 64-bit mask.

ME(27:31, 27:30||16, or 22:27)
Field used to specify the last 1-bit of a 64-bit mask.

OP(0:3)
Primary opcode field

RA(10:15) and RB(16:21)
Fields used to specify a GPR as a source of an opera-
tion.

RT(4:9)
Field used to specify a GPR as a target of an opera-
tion.

SBI(16:23)
Immediate field used to specify an 8-bit signed integer.

SCL(7:9)
Field used to specify the level of storage for Touch
instructions.

SF(27)
Single-bit field used to specify a speculative Load
operation.

SH(16:21, 17:21, or 23:25)
Field used to specify a shift amount.

SI(16:31, 16:30||8, 16:23||8:15, or 16:21||6:15)
Immediate field used to specify a 16-bit signed integer.

SPS(16:21||12:15)
Field used to specify a Special Purpose Register as a
source of an operation.

SPT(16:21||6:9)
Field used to specify a Special Purpose Register as a
target of an operation.

TO(4:8)
Field used to specify conditions on which to trap.

UBI(16:23)
Immediate field used to specify an 8-bit unsigned inte-
ger.

UI(16:31 or 16:30||8)
Immediate field used to specify a 16-bit unsigned inte-
ger.

XO(22:31, 24:31, 26:31, 27:31, 28:31, 30:31 or 31)
Extended opcode field.

XM(20:21)
Field mask used to specify fields of XSR.

Introduction and Formats 17

1.8 Classes of Instructions

Any primitive instruction falls into exactly one of the follow-
ing three classes:

• Defined

• Reserved

• Illegal

The class is determined by examining the opcode and the
extended opcode, if any. If the opcode, or combination of
opcode and extended opcode, is not that of a defined
instruction nor of a reserved instruction, the instruction is
illegal.

Some instructions are defined only for 64-bit implementa-
tions and a few are defined only for 32-bit implementations
(see Section 1.8.2, “Illegal Instruction Class,” on page 17).
With the exception of these, a given instruction is in the
same class for all implementations of the ForestaPC Archi-
tecture. In future versions of this architecture, instructions
that are now illegal may become defined (by being added
to the architecture) or reserved. Similarly, instructions that
are now reserved may become defined.

1.8.1 Defined Instruction Class
This class of instructions contains all the instructions
defined in the ForestaPC User Instruction Set Architecture,
ForestaPC Virtual Environment Architecture, and Fore-
staPC Operating Environment Architecture.

Defined instructions are guaranteed to be supported in all
implementations, except as stated in the instruction
descriptions. (The exceptions are instructions that are sup-
ported only in 64-bit implementations or only in 32-bit
implementations.)

A defined instruction can have invalid forms, as described
in Section 1.9, “Invalid Instruction Forms,” on page 17.

1.8.2 Illegal Instruction Class
For 64-bit implementations, this class includes all instruc-
tions that are defined only for 32-bit implementations. For
32-bit implementations, it includes all instructions that are
defined only for 64-bit implementations.

Excluding instructions that are defined for one type of
implementation but not the other, illegal instructions are
available for future extensions of the ForestaPC architec-
ture; that is, some future version of the ForestaPC architec-

ture may define any of these instructions to perform new
functions.

Any attempt to execute an illegal instruction will cause the
system illegal instruction error handler to be invoked and
will have no other effect.

An instruction consisting entirely of binary 0's is guaran-
teed always to be an illegal instruction. This increases the
probability that an attempt to execute data or non-initialized
storage will result in the invocation of the system illegal
instruction error handler.

1.8.3 Reserved Instruction Class

Reserved instructions are allocated to specific purposes
that are outside the scope of the ForestaPC architecture.

Any attempt to execute a reserved instruction will

• perform the actions described in Book IV, ForestaPC
Implementation Features for the implementation if the
instruction is implemented; or

• cause the system illegal instruction error handler to be
invoked if the instruction is not implemented.

1.9 Invalid Instruction Forms

Some of the defined instructions have invalid forms. An
instruction form is invalid if one or more fields of the instruc-
tion, excluding the opcode field(s), are coded incorrectly in
a manner that can be deduced by just examining its
instruction encoding.

Any attempt to execute an invalid form of an instruction will
either cause the system illegal instruction error handler to
be invoked, or will yield boundedly undefined results.
Exceptions to this rule are stated in the instruction descrip-
tions.

Some invalid forms can be deduced from the primitive
instruction layout. In particular:

• Field shown as / but coded as non-zero.

These invalid forms are not discussed further.

Instructions having invalid forms that cannot be so deduced
are listed below. These kinds of invalid forms are identified
in the instruction descriptions.

• Move To/From Special Purpose Register instructions

 18 Optional Instructions

• Extender instructions which are placed in the right-
adjacent slot to an instruction that cannot be extended.

Assembler Note: To the extent possible, the Assem-
bler should report uses of invalid instruction forms
as errors.

Engineering Note: Causing the system illegal instruc-
tion error handler to be invoked if attempt is made
to execute an invalid form of an instruction facili-
tates the debugging of software

1.10 Optional Instructions

Some of the defined instructions are optional. The optional
instructions are defined in the section entitled “Look-aside
Buffer Management Instructions (Optional)” and the appen-
dices entitled “Optional Facilities and Instructions” in Book
II and Book III.

Any attempt to execute an optional instruction that is not
provided by the implementation will cause the system ille-
gal instruction error handler to be invoked. Exceptions to
this rule are stated in the instruction descriptions.

1.11 Exceptions

There are two kinds of exception: those caused directly by
the execution of an instruction, and those caused by an
asynchronous event. In either case, the exception may
cause one of several components of the system software to
be invoked.

The exceptions that can be caused directly by the execu-
tion of an instruction include the following:

• an attempt to execute an illegal instruction, or an
attempt by an application program to execute a privi-
leged instruction (see Book III, ForestaPC Operating
Environment Architecture) (system illegal instruction
error handler or system privileged instruction error
handler);

• the execution of a defined instruction using an invalid
form (system illegal instruction error handler or system
privileged instruction error handler);

• the execution of an optional instruction that is not pro-
vided by the implementation (system illegal instruction
error handler);

• an attempt to access a storage location that is unavail-
able (system error handler);

• an attempt to access storage with an effective address
alignment that is invalid for the instruction (system
alignment error handler);

• an attempt to access storage with an effective address
computed using a register whose Delayed Exception
bit is set to 1 (system illegal instruction error handler);

• the execution of a System Call instruction (system ser-
vice program);

• the execution of a Trap instruction that traps (system
trap handler);

• the execution of a floating-point instruction when float-
ing-point instructions are unavailable (system floating-
point unavailable error handler);

• the execution of a floating-point instruction that
requires system software assistance (system floating-
point assist error handler; the conditions under which
such software assistance is required are implementa-
tion-dependent);

• the execution of a commit instruction using a register
whose delayed exception bit is set to 1 (system
delayed exception handler);

The exceptions that can be caused by an asynchronous
event are described in Book III, ForestaPC Operating Envi-
ronment Architecture.

The invocation of the system error handler is precise,
except when one of the imprecise modes for invoking the
system floating-point enabled exception error handler is in
effect, in which case the invocation of the system floating-
point enabled exception error handler may be imprecise.
When the invocation is precise, all VLIWs prior to the invo-
cation of the system error handler have completed, all
operations in the taken path of the tree prior to the one
invoking the handler have completed, the operation invok-
ing the handler and all operations that follow it in the taken
path have not been executed, and no VLIWs subsequent
to the invocation have been executed. When the system
error handler is invoked imprecisely, the excepting VLIW
does not appear to complete before the next VLIW starts
(because one of the effects of the excepting VLIW, namely
the invocation of the system error handler, has not yet
occurred).

Additional information about exception handling can be
found in Book III, ForestaPC Operating Environment Archi-
tecture.

Introduction and Formats 19

1.12 Delayed Exceptions

If a speculative operation causes an exception, the excep-
tion must not be raised until the result of that operation, or
any value derived from it, is used in a commit instruction.

The architecture defines the following mechanisms for han-
dling exceptions arising from speculative instructions:

• Load instructions which may produce an exception
while executed speculatively have a special bit to indi-
cate it, called the Speculative Flag.

• When the Speculative Flag is disabled (SF=0), the
corresponding Load instruction is non-speculative;
consequently, an exception occurring during execution
should be raised to the processor and handled nor-
mally.

• When the Speculative Flag is enabled (SF=1), the cor-
responding Load instruction is a speculative operation.
If the operation incurs an exception, then the Delayed
Exception bit associated with the target register is set
to 1, but the exception is not raised to the processor.

Reading a register whose Delayed Exception bit is 1 either
raises an exception or propagates the Delayed Exception
bit to the target register of the operation, as follows:

• if the operation is a commit operation, then a delayed
exception is raised to the processor;

• if the register is used to generate the address of a
memory location accessed by a store operation, then
an invalid operation exception is raised to the proces-
sor;

• otherwise, the Delayed Exception bit associated with
each destination register of the operation is set to 1;
the register contents become undefined.

Placing in storage a register whose Delayed Exception bit
may be set to 1 requires storing the Delayed Exception bit
explicitly. Similarly, reading from storage a value which may
have associated a Delayed Exception bit set to 1 requires
reading the Delayed exception bit explicitly.

1.13 Storage Addressing

A program references storage using the effective address
computed by the processor when it executes a Storage
Access instruction (or certain other instructions described
in Book II, ForestaPC Virtual Environment Architecture,
and Book III, ForestaPC Operating Environment Architec-

ture) or when it fetches the next instruction (tree-instruction
in VLIW Native mode, PowerPC instruction in PowerPC
mode).

1.13.1 Storage Operands

Bytes in storage are numbered consecutively starting with
0. Each number is the address of the corresponding byte.

Storage operands may be bytes, halfwords, words, or dou-
blewords. The address of a storage operand is the address
of its first byte (i.e., of its lowest numbered byte). Byte
ordering is Big-Endian by default, but the processor can be
operated in a mode in which byte ordering is Little-Endian.

Operand length is implicit for each instruction.

The operand of a Storage Access instruction has a natural
alignment boundary equal to the operand length. In other
words, the natural address of an operand is an integral
multiple of the operand length. A storage operand is said to
be aligned if it is aligned at its natural boundary: otherwise
it is said to be unaligned.

Storage operands have the following characteristics.
(Although not permitted as storage operands, quadwords
are shown because quadword alignment is desirable for
certain storage operands).

The concept of alignment is also applied more generally, to
any datum in storage. For example, a 12-byte datum in
storage is said to be word-aligned if its address is an inte-
gral multiple of 4.

Some instructions require their storage operands to have
certain alignments. In addition, alignment may affect per-
formance. The best performance is obtained when storage
operands are aligned. Additional effects of data placement

Operand Length Addr 60:63 if aligned

Byte 8 bits xxxx

Half-word 2 bytes xxx0

Word 4 bytes xx00

Double-word 8 bytes x000

Quad-word 16 bytes 0000

Note: An “x” in an address bit position indicates that
the bit can be 0 or 1, independent of the state of
other bits in the address.

 20 Storage Addressing

on performance are described in Book II, ForestaPC Virtual
Environment Architecture.

Tree-instructions have varying length and are word-
aligned. Primitive instructions are always four bytes long
and word-aligned.

1.13.2 Effective Address Calculation

The 64- or 32-bit address computed by the processor when
executing a Storage Access instruction (or certain other
instructions described in Book II, ForestaPC Virtual Envi-
ronment Architecture, and Book III, ForestaPC Operating
Environment Architecture) or when fetching the next tree-
instruction, is called the effective address, and specifies a
byte in storage. For a Storage Access instruction, if the
sum of the effective address and the operand length
exceeds the maximum effective address, the storage oper-
and is considered to wrap around from the maximum effec-
tive address to effective address 0, as described below.

Effective address computations, for both data and instruc-
tion accesses, use 64{32}-bit unsigned binary arithmetic. A
carry from bit 0 is ignored. In a 64-bit implementation, the
64-bit current instruction address and next instruction
address are not affected by a change from 32-bit mode to
64-bit mode, but they are affected by a change from 64-bit
mode to 32-bit mode (the high-order 32 bits are set to 0).

In 64-bit mode, the entire 64-bit result comprises the 64-bit
effective address. The effective address arithmetic wraps

around from the maximum address, 264-1, to address 0.

In 32-bit mode, the low order 32 bits of the 64-bit result
comprise the effective address for the purpose of address-
ing storage. The high-order 32 bits of the 64-bit effective
address are ignored for the purpose of accessing data. The
high-order 32 bits of the 64-bit effective address are set to
0 for the purpose of fetching instructions, and whenever a
64-bit effective address is placed in a Branch Register. The
high-order 32 bits of the 64-bits effective address are set to
0 in Special-Purpose Registers when the system error han-
dler is invoked. As used to address storage, the effective
address arithmetic appears to wrap around from the maxi-

mum address, 232-1, to address 0.

A zero in the RA field indicates the absence of the corre-
sponding address component. For the absent component,
a value of zero is used for the address. This is shown in the
instruction descriptions as (RA|0).

In both 64-bit and 32-bit modes, the calculated Effective
Address may be modified in its three low-order bits before
accessing storage if the system is operating in Little-
Endian mode.

Effective addresses are computed as follows. In the
descriptions below, it should be understood that “the con-
tents of a GPR” refers to the entire 64-bits, independent of
mode, but that in 32-bit mode, only bits 32:63 of the 64-bit
result of the computation are used to address storage.

• With D-form instructions (D4, D5, D8, D10), the dis-
placement field is zero-extended to form a 64-bit
address component. In computing the effective
address of a data element, this address component is
added to the contents of the GPR designated by RA or
to zero if RA=0.

• With the Branch instruction (B2-form), the 26-bit
ADDR field is concatenated in the right with 0b00; the
resulting 28-bit value is concatenated to the right of
CIA0:35.

• With B10-form instructions, the 11-bit ADDR field is
concatenated in the right with 0b00; the resulting 13-
bit value is concatenated to the right of CIA0:50.

• With the Branch Register instruction (X10-form), bits
0:61 of Branch Register 0 are concatenated to the
right with 0b00 to form the effective address of the
next tree-instruction.

For instructions that refer to more than one byte of storage,
the effective address for each byte after the first is com-
puted by adding 1 to the effective address of the preceding
byte.

Registers in the ForestaPC Architecture 21

Chapter 2. Registers in the ForestaPC Architecture

This chapter describes the registers that exist in the Fore-
staPC Architecture. Section 2.1 describes the General Pur-
pose Registers, Section 2.2 describes the Floating-Point
Registers, and Section 2.3 describes the Special Purpose
Registers.

The VLIW Native mode and the PowerPC mode define dif-
ferent sets of registers. Some registers exist in both
modes, whereas some registers exist only in VLIW Native
mode.

2.1 General Purpose Registers

The principal storage accessed by the Fixed-Point instruc-
tions is a set of 64 General Purpose Registers (GPRs),
each with 64{32} bits of data (see Figure 12).

In VLIW Native mode, all 64 GPRs are defined. In Pow-
erPC mode, only General Purpose Registers 0 through 31
are defined.

2.2 Floating-Point Registers

The principal storage accessed by the Floating-Point
instructions is a set of 64 Floating-Point Registers (FPRs).
Each FPR contains 64 bits which support the floating-point

double format. Every instruction that interprets the contents
of an FPR as a floating-point value uses the floating-point
double format for this interpretation.

In VLIW Native mode, all 64 FPRs are defined. In Pow-
erPC mode, only Floating-Point Registers 0 through 31 are
defined.

2.3 Special Purpose Registers

The ForestaPC architecture has many Special Purpose
Registers (SPRs). Some of these register exist only in
VLIW Native mode, whereas others exist in both VLIW
Native and PowerPC modes but may be used differently.

2.3.1 Branch Registers

The Branch Registers (BRs) are three 64{32}-bit registers.
In VLIW Native mode, the Branch Registers are used by
the Branch instructions as follows:

• to hold the return address for procedure calls and Sys-
tem Call instructions; and

• to hold branch target addresses for Branch Registers
instructions.

Figure 12: General Purpose Registers

0 63{31}

General Purpose
Registers

GPR 00
GPR 01

GPR 63

Figure 13: Floating-Point Registers

0 63

Floating-Point
Registers

FPR 00

FPR 63

FPR 01

 22 Special Purpose Registers

In addition to this dedicated use, Branch Registers can be
used as source and destination of Fixed-Point instructions
which manipulate branch addresses.

In PowerPC mode, Branch Registers 1 and 2 do not exist,
whereas Branch Register 0 is known as the Link Register
(LR).

2.3.2 Count Register
The Count Register (CTR) is a 64{32}-bit register.

The Count Register exists only in PowerPC mode; it does
not exist in VLIW Native mode.

2.3.3 Condition Register

The Condition Register (CR) is a 64-bit register which
reflects the results of certain operations and provides a
mechanism for testing (and branching).

The bits in the Condition Register are grouped into 4-bit
fields, named CR field 0 (CR0), CR field 1 (CR1), and so
on. Sixteen CR fields (CR0 through CR15) are defined in
VLIW Native mode, whereas eight CR fields are defined in
PowerPC mode.

Architecture Note: In PowerPC mode, CR fields are
named CR0 through CR7 but they physically cor-
respond to CR8 through CR15, respectively.

The rest of this section describes the setting of CR in VLIW
Native mode. See Book I, PowerPC User Instruction Set
Architecture for the definition of the setting of CR in Pow-
erPC mode.

CR fields are set in one of the following ways:

• Several specified fields of CR can be set by a move to
the CR from a GPR (mtcr).

• A specified field of CR can be set by a move to the CR
from:
- another CR field (mcrf);
- an immediate field (mcrfi);
- a GPR (mtcrf);
- a field from the FPSCR (mcrfs).

• A specified field of CR can be set by fixed-point
instructions that have a CR destination field (CRT), or
by fixed-point instructions that have been extended
with an Extend Immediate and Condition Register
(xicr) instruction.

• A specified field of CR can be set as the result of either
a fixed-point or a floating-point Compare instruction.

• CR field 8 is set by a Store Conditional instruction.

Instructions are also provided to perform logical operations
on individual CR bits, and to test individual CR bits. In the
description of these instructions, the Condition Register is
referred to as CRB, which denotes the Condition Register
viewed as 64 single bits, rather than as 16 4-bit fields.

For all fixed-point instructions which have a CR destination
field, or which have been extended with an xicr instruction,
the first three bits of the specified CR field CRT are set by
signed comparison of the result to zero, and the fourth bit
of CR field CRT is copied from the OV field of the XSR-
Image generated by the instruction (set to 0 if no image is
generated). “Result” here refers to the entire 64-bit value
placed into the target register in 64-bit mode, and to bits
32:63 of the 64-bit value placed into the target register in
32-bit mode.

if (64-bit implementation) & (64-bit mode)

then M ← 0

else M ← 32

if (target_register) M:63 < 0

then c ← 0b100

else if (target_register) M:63 > 0

then c ← 0b010

else c ← 0b001

CRCRT ← c || XSR-Image OV

Figure 14: Branch Registers

Figure 15: Count Register

Figure 16: Condition Register

0 63{31}

Branch Registers
BR0
BR1
BR2

0 63{31}

CTR Count Register

0 63

Condition Register
CR

CR0 CR1 CR15

Registers in the ForestaPC Architecture 23

If any portion of the result is undefined, the value placed
into the CR field CRT is undefined.

The bits of CR field CRT are interpreted as follows:

Programming Note: CR field CRT may not reflect the
“true” (infinitely precise) result if overflow occurs;
see Section 5.8, “Fixed-Point Arithmetic Instruc-
tions,” on page 72.

For Compare instructions, a specified CR field is set to
reflect the result of the comparison. The bits of the speci-
fied field are interpreted as follows. A complete description
of how the bits are set is given in the instruction descrip-
tions in Section 5.10, “Fixed-Point Compare Instructions,”
on page 83, and Section 6.6.4, “Floating-Point Compare
Instructions,” on page 143.

2.3.4 Fixed-Point Status Register

The Fixed-Point Status Register (XSR) is a 32-bit register.
This register is defined both in VLIW Native mode as well
as in PowerPC mode. In PowerPC mode, this register is
called Fixed-Point Exception Register (XER).

The rest of this section describes the setting of XSR in
VLIW Native mode. See Book I, PowerPC User Instruction
Set Architecture for the definition of the setting of XER in
PowerPC mode.

The Fixed-Point Status Register is set only by instructions
Update XSR (uxsr) and Move to Special-Purpose Register
(mtspr).

The bit definitions for the Fixed-Point Status Register are
as shown next.

Bit Description

0 Negative (LT)
The result is negative.

1 Positive (GT)
The result is positive

2 Zero (EQ)
The result is zero.

3 Overflow (OV)
This is a copy of bit XSR-ImageOV.

Bit Description

0 Less Than, Floating-Point Less Than (LT, FL)

For fixed-point Compare instructions, (RA) < SI
or (RB) (signed comparison), or (RA) <u UI or
(RB) (unsigned comparison).

For floating-point Compare instructions,
(FRA) < (FRB).

1 Greater Than, Floating-Point Greater Than
(GT, FG)

For fixed-point Compare instructions, (RA) > SI
or (RB) (signed comparison), or (RA) >u SI or
(RB) (unsigned comparison).

For floating-point Compare instructions,
(FRA) > (FRB).

2 Equal, Floating-Point Equal (EQ, FE)

For fixed-point Compare instructions, (RA) = SI,
UI, or (RB).

For floating-point Compare instructions,
(FRA) = (FRB).

3 Zero, Floating-Point Unordered (ZE, FU)

For fixed-point Compare instructions, this bit is
set to 0.

For floating-point Compare instructions, one or
both of (FRA) and (FRB) is a NaN.

Figure 17: Fixed-Point Status Register

Bit(s) Description

0 Summary Overflow (SO)

The Summary Overflow bit is set to 1 whenever
an Update XSR (uxsr) instruction sets the Over-
flow bit.

Once set, SO remains set until it is cleared by a
mtspr instruction (specifying XSR).

Executing a mtspr instruction to XSR, supplying
the values 0 for SO and 1 for OV, causes SO to
be set to zero and OV to be set to one.

Bit Description

0 31
Fixed-Point
Status RegisterXSR

 24 Special Purpose Registers

Fixed-Point Status Image

Fixed-point instructions generate a Fixed-Point Status
Image (XSR-Image), which can be saved in a General-Pur-
pose Register by executing a special Extender instruction
in the right-adjacent slot. The Extender instruction may
also specify a GPR containing a previous XSR-Image
whose CA bit is used as an operand for the instruction
being extended. The Extender instructions are described in
Section 5.7, “Extender Instructions,” on page 67.

An XSR-Image is saved in a GPR only if there is an
Extender instruction in the right-adjacent slot; otherwise, it
is discarded. The XSR-Image does not correspond to any
architected register. The XSR-Image in a GPR can be used
to update XSR with an Update XSR (uxsr) instruction.

The bits of the XSR-Image are set based on the operation
of an instruction considered as whole, not on intermediate
results (e.g., in a Subtract from Carrying operation, the
result of which is specified as the sum of three values, the
XSR-Image bits are set based on the entire operation, not
on an intermediate sum).

The bit definitions for the Fixed-Point Status Image are as
shown next, wherein M=0 in 64-bit mode, and M=32 in 32-
bit mode.

2.3.5 Floating-Point Status and Control
Register
The Floating-Point Status and Control Register (FPSCR) is
a 32-bits register which controls the handling of floating-
point exceptions and records the status resulting from float-
ing-point operations. Bits 0:23 are status bits, bits 24:31
are control bits. This register is defined both in VLIW Native
mode as well as in PowerPC mode.

The exception bits (bits 0:12 and 21:23) in FPSCR are
sticky, with the exception of Floating-Point Enabled Excep-
tion Summary (FEX) and Floating-Point Invalid Operation

1 Overflow (OV)

The Overflow bit is used to indicate that an over-
flow has occurred during execution of an instruc-
tion.

2 Carry (CA)

The Carry bit is used to indicate that a carry out
has occurred during execution of an instruction.

3:31 Reserved

Bit(s) Description

0 Reserved

Bit(s) Description

1 Overflow (OV)

The Overflow bit is set to indicate that an over-
flow has occurred during execution of an instruc-
tion that is being extended with an Extend XSR
instruction which specifies the OV field.

Add and Subtract From instructions set OV to 1 if
the carry out of bit M is not equal to the carry out
of bit M+1, and set it to zero otherwise.

Multiply Low and Divide instructions set the OV
field to 1 if the result cannot be represented in 64
bits (mulld, divd, divdu), or in 32 bits (mullw,
divw, dviwu), and set it to 0 otherwise.

The OV bit is not altered by other instructions.

2 Carry (CA)

The Carry bit is set to indicate that a carry out
has been generated during execution of an
instruction that is being extended with an Extend
XSR instruction which specifies the CA field.

Add and Subtract from instructions set CA to 1 if
there is a carry out of bit M, and set it to 0 other-
wise.

Shift Right Algebraic instructions set CA to 1 if
any 1-bits have been shifted out of a negative
operand, and set it to 0 otherwise.

The CA bit is not altered by other instructions.

3:31 Reserved

Figure 18: Floating-Point Status and Control Register

Bit(s) Description

0 31
Floating-Point Status
and Control RegisterFPSCR

Registers in the ForestaPC Architecture 25

Exception Summary (VX). That is, once set these bits
remain set until they are cleared by an mcrfs, mtfsfi, mtfsf,
or mtfsb0 instruction. Bits FEX and VX (bits 1 and 2) are
simply the ORs of other FPSCR bits.

The rest of this section describes the setting of FPSCR in
VLIW Native mode. See Book I, PowerPC User Instruction
Set Architecture for the definition of the setting of FPSCR
in PowerPC mode.

The Floating-Point Status and Control Register is set only
by instructions Update FPSCR (ufsr), Move to Special-Pur-
pose Register (mtspr), Move to FPSCR Field Immediate
(mtfsfi), Move to FPSCR Bit (mtfsb0, mtfsb1), and Move
Condition Register to FPSCR (mcrfsr).

The field definitions for the Floating-Point Status and Con-
trol Register are as shown below.

Bit(s) Description

0 Floating-Point Exception Summary (FX)

The FX bit is used to indicate whether any of the
exception bits in the FPSCR is set to 1.

mcrfs, mtfsfi, mtfsf, mtfsb0 and mtfsb1 can alter
FX explicitly.

1 Floating-Point Enabled Exception Summary
(FEX)

The FEX bit is used to indicate whether any of
the enabled exception bits in the FPSCR is set to
1.

mcrfs, mtfsfi, mtfsf, mtfsb0 and mtfsb1 cannot
alter FEX explicitly.

2 Floating-Point Invalid Operation Exception
Summary (VX)

The VX bit is used to indicate whether any invalid
operation exception bits are set to 1.

mcrfs, mtfsfi, mtfsf, mtfsb0 and mtfsb1 cannot
alter VX explicitly.

3 Floating-Point Overflow Exception (OX)

See Section 6.3.3, “Overflow Exception,” on
page 128.

4 Floating-Point Underflow Exception (UX)

See Section 6.3.3, “Overflow Exception,” on
page 128.

5 Floating-Point Zero Divide Exception (ZX)

See Section 6.3.3, “Overflow Exception,” on
page 128.

6 Floating-Point Inexact Exception (XX)

See Section 6.3.5, “Inexact Exception,” on
page 129.

7 Floating-Point Invalid Operation Exception
(SNaN) (VXSNAN)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

8 Floating-Point Invalid Operation Exception
(∞-∞) (VXISI)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

9 Floating-Point Invalid Operation Exception
(∞÷∞). (VXIDI)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

10 Floating-Point Invalid Operation Exception
(0÷0) (VXZDZ)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

11 Floating-Point Invalid Operation Exception
(∞×0) (VXIMZ)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

12 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

13 Floating-Point Fraction Rounded (FR)

The FR bit is used to indicate whether an Arith-
metic or Rounding and Conversion instruction
that rounded the intermediate result increased
the fraction (see Section 6.2.6, “Rounding,” on
page 122).

Bit(s) Description

 26 Special Purpose Registers

14 Floating-Point Fraction Inexact (FI)

The FI bit is used to indicate whether an Arith-
metic or Rounding and Conversion instruction
either rounded the intermediate result (producing
an inexact fraction) or caused a disabled Over-
flow Exception (see Section 6.2.6, “Rounding,”
on page 122).

See the definition of XX above, regarding the
relationship among FI and XX.

15:19 Floating-Point Result Flags (FPRF)

For Arithmetic, Rounding, and Conversion
instructions, the FPRF field is used to reflect the
result placed in a floating-point register, except
that if any portion of the result is undefined then
the value placed into FPRF is undefined.

15 Floating-Point Result Class Descriptor (C)

For Arithmetic, Rounding, and Conversion
instructions, the C bit is used with the FPCC field
to indicate the class of the result placed in a
floating-point register, as shown in Figure 19 on
page 27.

16:19 Floating-Point Condition Code (FPCC)

The FPCC field is used with the C bit to indicate
the class of the result placed in a floating-point
register.

16 Floating-Point Less Than or Negative (FL or
<)

17 Floating-Point Greater Than or Positive (FG
or >)

18 Floating-Point Equal, Zero (FE or =)

19 Floating-Point Unordered or NaN (FU or ?)

20 Reserved

21 Floating-Point Invalid Operation Exception
(Software Request (VXSOFT))

The VXSOFT bit can be altered only by mcrfs,
mtfsfi, mtfsfm, mtfsb0 or mtfsb1. See
Section 6.3.1, “Invalid Operation Exception,” on
page 126.

Bit(s) Description

22 Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

Architecture Note:
This bit is defined even for implementations
that do not support either of the two optional
instructions, namely Floating Square Root
and Floating Reciprocal Square Root Esti-
mate. Defining it for all implementations gives
software a standard interface for handling
square root exceptions

Programming Note:
If the implementation does not support the
Floating Square Root instruction or the Float-
ing Reciprocal Square Root Estimate instruc-
tion, software can simulate the instruction
and set this bit to reflect the exception.

23 Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

24 Floating-Point Invalid Operation Exception
Enable (VE)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

25 Floating-Point Overflow Exception Enable
(OE)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

26 Floating-Point Underflow Exception Enable
(UE)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

27 Floating-Point Zero Divide Exception Enable
(ZE)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

28 Floating-Point Inexact Exception Enable (XE)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

Bit(s) Description

Registers in the ForestaPC Architecture 27

Architecture Note: Setting Floating-Point Non-IEEE
Mode (NI) to 1 is intended to permit results to be
approximate, and to cause performance to be
more predictable and less data-dependent than
when NI=0. For example, in Non-IEEE Mode an
implementation returns 0 instead of a denormal-
ized number, and may return a large number
instead of an infinity. In Non-IEEE mode an imple-
mentation should provide the means for ensuring
that all results are produced without software
assistance (i.e., without causing a Floating-Point
Enabled Exception type Program interrupt or a
Floating-Point Assist interrupt, and without invok-
ing an “emulation assist,” see Book III, ForestaPC
Operating Environment Architecture). The means
may be controlled by one or more FPSCR bits
(recall that the other FPSCR bits have implemen-
tation-dependent meanings when NI=1).

Floating-Point Status Image

In VLIW Native mode, most floating-point instructions gen-
erate a Floating-Point Status Image (FSR-Image), which
can be saved in a General-Purpose Register by executing
a special Extender instruction in the right-adjacent slot. The
Extender instructions are described in Section 5.7,
“Extender Instructions,” on page 67

A FSR-Image is saved only if there is a suitable Extender
instruction in the right-adjacent slot; otherwise, it is dis-
carded. The FSR-Image does not correspond to any archi-

29 Floating-Point Non-IEEE Mode (NI)

If this bit is set to 1, the remaining FPSCR bits
may have meanings other than those given in
this document, and the results of floating-point
operations need not conform to the IEEE stan-
dard. If the IEEE-conforming result of a floating-
point operation would be a denormalized num-
ber, the result of that operation is 0 (with the
same sign as the denormalized number) when-
ever NI=1 and other requirements for the imple-
mentation are met (these requirements are
specified in Book IV, ForestaPC Implementation
Features for the implementation). The other
effects of setting this bit to 1 are described in
Book IV, and may differ among implementations.

30:31 Floating-Point Rounding Control (RN)

See Section 6.2.6, “Rounding,” on page 122.

00 Round to Nearest
01 Round toward Zero
10 Round toward +infinity
11 Round toward -infinity

Bit(s) Description Result Flags Result Value Class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 -Infinity

0 1 0 0 0 -Normalized Number

1 1 0 0 0 -Denormalized Number

1 0 0 1 0 -Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized Number

0 0 1 0 0 +Normalized Number

0 0 1 0 1 +Infinity

Figure 19: Floating-Point Result Flags

 28 Special Purpose Registers

tected register. The FSR-Image in a GPR can be used to
update FPSCR with an Update FPSCR (ufsr) instruction.

The definition of fields in the FSR-Image is the same as the
status fields in the FPSCR. Control bits in FPSCR do not
exist in the FSR-Image. Bits in the FSR-Image are not
sticky, that is, they represent the status only of the instruc-
tion that generated the image.

Bit(s) Description

0 Floating-Point Exception Summary (FX)

The FEX bit is used to indicate whether any of
the exception bits in the FSR-Image is set to 1.

1 Floating-Point Enabled Exception Summary
(FEX)

The FEX bit is used to indicate whether any of
the enabled exception bits in the FSR-Image is
set to 1.

2 Floating-Point Invalid Operation Exception
Summary (VX)

The VX bit is used to indicate whether any invalid
operation exception bits in the FSR-Image are
set to 1.

3 Floating-Point Overflow Exception (OX)

See Section 6.3.3, “Overflow Exception,” on
page 128.

4 Floating-Point Underflow Exception (UX)

See Section 6.3.3, “Overflow Exception,” on
page 128.

5 Floating-Point Zero Divide Exception (ZX)

See Section 6.3.3, “Overflow Exception,” on
page 128.

6 Floating-Point Inexact Exception (XX)

See Section 6.3.5, “Inexact Exception,” on
page 129.

7 Floating-Point Invalid Operation Exception
(SNaN) (VXSNAN)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

8 Floating-Point Invalid Operation Exception
(∞-∞) (VXISI)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

9 Floating-Point Invalid Operation Exception
(∞÷∞). (VXIDI)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

10 Floating-Point Invalid Operation Exception
(0÷0) (VXZDZ)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

11 Floating-Point Invalid Operation Exception
(∞×0) (VXIMZ)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

12 Floating-Point Invalid Operation Exception
(Invalid Compare) (VXVC)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

13 Floating-Point Fraction Rounded (FR)

The FR bit is used to indicate whether an Arith-
metic or Rounding and Conversion instruction
that rounded the intermediate result increased
the fraction (see Section 6.2.6, “Rounding,” on
page 122).

14 Floating-Point Fraction Inexact (FI)

The FI bit is used to indicate whether an Arith-
metic or Rounding and Conversion instruction
either rounded the intermediate result (producing
an inexact fraction) or caused a disabled Over-
flow Exception (see Section 6.2.6, “Rounding,”
on page 122).

15:19 Floating-Point Result Flags (FPRF)

For Arithmetic, Rounding, and Conversion
instructions, the field is set based on the result
placed in the destination register, except that if
any portion of the result is undefined then the
value placed into FPRF is undefined.

15 Floating-Point Result Class Descriptor (C)

Arithmetic, Rounding, and Conversion instruc-
tions set this bit with the FPCC bits, to indicate
the class of the result, as shown in Figure 19 on
page 27.

Bit(s) Description

Registers in the ForestaPC Architecture 29

2.3.6 GPR Delayed Exceptions Register
The GPR Delayed Exceptions Register (GRDX) is a 64-bit
register. This register is defined only in VLIW Native mode;
it is not defined in PowerPC mode.

Each bit of GRDX is associated to a General Purpose Reg-
ister, in left to right order: bit 0 is associated with General
Purpose Register 0, bit 1 is associated with GPR 1, etc.

A GRDX bit is set to 1 by any speculative Load instruction
that stores a result in the corresponding GPR and that
incurs an exception. Such speculative load operations
cause only the associated Delayed Exception bit to be set
but do not raise the exception. A GRDX bit is also set to 1
by any operation that places a result in the corresponding
GPR, if it has an operand whose associated Delayed
Exception bit is set to 1.

A Delayed Exception is raised by a Commit instruction
which attempts to utilize a GPR whose associated Delayed
Exception bit is set to 1.

2.3.7 FPR Delayed Exceptions Register
The FPR Delayed Exceptions Register (FPDX) is a 64-bit
register. This register is defined only in VLIW Native mode;
it is not defined in PowerPC mode.

Each bit of FPDX is associated to a Floating-Point Regis-
ter, in left to right order: bit 0 is associated with Floating-
Point Register 0, bit 1 is associated with FPR 1, etc.

A FPDX bit is set to 1 by any speculative Load instruction
that stores a result in the corresponding FPR and that
incurs an exception. Such speculative Load operations
cause only the associated Delayed Exception bit to be set
but do not raise the exception. An FPDX bit is also set to 1
by any operation that places a result in the corresponding
FPR, if it has an operand whose associated Delayed
Exception bit is set to 1.

16:19 Floating-Point Condition Code (FPCC)

Floating-Point Compare instructions set one of
the FPCC bits to 1 and the other three FPCC bits
to 0. Arithmetic, Rounding, and Conversion
instructions set the FPCC bits with the C bit to
indicate the class of the result, as shown in
Figure 19 on page 27. Note that in this case the
high-order three bits of the FPCC retain their
relational significance indicating that the value is
less than, greater than, or equal to zero.

16 Floating-Point Less Than or Negative (FL or
<)

17 Floating-Point Greater Than or Positive (FG
or >)

18 Floating-Point Equal, Zero (FE or =)

19 Floating-Point Unordered or NaN (FU or ?)

20:21 Reserved

22 Floating-Point Invalid Operation Exception
(Invalid Square Root) (VXSQRT)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

Architecture Note :
This bit is defined even for implementations
that do not support either of the two optional
instructions that set it, namely Floating
Square Root and Floating Reciprocal Square
Root Estimate. Defining it for all implementa-
tions gives software a standard interface for
handling square root exceptions

Programming Note
If the implementation does not support the
Floating Square Root instruction or the Float-
ing Reciprocal Square Root Estimate instruc-
tion, software can simulate the instruction
and set this bit to reflect the exception.

23 Floating-Point Invalid Operation Exception
(Invalid Integer Convert) (VXCVI)

See Section 6.3.1, “Invalid Operation Exception,”
on page 126.

24:31 Reserved

Bit(s) Description

Figure 20: GPR Delayed Exceptions Register

Figure 21: Floating-Point Delayed Exceptions Register

0 63

GRDX GPR Delayed
Exceptions Register

0 63

FPDX Floating-Point Delayed
Exceptions Register

 30 Special Purpose Registers

A Delayed Exception is raised by a Commit instruction
which attempts to utilize an FPR whose associated
Delayed Exception bit is set to 1.

2.3.8 CR Delayed Exceptions Register
The CR Delayed Exceptions Register (CRDX) is a 16-bit
register. This register is defined only in VLIW Native mode;
it is not defined in PowerPC mode.

Each bit of CRDX is associated to a Condition Register
field, in left to right order: bit 0 is associated with Condition
Register Field 0, bit 1 is associated with Condition Register
Field 1, etc.

A CRDX bit is set to 1 by any operation that sets the corre-
sponding CR field, if it has an operand whose associated
Delayed Exception bit is set to 1.

A Delayed Exception is raised by a commit instruction
which attempts to utilize a Condition Register Field whose
associated Delayed Exception bit is set to 1.

2.3.9 Move Assist Register
The Move Assist Register (MAR) is a 64{32}-bit register
used by the Move Assist instructions. This register is
defined only in VLIW Native mode; it is not defined in Pow-
erPC mode.

MAR is used to specify the ending byte address of the
operand (string, block) accessed by the Move Assist
instructions. When used, it contains the address of the last
byte of the string, plus 1.

Figure 22: Floating-Point Delayed Exceptions Register

Figure 23: Move Assist Register

0 15

CRDX Condition-Register Delayed
Exceptions Register

0 63{31}

MAR Move Assist Register

Branch Instructions 31

Chapter 3. Branch Instructions

This chapter describes the Branch instructions in VLIW
Native mode. Section 3.1 describes how tree-instruction
addresses are specified, Section 3.2 summarizes the reg-
isters available to the Branch Processor, Section 3.3 indi-
cates the facilities used for multiway-branching, Section
3.4 describes the procedure call features, and Section 3.5
details the branch primitive instructions.

The features of the Branch instructions in PowerPC mode
are described in Book I, PowerPC User Instruction Set
Architecture.

3.1 Fetching Tree-Instructions

The ForestaPC architecture in VLIW Native mode has no
concept of sequential execution of tree-instructions in the
order in which tree-instructions appear in storage. Instead,
tree-instructions are executed in an order determined at
execution time. Each tree-instruction is converted into one
or more VLIWs before execution; the resulting VLIWs also
corresponds to tree-instructions, perhaps smaller. Each
VLIW explicitly indicates the next tree-instruction to be exe-
cuted; branch primitives are used to specify the storage
address of the target tree-instructions (one target per
branch primitive).

Exceptions to the execution order above are:

• Trap instructions for which the trap conditions are sat-
isfied, and System Call instructions, cause the appro-
priate system handler to be invoked.

• Exceptions can cause the system error handler to be
invoked, as described in Section 1.11, “Exceptions,”
on page 18.

• Returning from a system services program, system
trap handler, or system error handler causes execution
to continue at a specified address.

The model of program execution in which each VLIW
appears to complete before the next VLIW starts, and each
primitive instruction appears to complete before the next
primitive instruction in the taken path of a VLIW starts, is
called the “sequential execution model.” In general, from
the view of the processor executing the VLIWs and primi-
tive instructions, the sequential model is obeyed. For the
instructions and facilities defined in this Book, the only
exceptions to this rule are the following:

• A floating-point exception occurs when the processor
is running in one of the Imprecise floating-point excep-
tion modes (see Section 6.3, “Floating-Point Excep-
tions,” on page 123). The instruction that causes the
exception does not complete before the next instruc-
tion starts, with respect to setting exception bits and (if
exception is enabled) invoking the system error han-
dler.

• A Store instruction modifies a storage location that
contains an instruction. Software synchronization is
required to ensure that subsequent instruction fetches
from that location obtain the modified version of the
instruction; see Book III, ForestaPC Operating Envi-
ronment Architecture.

• A primitive instruction uses a resource set by an ear-
lier primitive instruction in the taken path of a VLIW.
The result of the later primitive instruction is undefined.

 32 Branch Instructions Registers

Programming Note:
If a program modifies the tree-instructions it
intends to execute, it should call the appropriate
system library program before attempting to exe-
cute the modified instructions, to ensure that the
modifications have taken effect with respect to
instruction fetching.

3.2 Branch Instructions Registers

The registers accessible to the Branch instructions are the
following (see Chapter 2., “Registers in the ForestaPC
Architecture,” on page 21 for a description of these regis-
ters):

• Branch Registers (BR0, BR1, BR2)

• Condition Register (CR)

In general the bits in the Condition Register fields are
named as follows (alternative names are used to represent
the setting of a CR field by some specific instructions; see
Section 2.3.3, “Condition Register,” on page 22):

3.3 Multiway Branch Facilities

The ForestaPC architecture has multiway-branching capa-
bilities with the following features:

• multiple branch conditions in a tree-instruction (multi-
way decision-tree);

• conditional execution of operations, depending on
which path of the multiway tree is taken.

The format of a tree-instruction in storage is depicted in
Figure 24.

Three types of branch-related primitives are defined in the
architecture:

• skip primitives, which appear inside the tree-paths and
target a tree-branch within the tree-instruction, so the
corresponding displacement is a (small) positive
value;

• direct branches, which appear at the end of a tree-

path and target a tree-instruction within a 228 (256M)
bytes segment; and

• register branches, which appear at the end of a tree-
path and target a tree-instruction anywhere in storage,
with a Branch Register providing the destination
address. This type includes Branch Register as well as
System Call instructions.

Programming Note: Better performance may be
obtained when all the targets of a tree-instruction
are stored within a 1024-byte block of storage.

Several branch conditions can be specified in a single tree,
through a set of skip primitive instructions. Each skip
instruction consists of a test on a Condition Register Field
and has an associated target address.

All skip conditions in a VLIW are evaluated simultaneously,
and a single path through the VLIW is selected as the
taken path. Operations on the taken path are executed to
completion, whereas operations in the other paths are not
completed (such operations appear as if they have not
been executed at all).

Bit Name

0 LT : Negative

1 GT : Positive

2 EQ : Zero

3 OV : Overflow

L0: skip cr0.ne,t1
f1: skip cr1.gt,t2
f2: add r10,cr8,r14,r56
 skip cr3.eq,t3
f3: subf r12,cr9,r14,r44
 andi r22,r16,0x34
 b A
t3: or r16,cr10,r16,r17
 b B
t2: addi r21,r16,0x1234
 skip cr4.lt,t4
f4: andi r22,r16,0x34
 b C
t4: subf r12,cr9,r14,r44
 b D
t1: skip cr2.eq,t5
f5: subf r12,cr9,r14,r44
 addi r21,r16,0x1234
 b E
t5: lbz r23,64(r2)
 stw r24,32(r2)
 b F

Figure 24: Example of a tree-instruction

Branch Instructions 33

3.4 Procedure calls

The branch-and-link-address features of the PowerPC
architecture have been decomposed into separate primi-
tives.

In the case of procedure calls, two primitive instructions are
required within a tree-instruction, as follows:

Lk: cbri BR0,ret_addr # save return addr.
in BR0

 b proc

The first one of these primitive instructions saves the return
address in a Branch Register, whereas the second one
(which is also the last primitive in the tree-path) specifies
the branch to the target procedure.

In the case of multiway-branching, each path of a tree-
instruction could either call a different procedure or just
perform a regular branch (that is, no return address is
saved).

The procedure return process is executed as follows:

Lj: br BR0 # branch to the
contents of BR0

3.5 Branch Primitive Instructions

The sequence of tree-instructions executed is determined
by the branch primitives. The set of operations executed
within a tree-instruction is determined by the skip instruc-
tions.

The Branch instructions specify the effective address (EA)
of the target in one of the following ways:

1. Concatenating a 28-bit offset to the most-significant bits
of the address of the current tree-instruction (Uncondi-
tional Branch).

2. Using the address contained in a Branch Register
(Branch Register).

The Skip instructions compute the effective address of the
target tree-branch by concatenating a 13-bit offset to the
most-significant bits of the address of the current tree-
instruction.

Architecture Note: A tree-instruction may not straddle

a 220 word memory segment.

Branching to the next tree-instruction is always uncondi-
tional, without providing a return address. If a return
address is required, it is computed explicitly with the
instruction Compute Branch Register Immediate.

In Skip instructions, field CRS specifies the Condition Reg-
ister field tested, and field BC specifies the condition under
which the taken tree-branch is selected at the point of the
Skip instruction. The encoding for field BC uses the first
two bits to indicate the bit tested in the CR field, whereas
the third bit indicates the value tested, as follows:

Extended mnemonics for skip instructions

Many extended mnemonics are provided so that Skip
instructions can be coded with the condition as part of the
instruction mnemonic rather than as an operand. Some of
these are shown with the Skip Conditional instruction.

Code Condition Symbol Bit

000 Greater Than or Equal ge LT = 0

001 Less Than lt LT = 1

010 Less Than or Equal le GT = 0

011 Greater Than gt GT = 1

100 Not Equal ne EQ =0

101 Equal eq EQ = 1

110 No Overflow no OV = 0

111 Overflow ov OV =1

 34 Branch Primitive Instructions

3.5.1 Skip Instruction
This instruction provides the means by which a program
specifies the different tree-branches within a tree-instruc-
tion and the conditions under which each tree-branch is
selected for execution.

Skip Conditional B10-form

skip CRS,BC,target_addr

if (CRS BC(0:1) = BC 2) then

 NIA ←iea CIA 0:50 || ADDR || 0b00

else
 NIA ←iea CIA + 4

target_addr specifies the address of the target tree-branch.

The tree-instruction splits into two tree-branches at the
location of the skip instruction; only one of these two tree-
branches is executed, depending on the condition. If the
condition is true, the tree-branch starting at address
CIA0:50 concatenated with (ADDR || 0b00) is executed; oth-
erwise, the tree-branch starting at address CIA+4 is exe-
cuted. The high-order 32 bits of this address are set to 0 in
32-bit mode of 64-bit implementations.

Special Registers Altered:
None

Extended Mnemonics:
Examples of extended mnemonics for Skip Condi-
tional:

Extended: Equivalent to:
skeq CRS,target skip CRS,5,target
skne CRS,target skip CRS,4,target

3.5.2 Branch Instructions
These instructions provide the means by which a program
specifies the next tree-instruction to be executed. These
instructions indicate the end of a tree-path.

Branch Unconditional B2-form

b target_addr

NIA ←iea CIA 0:35 || ADDR || 0b00

target_addr specifies the address of the target tree-instruc-
tion.

The target tree-instruction address is the value CIA0:35

concatenated with (ADDR || 0b00). The high-order 32 bits
of this address are set to 0 in 32-bit mode of 64-bit imple-
mentations.

Special Registers Altered:
None

Branch Register X10-form

br BRS

NIA ←iea BRS0:61 || 0b00

The target tree-instruction address is the value BRS0:61

concatenated with 0b00. The high-order 32 bits of this
address are set to 0 in 32-bit mode of 64-bit implementa-
tions.

Special Registers Altered:
None

0 4 8 11 22

0 CRS BC ADDR 223

0 4 30

10 ADDR 0

0 4 10 12 16 22

0 /// BRS /// /// 818

Branch Instructions 35

3.5.3 System Call Instruction
This instruction provides the means by which a program
can call upon the system to perform a service. This instruc-
tion indicates the end of a tree-path.

System Call X10-form

sc

This instruction calls the system to perform a service. A
complete description of this instruction can be found in
Book III, ForestaPC Operating Environment Architecture.

A System Call instruction has the same basic functionality
as a Branch Register instruction, and is placed as the last
operation in a tree-path (in the same way as Branch Regis-
ter primitives). See Book III, ForestaPC Operating Environ-
ment Architecture for additional functions performed by the
System Call instruction.

When a System Call instruction is executed, Branch Regis-
ter BR2 must contain the value 0xC00; if this is not
observed, the system illegal instruction error handler is
invoked.

The address of the next tree-instruction to be executed
after returning from the system call is usually computed
with a separate Compute Branch Register Immediate
instruction, and is stored in a Branch Register.

When control is returned to the program that executed a
System Call instruction, the contents of the registers will
depend on the register conventions used by the program
providing the system service.

This instruction is context synchronizing (see Book III,
ForestaPC Operating Environment Architecture).

Special Registers Altered:
Dependent on the system service

0 4 10 16 22

0 /// /// /// 823

 36 Branch Primitive Instructions

Storage Access Instructions 37

Chapter 4. Storage Access Instructions

This chapter describes the Storage Access instructions in
VLIW Native mode. Section 4.1 lists the registers accessi-
ble to the storage access instructions, Section 4.2
describes general features of the Storage Access Instruc-
tion Set Architecture, whereas the remaining sections
describe the corresponding instructions.

The features of the Storage Access instructions in Pow-
erPC mode are described in Book I, PowerPC User
Instruction Set Architecture.

4.1 Storage Access Registers

The set of registers accessible by the Storage Access
instructions consists of

• sixty-four General Purpose Registers (GPRs)

• sixty-four Floating-Point Register (FPRs)

• the 64-bit Condition Register (CR)

• three Branch Registers (BRs)

• the 64-bit GPR Delayed Exceptions Register (GRDX)
and the 64-bit FPR Delayed Exceptions Register
(FPDX).

• the 16-bit CR Delayed Exceptions Register (CRDX)

• other Special-Purpose Registers

See Chapter 2., “Registers in the ForestaPC Architecture,”
on page 21 for a complete description of these registers
and their fields.

4.2 General Features

Storage Access instructions operate on the General Pur-
pose Registers and Floating-Point Registers. These regis-
ters may be the source or destination of Storage Access

instructions. Some Storage Access instructions specify a
Condition Register field which is set depending on the
result of the operation.

Each GPR has an associated bit in GRDX (the bit whose
number is the same as the General Purpose Register num-
ber). Each FPR has an associated bit in FPDX (the bit
whose number is the same as the Floating-Point Register
number). Each CR field has an associated bit in CRDX (the
bit whose number is the same as the Condition Register
Field number).

The description of Storage Access instructions in this chap-
ter does not include the setting of GRDX, FPDX or CRDX;
it is assumed that instructions follow the rules described
above regarding these entities.

4.2.1 Effective Address
Storage Access instructions compute the Effective Address
(EA) of the storage to be accessed, as described in
Section 1.13.2, “Effective Address Calculation,” on
page 20.

The order of bytes accessed by halfword, word, and dou-
bleword loads and stores is Big-Endian, unless Little-
Endian storage is selected.

Storage Access instructions have a single mode for com-
puting the effective address: register plus an 11-bits signed
displacement.

4.2.2 Floating-Point Storage Accesses
Load and Store Floating-Point Double instructions transfer
64 bits of data between storage and the Floating-Point
Registers, with no conversion.

 38 General Features

Load Floating-Point Single instructions transfer and con-
vert floating-point values in floating-point single format from
storage to the same value in floating-point double format in
the Floating-Point Registers.

Store Floating-Point Single instructions transfer and con-
vert floating-point values in floating-point double format
from the Floating-Point Registers to the same value in
floating-point single format in storage.

See Chapter 6., “Floating-Point Instructions,” on page 117
for additional details on floating-point data formats.

4.2.3 Storage Access Exceptions
Storage Access instructions will cause the system error
handler to be invoked if the program is not allowed to mod-
ify the target storage (Store only), or if the program
attempts to access storage that is unavailable.

4.2.4 Speculative Load Instructions

Load instructions have a single-bit field (SF) which is used
to specify when the instruction is speculative (it has been
moved by the compiler/programmer backward in the
instruction stream, across a conditional branch).

Speculative Load instructions (SF=1) have the following
additional functionality:

• if an exception occurs when executing a speculative
Load instruction, the only effect of the instruction is to
set the bit in the Delayed Exceptions Register associ-
ated with the target register of the instruction; the
exception is not raised to the processor.

Storage Access Instructions 39

4.3 Fixed-Point Load Instructions

The byte, halfword, word or doubleword in storage
addressed by EA is loaded into a General Purpose Regis-
ter.

Programming Note: In some implementations, the
Load Algebraic instructions may have greater
latency than other types of Load instructions.

Load Byte and Zero D4-form

lbz[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D

RT ← 560 || MEM(EA,1)

Let the effective address (EA) be the sum (RA|0) + D. The
byte in storage addressed by EA is loaded into RT56:63.
RT0:55 are set to 0.

Special Registers Altered:
None

Load Halfword and Zero D4-form

lhz[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D

RT ← 480 || MEM(EA,2)

Let the effective address (EA) be the sum (RA|0) + D. The
halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are set to 0.

Special Registers Altered:
None

Load Halfword Algebraic D4-form

lha[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
RT ← EXTS(MEM(EA,2))

Let the effective address (EA) be the sum (RA|0) + D. The
halfword in storage addressed by EA is loaded into
RT48:63. RT0:47 are filled with a copy of bit 0 of the loaded
halfword

Special Registers Altered:
None

0 4 10 16 27 28

11 RT RA D SF 6

0 4 10 16 27 28

11 RT RA D SF 1

0 4 10 16 27 28

11 RT RA D SF 5

 40 Fixed-Point Load Instructions

Load Word and Zero D4-form

lwz[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D

RT ← 320 || MEM(EA,4)

Let the effective address (EA) be the sum (RA|0) + D. The
word in storage addressed by EA is loaded into RT32:63.
RT0:31 are set to 0.

Special Registers Altered:
None

Load Word Algebraic D4-form

lwa[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
RT ← EXTS(MEM(EA,4))

Let the effective address (EA) be the sum (RA|0) + D. The
word in storage addressed by EA is loaded into RT32:63.
RT0:31 are filled with a copy of bit 0 of the loaded word.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

Load Doubleword D4-form

ld[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
RT ← MEM(EA,8)

Let the effective address (EA) be the sum (RA|0) + D. The
doubleword in storage addressed by EA is loaded into RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

0 4 10 16 27 28

11 RT RA D SF 2

0 4 10 16 27 28

11 RT RA D SF 9

0 4 10 16 27 28

11 RT RA D SF 7

Storage Access Instructions 41

4.4 Fixed-Point Store Instructions

The contents of a General Purpose Register are stored into
the byte, halfword, word or doubleword in storage
addressed by EA.

Store Byte D5-form

stb RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
MEM(EA,1) ← (RB) 56:63

Let the effective address (EA) be the sum (RA|0) + D.
(RB)56:63 is stored into the byte in storage addressed by
EA.

Special Registers Altered:
None

Store Halfword D5-form

sth RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
MEM(EA,2) ← (RB) 48:63

Let the effective address (EA) be the sum (RA|0) + D.
(RB)48:63 is stored into the halfword in storage addressed
by EA.

Special Registers Altered:
None

Store Word D5-form

stw RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
MEM(EA,4) ← (RB) 32:63

Let the effective address (EA) be the sum (RA|0) + D.
(RB)32:63 is stored into the word in storage addressed by
EA.

Special Registers Altered:
None

Store Doubleword D5-form

std RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
MEM(EA,8) ← (RB)

Let the effective address (EA) be the sum (RA|0) + D. (RB)
is stored into the doubleword in storage addressed by EA.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

0 4 10 16 22 27

13 d0 RA RB d1 3

0 4 10 16 22 27

13 d0 RA RB d1 1

0 4 10 16 22 27

13 d0 RA RB d1 6

0 4 10 16 22 27

13 d0 RA RB d1 8

 42 Floating-Point Load Instructions

4.5 Floating-Point Load Instructions

There are two basic forms of Floating-Point Load instruc-
tions: single-precision and double-precision. As floating-
point registers support only floating-point double format,
single-precision Load Floating-Point instructions convert
single-precision data to double format prior to loading the
operands into the target floating-point register.

The conversion and loading steps are as follows. Let
WORD0:31 be the floating-point single-precision data
accessed from storage.

Normalized Operand
If (WORD 1:8 >0) and (WORD 1:8 <255) then

 FRT 0:1 ← WORD0:1

 FRT 2 ← ¬WORD1
 FRT 3 ← ¬WORD1
 FRT 4 ← ¬WORD1

 FRT 5:63 ← WORD2:31 || 290

Denormalized Operand
If (WORD 1:8 =0) and (WORD 9:31 ≠0) then
 sign ← WORD0

 exp ← -126

 frac 0:52 ← 0b0 || WORD9:31 || 290

 normalize the operand
 Do while frac 0 = 0

 frac ← frac 1:52 || 0b0
 exp ← exp - 1

 End
 FRT 0 ← sign

 FRT 1:11 ← exp + 1023

 FRT 12:63 ← frac 1:52

Zero / Infinity / NaN
If (WORD 1:8 =255) or (WORD 1:31 =0) then

 FRT 0:1 ← WORD0:1

 FRT 2 ← WORD1
 FRT 3 ← WORD1
 FRT 4 ← WORD1

 FRT 5:63 ← WORD2:31 || 290

For double-precision Load Floating-Point instructions, no
conversion is required because the data from storage is
copied directly into the floating-point registers.

Engineering Note: The above description of the con-
version steps is a model only. The actual imple-
mentation may vary from this but must produce
results equivalent to what this model would pro-
duce.

Load Floating-Point Single D4-form

lfs[?] FRT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
FRT ← DOUBLE(MEM(EA,4))

Let the effective address (EA) be the sum (RA|0) + D. The
word in storage addressed by EA is interpreted as a float-
ing-point single-precision operand. This word is converted
to floating-point double format (see page 42) and loaded
into register FRT.

Special Registers Altered:
None

Load Floating-Point Double D4-form

lfd[?] FRT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
FRT ← MEM(EA,8)

Let the effective address (EA) be the sum (RA|0) + D. The
doubleword in storage addressed by EA is loaded into reg-
ister FRT.

Special Registers Altered:
None

0 4 10 16 27 28

11 FRT RA D SF 12

0 4 10 16 27 28

11 FRT RA D SF 13

Storage Access Instructions 43

4.6 Floating-Point Store Instructions

There are two basic forms of Floating-Point Store instruc-
tion: single-precision and double-precision. As floating-
point registers support only floating-point double format for
floating-point data, single-precision Store Floating-Point
instructions convert double-precision data to single format
prior to storing the operands into the storage.

The conversion steps are as follows: Let WORD0:31 be the
word in storage written to.

No Denormalization Required (includes Zero / Infinity /
NaN)
If (FRB 1:11 >896) or (FRB 1:63 =0) then

 WORD0:1 ← (FRB) 0:1

 WORD2:31 ← (FRB) 5:34

Denormalization Required
If (874 ≤ FRB1:11 ≤ 896) then
 sign ← (FRA) 0

 exp ← (FRA) 1:11 - 1023

 frac ← 0b1 || (FRA) 12:63
 Denormalize the operand
 Do while exp < -126
 frac ← 0b0 || frac 0:62

 exp ← exp + 1
 End
 WORD0 ← sign
 WORD1:8 ← 0x00

 WORD9:31 ← frac 1:23

else
 WORD ← undefined

Notice that, if the value to be stored by a single-precision
Store Floating-Point instruction is larger in magnitude than
the maximum number representable in single format, the
first case above (No Denormalization Required) applies.
The result stored in WORD is then a well defined value, but
is not numerically equal to the value in the source register
(i.e., the result of a Load Floating-Point Single from WORD
will not compare equal to the contents of the original
source register).

Engineering Note: The above description of the con-
version steps is a model only. The actual imple-
mentation may vary from this but must produce
results equivalent to what this model would pro-
duce.

For double-precision Store Floating-Point instructions, no
conversion is required because the data from the FPR is
copied directly into storage.

Store Floating-Point Single D5-form

stfs FRB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
MEM(EA,4) ← SINGLE(FRB)

Let the effective address (EA) be the sum (RA|0) + D. The
contents of register FRB are converted to single format
(see page 42) and stored into the word in storage
addressed by EA.

Special Registers Altered:
None

Store Floating-Point Double D5-form

stfd FRB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
MEM(EA,8) ← (FRB)

Let the effective address (EA) be the sum (RA|0) + D. The
contents of register FRB are stored into the doubleword in
storage addressed by EA.

Special Registers Altered:
None

0 4 10 16 22 27

13 d0 RA FRB d1 10

0 4 10 16 22 27

13 d0 RA FRB d1 11

 44 Fixed-Point Load and Store with Byte Reversal Instructions

4.7 Fixed-Point Load and Store with Byte
Reversal Instructions

When used in a system operating with Big-Endian byte
order (the default), these instructions have the effect of
loading and storing data in Little-Endian order. Likewise,
when used in a system operating with Little-Endian byte
order, these instructions have the effect of loading and stor-
ing data in Big-Endian order.

Programming Note: In some implementations, the
Load Byte-Reverse instructions may have greater
latency than other Load instructions.

Load Halfword Byte-Reversed D4-form

lhbr[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D

RT ← 480 || MEM(EA+1,1) || MEM(EA,1)

Let the effective address (EA) be the sum (RA|0) + D. Bits
0:7 of the halfword in storage addressed by EA are loaded
into RT56:63. Bits 8:15 of the halfword in storage addressed
by EA are loaded into RT48:55. RT0:47 are set to 0.

Special Registers Altered:
None

Load Word Byte-Reversed D4-form

lwbr[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D

RT ← 320 || MEM(EA+3,1) || MEM(EA+2,1)
 || MEM(EA+1,1) || MEM(EA,1)

Let the effective address (EA) be the sum (RA|0) + D. Bits
0:7 of the word in storage addressed by EA are loaded into
RT56:63. Bits 8:15 of the word in storage addressed by EA
are loaded into RT48:55. Bits 16:23 of the word in storage
addressed by EA are loaded into RT40:47. Bits 24:31 of the
word in storage addressed by EA are loaded into RT32:39.
RT0:31 are set to 0.

Special Registers Altered:
None

0 4 10 16 27 28

11 RT RA D SF 0

0 4 10 16 27 28

11 RT RA D SF 4

Storage Access Instructions 45

Store Halfword Byte-Reversed D5-form

sthbr RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
MEM(EA,2) ← (RB) 56:63 || (RB) 48:55

Let the effective address (EA) be the sum (RA|0) + D.
(RB)56:63 are stored into bits 0:7 of the halfword in storage
addressed by EA. (RB)48:55 are stored into bits 8:15 of the
halfword in storage addressed by EA.

Special Registers Altered:
None

Store Word Byte-Reversed D5-form

stwbr RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
MEM(EA,4) ← (RB) 56:63 || (RB) 48:55

 || (RB) 40:47 || (RB) 32:39

Let the effective address (EA) be the sum (RA|0) + D.
(RB)56:63 are stored into bits 0:7 of the word in storage
addressed by EA. (RB)48:55 are stored into bits 8:15 of the
word in storage addressed by EA. (RB)40:47 are stored into
bits 16:23 of the word in storage addressed by EA.
(RB)32:39 are stored into bits 24:31 of the word in storage
addressed by EA.

Special Registers Altered:
None

0 4 10 16 22 27

13 d0 RA RB d1 0
0 4 10 16 22 27

13 d0 RA RB d1 4

 46 Load Table of Contents Instructions

4.8 Load Table of Contents Instructions

The Load Table of Contents (TOC) instructions are used for
accessing tables of externally referenced variables. These
instructions assume that General Purpose Register 2 con-
tains a pointer to the TOC area, thus allowing the instruc-
tions to specify a 19-bit displacement field.

Programming Note: Better performance may be
obtained with Load Table of Contents instructions

if the pointer in GPR(2) is aligned on a 219 (512k
byte) boundary.

Load TOC Word and Zero D4-form

ltocwz[?] RT,DL

DL ← dl 0 || dl 1 || 0b00

EA ← (R2) + DL

RT ← 320 || MEM(EA, 4)

Let the effective address (EA) be the sum (R2) + DL ||
0b00. The word in storage addressed by EA is loaded into
RT32:63. RT0:31 is set to 0.

Special Registers Altered:
None

Load TOC Doubleword D4-form

ltocd[?] RT,DL

DL ← dl 0 || dl 1 || 0b00

EA ← (R2) + DL
RT ← MEM(EA, 8)

Let the effective address (EA) be the sum (R2) + DL ||
0b00. The doubleword in storage addressed by EA is
loaded into RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None0 4 10 16 27 28

11 RT dl1 dl0 SF 11

0 4 10 16 27 28

11 RT dl1 dl0 SF 10

Storage Access Instructions 47

4.9 Load and Store String Instructions

The Load/Store String instructions allow movement of data
from storage to registers or from registers to storage with-
out concern for alignment. These instructions can be used
for a short move between arbitrary storage locations or to
initiate a long move between unaligned storage fields.

A set of Load/Store String primitives together with a set of
Shift Left/Right String primitives allow arbitrarily aligned
strings to be moved quickly.

Loading a string starting from an arbitrary alignment is
implemented as a two-step process:

• load several aligned storage locations into GPRs; and

• simultaneously left-shift several GPRs.

Similarly, storing a string at an arbitrary alignment is imple-
mented as a two-step process:

• simultaneously right-shift several GPRs; and

• store several GPRs into aligned storage locations.

The Load/Store String instructions use two registers to
specify the string, as follows:

• RA: a General Purpose Register containing the start-
ing storage address (byte address) of the string;

• MAR: a Special Purpose Register containing the end-
ing byte address of the string, plus 1.

Load/Store String instructions of length zero have no
effect, except that Load String instructions of length zero
may set the destination register to an undefined value.

On systems operating with Little-Endian byte order, the
execution of a Load/Store String instruction causes the
system alignment error handler to be invoked.

Programming Note: The PowerPC string instructions
have been decomposed into simpler primitives in
the ForestaPC architecture; these primitive
instructions are executed concurrently in different
parcels (composing a multiparcel primitive).

Programming Note: In contrast to the PowerPC
architecture, these instructions use the starting
and ending byte address of the string instead of
the starting address and the byte count.

Load String Word and Zero D4-form

lswz[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)

EA ← (b + D) & (621 || 0b00)

if EA 0:61 < MAR 0:61 then

 nb ← 4
else if EA 0:61 = MAR 0:61 then

 nb ← MAR62:63

else
 nb ← 0

if nb > 0 then

 RT ← 320 || MEM(EA,nb) || 8×(4-nb) 0
else

 RT ← 0

General Purpose Register RA and Special Purpose Regis-
ter MAR, respectively, contain the starting byte address
and ending byte address plus 1 of a string. Let the effective

address (EA) be the sum ((RA|0) + D) ANDed with (621 ||
0b00). EA is the address of the aligned word in storage
which contains the first byte to be loaded. Let nb be the
number of bytes to be loaded, which is determined from the
difference between the address of the aligned word con-
taining the first byte to be loaded and the ending byte
address plus 1 of the string. Based on the value of nb, 0 to
4 bytes in storage addressed by EA are loaded left aligned
into RT32:63, padding the data to the right with zeros when
fewer than four bytes are loaded. RT0:31 are set to 0.

Special Registers Altered:
None

0 4 10 16 27 28

11 RT RA D SF 8

 48 Load and Store String Instructions

Load String Doubleword D4-form

lsd[?] RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)

EA ← (b + D) & (611 || 0b000)

if EA 0:60 < MAR 0:60 then

 nb ← 8
else if EA 0:60 = MAR 0:60 then

 nb ← MAR61:63

else
 nb ← 0

if nb > 0 then

 RT ← MEM(EA,nb) || 8×(8-nb) 0
else

 RT ← 0

General Purpose Register RA and Special Purpose Regis-
ter MAR, respectively, contain the starting byte address
and ending byte address plus 1 of a string. Let the effective

address (EA) be the sum ((RA|0) + D) ANDed with (611 ||
0b000). EA is the address of the aligned doubleword in
storage which contains the first byte to be loaded. Let nb
be the number of bytes to be loaded, which is determined
from the difference between the address of the aligned
doubleword containing the first byte to be loaded and the
ending byte address plus 1 of the string. Based on the
value of nb, 0 to 8 bytes in storage addressed by EA are
loaded left aligned into RT, padding the data to the right
with zeros when fewer than eight bytes are loaded.

Special Registers Altered:
None

Store String Word D5-form

stsw RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D

if D > 3 then EA ← EA & (621 || 0b00)
fb ← EA62:63

if EA 0:61 < MAR 0:61 then

 lb ← 4
else if EA 0:61 = MAR 0:61 then

 lb ← MAR62:63

else
 lb ← 0

if lb > fb then
 MEM(EA,lb-fb) ← RB 8×fb+32:8 ×lb+31

else
 null

General Purpose Register RA and Special Purpose Regis-
ter MAR, respectively, contain the starting byte address
and ending byte address plus 1 of a string. Let the effective

address (EA) be the sum ((RA|0) + D) ANDed with (621 ||
0b00) if D is greater than 3. EA is the address of the byte in
storage where the first byte must be stored. Let fb and lb
be the byte number of the first byte and last byte plus 1,
respectively, to be stored within the aligned word in stor-
age. Based on the difference between fb and lb, 0 to 4
bytes from the low-order 32 bits of register RB are stored in
storage starting at address EA.

Special Registers Altered:
None

0 4 10 16 27 28

11 RT RA D SF 3
0 4 10 16 22 27

13 d0 RA RB d1 5

Storage Access Instructions 49

Store String Doubleword D5-form

stsd RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D

if D > 7 then EA ← EA & (611 || 0b000)
fb ← EA61:63

if EA 0:60 < MAR 0:60 then

 lb ← 8
else if EA 0:60 = MAR 0:60 then

 lb ← MAR61:63

else
 lb ← 0

if lb > fb then
 MEM(EA,lb-fb) ← RB 8×fb:8 ×lb-1

else
 null

General Purpose Register RA and Special Purpose Regis-
ter MAR, respectively, contain the starting byte address
and ending byte address plus 1 of a string. Let the effective

address (EA) be the sum ((RA|0) + D) ANDed with (611 ||
0b000) if D is greater than 7. EA is the address of the byte
in storage where the first byte must be stored. Let fb and lb
be the byte number of the first byte and last byte plus 1,
respectively, to be stored within the aligned word in stor-
age. Based on the difference between fb and lb, 0 to 8
bytes from register RB are stored in storage starting at
address EA.

Special Registers Altered:
None

0 4 10 16 22 27

13 d0 RA RB d1 7

 50 Storage Synchronization Instructions

4.10 Storage Synchronization
Instructions

The Storage Synchronization instructions can be used to
control the order in which storage operations are com-
pleted with respect to asynchronous events, and the order
in which storage operations are seen by other processors
and by other mechanisms that access storage. Additional
information about these instructions, and about related
aspects of storage management, can be found in Book II,
ForestaPC Virtual Environment Architecture, and Book III,
ForestaPC Operating Environment Architecture.

The Load and Reserve and Store Conditional Reserve
instructions permit the programmer to write a sequence of
instructions that appear to perform an atomic update oper-
ation on a storage location. This operation depends upon a
single reservation resource in each processor. At most one
reservation exists on any given processor; there are not
separate reservations for words and for doublewords.

On a system operating with Little-Endian byte order, the
three low-order bits of the Effective Address computed by
instructions Load and Reserve and Store Conditional
Reserve are modified before accessing storage.

Load and Reserve instructions cannot be executed specu-
latively, so these instructions do not have a SF bit.

Programming Note: Because the Storage Synchroni-
zation instructions have implementation depen-
dencies (e.g., the granularity at which
reservations are managed), they must be used
with care. The operating system should provide
system library programs that use these instruc-
tions to implement the high-level synchronization
functions (Test and Set, Compare and Swap, etc.)
needed by application programs. Application pro-
grams should use these library programs, rather
than use the Storage Synchronization instructions
directly.

Architecture Note: The Load and Reserve and Store
Conditional Reserve instructions require the EA to
be aligned. Software should not attempt to emulate
an unaligned Load and Reserve or Store Condi-
tional Reserve instruction, because there is no cor-
rect way to define the address associated with the
reservation.

Engineering Note: Causing the system alignment
error handler to be invoked if attempt is made to
execute a Load and Reserve or Store Conditional
Reserve instruction having an incorrectly aligned
Effective Address facilitates the debugging of soft-
ware.

Storage Access Instructions 51

Load Word and Reserve D5-form

lwar RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
RESERVE ← 1
RESERVE_ADDR ← real_addr(EA)

RT ← 320 || MEM(EA,4)

Let the effective address (EA) be the sum (RA|0) + D. The
word in storage addressed by EA is loaded into RT32:63.
RT0:31 are set to 0.

This instruction creates a reservation for use by a Store
Word Conditional Reserve instruction. An address com-
puted from the EA is associated with the reservation, and
replaces any address previously associated with the reser-
vation. The manner in which the address to be associated
with the reservation is computed from the EA is described
in Book II, ForestaPC Virtual Environment Architecture.

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are bound-
edly undefined.

Special Registers Altered:
None

Load Doubleword and Reserve D5-form

ldar RT,D(RA)

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
RESERVE ← 1
RESERVE_ADDR ← real_addr(EA)
RT ← MEM(EA,8)

Let the effective address (EA) be the sum (RA|0) + D. The
doubleword in storage addressed by EA is loaded into RT.

This instruction creates a reservation for use by a Store
Doubleword Conditional Reserve instruction. An address
computed from the EA is associated with the reservation,
and replaces any address previously associated with the
reservation. The manner in which the address to be associ-
ated with the reservation is computed from the EA is
described in Book II, ForestaPC Virtual Environment Archi-
tecture.

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are bound-
edly undefined.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

0 4 10 16 27

13 RT RA D 12
0 4 10 16 27

13 RT RA D 13

 52 Storage Synchronization Instructions

Store Word Conditional Reserve D5-form

stwcr RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
if RESERVE then
 if RESERVE_ADDR=real_addr(EA) then
 MEM(EA,4) ← (RB) 32:63

 CR8 ← 0b0010

 else
 u ← undefined 1-bit value
 if u then MEM(EA,4) ← (RB) 32:63

 CR8 ← 0b00 || u || 0b0

 RESERVE ← 0
else
 CR8 ← 0b0000

Let the effective address (EA) be the sum (RA|0)+D.

If a reservation exists and the storage address specified by
the stwcr instruction is the same as that specified by the
Load and Reserve instruction that established the reserva-
tion, (RB)32:63 is stored into the word in storage addressed
by EA and the reservation is cleared.

If a reservation exists but the storage address specified by
the stwcr instruction is not the same as that specified by
the Load and Reserve instruction that established the res-
ervation, the reservation is cleared, and it is undefined
whether (RB)32:63 is stored into the word in storage
addressed by EA.

If the reservation does not exist, the instruction completes
without altering storage.

CR Field 8 is set to reflect whether the store operation was
performed, as follows:

CR8 = 0b00 || store_performed || 0b0

EA must be a multiple of 4. If it is not, either the system
alignment error handler is invoked or the results are bound-
edly undefined.

Special Registers Altered:
CR Field 8

Programming Note: The granularity with which reser-
vations are managed is implementation-depen-
dent. Therefore, the storage to be accessed by
the Load and Reserve and Store Conditional
Reserve instructions should be allocated by a
system library program. Additional information
can be found in Book II, ForestaPC Virtual Envi-
ronment Architecture.

0 4 10 16 22 27

13 d0 RA RB d1 2

Storage Access Instructions 53

Store Doubleword Conditional Reserve D5-form

stdcr RB,D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
if RESERVE then
 if RESERVE_ADDR=real_addr(EA) then
 MEM(EA,8) ← (RB)
 CR8 ← 0b0010

 else
 u ← undefined 1-bit value
 if u then MEM(EA,4) ← (RB)
 CR8 ← 0b00 || u || 0b0

 RESERVE ← 0
else
 CR8 ← 0b0000

Let the effective address (EA) be the sum (RA|0) + D.

If a reservation exists and the storage address specified by
the stdcr instruction is the same as that specified by the
Load and Reserve instruction that established the reserva-
tion, (RB) is stored into the word in storage addressed by
EA and the reservation is cleared.

If a reservation exists but the storage address specified by
the stdcr instruction is not the same as that specified by the
Load and Reserve instruction that established the reserva-
tion, the reservation is cleared, and it is undefined whether
(RB) is stored into the word in storage addressed by EA.

If the reservation does not exist, the instruction completes
without altering storage.

CR Field 8 is set to reflect whether the store operation was
performed, as follows:

CR8 = 0b00 || store_performed || 0b0

EA must be a multiple of 8. If it is not, either the system
alignment error handler is invoked or the results are bound-
edly undefined.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
CR Field 8

Programming Note: When correctly used, the Load
and Reserve and Store Conditional Reserve
instructions can provide an atomic update func-
tion for a single aligned word (Load Word And
Reserve and Store Word Conditional Reserve) or
doubleword (Load Doubleword And Reserve and
Store Doubleword Conditional Reserve) of stor-
age.

In general, correct use requires that Load Word
And Reserve be paired with Store Word Condi-
tional Reserve, and Load Doubleword And
Reserve with Store Doubleword Conditional
Reserve, with the same storage address specified
by both instructions of the pair. The only exception
is that a non-paired Store Word Conditional
Reserve or Store Doubleword Conditional
Reserve instruction to any (scratch) storage
address can be used to clear any reservation held
by the processor.

A reservation is cleared if any of the following
events occurs:

- The processor holding the reservation executes
another Load and Reserve instruction; this
clears the first reservation and establishes a new
one.

- The processor holding the reservation executes
a Store Conditional Reserve instruction to any
address.

- Another processor executes any Store instruc-
tion to the address associated with the reserva-
tion.

- Any mechanism, other than the processor hold-
ing the reservation, stores to the address associ-
ated with the reservation.

See Book II, ForestaPC Virtual Environment Archi-
tecture, for additional information.

0 4 10 16 22 27

13 d0 RA RB d1 9

 54 Storage Synchronization Instructions

Synchronize X10-form

sync

The sync instruction provides an ordering function for the
effects of all instructions executed by a given processor.
Executing a sync instruction ensures that all instructions
previously initiated by the given processor, as well as all
other instructions in the same VLIW as the sync instruction,
appear to have completed before the sync instruction com-
pletes, and that no subsequent instructions are initiated by
the given processor until after the sync instruction com-
pletes. When the sync instruction completes, all storage
accesses initiated by the given processor prior to the sync
will have been performed with respect to all other mecha-
nisms that access storage. (See Book II, ForestaPC Virtual
Environment Architecture, for a more complete description.
See also the section entitled “Table Update Synchroniza-
tion Requirements” in Book III, ForestaPC Operating Envi-
ronment Architecture, for an exception involving TLB
invalidates.)

The sync instruction must be the last instruction in a tree-
path, immediately preceding the branch primitive that ends
the path.

This instruction is execution synchronizing (see Book III,
ForestaPC Operating Environment Architecture).

Special Registers Altered:
None

Programming Note: The sync instruction can be
used to ensure that the results of all stores into a
data structure, performed in a “critical section” of a
program, are seen by other processors before the
data structure is seen as unlocked. Examples of
use of the sync instruction can be found in Book II,
ForestaPC Virtual Environment Architecture and
Book III, ForestaPC Operating Environment Archi-
tecture.

The functions performed by the sync instruction
will normally take a significant amount of time to
complete, so indiscriminate use of this instruction
may adversely affect performance. In addition, the
time required to execute sync may vary from one
execution to another.

The Enforce In-order Execution of I/O (eieio)
instruction, described in Book II, ForestaPC Virtual
Environment Architecture, may be more appropri-
ate than sync for many cases.

Engineering Note: The guarantee that sync ensures
that all prior stores have been performed with
respect to all other mechanisms that access stor-
age applies to coherent accesses. See Book II.

Engineering Note: Unlike a context synchronizing
operation, sync need not discard prefetched
instructions.

0 4 10 16 22

0 /// /// /// 825

Storage Access Instructions 55

4.11 Conditional Store Extender
Instructions

These instructions transform a store instruction into a two-
parcel primitive which executes in two adjacent slots in a
VLIW. The right-most slot used by the multiparcel primitive
contains a Conditional Store Extender instruction. The
Conditional Store Extender instructions are used to condi-
tion the execution of the store instruction in the left-adja-
cent parcel.

Conditional Store Extended instructions (two-parcel
instructions) are regarded as a single indivisible operation
for the purposes of VLIW semantics. That is, the results
from the operation consist of the results generated by the
two-parcel instruction.

Extend Conditional Store B10-form

xcst CRS,BC

if (left-adj-inst is store) then
 if (CRS BC(0:1) = BC 2) then

 perform store operation specified by
 left-adj-inst

If the instruction executing in the left-adjacent slot is a store
operation, and if the condition specified by the instruction is
true, then the store operation in the left-adjacent slot is per-
formed. If the condition specified by the instruction is false,
then the the store operation in the left-adjacent slot is not
performed.

If the left-adjacent parcel does not specify a store opera-
tion, the instruction form is invalid.

Special Registers Altered:
None

4.12 Store Extender Instructions

These instructions transform a primitive instruction into a
two-parcel primitive which executes in two adjacent slots in
a VLIW. The right-most slot used by the multiparcel primi-
tive contains a Store Extender instruction. The Store
Extender instructions are used to store the result computed
in the left-adjacent parcel that is placed in a GPR. Store
Extender instructions cannot be used to extend a Load
instruction.

Store Extended instructions (two-parcel instructions) are
regarded as a single indivisible operation for the purposes
of VLIW semantics. That is, the results from the operation
consist of the results generated by the two-parcel instruc-
tion.

Extend Store Doubleword D10-form

xstd D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
if left-adj-inst specifies RT then
 MEM(EA,8) ← (RT) computed
 by left-adj-op

Let the effective address (EA) be the sum (RA|0) + D. If the
instruction executing in the left-adjacent slot targets a Gen-
eral Purpose Register, the result from the operation in the
left-adjacent slot is stored into the doubleword in storage
addressed by EA.

If the left-adjacent parcel does not specify a target General
Purpose Register, or is a Load instruction, the instruction
form is invalid.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

0 4 8 11 22

0 CRS BC /// 779

0 4 10 16 22

0 d0 RA d1 / 776

 56 Store Extender Instructions

Extend Store Word D10-form

xstw D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
if left-adj-inst specifies RT then
 MEM(EA,4) ← (RT) 32:63 computed

 by left-adj-op

Let the effective address (EA) be the sum (RA|0) + D. If the
instruction executing in the left-adjacent slot targets a Gen-
eral Purpose Register, bits 32:63 of the result from the
operation in the left-adjacent slot are stored into the word in
storage addressed by EA.

If the left-adjacent parcel does not specify a target General
Purpose Register, or is a Load instruction, the instruction
form is invalid.

Special Registers Altered:
None

Extend Store Halfword D10-form

xsth D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
if left-adj-inst specifies RT then
 MEM(EA,2) ← (RT) 48:63 computed

 by left-adj-op

Let the effective address (EA) be the sum (RA|0) + D. If the
instruction executing in the left-adjacent slot targets a Gen-
eral Purpose Register, bits 48:63 of the result from the
operation in the left-adjacent slot are stored into the half-
word in storage addressed by EA.

If the left-adjacent parcel does not specify a target General
Purpose Register, or is a Load instruction, the instruction
form is invalid.

Special Registers Altered:
None

0 4 10 16 22

0 d0 RA d1 / 778
0 4 10 16 22

0 d0 RA d1 / 777

Storage Access Instructions 57

Extend Store Byte D10-form

xstb D(RA)

D ← d 0 || d 1

if RA = 0 then b ← 0
else b ← (RA)
EA ← b + D
if left-adj-inst specifies RT then
 MEM(EA,1) ← (RT) 56:63 computed

 by left-adj-op

Let the effective address (EA) be the sum (RA|0) + D. If the
instruction executing in the left-adjacent slot targets a Gen-
eral Purpose Register, bits 56:63 of the result from the
operation in the left-adjacent slot are stored into the half-
word in storage addressed by EA.

If the left-adjacent parcel does not specify a target General
Purpose Register, or is a Load instruction, the instruction
form is invalid.

Special Registers Altered:
None

0 4 10 16 22

0 d0 RA d1 / 775

 58 Store Extender Instructions

Fixed-Point Instructions 59

Chapter 5. Fixed-Point Instructions

This chapter describes the Fixed-Point Instructions. Sec-
tion 5.1 describes the registers accessible by fixed-point
instructions, Section 5.2 describes general features associ-
ated with these instructions, whereas the remaining sec-
tions describe the corresponding instructions.

5.1 Registers

The set of registers accessible by Fixed-Point instructions
consists of

• sixty-four General Purpose Registers (GPRs)

• sixty-four Floating-Point Registers (FPRs) (only for
Commit instructions)

• the 64-bit Condition Register (CR)

• three Branch Registers (BRs)

• the 32-bit Fixed-Point Status Register (XSR)

• the 32-bit Floating-Point Status and Control Register

• the 64-bit GPR Delayed Exceptions Register (GRDX)
and the 64-bit FPR Delayed Exceptions Register
(FPDX)

• the 16-bit CR Delayed Exceptions Register (CRDX)

See Chapter 2., “Registers in the ForestaPC Architecture,”
on page 21 for a complete description of these registers
and their fields.

5.2 General Features

Most Fixed-Point instructions operate on data stored in
General Purpose Registers and/or the Condition Register,
and place the result(s) in these same registers. In addition,
Fixed-Point instructions may set one bit in the GPR
Delayed Exceptions Register, and one bit in the CR
Delayed Exceptions Register.

These instructions treat the source operands as signed
integers unless the instruction is explicitly identified as per-
forming an unsigned operation.

Floating-Point Registers may be the source or destination
of Commit instructions. Special Purpose Registers may be
the source or destination of Move Special-Purpose Regis-
ter instructions, and other specific instructions.

Some Fixed-Point instructions specify a Condition Register
Field field which is set depending on the result of the oper-
ation. Instructions which do not specify such a field may be
augmented with an Extend Immediate and Condition Reg-
ister (xicr) instruction in the right-adjacent slot (composing
a two-word primitive); the Extender primitive specifies the
Condition Register Field to be set by the instruction.

If the primitive instruction specifies a Condition Register
Field, or if the instruction is augmented with a xicr primitive,
the first three bits of the specified CR field are set to char-
acterize the result placed into the target register. In 64-bit
mode, these bits are set by signed comparison of the result
to zero. In 32-bit mode, these bits are set by signed com-
parison of the low-order 32 bits of the result to zero.

Fixed-Point instructions generate a XSR-Image; when aug-
mented with an Extend XSR (xsrx) primitive in the right-
adjacent slot (composing a two-word primitive), the XSR-
Image is placed in the GPR specified by the xsrx primitive.

Unless otherwise noted and when appropriate, when a CR
field and the XRS-Image are set, they reflect the value
placed into the target register.

Fixed-Point instructions are speculated without explicit indi-
cation; the programmer/compiler is in charge of keeping
track of speculative results.

 60 Branch Register Instructions

Any Fixed-Point instruction other than a Commit instruction
using an operand whose associated bit in GRDX or CRDX
is set to 1, sets to 1 the bit in GRDX and/or CRDX associ-
ated with the target register of the instruction; the contents
of the target register (or register field) are undefined.

Any Commit instruction using an operand whose associ-
ated bit in GRDX, FPDX, or CRDX is set to 1, generates a
delayed exception.

The description of instructions in this chapter does not
include the setting of GRDX or CRDX; it is assumed that
instructions follow the rules described above regarding
these entities.

5.3 Branch Register Instructions

These instructions are used to place instruction addresses
into the Branch Registers (for example, computing the
return address before performing a procedure call or sys-
tem call), or to copy the Branch Registers. The Branch
Registers are also accessed with instructions mtspr, mfspr.

Compute Branch Register Immediate B2-form

cbri BRT,ADDR

BRT ← (CIA) 0:37 || ADDR || 0b00

The value CIA0:37 || ADDR || 0b00 is placed into Branch
Register BRT.

Special Registers Altered:
BRT

XSR-Image Fields Generated:
None

Move Branch Register X10-form

mbr BRT,BRS

BRT ← (BRS)

The contents of Branch Register BRS are placed into
Branch Register BRT.

Special Registers Altered:
Branch register BRT

XSR-Image Fields Generated:
None

0 4 6 30

10 BRT ADDR 1

0 4 6 10 12 16 22

0 BRT // BRS // /// 816

Fixed-Point Instructions 61

5.4 Condition Register Logical
Instructions

These instructions are used to perform logical operations
on individual bits of the Condition Register. These instruc-
tions refer to the Condition Register as a register that con-
tains 64 single bits, rather than as a register that contains
4-bit fields. This alternate view of the CR is denoted by
CRB.

Extended mnemonics for Condition Register
logical operations

A set of extended mnemonics allows additional Condition
Register logical operations, beyond those provided by the
basic Condition Register Logical instructions, to be easily
coded. Some of these are shown as examples with the CR
Logical instructions.

Condition Register AND X10-form

crand BT,BA,BB

CRBBT ← CRBBA & CRB BB

The bit in the Condition Register specified by BA is ANDed
with the bit in the Condition Register specified by BB and
the result is placed into the bit in the Condition Register
specified by BT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Condition Register OR X10-form

cror BT,BA,BB

CRBBT ← CRBBA | CRB BB

The bit in the Condition Register specified by BA is ORed
with the bit in the Condition Register specified by BB and
the result is placed into the bit in the Condition Register
specified by BT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
crmove Bx,By cror Bx,By,By

0 4 10 16 22

0 BT BA BB 128

0 4 10 16 22

0 BT BA BB 133

 62 Condition Register Logical Instructions

Condition Register XOR X10-form

crxor BT,BA,BB

CRBBT ← CRBBA ⊕ CRBBB

The bit in the Condition Register specified by BA is XORed
with the bit in the Condition Register specified by BB and
the result is placed into the bit in the Condition Register
specified by BT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
crclr Bx crxor Bx,Bx,Bx

Condition Register NAND X10-form

crnand BT,BA,BB

CRBBT ← ¬(CRBBA & CRB BB)

The bit in the Condition Register specified by BA is ANDed
with the bit in the Condition Register specified by BB and
the complemented result is placed into the bit in the Condi-
tion Register specified by BT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Condition Register NOR X10-form

crnor BT,BA,BB

CRBBT ← ¬(CRBBA | CRB BB)

The bit in the Condition Register specified by BA is ORed
with the bit in the Condition Register specified by BB and
the complemented result is placed into the bit in the Condi-
tion Register specified by BT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
crnot Bx,By cror Bx,By,By

Condition Register Equivalent X10-form

creqv BT,BA,BB

CRBBT ← CRBBA ≡ CRBBB

The bit in the Condition Register specified by BA is XORed
with the bit in the Condition Register specified by BB and
the complemented result is placed into the bit in the Condi-
tion Register specified by BT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
crset Bx creqv Bx,Bx,Bx

0 4 10 16 22

0 BT BA BB 135

0 4 10 16 22

0 BT BA BB 131

0 4 10 16 22

0 BT BA BB 132

0 4 10 16 22

0 BT BA BB 130

Fixed-Point Instructions 63

Condition Register AND with Complement X10-
form

crandc BT,BA,BB

CRBBT ← CRBBA & ¬CRBBB

The bit in the Condition Register specified by BA is ANDed
with the complement of the bit in the Condition Register
specified by BB and the result is placed into the bit in the
Condition Register specified by BT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Condition Register OR with Complement X10-
form

crorc BT,BA,BB

CRBBT ← CRBBA | ¬CRBBB

The bit in the Condition Register specified by BA is ORed
with the complement of the bit in the Condition Register
specified by BB and the result is placed into the bit in the
Condition Register specified by BT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

0 4 10 16 22

0 BT BA BB 129

0 4 10 16 22

0 BT BA BB 134

 64 Condition Register Field Instructions

5.5 Condition Register Field Instructions

These instructions are used to move data to/from fields of
the Condition Register.

Move Condition Register Field X10-form

mcrf CRT,CRS

CRCRT ← CRCRS

The contents of Condition Register field CRS are copied
into Condition Register field CRT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Move Condition Register Field Immediate X10-
form

mcrfi CRT,CRI

CRCRT ← CRI

The contents of the immediate field CRI are placed into
Condition Register field CRT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Move to Condition Register Field X10-form

mtcrf CRT,RA

CRCRT ← RA 60:63

The contents of bits 60:63 from register RA are placed into
Condition Register field CRT.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Move From Condition Register Field X10-form

mfcrf RT,CRS

RT ← 600 || CRCRS

The contents of Condition Register field CRS are placed
into bits 60:63 of register RT. RT0:59 are set to 0.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 8 10 16 20 22

0 CRT / /// CRS / 802

0 4 8 10 16 20 22

0 CRT / /// CRI / 803

0 4 8 10 16 22

0 CRT // RA /// 801

0 4 10 16 20 22

0 RT /// CRS / 800

Fixed-Point Instructions 65

5.6 Condition Register Instructions

These instructions are used to move data to/from the Con-
dition Register.

Move From Condition Register X10-form

mfcr RT

RT ← CR

The contents of the Condition Register are placed into
General Purpose Register RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Move From Condition Register Word X10-form

mfcrw RT,L

if L = 0 then

 RT ← 320 || CR8:15

else

 RT ← 320 || CR0:7

If L = 0, the contents of Condition Register Fields 8 through
15 are placed into the low-order 32 bits of register RT. If
L=1, the contents of Condition Register Fields 0 through 7
are placed into the low-order 32 bits of register RT. The
high-order 32 bits of register RT are set to zero.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 22

0 RT // /// 835

0 4 10 15 16 22

0 RT // L /// 805

 66 Condition Register Instructions

Move to Condition Register X10-form

mtcr RB

CR ← (RB)

The contents of General-Purpose Register RB are placed
into the Condition Register.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

Move to Condition Register Word X10-form

mtcrw L,RB

if L = 0 then
 CR 8:15 ← (RB) 32:63

else
 CR 0:7 ← (RB) 32:63

If L = 0, the contents of bits 32:63 of register RB are placed
into Condition Register Fields 8 through 15. If L = 1, the
contents of bits 32:63 of register RB are placed into the
Condition Register Fields 0 through 7.

Special Registers Altered:
CR

XSR-Image Fields Generated:
None

0 4 10 16 22

0 // // RB 836

0 4 10 15 16 22

0 // // L RB 806

Fixed-Point Instructions 67

5.7 Extender Instructions

The Extender instructions are used to extend the capabili-
ties of other primitive instructions. In particular, Extender
instructions are used to

• generate 32-bits immediate fields;

• provide the ability to set a Condition Register field in
instructions which do not specify a CR field;

• provide the ability to save a XSR-Image in a GPR;

• provide the ability to save a FSR-Image in a GPR;

• provide the ability to generate an exception based on
the results from another fixed-point or floating-point
operation;

• provide an additional operand to some fixed-point
instructions.

Extender instructions transform a primitive instruction into
a two-parcel primitive which executes in two adjacent slots
in a VLIW. The right-most slot used by the multiparcel prim-
itive contains the Extender instruction, whereas the slot to
its left contains the instruction being extended.

Extended instructions (two-parcel instructions) are
regarded as a single indivisible operation for the purposes
of VLIW semantics and pruning. That is, the results from
the operation consist of the results generated by the two-
parcel instruction.

Extend Immediate and Condition Register I8-form

xicr CRT,SI

SI ← si 0 || si 1

to_left_slot ← SI || CRT

This instruction provides additional fields to the left-adja-
cent execution slot.

If the instruction in the left-adjacent slot has a 16-bit imme-
diate field, the 16-bit immediate value SI is appended to the
16-bit immediate value in the left-adjacent slot as the high-
order bits, to produce a 32-bit immediate value which is
used by the operation specified in the left-adjacent slot.

If the instruction in the left-adjacent slot does not specify a
target CR field, the 4-bit value CRT is used to specify a CR
field which is set according to the results of the operation in
the left-adjacent slot.

This instruction can be paired only with instructions that
have a 16-bit immediate field, with instructions that do not
have a target CR field, or with trap immediate instructions;
otherwise, the instruction form is invalid.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Programming Note: The xicr instruction is a mecha-
nism for allowing an arithmetic instruction with-
out a CRT field to target a Condition Register
Field. When the xicr instruction is paired with an
instruction which does not have an immediate
field, the only purpose of the xicr instruction is to
provide the target CR field (the SI field is ignored).

0 4 8 16 24

15 CRT si1 si0 0

 68 Extender Instructions

Extend XSR X10-form

xsrx RT,CRT,XM

if left_adj_inst is arith_fixed_point then
 to_left_slot ← CRT
 RT ← XSR-image from left_adj_inst

If the instruction in the left-adjacent slot is a Fixed-Point
Arithmetic instruction, a Fixed-Point Multiply/Divide instruc-
tion, or a Shift Right Algebraic instruction, the Fixed-Point
Status Image (XSR-Image) generated by the instruction in
the left-adjacent slot is placed in register RT. Only the XSR
bits specified by the XM mask are saved, as follows:

OV if XM0 = 1
CA if XM1 = 1

If the instruction in the left-adjacent slot does not specify a
target CR field, the 4-bit value CRT is used to specify a CR
field which is set according to the results of the operation in
the left-adjacent slot.

If the instruction in left-adjacent slot is not a Fixed-Point
Arithmetic instruction, a Fixed-Point Multiply/Divide
instruction, or a Shift Right Algebraic instruction, the
instruction form is invalid.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Extended Extend XSR X10-form

xsrxe RT,CRT,RA,XM

if left_adj_inst is arith_fixed_point then
 left_adj_RT ← left_adj_op + RA CA

 to_left_slot ← CRT
 RT ← XSR-image from left_adj_inst

If the instruction in the left-adjacent slot is a Fixed-Point
Arithmetic instruction, the CA bit from the XSR-Image in
register RA is added to the result of that instruction. The
final result is placed into the target register specified in the
left-adjacent slot.

The Fixed-Point Status Image (XSR-Image) generated by
the instruction in the left-adjacent slot is placed in register
RT. Only the XSR bits specified by the XM mask are saved,
as follows:

OV if XM0 = 1
CA if XM1 = 1

If the instruction in the left-adjacent slot does not specify a
target CR field, the 4-bit value CRT is used to specify a CR
field which is set according to the results of the operation in
the left-adjacent slot.

If the instruction in left-adjacent slot is not a Fixed-Point
Arithmetic instruction, the instruction form is invalid.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

0 4 10 16 20 22

0 RT // CRT XM 771
0 4 10 16 20 22

0 RT RA CRT XM 772

Fixed-Point Instructions 69

Extend FSR X10-form

xfps RT,FM

if left_adj_inst is float_point then
 RT ← FSR-image from left_adj_inst

If the instruction in the left-adjacent slot is a Floating-Point
instruction other than a Floating-Point Move instruction or a
Floating-Point Select instruction, the Floating-Point Status
Image (FSR-Image) generated by the instruction in the left-
adjacent slot is placed in register RT. Only the FSR fields
specified by the FM mask are saved, as follows:

FX OX if FM0 = 1
UX ZX XX VXSNAN if FM1 = 1
VXISI VXIDI VXZDZ VXIMZ if FM2 = 1
VXVC if FM3 = 1
VXSOFT VXSQRT VXCVI if FM4 = 1
FPRF FR FI if FM5 = 1

If the instruction in the left-adjacent slot is not a Floating-
Point instruction other than a Floating-Point Move instruc-
tion or a Floating-Point Select instruction, the instruction
form is invalid.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Extend XSR and Trap X10-form

xtx RT,CRT,XM

if left_adj_inst is arith_fixed_point then
 to_left_slot ← CRT
 RT ← XSR-image from left_adj_inst
 if XM 0 & (XSR-image OV from left_adj_op) |

 XM 1 & (XSR-image CA from left_adj_op)

 then TRAP

If the instruction in the left-adjacent slot is a Fixed-Point
Arithmetic instruction, a Fixed-Point Multiply/Divide instruc-
tion, or a Shift Right Algebraic instruction, the Fixed-Point
Status Image (XSR-Image) generated by the instruction in
the left-adjacent slot is placed in register RT. Only the XSR
bits specified by the XM mask are saved, as follows:

OV if XM0 = 1
CA if XM1 = 1

If the instruction in the left-adjacent slot does not specify a
target CR field, the 4-bit value CRT is used to specify a CR
field which is set according to the results of the operation in
the left-adjacent slot.

If any bit in the XSR-Image generated by the instruction in
the left-adjacent slot is set to 1, and the corresponding bit
in the XM mask is 1, then the system trap handler is
invoked.

If the instruction in the left-adjacent slot is not a Fixed-Point
Arithmetic instruction, a Fixed-Point Multiply/Divide instruc-
tion, or a Shift Right Algebraic instruction, the instruction
form is invalid.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 22

0 RT /// FM 770
0 4 10 16 20 22

0 RT /// CRT XM 774

 70 Extender Instructions

Extend FSR and Trap X10-form

xtf RT,FM

if left-adj-inst is arith-float-point
 RT ← FSR-image from left_adj_inst
 if FM 0 & (FSR-image xx from left-adj-op) |

 FM 1 & (FSR-image xx from left-adj-op) |

 then TRAP

If the instruction in the left-adjacent slot is a Floating-Point
Arithmetic instruction, the Floating-Point Status Image
(FSR-Image) generated by the instruction in the left-adja-
cent slot is placed in register RT. Only the FSR fields spec-
ified by the FM mask are saved, as follows:

FX OX if FM0 = 1
UX ZX XX VXSNAN if FM1 = 1
VXISI VXIDI VXZDZ VXIMZ if FM2 = 1
VXVC if FM3 = 1
VXSOFT VXSQRT VXCVI if FM4 = 1
FPRF FR FI if FM5 = 1

If any bit in the FSR-Image is set to 1, and the correspond-
ing bit in the FM mask is 1, then the system trap handler is
invoked.

If the instruction in the left-adjacent slot is not a Floating-
Point Arithmetic instruction, the instruction form is invalid.

Special Registers Altered:
None

FSR-Image Fields Generated:
None

Extend Add X10-form

xadd RT,RA,XM

if left_adj_inst is (arith_fixed_point or
 logic_fixed_point) then
 left_adj_RT = left_adj_op + RA
 RT ← XSR-image from (left_adj_op + RA)

If the instruction in the left-adjacent slot is a Fixed-Point
Arithmetic or Fixed-Point Logical instruction, the contents
of register RA are added to the result of that instruction.
The final result is placed into the target register specified in
the left-adjacent slot.

The Fixed-Point Status Image (XSR-Image) generated by
the operation in the left-adjacent slot is placed in register
RT. Only the XSR bits specified by the XM mask are saved,
as follows:

OV if XM0 = 1
CA if XM1 = 1

If the left-adjacent slot is not executing a Fixed-Point Arith-
metic or Fixed-Point Logical instruction, the instruction
form is invalid.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 22

0 RT fm0 fm1 773
0 4 10 16 20 22

0 RT RA /// XM 768

Fixed-Point Instructions 71

Extend Subtract X10-form

xsub RT,RA,XM

if left_adj_inst is (arith_fixed_point or
 logic_fixed_point) then
 left_adj_RT = left_adj_op - RA
 RT ← XSR-image from (left_adj_op - RA)

If the instruction in the left-adjacent slot is a Fixed-Point
Arithmetic or Fixed-Point Logical instruction, the contents
of register RA are subtracted from the result of that instruc-
tion. The final result is placed into the target register speci-
fied in the left-adjacent slot.

The Fixed-Point Status Image (XSR-Image) generated by
the operation in the left-adjacent slot is placed in register
RT. Only the XSR bits specified by the XM mask are saved,
as follows:

OV if XM0 = 1
CA if XM1 = 1

If the left-adjacent slot is not executing a Fixed-Point Arith-
metic or Fixed-Point Logical instruction, the instruction
form is invalid.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 20 22

0 RT RA /// XM 769

 72 Fixed-Point Arithmetic Instructions

5.8 Fixed-Point Arithmetic Instructions

These instructions are used to perform addition and sub-
traction operations on data in the General Purpose Regis-
ters, placing the result in a GPR. In addition, these
instructions may set a Condition Register Field.

Some Fixed-Point Arithmetic instructions do not specify a
Condition Register Field to be set according to the result of
the instruction. These instructions can be augmented with
an Extender instruction, composing a two-parcel primitive;
the Extender primitive specifies a Condition Register Field.

Fixed-Point Arithmetic instructions can be augmented with
an Extend XSR instruction, composing a two-parcel primi-
tive; the Extender primitive is used to place a Fixed-Point
Status Image (XSR-Image) in a General Purpose Register.
A mask field in the Extend XSR instruction indicates which
bits of the Fixed-Point Status Image are saved.

If the Extend XSR instruction specifies the CA bit, that bit is
set to reflect the carry out of bit 0 in 64-bit mode, and out of
bit 32 in 32-bit mode.

If the Extend XSR instruction specifies the OV bit, that bit is
set to reflect overflow of the result. The setting of this bit is
mode-dependent, and reflects overflow of the 64-bit result
in 64-bit mode, and overflow of the low-order 32-bit result
in 32-bit mode.

If bits CA and OV are set differently, their setting is indi-
cated with the specific instructions.

Programming Note: Notice that the CR field may not
reflect the “true” (infinitely precise) result if over-
flow occurs.

Extended mnemonics for addition and
subtraction

Extended mnemonics are provided that use the Add Imme-
diate and Add Byte Immediate instructions to load an
immediate value into a target register. Some of these are
shown as examples with the corresponding primitive
instructions.

Extended mnemonics are provided that use the Extend
XSR instruction to implement the PowerPC architecture
Carrying, Overflow and Extended form of Add and Subtract
instructions. Some of these are shown as examples with
the corresponding primitive instructions.

The ForestaPC architecture supplies Subtract From
instructions, which subtract the second operand from the
third. A set of extended mnemonics that uses the more
“normal” order is provided, in which the third operand is
subtracted from the second, with the third operand being
either an immediate field or a register. Some of these are
shown as examples with the appropriate Add and Subtract
From instructions.

Fixed-Point Instructions 73

Add X6-form

add RT,CRT,RA,RB

RT ← (RA) + (RB)

The sum (RA) + (RB) is placed into register RT.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
CA, OV

Examples of Extended Mnemonics:
Extended: Equivalent to:
addc Rx,Rw,Ry,Rz add Rx,cr0,Ry,Rz || xsrx Rw,cr0,1
addo Rx,Rw,Ry,Rz add Rx,cr0,Ry,Rz || xsrx Rw,cr0,2
addco Rx,Rw,Ry,Rz add Rx,cr0,Ry,Rz || xsrx Rw,cr0,3
adde Rx,Rw,Ry,Rz,Rv add Rx,cr0,Ry,Rz || xsrxe Rw,cr0,Rv,1
addeo Rx,Rw,Ry,Rz,Rv add Rx,cr0,Ry,Rz || xsrxe Rw,cr0,Rv,3

Add Immediate I0-form

addi RT,RA,SI

if RA = 0 then RT ← EXTS(SI)
else RT ← (RA) + EXTS(SI)

The sum (RA|0) + SI is placed into register RT.

Special Registers Altered:
None

XSR-Image Fields Generated:
CA, OV

Examples of Extended Mnemonics:
Extended: Equivalent to:
li Rx,value addi Rx,0,value
la Rx,displ(Ry) addi Rx,Ry,disp
addis Rx,Ry,value addi Rx,Ry,0 || xicr cr0,value
addic Rx,Rw,Ry,value addi Rx,Ry,value || xrsx Rw,cr0,1
subi Rx,Ry,value addi Rx,Ry,-value
addze Rx,Rw,Ry,Rv addi Rx,Ry,0 || xrsxe Rw,cr0,Rv,1
addzeoRx,Rw,Ry,Rv addi Rx,Ry,0 || xrsxe Rw,cr0,Rv,3

Programming Note: addi uses the value 0, not the
contents of GPR(0), if RA = 0.

0 4 10 16 22 26

14 RT RA RB CRT 16
0 4 10 16

1 RT RA SI

 74 Fixed-Point Arithmetic Instructions

Subtract From X6-form

subf RT,CRT,RA,RB

RT ← ¬(RA) + (RB) + 1

The sum ¬(RA) + (RB) + 1 is placed into register RT.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
CA,OV

Examples of Extended Mnemonics:
Extended: Equivalent to:
sub Rx,Ry,Rz subf Rx,cr0,Rz,Ry
subfc Rx,Rw,Ry,Rz subf Rx,cr0,Ry,Rz|| xsrx Rw,cr0,1
subfo Rx,Rw,Ry,Rz subf Rx,cr0,Ry,Rz|| xsrx Rw,cr0,2
subfco Rx,Rw,Ry,Rz subf Rx,cr0,Ry,Rz|| xsrx Rw,cr0,3
subc Rx,Rw,Ry,Rz subf Rx,cr0,Rz,Ry|| xsrx Rw,cr0,1

Subtract From Immediate I0-form

subfi RT,RA,SI

RT ← ¬(RA) + EXTS(SI) + 1

The sum ¬(RA) + SI + 1 is placed into register RT.

Special Registers Altered:
None

XSR-Image Fields Generated:
CA,OV

Examples of Extended Mnemonics:
Extended: Equivalent to:
subfic Rx,Rw,Ry,value subfi Rx,Ry,value || xsrx Rw,cr0,1
neg Rx,Rw,Ry subfi Rx,Ry,0
nego Rx,Rw,Ry subfi Rx,Ry,0 || xsrx Rw,cr0,2

Programming Note: In 64-bit mode, if register RA
contains the most negative 64-bit number
(0x8000_0000_0000_0000) and SI = 0, the result
is the most negative number, and XSR-Image bit
OV is set to 1. Similarly, in 32-bit mode if (RA)32:63

contains the most negative number
(0x8000_0000) and SI = 0, the low order 32 bits of
the result contain the most negative 32-bit num-
ber, and XSR-Image bit OV is set to 1.

Programming Note:
The setting of XSR-Image bit CA by the Add and
Subtract instructions, including the Extended ver-
sions thereof, is mode-dependent. If a sequence
of these instructions is used to perform extended-
precision addition or subtraction, the same mode
should be used throughout the sequence.

0 4 10 16 22 26

14 RT RA RB CRT 17
0 4 10 16

2 RT RA SI

Fixed-Point Instructions 75

5.9 Fixed-Point Multiply and Divide
Instructions

These instructions are used to perform multiplication and
division operations on data in the General Purpose Regis-
ters, placing the result in a GPR.

Fixed-Point Multiply and Divide instructions do not specify
a Condition Register Field to be set according to the result
of the instruction. These instructions can be augmented
with an Extender instruction, composing a two-parcel prim-
itive; the Extender primitive specifies a Condition Register
Field.

Fixed-Point Multiply and Divide instructions can be aug-
mented with an Extend XSR instruction, composing a two-
parcel primitive; the Extender primitive is used to place a
Fixed-Point Status Image (XSR-Image) in a General Pur-
pose Register. A mask field in the Extend XSR instruction
indicates which bits of the Fixed-Point Status Image are
saved.

If the Extend XSR instruction specifies the OV bit, that bit is
set to reflect overflow of the result. The setting of this bit is
mode-dependent, and reflects overflow of the 64-bit result
in 64-bit mode, and overflow of the low-order 32-bit result
in 32-bit mode.

If bit OV is set differently, its setting is indicated with the
specific instructions.

.

Multiply Low Immediate I0-form

mulli RT,RA,SI

prod 0:127 ← (RA) × EXTS(SI)

RT ← prod 64:127

The 64-bit first operand is (RA). The 64-bit second operand
is the sign-extended value of the SI field. The low-order 64-
bits of the 128-bit product of the operands are placed into
register RT.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

0 4 10 16

3 RT RA SI

 76 Fixed-Point Multiply and Divide Instructions

Multiply Low Doubleword X10-form

mulld RT,RA,RB

prod 0:127 ← (RA) × (RB)

RT ← prod 64:127

The 64-bit operands are (RA) and (RB). The low-order 64
bits of the 128-bit product of the operands are placed into
register RT.

XSR-Image field OV is set to 1 if the product cannot be rep-
resented in 64 bits.

Both the operands and the product are interpreted as
signed integers.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Examples of Extended Mnemonics:
Extended: Equivalent to:
mulldo Rx,Ry,Rz mulld Rx,Ry,Rz || xsrx Rw,cr0,2

Multiply Low Word X10-form

mullw RT,RA,RB

RT ← (RA) 32:63 × (RB) 32:63

The 32-bit operands are the low order 32-bits of (RA) and
(RB). The 64-bit product of the operands is placed into reg-
ister RT.

XSR-Image field OV is set to 1 if the product cannot be rep-
resented in 32 bits.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Examples of Extended Mnemonics:
Extended: Equivalent to:
mullwo Rx,Ry,Rz mullw Rx,Ry,Rz || xsrxRw,cr0,2

Programming Note: For mulli and mullw, the low-
order 32 bits of the product are the correct 32-bit
product for 32-bit mode.

For mulli and mulld, the low order 64 bits of the
product are independent of whether the operands
are regarded as signed or unsigned 64-bit inte-
gers. For mulli and mullw, the low order 32 bits of
the product are independent of whether the oper-
ands are regarded as signed or unsigned 32-bit
integers.

0 4 10 16 22

0 RT RA RB 276
0 4 10 16 22

0 RT RA RB 277

Fixed-Point Instructions 77

Multiply High Doubleword X10-form

mulhd RT,RA,RB

prod 0:127 ← (RA) × (RB)

RT ← prod 0:63

The 64-bit operands are (RA) and (RB). The high-order 64
bits of the 128-bit product of the operands are placed into
register RT.

Both the operands and the product are interpreted as
signed integers.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Multiply High Doubleword Unsigned X10-form

mulhdu RT,RA,RB

prod 0:127 ← (RA) × (RB)

RT ← prod 0:63

The 64-bit operands are (RA) and (RB). The high-order 64
bits of the 128-bit product of the operands are placed into
register RT.

Both the operands and the product are interpreted as
unsigned integers.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Programming Note: If this instruction is extended
with an Extender instruction specifying a CRT
field, the first three bits of the CR field specified by
the Extender are set by signed comparison of the
result to zero.

0 4 10 16 22

0 RT RA RB 272
0 4 10 16 22

0 RT RA RB 273

 78 Fixed-Point Multiply and Divide Instructions

Multiply High Word X10-form

mulhw RT,RA,RB

prod 0:63 ← (RA) 32:63 × (RB) 32:63

RT32:63 ← prod 0:31

RT0:31 ← undefined

The 32-bit operands are the low order 32 bits of (RA) and
(RB). The high-order 32 bits of the 64-bit product of the
operands are placed into register RT32:63. RT0:31 are unde-
fined.

Both the operands and the product are interpreted as
signed integers.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Multiply High Word Unsigned X10-form

mulhwu RT,RA,RB

prod 0:63 ← (RA) 32:63 × (RB) 32:63

RT32:63 ← prod 0:31

RT0:31 ← undefined

The 32-bit operands are the low order 32 bits of (RA) and
(RB). The high-order 32 bits of the 64-bit product of the
operands are placed into register RT32:63. RT0:31 are unde-
fined.

Both the operands and the product are interpreted as
unsigned integers.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Programming Note: If this instruction is extended
with a xicr instruction, the first three bits of the CR
field specified by the Extender are set by signed
comparison of the result to zero.

0 4 10 16 22

0 RT RA RB 274
0 4 10 16 22

0 RT RA RB 275

Fixed-Point Instructions 79

Divide Doubleword X10-form

divd RT,RA,RB

dividend 0:63 ← (RA)

divisor 0:63 ← (RB)

RT ← dividend ÷ divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB). The
64-bit quotient of the dividend and divisor is placed into
register RT. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as
signed integers. The quotient is the unique signed integer
that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r ≤ |divisor| if the dividend is non-negative, and
-|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

 0x8000_0000_0000_0000 ÷ -1
 <anything> ÷ 0

then the contents of register RT are undefined.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Programming Note: If this instruction is extended
with an xicr instruction, and the value placed in
register RT by this instruction is undefined, the
contents of bits LT, GT, and EQ in the CR field
specified by the Extender are also undefined. If
OV is specified, it is set to 1.

Programming Note: The 64-bit signed remainder of
dividing (RA) by (RB) can be computed as fol-

lows, except in the case that (RA) = -263 and (RB)
= -1.

divd RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

0 4 10 16 22

0 RT RA RB 192

 80 Fixed-Point Multiply and Divide Instructions

Divide Word X10-form

divw RT,RA,RB

dividend 0:63 ← EXTS((RA) 32:63)

divisor 0:63 ← EXTS((RB) 32:63)

RT32:63 ← dividend ÷ divisor

RT0:31 ← undefined

The 64-bit dividend is the sign-extended value of (RA)32:63.
The 64-bit divisor is sign-extended value of (RB)32:63. The
64-bit quotient is formed. The low-order 32 bits of the 64-bit
quotient are placed into register RT32:63. RT0:31 are unde-
fined. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as
signed integers. The quotient is the unique signed integer
that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r ≤ |divisor| if the dividend is non-negative, and
-|divisor| < r ≤ 0 if the dividend is negative.

If an attempt is made to perform any of the divisions

 0x8000_0000 ÷ -1
 <anything> ÷ 0

then the contents of register RT are undefined.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Programming Note: If this instruction is extended
with an xicr instruction, and the value placed in
register RT by this instruction is undefined, the
contents of bits LT, GT, and EQ in the CR field
specified by the Extender are also undefined. If
OV is specified, it is set to 1.

Programming Note: The 32-bit signed remainder of
dividing (RA)32:63 by (RB)32:63 can be computed

as follows, except in the case that (RA)32:63 = -231
and (RB)32:63 = -1.

divw RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient*divisor

subf RT,RT,RA # RT = remainder

0 4 10 16 22

0 RT RA RB 194

Fixed-Point Instructions 81

Divide Doubleword Unsigned X10-form

divdu RT,RA,RB

dividend 0:63 ← (RA)

divisor 0:63 ← (RB)

RT ← dividend ÷ divisor

The 64-bit dividend is (RA). The 64-bit divisor is (RB). The
64-bit quotient of the dividend and divisor is placed into
register RT. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as
unsigned integers, except that if the instruction is extended
with a xicr instruction, the first three bits of the specified CR
field are set by signed comparison of the result to zero. The
quotient is the unique unsigned integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r ≤ divisor.

If an attempt is made to perform the division

 <anything> ÷ 0

then the contents of register RT are undefined.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Programming Note: If this instruction is extended
with an xicr instruction, and the value placed in
register RT by this instruction is undefined, the
contents of bits LT, GT, and EQ in the CR field
specified by the Extender are also undefined. If
OV is specified, it is set to 1.

Programming Note: The 64-bit unsigned remainder
of dividing (RA) by (RB) can be computed as fol-
lows:

divdu RT,RA,RB # RT = quotient
mulld RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

0 4 10 16 22

0 RT RA RB 193

 82 Fixed-Point Multiply and Divide Instructions

Divide Word Unsigned X10-form

divwu RT,RA,RB

dividend 0:63 ← 320 || (RA) 32:63

divisor 0:63 ← 320 || (RB) 32:63

RT32:63 ← dividend ÷ divisor

RT0:31 ← undefined

The 64-bit dividend is the zero-extended value of (RA)32:63.
The 64-bit divisor is zero-extended value of (RB)32:63. The
64-bit quotient is formed. The low-order 32 bits of the 64-bit
quotient are placed into register RT32:63. RT0:31 are unde-
fined. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as
unsigned integers, except that if the instruction is extended
with a xicr instruction, the first three bits of the specified CR
field are set by signed comparison of the result to zero. The
quotient is the unique signed integer that satisfies

dividend = (quotient × divisor) + r

where 0 ≤ r ≤ divisor.

If an attempt is made to perform the division

 <anything> ÷ 0

then the contents of register RT are undefined.

Special Registers Altered:
None

XSR-Image Fields Generated:
OV

Programming Note: If this instruction is extended
with an xicr instruction, and the value placed in
register RT by this instruction is undefined, the
contents of bits LT, GT, and EQ in the CR field
specified by the Extender are also undefined. If
OV is specified, it is set to 1.

Programming Note: The 32-bit unsigned remainder
of dividing (RA)32:63 by (RB)32:63 can be com-
puted as follows.

divwu RT,RA,RB # RT = quotient
mullw RT,RT,RB # RT = quotient*divisor
subf RT,RT,RA # RT = remainder

0 4 10 16 22

0 RT RA RB 195

Fixed-Point Instructions 83

5.10 Fixed-Point Compare Instructions

The Fixed-Point Compare instructions compare the con-
tents of register RA with (1) the sign-extended value of the
SI field, (2) the zero-extended value of the UI field, or (3)
the contents of register RB. The comparison is signed for
cmpi and cmp, and unsigned for cmpli and cmpl.

For 64-bit implementations, the L field controls whether the
operands are treated as 64- or 32-bit quantities, as follows:

When the operands are treated as 32-bit signed quantities,
bit 32 of the register (RA or RB) is the sign bit.

For 32-bit implementations, the L field must be zero.

The Compare instructions set one bit in the left-most three
bits of the designated CR field to one, and the other two to
zero. Bit 3 of the designated CR field is set to 0.

The CR field is set as follows:

Extended mnemonics for compares

A set of extended mnemonics is provided so that compares
can be coded with the operand length as part of the
instruction mnemonics rather than as a numeric operand.
Some of these are shown as examples with the Compare
instructions. The extended mnemonics for doubleword
comparisons are available only in 64-bit implementations.

Compare Immediate I1-form

cmpi CRT,L,RA,SI

SI ← si 0 || si 1

if L = 0 then a ← EXTS((RA) 32:63)

 else a ← (RA)
if a < EXTS(SI) then c ← 0b1000
else if a > EXTS(SI) then c ← 0b0100
else c ← 0b0010
CRCRT ← c

The contents of register RA ((RA)32:63 sign-extended to 64
bits if L=0) are compared with the sign-extended value of
the SI field, treating the operands as signed integers.The
result of the comparison is placed into CR field CRT.

In 32-bit implementations, if L=1 the instruction form is
invalid.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
cmpdi Rx,value cmpi cr0,1,Rx,value
cmpwi cr3,Rx,value cmpi cr3,0,Rx,value

L Operand length

0 32-bit operands

1 64-bit operands

Bit Name Description

0 LT (RA) < SI or (RB) (signed comparison)
(RA) <u UI or (RB) (unsigned comparison)

1 GT (RA) > SI or (RB) (signed comparison)
(RA) >u UI or (RB) (unsigned comparison)

2 EQ (RA) = SI, UI or (RB)

3 Set to 0.

0 4 8 9 10 16 31

8 CRT si1 L RA si0 0

 84 Fixed-Point Compare Instructions

Compare X10-form

cmp CRT,L,RA,RB

if L = 0 then a ← EXTS((RA) 32:63)

 b ← EXTS((RB) 32:63)

 else a ← (RA)
 b ← (RB)
if a < b then c ← 0b1000
else if a > b then c ← 0b0100
else c ← 0b0010
CRCRT ← c

The contents of register RA ((RA)32:63 if L=0) are com-
pared with the contents of register RB ((RB)32:63 if L=0),
treating the operands as signed integers. The result of the
comparison is placed into CR field CRT.

In 32-bit implementations, if L=1 the instruction form is
invalid.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
cmpd Rx,Ry cmp 0,1,Rx,Ry
cmpw cr3,Rx,Ry cmp 3,0,Rx,Ry

Compare Logical Immediate I1-form

cmpli CRT,L,RA,UI

UI ← ui 0 || ui 1

if L = 0 then a ← 320 || (RA) 32:63

 else a ← (RA)

if a < u (480 || UI) then c ← 0b1000

else if a > u (480 || UI) then c ← 0b0100
else c ← 0b0010
CRCRT ← c

The contents of register RA ((RA)32:63 zero-extended to 64

bits if L=0) are compared with 480 || UI, treating the oper-
ands as unsigned integers. The result of the comparison is
placed into CR field CRT.

In 32-bit implementations, if L=1 the instruction form is
invalid.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
cmpldi Rx,value cmpli 0,1,Rx,value
cmplwi cr3,Rx,value cmpli 3,0,Rx,value

0 4 8 9 10 16 22

0 CRT / L RA RB 304
0 4 8 9 10 16 31

8 CRT ui1 L RA ui0 1

Fixed-Point Instructions 85

Compare Logical X10-form

cmpl CRT,L,RA,RB

if L = 0 then a ← 320 || (RA) 32:63

 b ← 320 || (RB) 32:63

 else a ← (RA)
 b ← (RB)

if a < u b then c ← 0b1000

else if a > u b then c ← 0b0100
else c ← 0b0010
CRCRT ← c

The contents of register RA ((RA)32:63 if L=0) are com-
pared with the contents of register RB ((RB)32:63 if L=0),
treating the operands as unsigned integers. The result of
the comparison is placed into CR field CRT.

In 32-bit implementations, if L=1 the instruction form is
invalid.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
cmpld Rx,Ry cmpl 0,1,Rx,Ry
cmplw cr3,Rx,Ry cmpl 3,0,Rx,Ry

5.11 Fixed-Point Trap Instructions

The Trap instructions are provided to test for a specified
set of conditions. If any of the conditions tested by a Trap
instruction are met, the system trap handler is invoked. If
the tested conditions are not met, instruction execution
continues normally.

The instructions tdi and twi must be used together with
instruction xicr as a pair, executing in adjacent slots. The
instruction xicr in the slot to the right specifies a 16-bit
immediate value which is used by the tdi or twi instruction
in the slot to the left.

The contents of register RA are compared, depending on
the Trap instruction, either with the contents of register RB
or the sign-extended value of the SI field specified by a
right-adjacent xicr instruction. For tdi and td, the entire con-
tents of RA (and RB) participate in the comparison. For twi
and tw, only the contents of the low-order 32 bits of RA
(and RB) participate in the comparison.

The comparison results in five conditions which are ANDed
with TO. If the result is not 0, the system trap handler is
invoked. The comparison functions consist of one or more
of the following conditions:

Extended mnemonics for traps

A set of extended mnemonics is provided so that traps can
be coded with the condition as part of the instruction mne-
monics rather than as a numeric operand. Some of these
are shown as examples with the Trap instructions.

0 4 8 9 10 16 22

0 CRT / L RA RB 305

TO bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

 86 Fixed-Point Trap Instructions

Trap Doubleword Immediate X10-form

tdi TO,RA

SI ← from_right_parcel
a ← (RA)
b ← EXTS(SI)
if (a < b) & TO 0 then TRAP

if (a > b) & TO 1 then TRAP

if (a = b) & TO 2 then TRAP

if (a < u b) & TO 3 then TRAP

if (a > u b) & TO 4 then TRAP

tdi and xicr are used always as a parcel-pair in adjacent
slots.

The contents of register RA are compared with the sign-
extended value received from the xicr instruction executing
in the right-adjacent parcel.

If any bit in the TO field is set to 1 and the corresponding
condition is met by the result of the comparison, then the
system trap handler is invoked.

If the instruction in the right-adjacent parcel is not xicr, the
instruction form is invalid.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Trap Word Immediate X10-form

twi TO,RA

SI ← from_right_parcel
a ← EXTS((RA) 32:63)

b ← EXTS(SI)
if (a < b) & TO 0 then TRAP

if (a > b) & TO 1 then TRAP

if (a = b) & TO 2 then TRAP

if (a < u b) & TO 3 then TRAP

if (a > u b) & TO 4 then TRAP

twi and xicr are used always as a parcel-pair in adjacent
slots.

The contents of RA32:63 are compared with the sign-
extended value received from the xicr instruction executing
in the right-adjacent parcel.

If any bit in the TO field is set to 1 and its corresponding
condition is met by the result of the comparison, then the
system trap handler is invoked.

If the instruction in the right-adjacent parcel is not xicr, the
instruction form is invalid.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 9 10 16 22

0 TO / RA /// 798
0 4 9 10 16 22

0 TO / RA /// 799

Fixed-Point Instructions 87

Trap Doubleword X10-form

td TO,RA,RB

a ← (RA)
b ← (RB)
if (a < b) & TO 0 then TRAP

if (a > b) & TO 1 then TRAP

if (a = b) & TO 2 then TRAP

if (a < u b) & TO 3 then TRAP

if (a > u b) & TO 4 then TRAP

The contents of register RA are compared with the con-
tents of register RB. If any bit in the TO field is set to 1 and
the corresponding condition is met by the result of the com-
parison, then the system trap handler is invoked.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Trap Word X10-form

tw TO,RA,RB

a ← (RA) 32:63

b ← (RB) 32:63

if (a < b) & TO 0 then TRAP

if (a > b) & TO 1 then TRAP

if (a = b) & TO 2 then TRAP

if (a < u b) & TO 3 then TRAP

if (a > u b) & TO 4 then TRAP

The contents of RA32:63 are compared with the contents of
RB32:63. If any bit in the TO field is set to 1 and its corre-
sponding condition is met by the result of the comparison,
then the system trap handler is invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 9 10 16 22

0 TO / RA RB 313
0 4 9 10 16 22

0 TO / RA RB 314

 88 Fixed-Point Select Instructions

5.12 Fixed-Point Select Instructions

The Fixed-Point Select instructions set a target register to
one of two values, according to the value of a specified bit
in the Condition Register. Any bit in the 64-bit CR may be
tested. These instructions treat the Condition Register as a
register that contains 64 independently addressable bits,
denoted by CRB.

Programming Note: The Select instructions are
intended to be used to improve program execu-
tion speed by reducing branching. For example,
they can be used, often after a Compare instruc-
tion, to implement the fixed-point minimum, maxi-
mum, and absolute value functions, to obtain 0/1
or 0/-1 values for relational expressions, and to
implement certain simple forms of C conditional
expressions and if-then-else constructs.

Extended mnemonics for selects

A set of extended mnemonics is provided so that selects
can be coded with the condition as part of the instruction
mnemonic rather than as a numeric operand. Some of
these are shown as examples with the Select instructions.

Select Immediate-Immediate X4-form

selii RT,IA,IB,CB

if CRB CB then RT ← EXTS(IA)

else RT ← EXTS(IB)

The Condition Register bit at position CB is tested. If it is 1,
register RT is set to the sign-extended value of IA. Other-
wise, register RT is set to the sign-extended value of IB.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
seleqii Rx,valy,valz selii Rx,valy,valz,2

Select Immediate-Register X4-form

selir RT,IA,RB,CB

if CRB CB then RT ← EXTS(IA)

else RT ← (RB)

The Condition Register bit at position CB is tested. If it is 1,
register RT is set to the sign-extended value of IA. Other-
wise, register RT is set to (RB).

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
selltir Rx,valy,Rz selir Rx,valy,Rz,0

0 4 10 16 22 28

12 RT IA IB CB 8

0 4 10 16 22 28

12 RT IA RB CB 9

Fixed-Point Instructions 89

Select Register-Immediate X4-form

selri RT,RA,IB,CB

if CRB CB then RT ← (RA)

else RT ← EXTS(IB)

The Condition Register bit at position CB is tested. If it is 1,
register RT is set to (RA). Otherwise, register RT is set to
the sign-extended value of IB.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
selgtri Rx,Ry,valz selri Rx,Ry,valz,1

Select Register-Register X4-form

selrr RT,RA,RB,CB

if CRB CB then RT ← (RA)

else RT ← (RB)

The Condition Register bit at position CB is tested. If it is 1,
register RT is set to (RA). Otherwise, register RT is set to
(RB).

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
selovrr Rx,Ry,Rz selrr Rx,Ry,Rz,3

5.13 Fixed-Point Logical Instructions

The Logical instructions perform bit-parallel operations on
64-bit operands.

The Logical Immediate instructions do not specify a Condi-
tion Register field to be set as part of the instruction. The
Logical Immediate instructions can be augmented with an
Extender instruction, in the right adjacent parcel, specifying
a CR field.

The first three bits of the specified CR field are set to char-
acterize the result of the logical operation. The CR field is
set as if the result of the operation was algebraically com-
pared to zero.

Extended mnemonics for logical operations

Extended mnemonics are provided that use the OR and
NOR instructions to copy the contents of one register to
another, with and without complementing. These are
shown as examples with the two instructions.

AND Immediate I0-form

andi RT,RA,UI

RT ← (RA) & (480 || UI)

The contents of register RA are ANDed with 480 || UI, and
the result is placed into register RT.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 22 28

12 RT RA IB CB 10

0 4 10 16 22 28

12 RT RA RB CB 11

0 4 10 16

4 RT RA UI

 90 Fixed-Point Logical Instructions

OR Immediate I0-form

ori RT,RA,UI

RT ← (RA) | (480 || UI)

The contents of register RA are ORed with 480 || UI, and
the result is placed into register RT.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

XOR Immediate I0-form

xori RT,RA,UI

RT ← (RA) xor (480 || UI)

The contents of register RA are XORed with 480 || UI, and
the result is placed into register RT.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

AND X6-form

and RT,CRT,RA,RB

RT ← (RA) & (RB)

The contents of register RA are ANDed with the contents of
register RB, and the result is placed into register RT.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

OR X6-form

or RT,CRT,RA,RB

RT ← (RA) | (RB)

The contents of register RA are ORed with the contents of
register RB, and the result is placed into register RT.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Example of extended mnemonics for OR:

Extended: Equivalent to:
mr Rx,Ry or Rx,Ry,Ry

0 4 10 16

5 RT RA UI

0 4 10 16

6 RT RA UI

0 4 10 16 22 26

14 RT RA RB CRT 8

0 4 10 16 22 26

14 RT RA RB CRT 12

Fixed-Point Instructions 91

XOR X6-form

xor RT,CRT,RA,RB

RT ← (RA) ⊕ (RB)

The contents of register RA are XORed with the contents
of register RB, and the result is placed into register RT.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

NAND X6-form

nand RT,CRT,RA,RB

RT ← ¬((RA) & (RB))

The contents of register RA are ANDed with the contents of
register RB, and the complemented result is placed into
register RT.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Programming Note: nand or nor with RA=RB can be
used to obtain one’s complement.

NOR X6-form

nor RT,CRT,RA,RB

RT ← ¬((RA) | (RB))

The contents of register RA are ORed with the contents of
register RB, and the complemented result is placed into
register RT.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
not Rx,Ry nor Rx,Ry,Ry.

Equivalent X6-form

eqv RT,CRT,RA,RB

RT ← (RA) ≡ (RB)

The contents of register RA are XORed with the contents
of register RB, and the complemented result is placed into
register RT.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

0 4 10 16 22 26

14 RT RA RB CRT 9

0 4 10 16 22 26

14 RT RA RB CRT 10

0 4 10 16 22 26

14 RT RA RB CRT 11

0 4 10 16 22 26

14 RT RA RB CRT 15

 92 Fixed-Point Logical Instructions

AND with Complement X6-form

andc RT,CRT,RA,RB

RT ← (RA) & ¬(RB)

The contents of register RA are ANDed with the comple-
ment of the contents of register RB, and the result is placed
into register RT.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

OR with Complement X6-form

orc RT,CRT,RA,RB

RT ← (RA) | ¬(RB)

The contents of register RA are ORed with the complement
of the contents of register RB, and the result is placed into
register RT.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Extend Sign Byte X10-form

extsb RT,CRT,RA

s ← (RA) 56

RT56:63 ← (RA) 56:63

RT0:55 ← 56s

Bits (RA)56:63 are placed into RT56:63. Bit 56 of register RA
is placed into RT0:55.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Extend Sign Halfword X10-form

extsh RT,CRT,RA

s ← (RA) 48

RT48:63 ← (RA) 48:63

RT0:47 ← 48s

Bits (RA)48:63 are placed into RT48:63. Bit 48 of register RA
is placed into RT0:47.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

0 4 10 16 22 26

14 RT RA RB CRT 13

0 4 10 16 22 26

14 RT RA RB CRT 14

0 4 10 16 20 22

0 RT RA CRT // 308

0 4 10 16 20 22

0 RT RA CRT // 309

Fixed-Point Instructions 93

Extend Sign Word X10-form

extsw RT,CRT,RA

s ← (RS) 32

RT32:63 ← (RA) 32:63

RT0:31 ← 32s

Bits (RA)32:63 are placed into RT32:63. Bit 32 of register RA
is placed into RT0:31.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

No-operation X10-form

nop

This instruction does not modify any registers or affect any
facilities. It is intended to fill unused words in a tree-instruc-
tion, if any, or to fill unused storage locations within a pro-
gram.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Programming Note: Instruction Nop is used to fill
gaps in tree-instructions that can arise from imple-
mentation constraints. Such constraints are
described in Book IV, ForestaPC Implementation
Features for a specific implementation.

0 4 10 16 20 22

0 RT RA CRT // 310
0 4 10 16 22

0 /// /// /// 1

 94 Fixed-Point Logical Instructions

Count Leading Zeros Doubleword X10-form

cntlzd RT,CRT,RA

n ← 0
do while n < 64
 if (RA) n = 1 then leave

 n ← n + 1
end
RT ← n

A count of the number of consecutive zero bits starting at
bit 0 of register RA is placed into RT. This number ranges
from 0 to 64, inclusive.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Count Leading Zeros Word X10-form

cntlzw RT,CRT,RA

n ← 32
do while n < 64
 if (RS) n = 1 then leave

 n ← n + 1
end
RT ← n - 32

A count of the number of consecutive zero bits starting at
bit 32 of register RA is placed into RT. This number ranges
from 0 to 32, inclusive.

Special Registers Altered:
CR field CRT

XSR-Image Fields Generated:
None

Programming Note: For both Count Leading Zeros
instructions, LT is set to zero in CR field CRT.

0 4 10 16 20 22

0 RT RA CRT // 306
0 4 10 16 20 22

0 RT RA CRT // 307

Fixed-Point Instructions 95

5.14 Fixed-Point Rotate and Shift
Instructions

The Fixed-Point Rotate instructions perform rotation opera-
tions on data from a GPR and return the result, or a portion
of the result, to a GPR.

The rotation operations rotate a 64-bit quantity left by a
specified number of bit positions. Bits that exit from posi-
tion 0 enter at position 63.

Two types of rotation operation are supported:

• rotate64 or ROTL64, wherein the value rotated is the
given 64-bit value. The rotate64 operation is used to
rotate a given 64-bit quantity.

• rotate32 or ROTL32, wherein the value rotated consists
of two copies of bits 32:63 of the given 64-bit value,
one copy in bits 0:31 and the other in bits 32:63. The
rotate32 operation is used to rotate a given 32-bit
quantity.

The Rotate and Shift instructions employ a mask genera-
tor. The mask is 64 bits long, and consists of 1-bits from a
start bit, mstart, through and including a stop bit, mstop,
and 0-bits elsewhere. The values of mstart and mstop
range from zero to 63. If mstart > mstop, the 1-bits wrap
around from position 63 to position 0. Thus the mask is
formed as follows:

if mstart ≤ mstop then
 maskm start:mstop = ones

 mask all other bits = zeros

else
 mask mstart:63 = ones

 mask 0:mstop = ones

 mask all other bits = zeros

There is no way to specify an all-zero mask.

For instructions that use the rotate32 operation, the mask
start and stop positions are always in the low-order 32-bits
of the register.

The use of the mask is described in the following sections.

The Rotate instructions do not specify a Condition Register
field to be set as part of the instruction. The Rotate instruc-
tions can be augmented with an Extend Immediate and
Condition Register instruction, in the right adjacent parcel,
specifying a CR field. On the other hand, Shift instructions
specify a Condition Register field to be set as part of the

instruction. In all cases, the CR field is set as described in
Section 2.3.3, “Condition Register,” on page 22. Rotate
and Shift instructions do not generate bit OV in the XSR-
Image. Moreover, Rotate and Shift instructions, excepting
algebraic right shifts, do not generate bit CA in the XSR-
Image.

Extended mnemonics for rotates and shifts

The Rotate and Shift instructions, while powerful, can be
complicated to code (they have up to five operands). A set
of extended mnemonics is provided that allows simpler
coding of often-used functions, such as clearing the left-
most or right-most bits of a register, left justifying or right-
justifying an arbitrary field, and simple rotates and shifts.
Some of these are shown as examples with the Rotate
instructions.

5.14.1 Fixed-Point Rotate Instructions

These instructions rotate the contents of a register. The
result of the rotation is ANDed with a mask before being
placed into the target register.

The Rotate Left instructions allow right-rotation of the con-
tents of a register to be performed (in concept) by a left-
rotation of 64-N, where N is the number of bits by which to
rotate right. These instructions allow performing right-rota-
tion of the contents of the low-order half of a register (in
concept) by a left-rotation of 32-N, where N is the number
of bits by which to rotate right.

Programming Note: The PowerPC rldimi and rlwimi
instructions have been dropped from the Fore-
staPC Architecture; their functionality is obtained
from a sequence of primitive instructions.

 96 Fixed-Point Rotate and Shift Instructions

Rotate Left Doubleword Immediate then Clear
Left X4-form

rldicl RT,RA,SH,MB

n ← SH
r ← ROTL64((RA),n)

b ← MB
m ← MASK(b, 63)
RT ← r & m

The contents of register RA are rotated64 left SH bits. A
mask is generated having 1-bits from bit MB through bit 63
and 0-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
extrdi Rx,Ry,n,b rldicl Rx,Ry,b+n,64-n
srdi Rx,Ry,n rldicl Rx,Ry,64-n,n
clrldi Rx,Ry,n rldicl Rx,Ry,0,n

Programming Note: rldicl can be used to extract an
n-bit field, which starts at bit position b in register
RA, right-justified into register RT (clearing the
remaining 64-n bits of RT), by setting SH=b+n
and MB=64-n. It can be used to rotate the con-
tents of a register left (right) by n bits, by setting
SH=n (64-n) and MB=0. It can be used to shift the
contents of a register right by n bits, by setting
SH=64-n and MB=n. It can be used to clear the
high-order n bits of a register, by setting SH=0
and MB=n. Extended mnemonics are provided for
all of these uses.

Rotate Left Doubleword Immediate then Clear
Right X4-form

rldicr RT,RA,SH,ME

n ← SH
r ← ROTL64((RA), n)

e ← ME
m ← MASK(0, e)
RT ← r & m

The contents of register RA are rotated64 left SH bits. A
mask is generated having 1-bits from bit 0 through bit ME
and 0-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
extldi Rx,Ry,n,b rldicr Rx,Ry,b,n-1
sldi Rx,Ry,n rldicr Rx,Ry,n,63-n
clrrdi Rx,Ry,n rldicr Rx,Ry,0,63-n

Programming Note: rldicr can be used to extract an
n-bit field, which starts at bit position b in register
RA, left-justified into register RT (clearing the
remaining 64-n bits of RT), by setting SH=b and
ME=n-1. It can be used to rotate the contents of a
register left (right) by n bits, by setting SH=n (64-
n) and ME=63. It can be used to shift the contents
of a register left by n bits, by setting SH=n and
ME=63-n. It can be used to clear the low-order n
bits of a register, by setting SH=0 and ME=63-n.
Extended mnemonics are provided for all of these
uses.

0 4 10 16 22 28

12 RT RA SH MB 15
0 4 10 16 22 28

11 RT RA SH ME 14

Fixed-Point Instructions 97

Rotate Left Doubleword Immediate then Clear
X4-form

rldic RT,RA,SH,MB

n ← SH
r ← ROTL64((RA),n)

b ← MB
m ← MASK(b, ¬n)
RT ← r & m

The contents of register RA are rotated64 left SH bits. A
mask is generated having 1-bits from bit MB through bit 63-
SH, and 0-bits elsewhere. The rotated data is ANDed with
the generated mask and the result is placed into register
RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
clrlsldi Rx,Ry,b,n rldic Rx,Ry,n,b-n

Programming Note: rldic can be used to clear the
high-order b bits of the contents of a register, and
then shift the result left by n bits by setting SH=n
and MB=b-n. It can be used to clear the high-
order n bits of a register, by setting SH=0 and
MB=n. Extended mnemonics are provided for all
of these uses.

Rotate Left Word Immediate then AND with Mask
M1-form

rlwinm RT,RA,SH,MB,ME

ME ← me 0 || me1

n ← SH
r ← ROTL32((RA) 32:63 ,n)

m ← MASK(MB+32,ME+32)
RT ← r & m

The contents of register RA are rotated32 left SH bits. A
mask is generated having 1-bits from bit MB through bit ME
and 0-bits elsewhere. The rotated data is ANDed with the
generated mask and the result is placed into register RT.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
extlwi Rx,Ry,n,b rlwinm Rx,Ry,b,0,n-1
srwi Rx,Ry,n rlwinm Rx,Ry,32-n,n,31
slwi Rx,Ry,n rlwinm Rx,Ry,n,0,31-n
clrrwi Rx,Ry,n rlwinm Rx,Ry,0,0,31-n

Programming Note: Let RAL represent the low-order
half of register RA, with the bits numbered from 0
through 31.

rlwinm can be used to extract an n-bit field, which
starts at bit position b in RAL, right-justified into
the low-order half of register RT (clearing the
remaining 32-n bits of the low-order half of RT), by
setting SH=b+n, MB=32-n., and ME=31. It can be
used to extract an n-bit field, that starts at bit posi-
tion b in RAL, left-justified into the low-order half
of register RT (clearing the remaining 32-n bits of
the low-order half of RT), by setting SH=b, MB =
0, and ME=n-1. It can be used to rotate the con-
tents of the low-order half of a register left (right)
by n bits, by setting SH=n (32-n), MB=0, and
ME=31. It can be used to shift the contents of the
low-order half of a register right by n bits, by set-
ting SH=32-n, MB=n, and ME=31. It can be used
to clear the high-order b bits of the low-order half

0 4 10 16 22 28

12 RT RA SH MB 14
0 4 10 16 17 22 27 31

9 RT RA me1 SH MB me0 0

 98 Fixed-Point Rotate and Shift Instructions

of a register, and then shift the result left by n bits,
by setting SH=n, MB=b-n, and ME=31-n. It can be
used to clear the low-order n bits of the low-order
32 bits of a register, by setting SH=0, MB=0, and
ME=31-n.

For all the uses given above, the high-order 32
bits of register RT are cleared.

Rotate Left Doubleword then Clear Left X4-form

rldcl RT,RA,RB,MB

n ← (RB) 58:63

r ← ROTL64((RA),n)

b ← MB
m ← MASK(b,63)
RT ← r & m

The contents of register RA are rotated64 left the number of
bits specified by (RB)58:63. A mask is generated having 1-
bits from bit MB through bit 63 and 0-bits elsewhere. The
rotated data is ANDed with the generated mask and the
result is placed into register RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
rotld Rx,Ry,Rz rldcl Rx,Ry,Rz,0

Programming Note: rldcl can be used to extract an n-
bit field, which starts at variable bit position b in
register RA, right-justified into register RT (clear-
ing the remaining 64-n bits of RT), by setting
RB58:63=b+n and MB=64-n. It can be used to
rotate the contents of a register left (right) by vari-
able n bits by setting RB58:63=n (64-n) and MB=0.
Extended mnemonics are provided for all of these
uses.

0 4 10 16 22 28

12 RT RA RB MB 12

Fixed-Point Instructions 99

Rotate Left Doubleword then Clear Right X4-form

rldcr RT,RA,RB,ME

n ← (RB) 58:63

r ← ROTL64((RA),n)

e ← ME
m ← MASK(0, e)
RT ← r & m

The contents of register RA are rotated64 left the number of
bits specified by (RB)58:63. A mask is generated having 1-
bits from bit 0 through bit ME and 0-bits elsewhere. The
rotated data is ANDed with the generated mask and the
result is placed into register RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Programming Note: rldcr can be used to extract an n
field, which starts at variable bit position b in reg-
ister RA, left-justified into register RT (clearing the
remaining 64-n bits of RT), by setting RB58:63=b
and ME=n-1. It can be used to rotate the contents
of a register left (right) by variable n bits by setting
RB58:63=n (64-n) and ME=63. Extended mne-
monics are provided for all of these uses.

Rotate Left Word then AND with Mask M0-form

rlwnm RT,RA,RB,MB,ME

n ← (RB) 59:63

r ← ROTL32((RA) 32:63 ,n)

m ← MASK(MB+32,ME+32)
RT ← r & m

The contents of register RA are rotated32 left the number of
bits specified by (RB)59:63. A mask is generated having 1-
bits from bit MB through bit ME and 0-bits elsewhere. The
rotated data is ANDed with the generated mask and the
result is placed into register RT.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
rotlw Rx,Ry,Rz rlwnm Rx,Ry,Rz,0,31

Programming Note: Let RAL represent the low-order
half of register RA, with the bits numbered from 0
through 31.

rlwnm can be used to extract an n-bit field, which
starts at variable bit position b in RAL, right-justi-
fied into the low-order half of register RT (clearing
the remaining 32-n bits of the low-order 32 bits of
RT), by setting RB59:63=b+n, MB=32-n, and
ME=31. It can be used to extract an n-bit field,
which starts at variable bit position b in RAL, left-
justified into the low-order half of register RT
(clearing the remaining 32-n bits of the low-order
half of RT), by setting RB59:63=b, MB = 0, and
ME=n-1. It can be used to rotate the contents of
the low-order half of a register left (right) by vari-
able n bits, by setting RB59:63=n (32-n), MB=0,
and ME=31.
For all the uses given above, the high-order half
of register RT is cleared.
Extended mnemonics are provided for all of these
uses.

0 4 10 16 22 28

12 RT RA RB ME 13
0 4 10 16 22 27

7 RT RA RB MB ME

 100 Fixed-Point Rotate and Shift Instructions

5.14.2 Fixed-Point Shift Instructions

These instructions perform left and right shift of the con-
tents of a register.

Extended mnemonics for shifts

Immediate-form logical (unsigned) shift operations are
obtained by specifying appropriate masks and shift values
for certain Rotate instructions. A set of extended mnemon-
ics is provided to make coding of such shifts simpler and
easier to understand, as well as simple rotates and shifts.
Some of these are shown as examples with the instruc-
tions.

Programming Note: Any Shift Right Algebraic
instruction, followed by addze, can be used to

divide quickly by 2N. The setting of the CA bit by
the Shift Right Algebraic instructions is indepen-
dent of mode.

Engineering Note: The instructions intended for use
with 32-bit data are shown as doing a rotate32

operation. This is strictly necessary only for set-
ting the CA bit for srawi and sraw. slw and srw
could do a rotate64 operation if that is easier.

Shift Left Doubleword X6-form

sld RT,CRT,RA,RB

n ← (RB) 58:63

r ← ROTL64((RA),n)

if (RB) 57 = 0 then

 m ← MASK(0,63-n)
else

 m ← 640
RT ← r & m

The contents of register RA are shifted left the number of
bits specified by (RB)57:63. Bits shifted out of position 0 are
lost. Zeros are supplied to the vacated positions on the
right. The result is placed into register RT. Shift amounts
from 64 to 127 give a zero result.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

0 4 10 16 22 26

14 RT RA RB CRT 6

Fixed-Point Instructions 101

Shift Left Word X6-form

slw RT,CRT,RA,RB

n ← (RB) 59:63

r ← ROTL32((RA) 32:63 ,n)

if (RB) 58 = 0 then

 m ← MASK(32,63-n)
else

 m ← 640
RT ← r & m

The contents of the low-order 32 bits of register RA are
shifted left the number of bits specified by (RB)58:63. Bits
shifted out of position 32 are lost. Zeros are supplied to the
vacated positions on the right. The 32-bit result is placed
into RT32:63. RT0:31 are set to zero. Shift amounts from 32
to 63 give a zero result.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

Shift Right Doubleword X6-form

srd RT,CRT,RA,RB

n ← (RB) 58:63

r ← ROTL64((RA),64-n)

if (RB) 57 = 0 then

 m ← MASK(n,63)
else

 m ← 640
RT ← r & m

The contents of register RA are shifted right the number of
bits specified by (RB)57:63. Bits shifted out of position 63
are lost. Zeros are supplied to the vacated positions on the
left. The result is placed into register RT. Shift amounts
from 64 to 127 give a zero result.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

0 4 10 16 22 26

14 RT RA RB CRT 7
0 4 10 16 22 26

14 RT RA RB CRT 4

 102 Fixed-Point Rotate and Shift Instructions

Shift Right Word X6-form

srw RT,CRT,RA,RB

n ← (RB) 59:63

r ← ROTL32((RA) 32:63 ,64-n)

if (RB) 58 = 0 then

 m ← MASK(n+32,63)
else

 m ← 640
RT ← r & m

The contents of the low-order 32 bits of register RA are
shifted right the number of bits specified by (RB)58:63. Bits
shifted out of position 63 are lost. Zeros are supplied to the
vacated positions on the left. The 32-bit result is placed into
RT32:63. RT0:31 are set to zero. Shift amounts from 32 to 63
give a zero result.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

Shift Right Algebraic Doubleword Immediate X6-
form

sradi RT,CRT,RA,SH

n ← SH
r ← ROTL64((RA),64-n)

m ← MASK(n,63)
s ← (RA) 0

RT ← r&m | 64s&¬m

The contents of register RA are shifted right SH bits. Bits
shifted out of position 63 are lost. Bit 0 of RA is replicated
to fill the vacated positions on the left. The result is placed
into register RT. A shift amount of zero causes RT to be set
equal to (RA).

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
CA

Programming Note: XSR-Image field CA is set to 1 if
(RA) is negative and any 1-bits are shifted out of
position 63; otherwise XSR-ImageCA is set to 0.

A shift amount of zero causes XSR-ImageCA to be
set to 0.

0 4 10 16 22 26

14 RT RA RB CRT 5
0 4 10 16 22 26

14 RT RA SH CRT 0

Fixed-Point Instructions 103

Shift Right Algebraic Word Immediate X6-form

srawi RT,CRT,RA,SH

n ← SH
r ← ROTL32((RA) 32:63 ,64-n)

m ← MASK(n+32,63)
s ← (RA) 32

RT ← r&m | 64s&¬m

The contents of the low-order 32 bits of register RA are
shifted right SH bits. Bits shifted out of position 63 are lost.
Bit 32 of RA is replicated to fill the vacated positions on the
left. The 32-bit result is placed into RT32:63. Bit 32 of RA is
replicated to fill RT0:31. A shift amount of zero causes
RT32:63. to receive EXTS((RA)32:63).

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
CA

Programming Note: XSR-Image field CA is set to 1 if
(RA) is negative and any 1-bits are shifted out of
position 63; otherwise XSR-ImageCA is set to 0.

A shift amount of zero causes XSR-ImageCA to be
set to 0.

Shift Right Algebraic Doubleword X6-form

srad RT,CRT,RA,RB

n ← (RB) 58:63

r ← ROTL64((RA),64-n)

if (RB) 57 = 0 then

 m ← MASK(n,63)
else

 m ← 640
s ← (RA) 0

RT ← r&m | 64s&¬m

The contents of register RA are shifted right the number of
bits specified by (RB)57:63. Bits shifted out of position 63
are lost. Bit 0 of RA is replicated to fill the vacated positions
on the left. The result is placed into register RT. A shift
amount of zero causes RT to be set equal to (RA). Shift
amounts from 64 to 127 give a result of 64 sign bits in RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
CA

Programming Note: XSR-Image field CA is set to 1 if
(RA) is negative and any 1-bits are shifted out of
position 63; otherwise XSR-ImageCA is set to 0.

A shift amount of zero causes XSR-ImageCA to be
set to 0.

0 4 10 16 22 26

14 RT RA SH CRT 1
0 4 10 16 22 26

14 RT RA RB CRT 2

 104 Fixed-Point Move Assist Instructions

Shift Right Algebraic Word X6-form

sraw RT,CRT,RA,RB

n ← (RB) 59:63

r ← ROTL32((RA) 32:63 ,64-n)

if (RB) 58 = 0 then

 m ← MASK(n+32,63)
else

 m ← 640
s ← (RA) 32

RT ← r&m | 64s&¬m

The contents of the low-order 32 bits of register RA are
shifted right the number of bits specified by (RB)58:63. Bits
shifted out of position 63 are lost. Bit 32 of RA is replicated
to fill the vacated positions on the left. The 32-bit result is
placed into RT32:63. Bit 32 of RA is replicated to fill RT0:31.
A shift amount of zero causes RT to receive
EXTS((RA)32:63). Shift amounts from 32 to 63 give a result
of 64 sign bits.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
CA

Programming Note: XSR-Image field CA is set to 1 if
(RA) is negative and any 1-bits are shifted out of
position 63; otherwise XSR-ImageCA is set to 0.

A shift amount of zero causes XSR-ImageCA to be
set to 0.

5.15 Fixed-Point Move Assist
Instructions

The Move Assist instructions are used to assist the move-
ment of data in storage without concern for alignment.

A set of Move Assist primitives, when executed in adjacent
parcels within a VLIW, allows for arbitrarily alignment of
strings in General Purpose Registers; these strings are
used by Load/Store String instructions.

Loading an arbitrarily aligned string is implemented as a
two-step process:

• load several aligned storage locations into GPRs; and

• simultaneously left-shift several GPRs.

Similarly, storing an arbitrarily aligned string is imple-
mented as a two-step process:

• simultaneously right-shift several GPRs; and

• store several GPRs into aligned storage locations.

The Move Assist instructions use two registers to specify
the string, as follows:

• RA: a General Purpose Register containing the start-
ing storage address (byte address) of the string;

• MAR: a Special Purpose Register containing the end-
ing byte address of the string, plus 1.

Programming Note: The PowerPC string instructions
have been factored into simpler primitives in the
ForestaPC architecture; these primitive instruc-
tions are executed concurrently in different par-
cels (composing a multiparcel primitive).

Programming Note: In contrast to a PowerPC pro-
cessor, these instructions use the starting and
ending byte address of the string instead of the
starting address and the byte count.

0 4 10 16 22 26

14 RT RA RB CRT 3

Fixed-Point Instructions 105

Shift Left String Word X10-form

slsw RT,RA,RB

dw ← (RB) 32:63 || from_right_parcel 32:63

bs ← 8 ×(RA) 62:63

RT ← 320 || dw bs:bs+31

to_left_parcel ← undefined || (RB) 32:63

This instruction is a multiparcel primitive. Register RA con-
tains the starting storage byte address of a string; (RB)32:63

is a word of the string. Let dw be a doubleword composed
of (RB)32:63 concatenated with the low-order 32 bits of the
data received from the right-adjacent parcel. If the input
from the right-adjacent parcel is not active (not executing
an slsw), or the parcel executing this instruction is the right-
most parcel in a VLIW, the corresponding data is set to
zero. Let bs be the number of bits that the data must be
shifted to the left so that the string becomes left-aligned in
the registers; this number is determined from the starting
byte address of the string. The contents of dwbs:(bs+31) are
stored into the low-order 32 bits of register RT. RT0:31 are
set to 0.

(RB)32:63 is also passed to the parcel on the left, to contrib-
ute to a possible slsw primitive executing there, unless the
parcel executing this instruction is the left-most parcel in a
VLIW.

The right end of the string is filled with zeros.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Shift Left String Doubleword X10-form

slsd RT,RA,RB

qw ← (RB) || from_right_parcel
bs ← 8 ×(RA) 61:63

RT ← qw bs:bs+63

to_left_parcel ← (RB)

This instruction is a multiparcel primitive. Register RA con-
tains the starting byte address of a string; (RB) is a double-
word of the string. Let qw be a quadword composed of
(RB) concatenated with 64-bits of data received from the
right-adjacent parcel. If the input from the right-adjacent
parcel is not active (not executing an slsd), or the parcel
executing this instruction is the right-most parcel in a VLIW,
the corresponding data is set to zero. Let bs be the number
of bits that the data must be shifted to the left so that the
string becomes left-aligned in the registers; this number is
determined from the starting byte address of the string.
The contents of qwbs:(bs+63) are stored into register RT.

(RB) is also passed to the left parcel, to contribute to a pos-
sible slsd primitive executing there, unless the parcel exe-
cuting this instruction is the left-most parcel in a VLIW.

The right end of the string is filled with zeros.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 22

0 RT RA RB 289
0 4 10 16 22

0 RT RA RB 288

 106 Fixed-Point Move Assist Instructions

Shift Right String Word X10-form

srsw RT,RA,RB

dw ← (RB) 32:63 || from_right_parcel 32:63

bs ← 8 ×(4-(RA) 62:63)

RT ← 320 || dw bs:bs+31

to_left_parcel ← undefined || (RB) 32:63

This instruction is a multiparcel primitive. Register RA con-
tains the starting byte address of a string; (RB)32:63 is a
word of the string. Let dw be a doubleword composed of
(RB)32:63 concatenated with the low-order 32 bits of the
data received from the right-adjacent parcel. If the input
from the right-adjacent parcel is not active (not executing
an srsw), or the parcel executing this instruction is the
rightmost parcel in a VLIW, the corresponding data is set to
zero. Let bs be the number of bits that the data must be
shifted to the right so that the string becomes unaligned in
the registers; this number is determined from the starting
byte address of the string. The right-shift is actually imple-
mented as a left-shift. The contents of dwbs:(bs+31) are
stored into the low-order 32-bits of register RT. RT0:31 are
set to 0.

(RB)32:63 is also passed to the parcel to the left, to contrib-
ute to a possible srsw primitive executing there, unless the
parcel executing this instruction is the leftmost parcel in a
VLIW.

The ends of the string are filled with zeros.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Shift Right String Doubleword X10-form

srsd RT,RA,RB

qw ← (RB) || from_right_parcel
bs ← 8 ×(8-(RA) 61:63)

RT ← dw bs:bs+63

to_left_parcel ← (RB)

This instruction is a multiparcel primitive. Register RA con-
tains the starting byte address of a string; (RB) is a double-
word of the string. Let qw be a quadword composed of
(RB) concatenated with the 64-bits of data received from
the right-adjacent parcel. If the input from the right-adjacent
parcel is not active (not executing an srsd), or the parcel
executing this instruction is the rightmost parcel in a VLIW,
the corresponding data is set to zero. Let bs be the number
of bits that the data must be shifted to the right so that the
string becomes unaligned in the registers; this number is
determined from the starting byte address of the string.
The right-shift is actually implemented as a left-shift. The
contents of qwbs:(bs+63) are stored into register RT.

(RB) is also passed to the parcel to the left, to contribute to
a possible srsd primitive executing there, unless the parcel
executing this instruction is the leftmost parcel in a VLIW.

The ends of the string are filled with zeros.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 22

0 RT RA RB 291
0 4 10 16 22

0 RT RA RB 290

Fixed-Point Instructions 107

5.16 Fixed-Point Shift and Add
Instructions

These instructions combine an add operation with a left
shift by a specified number of bit positions less than or
equal to 8.

Shift Left Doubleword Immediate then Add
X6-form

sldia RT,RA,RB,SH

n ← SH + 1
r ← ROTL64((RA),n)

m ← MASK(0,63-n)
RT ← (r & m) + RB

The contents of register RA are shifted left SH+1 bits. Bits
shifted out of position 0 are lost. Zeros are supplied to the
vacated positions on the right. The shifted value is added
to the contents of register RB. The result is placed into reg-
ister RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Shift Left Word Immediate then Add X6-form

slwia RT,RA,RB,SH

n ← SH + 1
r ← ROTL32((RA) 32:63 ,n)

m ← MASK(32,63-n)
RT ← (r & m) + RB

The contents of the low-order 32 bits of register RA are
shifted left SH+1 bits. Bits shifted out of position 32 are
lost. Zeros are supplied to the vacated positions on the
right. The shifted value is zero-extended to the left to 32
bits. The shifted/extended value is added to the contents of
register RB. The result is placed into register RT.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 23 26

14 RT RA RB / SH 32

0 4 10 16 23 26

14 RT RA RB / SH 33

 108 Move To/From Special Purpose Registers Instructions

5.17 Move To/From Special Purpose
Registers Instructions

Extended mnemonics

A set of extended mnemonics is provided for the mtspr and
mfspr instructions so that they can be coded with the name
of the Special Purpose Register as part of the mnemonic
rather than as a numeric operand. Some of these are
shown as examples with the relevant instructions.

Move To Special Purpose Register X10-form

mtspr SPT,RA

n ← spt 0 || spt 1

if length(SPREG(n))=64 then
 SPREG(n) ← (RA)
else
 SPREG(n) ← (RA) 32:63{0:31}

The SPT field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of reg-
ister RA are placed into the designated Special Purpose
Register. For Special Purpose Registers that are 32 bits
long, the low-order 32 bits of RA are placed into the SPR.

If the SPT field contains any value other than one of the
values shown above, then one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system privileged instruction error handler is
invoked.

• The results are boundedly undefined.

A complete description of this instruction is given in Book
III, ForestaPC Operating Environment Architecture.

Special Registers Altered: .
See above

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
mtxer Rx mtspr 1,Rx
mtbr0 Rx mtspr 8,Rx
mtmar Rx mtspr 16,Rx

0 4 6 10 16 22

0 / spt1 RA spt0 784

decimal SPT Register name

1 00000 00001 XSR

4 00000 00100 FPSCR

8 00000 01000 BR0

16 00000 10000 MAR

Fixed-Point Instructions 109

Move From Special Purpose Register X10-form

mfspr RT,SPS

n ← sps 0 || sps 1

if length(SPREG(n))=64 then
 RT ← SPREG(n)
else

 RT ← 320 || SPREG(n)

The SPS field denotes a Special Purpose Register,
encoded as shown in the table below. The contents of the
designated Special Purpose Register are placed into regis-
ter RT. For Special Purpose Registers that are 32 bits long,
the low-order 32 bits of RT receive the contents of the
SPR, and the high-order 32-bits of RT are set to 0.

If the SPS field contains any value other than one of the
values shown above, then one of the following occurs:

• The system illegal instruction error handler is invoked.

• The system privileged instruction error handler is
invoked.

• The results are boundedly undefined.

A complete description of this instruction is given in Book
III, ForestaPC Operating Environment Architecture.

Special Registers Altered: .
None

XSR-Image Fields Generated:
None

Examples of Extended Mnemonics:
Extended: Equivalent to:
mfxer Rx mfspr Rx,1
mfbr0 Rx mfspr Rx,8
mfmar Rx mfspr Rx,16

Move to Condition Register from XSR X10-form

mcrxr CRT

CRCRT ← XSR0:3

XSR0:3 ← 0b0000

The contents of XSR0:3 are copied into the Condition Reg-
ister field designated by CRT. XSR0:3 are set to zero.

Special Registers Altered:
XSR bits 0:3
CR Field CRT

XSR-Image Fields Generated:
None

Update XSR From Image X10-form

uxsr RA,XM

XSR ← RA XM

The contents of the XSR-Image in register RA are placed
into XSR. Only the XSR fields specified by the XM mask
are copied, as follows:

OV if XM0 = 1
CA if XM1 = 1

Special Registers Altered:
XSR

XSR-Image Fields Generated:
None

0 4 10 12 16 22

0 RT / sps1
sps0 785

decimal SPS Register name

1 00000 00001 XSR

4 00000 00100 FPSCR

8 00000 01000 BR0

16 00000 10000 MAR

0 4 8 10 16 22

0 CRT // /// /// 817

0 4 10 16 20 22

0 /// RA // XM 782

 110 Move To/From FPSCR Instructions

5.18 Move To/From FPSCR Instructions

Every Move To/From FPSCR instruction appears to syn-
chronize the effects of all instructions executed by a pro-
cessor. Executing a Move To/From FPSCR instruction
ensures that all Update FPSCR instructions previously ini-
tiated by the processor appear to have completed before
the Move To/From FPSCR instruction is initiated, and that
no subsequent Update FPSCR instructions appear to be
initiated by the processor until the Move To/From FPSCR
instruction has completed. In particular:

• all exceptions that will be caused by the previously ini-
tiated Update FPSCR instructions are recorded in the
FPSCR before the Move To/From FPSCR instruction
is initiated;

• all invocations of the system floating-point enabled
exception error handler that will be caused by the pre-
viously initiated Update FPSCR instructions have
occurred before the Move To/From FPSCR instruction
is initiated; and

• no subsequent floating-point instruction that depends
on or alters the setting of any FPSCR bits appears to
be initiated until the Move To/From FPSCR instruction
has completed.

(Floating-point Storage Access instructions are not
affected.)

Move From FPSCR X10-form

mffs RT,CRT

RT ← FPSCR

The contents of the FPSCR are placed into bits 32:63 of
register RT. Bits 0:31 of register RT are undefined.

CR field CRT is set to the Floating-Point exception status,
copied from bits 0:3 of the Floating-Point Status and Con-
trol Register.

Special Registers Altered:
CR Field CRT

XSR-Image Fields Generated:
None

Move to Condition Register From FPSCR X10-
form

mcrfs CRT,BFS

The contents of FPSCR field BFS are copied to CR field
CRT. All exception bits copied (except FEX and VX) are set
to 0 in the FPSCR.

CR field CRT is set to the Floating-Point exception status,
copied from bits 0:3 of the Floating-Point Status and Con-
trol Register.

Special Registers Altered:
CR Field CRT
FPSCR Fields
FX OX (if BFS = 0)
UX ZX XX VXSNAN (if BFS = 1)
VXISI VXIDI VXZDZ VXIMZ (if BFS = 2)
VXVC (if BFS = 3)
VXSOFT VXSQRT VXCVI (if BFS = 5)

XSR-Image Fields Generated:
None

0 4 10 16 20 22

0 RT /// CRT / 789

0 4 8 10 16 19 22

0 CRT // // BFS // 804

Fixed-Point Instructions 111

Update FPSCR From Image X10-form

ufsr RA,FM

FPSCR ← RA FM

The contents of the FSR-Image in register RA are placed
into FPSCR. Only the FSR fields specified by the FM mask
are copied, as follows:

FX OX if FM0 = 1
UX ZX XX VXSNAN if FM1 = 1
VXISI VXIDI VXZDZ VXIMZ if FM2 = 1
VXVC if FM3 = 1
VXSOFT VXSQRT VXCVI if FM4 = 1
FPRF FR FI if FM5 = 1

Special Registers Altered:
FPSCR

XSR-Image Fields Generated:
None

Move To FPSCR Field Immediate X10-form

mtfsfi BFT,CRT,BFI

FPSCR4*BFT:4*BFT+3 ← BFI

FPSCR2 ← FPSCR7 | FPSCR 8 | FPSCR 9 |

 FPSCR 10 | FPSCR 11 | FPSCR 12 |

 FPSCR 21 | FPSCR 22 | FPSCR 23

FPSCR1 ← FPSCR0&FPSCR25 | FPSCR 4&FPSCR26 |

 FPSCR 5&FPSCR27 | FPSCR 6&FPSCR28 |

 FPSCR 2&FPSCR24

The value of field BFI is placed into FPSCR field BFT.

FPSCR0 (FX) is altered only if BFT = 0.

CR field CRT is set to the Floating-Point exception status,
copied from bits 0:3 of the Floating-Point Status and Con-
trol Register.

Special Registers Altered:
FPSCR field BFT
CR Field CRT

XSR-Image Fields Generated:
None

Programming Note: When FPSCR0:3 is specified,
bits 0 (FX) and 3 (OX) are set to the values of
BFI0 and BFI3 (i.e., even if this instruction causes
OX to change from 0 to 1, FX is set from BFI0 and
not by the usual rule that FX is set to 1 when an
exception bit changes from 0 to 1). Bits 1 and 2
(FEX and VX) are set according to the usual rule,
given on Section 2.3.5, “Floating-Point Status and
Control Register,” on page 24, and not from BFI1:2

0 4 10 16 22

0 /// RA FM 783
0 4 8 10 12 16 19 22

0 CRT // // BFI BFT // 788

 112 Move To/From FPSCR Instructions

Move To FPSCR Fields X10-form

mtfsf CRT,RA,FM

FM ← fm 1 || fm0

The contents of bits 32:63 of register RA are placed into
the FPSCR, under control of the field mask specified by
FM. The field mask identifies the 4-bit fields affected. Let i
be an integer in the range 0 to 7. If FMi=1 then FPSCR field
i (FPSCR bits 4i through 4i+3) is set to the contents of the
corresponding field of the low-order 32 bits of register RA.

FPSCR0 (FX) is altered only if FM0 = 0.

CR field CRT is set to the Floating-Point exception status,
copied from bits 0:3 of the Floating-Point Status and Con-
trol Register.

Special Registers Altered:
FPSCR fields selected by mask
CR Field CRT

XSR-Image Fields Generated:
None

Programming Note: Updating fewer than all eight
fields of the FPSCR may have substantially
poorer performance on some implementations
than updating all the fields.

Programming Note: When FPSCR0:3 is specified,
bits 0 (FX) and 3 (OX) are set to the values of
(RA)32 and (RA)35 (i.e., even if this instruction
causes OX to change from 0 to 1, FX is set from
(RA)32 and not by the usual rule that FX is set to 1
when an exception bit changes from 0 to 1). Bits 1
and 2 (FEX and VX) are set according to the
usual rule, given on page XX, and not from
(RA)33:34.

Move To FPSCR Bit 0 X10-form

mtfsb0 FBT,CRT

Bit FBT of the FPSCR is set to 0.

CR field CRT is set to the Floating-Point exception status,
copied from bits 0:3 of the Floating-Point Status and Con-
trol Register.

Special Registers Altered:
FPSCR bit FBT
CR Field CRT

XSR-Image Fields Generated:
None

Programming Note: Bits 1 and 2 (FEX and VX) can-
not be explicitly reset.

0 4 8 10 16 22

0 CRT fm1 RA fm0 787
0 4 5 10 16 20 22

0 / FBT /// CRT // 790

Fixed-Point Instructions 113

Move To FPSCR Bit 1 X10-form

mtfsb1 FBT,CRT

Bit FBT of the FPSCR is set to 1.

CR field CRT is set to the Floating-Point exception status,
copied from bits 0:3 of the Floating-Point Status and Con-
trol Register.

Special Registers Altered:
FPSCR bit FBT
CR Field CRT

XSR-Image Fields Generated:
None

Programming Note: Bits 1 and 2 (FEX and VX) can-
not be explicitly set.

0 4 5 10 16 20 22

0 / FBT /// CRT // 791

 114 Move Register Instructions

5.19 Move Register Instructions

These Move Register instructions allow the movement of
data between registers.

Move from Floating-Point Register X10-form

mffpr RT,FRA

RT ← (FRA)

The contents of Floating-Point Register FRA are placed
into General Purpose Register RT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Move to Floating-Point Register X10-form

mtfpr FRT,RA

FRT ← (RA)

The contents of General Purpose Register RA are placed
into Floating-Point Register FRT.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 22

0 RT FRA /// 796

0 4 10 16 22

0 FRT RA /// 797

Fixed-Point Instructions 115

5.20 Commit Instructions

The Commit instructions are used to commit results gener-
ated speculatively. In particular, Commit instructions are
used to commit the contents of one register into another
register.

Commit Speculative Register X10-form

csr RT,RA

The Delayed Exception Bit associated with RA is checked.
If the bit is not set, the contents of register RA are placed
into register RT; otherwise, a Delayed Exception is raised
to the processor.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Commit Speculative FPR X10-form

csfr FRT,FRA

The Delayed Exception Bit associated with FRA is
checked. If the bit is not set, the contents of register FRA
are placed into register FRT; otherwise, a Delayed Excep-
tion is raised to the processor.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

Commit Speculative Register and Condition Reg-
ister Field X8-form

csrcr RT,CRT,RA,CRS

RT ← (RA)
CRT ← (CRS)

General Purpose Register RT and Condition Register Field
CRT are respectively updated with the contents of General
Purpose Register RA and Condition Register Field CRS.
The Delayed Exception Bit associated with RA and CRS
are checked; if neither one of these bits is set to 1, the
update operations take place, otherwise a Delayed Excep-
tion is raised to the processor.

Special Registers Altered:
None

XSR-Image Fields Generated:
None

0 4 10 16 22

0 RT RA /// 792

0 4 10 16 22

0 FRT FRA /// 793

0 4 10 16 20 24

15 RT RA CRT CRS 1

 116 Commit Instructions

Floating-Point Instructions 117

Chapter 6. Floating-Point Instructions

This chapter describes the Floating-Point instructions and
their associated features. Section 6.1 provides an overview
of the Floating-Point Instruction Set Architecture, Section
6.2 describes the floating-point data formats, Section 6.3
describes the exceptions arising from floating-point opera-
tions, Section 6.4 describes the floating-point execution
models, Section 6.5 describes the speculative execution of
floating-point instructions, and Section 6.6 describes the
instructions.

Storage access instructions for floating-point operands are
described in Section 4.2.2, “Floating-Point Storage
Accesses,” on page 37.

6.1 Floating-Point Overview

The Floating-Point Instruction Set Architecture provides
instructions for:

• performing arithmetic, conversion, comparison and
other floating-point operations on data in Floating-
Point Registers, storing the result in a Floating-Point
Register;

• moving floating-point data between Floating-Point
Registers; and

• performing conversion of data in floating-point format
in a Floating-Point Register into integer format in a
General Purpose Register, and for performing conver-
sion of data in integer format in a General Purpose
Register into floating-point format in a Floating-Point
Register.

The architecture provides for the processor to implement a
floating-point system as defined in ANSI/IEEE Standard
754-1985, “IEEE Standard for Binary Floating-Point Arith-
metic” (hereafter referred to as “the IEEE standard”), but
requires software support in order to conform fully with that

standard. That standard defines certain required “opera-
tions” (addition, subtraction, etc.); the term “floating-point
operation” is used in this chapter to refer to one of these
required operations, or to the operation performed by one
of the Multiply-Add or Reciprocal Estimate instructions. All
floating-point operations conform to that standard, except if
software sets the Floating-Point Non-IEEE Mode (NI) bit in
the Floating-Point Status and Control Register to 1 (see
Section 2.3.5, “Floating-Point Status and Control Register,”
on page 24), in which case floating-point operations do not
necessarily conform to that standard.

The floating-point instructions are divided into two catego-
ries:

• floating-point computational instructions

These instructions perform addition, subtraction, multi-
plication, division, extracting the square-root, round-
ing, conversion, comparison, and combinations of
these operations. These instructions provide the float-
ing-point operations. They generate status information
in a Floating-Point Status Image (FSR-Image) These
instructions are described in Section 6.6.2 through
Section 6.6.4.

• floating-point non-computational instructions

These instructions move the contents of a floating-
point register to another floating-point register possibly
altering the sign, and select the value from one of two
floating-point registers based on the value in a third
floating-point register. The operations performed by
these instructions are not considered floating-point
operations, and they do not generate status informa-
tion in a Floating-Point Status Image. These instruc-
tions are described in Section 6.6.1 and Section 6.6.5.

A floating-point number consists of a signed exponent and
a signed significand. The quantity expressed by this num-

 118 Floating-Point Overview

ber is the product of the significand and the number

2exponent. Encodings are provided in the data format to rep-
resent finite numeric values, ±Infinity, and values which are
“Not a Number” (NaN). Operations involving infinities pro-
duce results obeying traditional mathematical conventions.
NaNs have no mathematical interpretation; their encoding
permits a variable diagnostic information field. They may
be used to indicate such things as uninitialized variables,
and can be produced by certain invalid operations.

Floating-Point Exceptions

There is one class of exceptional events which occur dur-
ing execution of floating-point instructions:

• Floating-Point Exceptions

Floating-point exceptions are signalled with bits set in the
Floating-Point Status Image (FSR-Image). Floating-Point
exceptions can cause the system floating-point enabled
exception error handler to be invoked, precisely or impre-
cisely, if the proper control bits are set in an Extend FSR
instruction in the right-adjacent slot.

The following floating-point exceptions are detected by the
processor:

• Invalid Operation Exception (VX)

- SNaN (VXSNAN)

- Infinity-Infinity (VXISI)

- Infinity÷Infinity (VXIDI)

- Zero÷Zero (VXZDZ)

- Infinity×Zero (VXIMZ)

- Invalid Compare (VXVC)

- Software Request (VXSOFT)

- Invalid Square Root (VXSQRT)

- Invalid Integer Convert (VXCVI)

• Zero Divide Exception (ZX)

• Overflow Exception (OX)

• Underflow Exception (UX)

• Inexact Exception (XX)

Each floating-point exception, and each category of Invalid
Operation Exception, has an exception bit in the FSR-
Image. In addition, each floating-point exception has a cor-
responding enable bit in the FPSCR. See Section 2.3.5,
“Floating-Point Status and Control Register,” on page 24
and Section , “Floating-Point Status Image,” on page 27 for
a description of these exception and enable bits, and
Section 6.3, “Floating-Point Exceptions,” on page 123, for

a detailed discussion of the floating-point exceptions,
including the effects of the enable bits.

Floating-Point Registers

This architecture provides 64 floating-point registers
(FPRs), numbered 0-63. Each Floating-Point Register
(FPR) contains 64-bits which support the floating-point
double format. Every instruction that interprets the contents
of an FPR as a floating-point value uses the floating-point
double format for this interpretation.

The floating-point computational instructions, and the Move
and Select instructions, operate on data located in Float-
ing-Point Registers (FPRs) and, with the exception of the
Floating-Point Compare instructions, place the result value
into a Floating-Point Register. Compare instructions place
the result into the Condition Register.

Load and Store Double instructions (which correspond to
Storage Access instructions) are provided to transfer 64
bits of data between storage and the FPRs with no conver-
sion. Load Single instructions are provided to transfer and
convert floating-point values in floating-point single format
from storage to the same value in floating-point double for-
mat in the FPRs. Store Single instructions are provided to
transfer and convert floating-point values in floating-point
double format from the FPRs to the same value in floating-
point single format in storage. These instructions are
described in Chapter 4., “Storage Access Instructions,” on
page 37.

Instructions are provided for manipulating the Floating-
Point Status and Control Register; these instructions are
described in Section 5.18, “Move To/From FPSCR Instruc-
tions,” on page 110. Some of these instructions copy data
from a GPR to the Floating-Point Status and Control Regis-
ter, or vice versa.

The floating-point computational instructions and the Float-
ing-Point Select instruction accept values from the FPRs in
double format. For single-precision arithmetic instructions,
all input values must be representable in single format; if
they are not, the result placed into the target FPR, and the
setting of status bits in the FSR-Image, are undefined.

The floating-point arithmetic, rounding and conversion
instructions produce intermediate results which may be
regarded as being infinitely precise. After normalization or
denormalization, if the infinitely precise intermediate result
is not representable in the destination format (either 32-bit
or 64-bit) then it is rounded. The final result is then placed
into the target floating-point register in the double format.

Floating-Point Instructions 119

6.2 Floating-Point Data

6.2.1 Data Format
This architecture defines the representation of a floating-
point value in two different binary fixed-length formats. The
format may be a 32-bit single format for a single-precision
value or a 64-bit double format for a double-precision
value. The single format may be used for data in storage.
The double format may be used for data in storage and for
data in floating-point registers.

The length of the exponent and the fraction fields differ
among these two formats. The structure of the single and
double formats is shown below:

Values in floating-point formats are composed of three
fields:

If only a portion of a floating-point data item in storage is
accessed, such as with a Load or Store instruction for a
byte or halfword (or word in the case of a floating-point
double format), the value affected will depend on whether
the system is operation with Big-Endian byte order (the
default), or Little-Endian byte order.

Representation of numerical values in the floating-point for-
mats consists of a sign bit S, a biased exponent EXP, and
the fraction portion FRACTION of the significand. The sig-
nificand consists of a leading implied bit concatenated on
the right with the FRACTION. This leading implied bit is 1
for normalized numbers and 0 for denormalized numbers,
and is located in the unit bit position (i.e. the first bit to the
left of the binary point). Values representable within the two
floating-point formats can be specified by the parameters
listed in Figure 27.

The architecture requires that the FPRs only support the
floating-point double format.

6.2.2 Value Representation
This architecture defines numerical and non-numerical val-
ues representable within each of the two supported for-
mats. The numerical values are approximations to the real
numbers and include the normalized numbers, denormal-
ized numbers, and zero values. The non-numerical values
representable are the Infinities and the Not-a-Numbers
(NaNs). The infinities are adjoined to the real numbers but
are not numbers themselves, and the standard rules of
arithmetic do not hold when they appear in an operation.
They are related to the real numbers by order alone. It is
possible, however, to define restricted operations among
numbers and infinities as described below. The relative
location on the real number line for each of the defined
entities is shown in Figure 28.

The NaNs are not related to the numbers or infinities by
order or value; instead, they are encodings used to convey
diagnostic information such as the representation of unini-
tialized variables.

The following is a description of the different floating-point
values defined in the architecture:

Binary floating-point numbers:
Machine representable values used as approxima-
tions to real numbers. Three categories of numbers

0 1 9 31

S EXP FRACTION

Figure 25: Floating-Point Single Format

0 1 12 63

S EXP FRACTION

Figure 26: Floating-Point Double Format

S sign bit

EXP exponent+bias

FRACTION fraction

Format

Single Double

Exponent Bias +127 +1023

Maximum Exponent +127 +1023

Minimum Exponent -126 -1022

Width (bits)

Format 32 64

Sign 1 1

Exponent 8 11

Fraction 23 52

Significand 24 53

Figure 27: IEEE Floating-Point Fields

Figure 28: Approximation to Real Numbers

-0 +0-DEN +DEN-NOR +NOR-INF +INF

 120 Floating-Point Data

are supported: normalized numbers, denormalized
numbers, and zero values.

Normalized numbers (±NOR):
These are values which have a biased exponent value
in the range:

1 to 254 in single format
1 to 2046 in double format

They are values in which the implied unit bit is one.
Normalized numbers are interpreted as follows:

NOR = (-1)s x 2E x (1.fraction)

where (s) is the sign, (E) is the unbiased exponent and
(1.fraction) is the significand which is composed of a
leading unit bit (implied bit) and a fraction part.

The ranges covered by the magnitude (M) of a normal-
ized floating-point number are approximately equal to:

Single Format:

1.2x10-38 ≤ M ≤ 3.4x1038

Double Format:

2.2x10-308 ≤ M ≤ 1.8x10308

Zero values (±0):
These are values which have a biased exponent value
of zero and a fraction value of zero. Zeros can have a
positive or negative sign. The sign of zero is ignored
by comparison operations (i.e., comparison regards
+0 as equal to -0).

Denormalized numbers (±DEN):
These are values which have a biased exponent value
of zero and a non-zero fraction value. They are non-
zero numbers smaller in magnitude than the repre-
sentable normalized numbers. They are values in
which the implied unit bit is zero. Denormalized num-
bers are interpreted as follows:

DEN = (-1)s x 2Emin x (0.fraction)

where Emin is the minimum representable exponent
value (-126 for single-precision, -1022 for double-pre-
cision).

Infinities (±∞):
These are values which have the maximum biased
exponent value:

255 in the single format
2047 in the double format

and a zero fraction value. They are used to approxi-
mate values greater in magnitude than the maximum

normalized value.

Infinity arithmetic is defined as the limiting case of real
arithmetic, with restricted operations defined among
numbers and infinities. Infinities and the real numbers
can be related by ordering in the affine sense:

-∞ < every finite number < +∞

Arithmetic on infinities is always exact and does not
signal any exception, except when an exception
occurs due to the invalid operations as described in
Section 6.3.1, “Invalid Operation Exception,” on
page 126.

Not a Numbers (NaNs):
These are values which have the maximum biased
exponent value and a non-zero fraction value. The
sign bit is ignored (i.e. NaNs are neither positive nor
negative). If the high-order bit of the fraction field is a
zero then the Nan is a Signalling NaN, otherwise it is a
Quiet NaN.

Signalling NaNs are used to signal exceptions when
they appear as arithmetic operands.

Quiet NaNs are used to represent the result of certain
invalid operations, such as invalid arithmetic opera-
tions on infinities or on NaNs, when Invalid Operation
Exception is disabled (FPSCRVE=0). Quiet NaNs
propagate through all operations except ordered com-
parison, Floating Round to Single Precision, and con-
version to integer. Quiet NaNs do not signal
exceptions, except for ordered comparison and con-
version to integer operations. Specific encodings, in
QNaNs, can thus be preserved through a sequence of
operations, and used to convey diagnostic information
to help identify results from invalid operations.

When a QNaN is the result of an operation because
one of the operands is a NaN or because a QNaN was
generated due to a disabled Invalid Operation Excep-
tion, then the following rule is applied to determine the
NaN with the high-order fraction bit set to one that is to
be stored as the result:

if (FRA) is a NaN
then (FRT) ← (FRA)
else if (FRB) is a NaN

then if instruction is frsp

then (FRT) ← (FRB)0:34 || 290
 else (FRT) ← (FRB)
 else if (FRC) is a NaN
 then (FRT) ← (FRC)

Floating-Point Instructions 121

 else if generated QNaN
 then (FRT) ← generated QNaN

If the operand specified by FRA is a NaN, then that
NaN is stored as the result. Otherwise, if the operand
specified by FRB is a NaN (if the instruction specifies
an FRB operand), then that NaN is stored as the
result, with the low-order 29 bits of the result set to 0 if
the instruction is frsp. Otherwise, if the operand speci-
fied by FRC is a NaN (if the instruction specifies an
FRC operand), then that NaN is stored as the result.
Otherwise, if a QNaN was generated due to a disabled
Invalid Operation Exception, then that QNaN is stored
as the result. If a QNaN is to be generated as a result,
then the QNaN generated has a sign bit of zero, an
exponent field of all ones, and a high-order fraction bit
of one with all other fraction bits zero. Any instruction
that generates a QNaN as the result of a disabled
Invalid Operation must generate this QNaN (i.e.,
0x7FF8_0000_0000_0000).

A double-precision NaN is considered to be represent-
able in single format if and only if the low-order 29 bits
of the double-precision NaNs fraction are zero.

6.2.3 Sign of Result
The following rules govern the sign of the result of a float-
ing-point arithmetic operation, rounding, or conversion
operation, when the operation does not yield an exception.
They apply even when the operands or results are zeros or
infinities.

• The sign of the result of an add operation is the sign of
the operand having the larger absolute value. If both
operands have the same sign, the sign of the result of
an add operation is the same as the sign of the oper-
ands. The sign of the result of the subtract operation x-
y is the same as the sign of the result of the add oper-
ation x+(-y).

When the sum of two operands with opposite sign, or
the difference of two operands with the same sign, is
exactly zero, the sign of the result is positive in all
rounding modes except Round towards -Infinity, in
which mode the sign is negative.

• The sign of the result of a multiplication or division
operation is the Exclusive-OR of the signs of the oper-
ands.

• The sign of the result of a Square Root or Reciprocal
Square Root Estimate operation is always positive,
except that the square root of -0 is -0 and the recipro-
cal square root of -0 is -Infinity.

• The sign of the result of a Round to Single-Precision or
Convert to/from Integer operation is the sign of the
operand being converted.

For the Multiply-Add instructions, the rules given above are
applied first to the multiply operation and then to the add or
subtract operation (one of the inputs to the addition or sub-
traction operation is the result of the multiply operation).

6.2.4 Normalization and Denormalization
The intermediate result of a floating-point arithmetic or frsp
instruction may require normalization and/or denormaliza-
tion, as described below. Normalization and denormaliza-
tion do not affect the sign of the result.

When a floating-point arithmetic or frsp instruction pro-
duces an intermediate result, consisting of a sign bit, an
exponent, and a nonzero significand with a zero leading
bit, it is not a normalized number and must be normalized
before it is stored.

A number is normalized by shifting its significand left while
decreasing its exponent by one for each bit shifted, until
the leading significand bit becomes one. The Guard bit and
the Round bit (see Section 6.4.1, “Execution Model for
IEEE Operations,” on page 130) participate in the shift,
with zeros shifted into the Round bit. The exponent is
regarded as if its range were unlimited.

After normalization, or if normalization was not required,
the intermediate result may have a non-zero significand
and an exponent value that is less than the minimum value
that can be represented in the format specified for the
result. In this case, the intermediate result is said to be
“Tiny” and the stored result is determined by the rules
described in Section 6.3.4, “Underflow Exception,” on
page 128. These rules may require denormalization.

A number is denormalized by shifting its significand right
while incrementing its exponent by one for each bit shifted,
until the exponent is equal to the format's minimum value. If
any significant bits are lost in this shifting process then
“Loss of Accuracy” has occurred (see Section 6.3.4,
“Underflow Exception,” on page 128) and Underflow
Exception is signalled.

Engineering Note: When denormalized numbers are
operands of floating-point multiply, divide, and
square root operations, some implementations

 122 Floating-Point Data

may pre-normalize the operands internally before
performing the operations.

6.2.5 Data Handling and Precision
The Floating-Point Instruction Set Architecture includes
instructions to move floating-point data between the FPRs
and storage. For double format, the data is not altered dur-
ing the move. For single format, a format conversion from
single to double is performed when loading from storage
into an FPR, and a format conversion from double to single
is performed when storing an FPR into storage. No float-
ing-point exceptions are caused by these instructions.

All computational, Move and Select instructions use the
floating-point double format.

Floating-point single-precision values are obtained with the
following types of instructions:

1. Load Floating-Point Single

This form of instruction accesses a single-precision
operand in single format in storage, converts it to dou-
ble-precision, and loads it into an FPR. No floating-
point exceptions are caused by these instructions.

2. Round to Floating-Point Single-Precision

The Floating Round to Single Precision instruction
rounds a double-precision operand to single-precision if
the operand is not already in single-precision range,
checking the exponent for single-precision range and
handling any exceptions according to respective enable
bits, and places that operand into an FPR as a double-
precision operand. For results produced by single-pre-
cision arithmetic instructions, single-precision loads,
and other instances of the Floating Round to Single
Precision instruction, this operation does not alter the
value.

3. Single-Precision Arithmetic Instructions

This form of instruction takes operands from the FPRs
in double format, performs the operation as if it pro-
duced an intermediate result correct to infinite precision
and with unbounded range, and then coerces this inter-
mediate result to fit in single format. Status bits in the
FSR-Image are set to reflect the single-precision result.
The result is then converted to double format and
placed into an FPR. The result lies in the range sup-
ported by the single format.

All input values must be representable in single format;
if they are not, the result placed into the target FPR,
and the setting of status bits in the FSR-Image are
undefined.

4. Store Floating-Point Single

This form of instruction converts a double-precision
operand to single format and stores that operand into
storage. No floating-point exceptions are caused by
these instructions (the value being stored is effectively
assumed to be the result of an instruction of one of the
preceding three types).

When the result of a Load Floating-Point Single, Floating
Round to Single-Precision, or single-precision arithmetic
instructions is stored in an FPR, the low-order 29 FRAC-
TION bits are zero.

Programming Note: The Floating Round to Single
Precision instruction is provided to allow value
conversion from double-precision to single-preci-
sion with appropriate exception checking and
rounding. This instruction should be used to con-
vert double-precision floating-point values (pro-
duced by double-precision Load and arithmetic
instructions and by fcfid) to single-precision val-
ues prior to storing them into single format stor-
age elements or using them as operands for
single-precision arithmetic instructions. Values
produced by single-precision Load and arithmetic
instructions are already single-precision values
and can be stored directly into single format stor-
age elements, or used directly as operands for
single-precision arithmetic instructions, without
preceding the Store or the arithmetic instruction
by a Floating Round to Single Precision instruc-
tion.

Programming Note: A single-precision value can be
used in double-precision arithmetic operations.
The reverse is not necessarily true (it is true only if
the double-precision value is representable in sin-
gle format).

Some implementations may execute single-preci-
sion arithmetic instructions faster than double-
precision arithmetic instructions. Therefore, if
double-precision accuracy is not required, single-
precision data and instructions should be used.

6.2.6 Rounding
The material in this section applies to operations that have
numeric operands (i.e., operands that are not infinities or
NaNs). Rounding the infinitely precise intermediate result

Floating-Point Instructions 123

of such an operation may cause an Overflow Exception, an
Underflow Exception, or an Inexact Exception. The remain-
der of this section assumes that the operation causes no
exceptions and that the result is numeric. See
Section 6.2.2, “Value Representation,” on page 119 and
Section 6.3, “Floating-Point Exceptions,” on page 123 for
the cases not covered here.

With the exception of the two Estimate instructions, Float-
ing Reciprocal Estimate Single and Floating Reciprocal
Square Root Estimate, all arithmetic, rounding and conver-
sion instructions defined by this architecture produce an
intermediate result that can be regarded as being infinitely
precise. This result must then be written with a precision of
finite length into a FPR. After normalization or denormaliza-
tion, if the infinitely precise intermediate result is not repre-
sentable in the precision required by the instruction then it
is rounded before being placed into the target FPR.

The instructions that may round their result are the Arith-
metic and Rounding and Conversion instructions. For a
given instance of one of these instructions, whether round-
ing actually occurs depends on the values of the inputs.
Each of these instructions sets FSR-Image bits FR and FI,
according to whether rounding occurred (FI) and whether
the fraction was increased (FR). If rounding occurred, FI is
set to 1, and FR may be set to either 0 or 1. If rounding did
not occur, both FR and FI are set to 0.

The two Estimate instructions set FR and FI to undefined
values. The remaining floating-point instructions do not
alter FR and FI.

Four user-selectable modes of rounding are provided
through the Floating-Point Round Control field in the
FPSCR. See Section 2.3.5, “Floating-Point Status and
Control Register,” on page 24. These are encoded as fol-
lows:

Let Z be the infinitely precise intermediate arithmetic result
or the operand of a convert operation. If Z can be repre-
sented exactly in the target format, then no rounding
occurs, and the result in all rounding modes is equivalent to
truncation of Z. If Z cannot be represented exactly in the
target format, let Z1 and Z2 bound Z as the next larger and

next smaller numbers representable in the target format.
Then, Z1 or Z2 can be used to approximate the result in the
target format.

Figure 29 shows the relationship among Z, Z1, and Z2 in
this case. The following rules specify the rounding in the
four modes. “LSB” means “least significant bit”.

Round to Nearest:
Choose the value that is closer to Z (Z1 or Z2). In case
of a tie, choose the one which is even (least significant
bit 0).

Round toward Zero:
Choose the smaller in magnitude (Z1 or Z2).

Round Toward +Infinity:
Choose Z1.

Round Toward -Infinity:
Choose Z2.

See Section 6.4.1, “Execution Model for IEEE Operations,”
on page 130 for a detailed explanation of rounding.

6.3 Floating-Point Exceptions

This architecture defines the following floating-point excep-
tions:

• Invalid Operation Exception

- SNaN

- Infinity-Infinity

- Infinity÷Infinity

- Zero÷Zero

- Infinity×Zero

- Invalid Compare

- Software Request

- Invalid Square Root

RN Rounding Mode

00 Round to Nearest

01 Round toward Zero

10 Round toward +Infinity

11 Round toward -Infinity

Figure 29: Selection of Z1 and Z2

0Z2 Z1
Z

Positive valuesNegative values

Z2 Z1
Z

Infinitely precise value

By truncating after LSB

By incrementing LSB of Z

 124 Floating-Point Exceptions

- Invalid Integer Convert

• Zero Divide Exception

• Overflow Exception

• Underflow Exception

• Inexact Exception

These exceptions may occur during execution of floating-
point computational instructions. In addition, an Invalid
Operation Exception occurs when a Status and Control
Register instruction sets FPSCRVXSOFT to 1 (Software
Request).

Each floating-point exception, and each category of Invalid
Operation Exception, has an exception bit in the FSR-
Image. In addition, each floating-point exception has a cor-
responding enable bit in the FPSCR. The exception bit
indicates occurrence of the corresponding exception. If an
exception occurs, the corresponding enable bit governs the
result produced by the instruction and, in conjunction with
the FE0 and FE1 bits (see page 125) and with the FM bits
in a Update XSR instruction, whether and how the system
floating-point enabled exception error handler is invoked.
(In general, the functionality specified by the enable bit cor-
responds to enabling the invocation of the system error
handler, not of permitting the exception to occur. The
occurrence of an exception depends only on the instruction
and its inputs, not on the setting of any control bits. The
only deviation from this general rule is that the occurrence
of an Underflow Exception may depend on the setting of
the enable bit.)

The floating-point Exception Summary bit (FX) in the
FPSCR is set to 1 by any Move to FPSCR instruction,
except mtfsfi and mtfsf, that causes any of the floating-
point exception bits in the FPSCR to change from 0 to 1, or
by a mtfsfi, mtfsf, or mtfsb1 instruction that explicitly sets
the bit to 1. The floating-point Enabled Exception Summary
bit (FEX) in the FPSCR is set when any of the exceptions is
set and the exception is enabled (enable bit is one).

Unless state otherwise, this section describes the events
that take place when a floating-point instruction extended
with a Extend FSR instruction are executed; the actual
reporting of the exception takes place when the FSR-
Image generated by the floating-point instruction and
placed by the Extend FSR instruction in a GPR is used to
update the FPSCR.

A single instruction may set more than one exception bit in
the FSR-Image only in the following cases:

• Inexact Exception may be set with Overflow Excep-
tion.

• Inexact Exception may be set with Underflow Excep-
tion.

• Invalid Operation Exception (SNaN) may be set with
Invalid Operation Exception (∞×0) for Multiply-Add
instructions for which the values being multiplied are
infinity and zero, and the value being added is an
SNaN.

• Invalid Operation Exception (SNaN) may be set with
Invalid Operation Exception (Invalid Compare) for
Compare Ordered instructions.

• Invalid Operation Exception (SNaN) may be set with
Invalid Operation Exception (Invalid Integer Convert)
for Convert to Integer instructions.

When an exception occurs, the instruction execution may
be suppressed or a result may be delivered, depending on
the exception.

Instruction execution is suppressed for the following kinds
of exception, so that there is no possibility that one of the
operands is lost:

• Enabled Invalid Operation

• Enabled Zero Divide

For the remaining kinds of exception, a result is generated
and written to the destination specified by the instruction
causing the exception. The result may be a different value
for the enabled and disabled conditions for some of these
exceptions. The kinds of exception that deliver a result are
the following

• Disabled Invalid Operation

• Disabled Zero Divide

• Disabled Overflow

• Disabled Underflow

• Disabled Inexact

• Enabled Overflow

• Enabled Underflow

• Enabled Inexact

Subsequent sections define each of the floating-point
exceptions and specify the action that is taken when they
are detected.

The IEEE standard specifies the handling of exceptional
conditions in terms of “traps” and “trap handlers”. In this
architecture, an FPSCR exception enable bit of 1 causes
generation of the result value specified in the IEEE stan-

Floating-Point Instructions 125

dard for the “trap enabled” case; the expectation is that the
exception will be detected by software, which will revise the
result. An FPSCR exception enable bit of 0 causes genera-
tion of the “default result” value specified for the “trap dis-
abled” (or “no trap occurs” or “trap is not implemented”)
case; the expectation is that the exception will not be
detected by software, which will simply use the default
result. The result to be delivered in each case for each
exception is described in the sections below.

The IEEE default behavior when an exception occurs is to
generate a default value and not to notify software. In this
architecture, if the IEEE default behavior when an excep-
tion occurs is desired for all exceptions, all FPSCR excep-
tion enable bits should be set to 0 and Ignore Exceptions
Mode (see below) should be used. In this case, the system
floating-point enabled exception error handler is not
invoked, even if floating-point exceptions occur; software
can inspect the FSR-Image exception bits if necessary, to
determine whether exceptions have occurred.

In this architecture, if software is to be notified that a given
kind of exception has occurred, the corresponding FPSCR
exception enable bit must be set to 1 and a mode other
than Ignore Exceptions Mode must be used. In this case,
the system floating-point enabled exception error handler
is invoked if an enabled floating-point exception occurs.

Whether and how the system floating-point enabled excep-
tion error handler is invoked if an enabled floating-point
exception occurs is controlled by the FE0 and FE1 bits.
The location of these bits and the requirements for altering
them are described in Book III, ForestaPC Operating Envi-
ronment Architecture. (The system floating-point enabled
exception error handler is never invoked because of a dis-
abled floating-point exception). The effects of the four pos-
sible settings of these bits are as follows:

Architecture Note: The FE0 and FE1 bits must be
defined in Book III in a manner such that they can
be changed dynamically and can be easily treated
as part of a process' state.

In all cases the question of whether or not a floating-point
result is stored, and what value is stored, is governed by
the FPSCR exception enable bits, as described in subse-
quent sections, and is not affected by the value of the FE0
and FE1 bits.

In all cases in which the system floating-point enabled
exception error handler is invoked, all VLIWs and instruc-
tions within the current VLIW prior to the instruction at
which the system floating-point enabled exception error
handler is invoked have completed, and no VLIW or
instructions within the current VLIW after the instruction at
which the system floating-point enabled exception error
handler is invoked has been executed. (Recall that, for the
two imprecise modes, the instruction at which the system
floating-point enabled exception error handler is invoked
need not be the instruction that caused the exception.) The
instruction at which the system floating-point enabled
exception error handler is invoked has not been executed,
unless it is the excepting instruction, in which case it has
been executed unless the kind of exception is among those
listed above as suppressed.

Programming Note: In any of the three non-Precise
modes, a Floating-Point Status and Control Reg-
ister instruction can be used to force any excep-
tions, due to instructions initiated before the
Floating-Point Status and Control Register

FE0 FE1 Description

0 0 Ignore Exceptions Mode
Floating-point exceptions do not cause the
system floating-point enabled exception
error handler to be invoked.

0 1 Imprecise Nonrecoverable Mode
The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. It may not be possible to
identify the excepting instruction nor the
data that caused the exception. Results pro-
duced by the excepting instruction may have
been used by or may have affected subse-
quent instructions that are executed before
the error handler is invoked.

1 0 Imprecise Recoverable Mode
The system floating-point enabled exception
error handler is invoked at some point at or
beyond the instruction that caused the
enabled exception. Sufficient information is
provided to the error handler so that it can
identify the excepting instruction and the
operands, and correct the result. No results
produced by the excepting instruction have
been used by or have affected subsequent
instructions that are executed before the
error handler is invoked.

1 1 Precise Mode
The system floating-point enabled exception
error handler is invoked precisely at the
instruction that caused the enabled excep-
tion.

FE0 FE1 Description

 126 Floating-Point Exceptions

instruction, to be recorded in the FPSCR. (This
forcing is superfluous for Precise Mode.)

In either of the imprecise modes, a Floating-Point Sta-
tus and Control Register instruction can be used to
force any invocations of the system floating-point
enabled exception error handler, due to instructions
initiated before the Floating-Point Status and Control
Register instruction, to occur. (This forcing has no
effect in Ignore Exceptions Mode, and is superfluous
for Precise Mode.)

A sync instruction, or any other execution synchroniz-
ing instruction or event (e.g., isync: see Book II, Fore-
staPC Virtual Environment Architecture), also has the
effects described above. However, in order to obtain
the best performance across the widest range of
implementations, a Floating-Point Status and Control
Register instruction should be used to obtain these
effects.

In order to obtain the best performance across the widest
range of implementations, the programmer should obey
the following guidelines:

• If the IEEE default results are acceptable to the appli-
cation, Ignore Exceptions Mode should be used, with
all FPSCR exception enable bits set to 0.

• If the IEEE default results are not acceptable to the
application, Imprecise Nonrecoverable Mode should
be used, or Imprecise Recoverable Mode if recover-
ability is needed, with FPSCR exception enable bits
set to 1 for those exceptions for which the system
floating-point enabled exception error handler is to be
invoked.

• Ignore Exceptions Mode should not, in general, be
used when any FPSCR exception enable bits are set
to 1.

• Precise Mode may degrade performance in some
implementations, perhaps substantially, and therefore
should be used only for debugging and other special-
ized applications.

Engineering Note: It is permissible for the implemen-
tation to be precise in any of the three modes that
permit exceptions, or to be recoverable in Nonre-
coverable Mode.

6.3.1 Invalid Operation Exception

6.3.1.1 Definition

An Invalid Operation exception is detected whenever an
operand is invalid for the specified operation. The invalid
operations are:

• Any floating-point operation on a signalling NaN
(SNaN)

• For add or subtract operations, magnitude subtraction
of infinities (∞-∞)

• Division of infinity by infinity (∞÷∞)

• Division of zero by zero (0÷0)

• Multiplication of infinity by zero (∞×0)

• Ordered comparison involving a NaN (Invalid Com-
pare)

• Square root or reciprocal square root of a negative
(and non-zero) number (Invalid Square Root)

• Integer convert involving a large number, an infinity, or
a NaN (Invalid Integer Convert)

In addition, an Invalid Operation Exception occurs if soft-
ware explicitly request this by executing a mtfsfi, mtfsf, or
mtfsb1 instruction that sets FPSCRVXSOFT to 1 (Software
Request).

Programming Note: The purpose of FPSCRVXSOFT

is to allow software to cause an Invalid Operation
Exception for a condition that is not necessarily
associated with the execution of a floating-point
instruction. For example, it might be set by a pro-
gram that computes a square root, if the source
operand is negative.

6.3.1.2 Action

The action to be taken depends on the setting of the Invalid
Operation Exception Enable bit of the FPSCR.

When Invalid Operation Exception is enabled,
FPSCRVE=1, and Invalid Operation occurs or software
explicitly requests the exception, then the following actions
are taken:

1. One or two Invalid Operation Exceptions is(are) set:

Floating-Point Instructions 127

FSR-ImageVXSNAN (if SNaN)
FSR-ImageVXISI (if ∞-∞)
FSR-ImageVXIDI (if ∞÷∞)
FSR-ImageVXZDZ (if 0÷0)
FSR-ImageVXIMZ (if ∞×0)
FSR-ImageVXVC (if invalid comp)
FSR-ImageVXSOFT (if software req)
FSR-ImageVXSQRT (if invalid sqrt)
FSR-ImageVXCVI (if invalid int cvrt)

2. If the operation is an arithmetic, Floating Round to Sin-
gle-Precision, or convert to integer operation:

the target FPR is unchanged;
FSR-ImageFR FI are set to zero;
FSR-ImageFPRF is unchanged.

3. If the operation is a compare:

FSR-ImageFR FI C are unchanged;
FSR-ImageFPCC is set to reflect unordered.

4. If software explicitly requests the exception:

FPSCRFR FI FPRF are as set by the mtfsfi, mtfsf, or
mtfsb1 instruction.

When Invalid Operation Exception is disabled
(FPSCRVE=0) and Invalid Operation occurs or software
explicitly request the exception, then the following actions
are taken:

1. One or two Invalid Operation Exceptions is set:

FSR-ImageVXSNA (if SNaN)
FSR-ImageVXISI (if ∞-∞)
FSR-ImageVXIDI (if ∞÷∞)
FSR-ImageVXZDZ (if 0÷0)
FSR-ImageVXIMZ (if ∞×0)
FSR-ImageVXVC (if NaN comp)
FSR-ImageVXSOFT (if software req)
FSR-ImageVXSQRT (if invalid sqrt)
FSR-ImageVXCVI (if invalid int cvrt)

2. If the operation is an arithmetic or Floating Round to
Single Precision operation:

the target FPR is set to a Quiet NaN;
FSR-ImageFR FI are set to zero;
FSR-ImageFPRF is set to indicate the class of the
result (Quiet NaN).

3. If the operation is a convert to 64-bit integer operation:

 the target FPR is set as follows:

FRT is set to the most positive 64-bit integer
if the operand in FRB is a positive number or
+∞, and to the most negative 64-bit integer if
the operand in FRB is a negative number, -∞,
or NaN;

FSR-ImageFR FI are set to zero;
FSR-ImageFPRF is undefined.

4. If the operation is a convert to 32-bit integer operation:

 the target FPR is set as follows:

FRT0:31 ← undefined;
FRT32:63 are set to the most positive 32-bit
integer if the operand in FRB is a positive
number, or +∞, and to the most negative 32-
bit integer if the operand in FRB is a negative
number, -∞, or NaN;

FSR-ImageFR FI are set to zero;
FSR-ImageFPRF is undefined.

5. If the operation is a compare:

FSR-ImageFR FI C are unchanged;
FSR-ImageFPCC is set to reflect unordered.

6. If software explicitly requests the exception:

FPSCRFR FI FPRF are set by the mtfsfi, mtfsf, or
mtfsb1 instruction

6.3.2 Zero Divide Exception

6.3.2.1 Definition
A Zero Divide Exception occurs when a Divide instruction
is executed with a zero divisor value and a finite non-zero
dividend value. It also occurs when a Reciprocal Estimate
instruction (fres or frsqrte) is executed with an operand
value of zero.

Architecture Note: The name is a misnomer used for
historical reasons. The proper name for this excep-
tion should be “Exact Infinite Result from Finite
Operands” corresponding to what mathematicians
call a “pole”.

6.3.2.2 Action
The action to be taken depends on the setting of the Zero
Divide Exception Enable bit of the FPSCR.

When Zero Divide Exception is enabled (FPSCRZE=1) and
Zero Divide occurs then the following actions are taken:

 128 Floating-Point Exceptions

1. Zero Divide Exception is set:

FSR-ImageZX ← 1

2. The target FPR is unchanged.

3. FSR-ImageFR FI are set to zero.

4. FSR-ImageFPRF is unchanged.

When Zero Divide Exception is disabled (FPSCRZE=0) and
Zero Divide occurs then the following actions are taken:

1. Zero Divide Exception is set

FSR-ImageZX ← 1

2. The target FPR is set to a ±∞, where the sign is deter-
mined by the XOR of the signs of the operands.

3. FSR-ImageFR FI are set to zero

4. FSR-ImageFPRF is set to indicate the class and sign of
the result (±Infinity)

6.3.3 Overflow Exception

6.3.3.1 Definition
Overflow occurs when the magnitude of what would have
been the rounded result if the exponent range was
unbounded exceeds that of the largest finite number of the
specified result precision.

6.3.3.2 Action

The action to be taken depends on the setting of the Over-
flow Exception Enable bit of the FPSCR.

When Overflow Exception is enabled (FPSCROE=1) and
exponent overflow occurs then the following actions are
taken:

1. Overflow Exception is set

FSR-ImageOX ← 1

2. For double-precision arithmetic instructions, the expo-
nent of the normalized intermediate result is adjusted
by subtracting 1536.

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by subtracting 192.

4. The adjusted rounded result is placed into the target
FPR.

5. FSR-ImageFPRF is set to indicate the class and sign of
the result (±Normal Number).

When Overflow Exception is disabled (FPSCROE=0) and
exponent overflow occurs then the following actions are
taken:

1. Overflow Exception is set

FSR-ImageOX ← 1

2. Inexact Exception is set

FSR-ImageXX ← 1

3. The result is determined by the rounding mode
(FPSCRRN) and the sign of the intermediate result as
follows:
- Round to Nearest

Store ±Infinity, where the sign is the sign of the
intermediate result.

- Round towards Zero
Store the format's largest finite number with the sign
of the intermediate result.

- Round towards +Infinity
For negative overflow, store the format's most neg-
ative finite number; for positive overflow, store
+Infinity.

- Round towards -Infinity
For negative overflow, store -Infinity; for positive
overflow, store the format's largest finite number.

4. The result is placed into the target FPR.

5. FSR-ImageFR is undefined

6. FSR-ImageFI is set to 1

7. FSR-ImageFPRF is set to indicate the class and sign of
the result (±Infinity or ±Normal Number).

6.3.4 Underflow Exception

6.3.4.1 Definition
Underflow Exception is defined separately for the enabled
and disabled states:

• Enabled:
Underflow occurs when the intermediate result is
“Tiny”.

• Disabled:
Underflow occurs when the intermediate result is
“Tiny” and there is “Loss of Accuracy”.

Floating-Point Instructions 129

A “Tiny” result is detected before rounding, when a non-
zero result value computed as though the exponent range
were unbounded would be less in magnitude than the
smallest normalized number.

If the intermediate result is “Tiny” and the Underflow
Exception Enable is off (FPSCRUE=0) then the intermedi-
ate result is denormalized (Section 6.2.4, “Normalization
and Denormalization,” on page 121) and rounded
(Section 6.2.6, “Rounding,” on page 122) before being
placed into the target FPR.

“Loss of Accuracy” is detected when the delivered result
value differs from what would have been computed were
both the exponent range and precision unbounded.

6.3.4.2 Action

The action to be taken depends on the setting of the
Underflow Exception Enable bit of the FPSCR.

When Underflow Exception is enabled (FPSCRUE=1) and
exponent underflow occurs then the following actions are
taken:

1. Underflow Exception is set

FSR-ImageUX ← 1

2. For double-precision arithmetic instructions, the expo-
nent of the normalized intermediate result is adjusted
by adding 1536.

3. For single-precision arithmetic instructions and the
Floating Round to Single-Precision instruction, the
exponent of the normalized intermediate result is
adjusted by adding 192.

4. The adjusted rounded result is placed into the target
FPR

5. FSR-ImageFPRF is set to indicate the class and sign of
the result (±Normalized Number).

Programming Note: The FR and FI bits are provided
to allow the system floating-point enabled excep-
tion error handler, when invoked because of an
Underflow Exception, to simulate a “trap disabled”
environment. That is, the FR and FI bits allow the
system floating-point enabled exception error
handler to unround the result, thus allowing the
result to be denormalized.

When Underflow Exception is disabled (FPSCRUE=0) and
underflow occurs then the following actions are taken:

1. Underflow Exception is set

FSR-ImageUX ← 1

2. The rounded result is placed into the target FPR.

3. FSR-ImageFPRF is set to indicate the class and sign of
the result (±Denormalized Number or ±Zero).

6.3.5 Inexact Exception

6.3.5.1 Definition
Inexact Exception occurs when one of two conditions occur
during rounding:

1. The rounded result differs from the intermediate result
assuming the intermediate result exponent range and
precision to be unbounded.

2. The rounded result overflows and Overflow Exception
is disabled.

6.3.5.2 Action
The action to be taken does not depend on the setting of
the Inexact Exception Enable bit of the FPSCR.

When Inexact Exception occurs then the following actions
are taken:

1. Inexact Exception is set

FSR-ImageXX ← 1

2. The rounded or overflowed result is placed into the tar-
get FPR.

3. FSR-ImageFPRF is set to indicate the class and sign of
the result

Programming Note: In some implementations,
enabling Inexact Exceptions may degrade perfor-
mance more than enabling other types of floating-
point exceptions.

6.4 Floating-Point Execution Models

All implementations of this architecture must provide the
equivalent of the following execution models to insure that
identical results are obtained.

 130 Floating-Point Execution Models

Special rules are provided in the definition of the arithmetic
instructions for the infinities, denormalized numbers and
NaNs. The material in the remainder of this section applies
to instructions that have numeric operands and a numeric
result (i.e., operands and result that are not infinities or
NaNs), and that cause no exceptions. See Section 6.2.2,
“Value Representation,” on page 119, and Section 6.3,
“Floating-Point Exceptions,” on page 123 for the cases not
covered here.

Although the double format specifies an 11-bit exponent,
exponent arithmetic makes use of two additional bit posi-
tions to avoid potential transient overflow conditions. One
extra bit is required when denormalized double-precision
numbers are prenormalized. The second bit is required to
permit the computation of the adjusted exponent value in
the following cases when the corresponding exception
enable bit is 1:

• Underflow during multiplication using a denormalized
operand.

• Overflow during division using a denormalized divisor.

The IEEE standard includes 32-bit and 64-bit arithmetic.
The standard requires that single precision arithmetic be
provided for single-precision operands. The standard per-
mits double-precision floating-point operations to have
either (or both) single-precision and double-precision oper-
ands, but states that single-precision floating-point opera-
tions should not accept double-precision operands. The
ForestaPC architecture follows these guidelines: double-
precision arithmetic instructions can have operands of
either or both precisions, whereas single-precision arith-
metic instructions require all operands to be single-preci-
sion. Double-precision arithmetic instructions and fcfid
produce double-precision values, whereas single-precision
arithmetic instructions produce single-precision values.

For arithmetic instructions, conversions from double-preci-
sion to single-precision must be done explicitly by software,
whereas conversions from single-precision to double-preci-
sion are done implicitly.

6.4.1 Execution Model for IEEE
Operations

The following description uses 64-bit arithmetic as an
example. 32-bit arithmetic is similar except that the FRAC-
TION is a 23-bit field, and the single-precision Guard,
Round, and Sticky bits (described in this section) are logi-
cally adjacent to the 23-bit FRACTION field.

IEEE-conforming 64-bit significand arithmetic is considered
to be performed with a floating-point accumulator having
the following format:

The S bit is the sign bit.

The C bit is the carry bit that captures the carry out of the
significand.

The L bit is the leading unit bit of the significand which
receives the implicit bit from the operands.

The FRACTION is a 52-bit field which accepts the fraction
of the operands.

The Guard (G), Round (R), and Sticky (X) bits are exten-
sions to the low order bits of the accumulator. The G and R
bits are required for post normalization of the result. The G,
R, and X bits are required during rounding to determine if
the intermediate result is equally near the two nearest rep-
resentable values. The X bit serves as an extension to the
G and R bits by representing the logical OR of all bits which
may appear to the low-order side of the R bit, either due to
shifting the accumulator right or other generation of low-
order result bits. The G and R bits participate in the left
shifts with zeros being shifted into the R bit. Figure 27
shows the significance of the G, R, and X bits with respect
to the intermediate result (IR), the next lower in magnitude
representable number (NL), and the next higher in magni-
tude representable number (NH).

The significand of the intermediate result is made up of the
L bit, the FRACTION, and the G,R and X bits.

0 1 52

S C L FRACTION G R X

Figure 30: IEEE 64-bit Execution Model

G R X Interpretation

0 0 0 IR is exact

0 0 1

IR closer to NL0 1 0

0 1 1

1 0 0 IR midway between NL and
NH

1 0 1

IR closer to NH1 1 0

1 1 1

Figure 31: Interpretation of G, R and X bits

Floating-Point Instructions 131

The infinitely precise intermediate result of an operation is
the result normalized in bits L, FRACTION, G, R, and X of
the floating-point accumulator.

Before the result is stored into an FPR, the significand of
the infinitely precise intermediate result described above is
rounded if necessary, using the rounding mode specified
by FPSCRRN. If rounding results in a carry into C, the sig-
nificand is shifted right one position and the exponent
increased by one. This yields an inexact result and possi-
bly also exponent overflow. Fraction bits to the left of the bit
position used for rounding are stored into the FPR and low-
order bit positions, if any, are set to zero.

Four user-selectable rounding modes are provided through
FPSCRRN, as described in Section 6.2.6, “Rounding,” on
page 122. For rounding, the conceptual Guard, Round,
and Sticky bits are defined in terms of accumulator bits.
Figure 32 shows the positions of the Guard, Round, and
Sticky bits for double-precision and single-precision float-
ing-point numbers.

Rounding can be treated as though the significand were
shifted right, if required, until the least significant bit to be
retained is in the low-order bit position of the FRACTION. If
any of the Guard, Round, or Sticky bits are nonzero, then
the result is inexact.

Z1 and Z2, as defined on page 123, can be used to
approximate the result in the target format when one of the
following rules is used.

• Round to Nearest

Guard bit = 0

The result is truncated. (Result exact (GRX = 000)
or closest to next lower value in magnitude (GRX =
001, 010, or 011)).

Guard bit = 1

Depends on Round and Sticky bits:

Case a:

If the Round or Sticky bit is 1 (inclusive), the
result is increased by 1. (Result closest to next
higher value in magnitude (GRX = 101, 110, or
111)).

Case b:

If the Round and Sticky bits are zero (result
midway between closest representable values)
then if the low-order bit of the result is one the
result is incremented. Otherwise (the low-order
bit of the result is zero) the result is truncated
(this is the case of a tie rounded to even).

• Round towards Zero

Choose the smaller in magnitude of Z1 or Z2. If the
Guard, Round, or Sticky bit is non-zero, the result is
inexact.

• Round towards +Infinity

Choose Z1.

• Round towards -Infinity

Choose Z2.

Where the result is to have fewer than 53 bits of precision
because the instruction is a Floating Round to Single-Pre-
cision or single-precision arithmetic instruction, the inter-
mediate result either is normalized or is placed in correct
denormalized form before any rounding is done.

6.4.2 Execution Model for Multiply-Add
Type Instructions
The ForestaPC Architecture makes use of a special form of
instruction which performs up to three operations in one
instruction (a multiplication, an addition and a negation).
With this added capability comes the special ability to pro-
duce a more exact intermediate result as input to the
rounder. 32-bit arithmetic is similar except that the FRAC-
TION field is smaller.

Multiply-add significand arithmetic is considered to be per-
formed with a floating-point accumulator having the follow-
ing format:

Format Guard Round Sticky

Double G bit R bit X bit

Single 24 25 OR of 26:52, G, R, X

Figure 32: Location of the Guard, Round and Sticky
Bits

 132 Speculative Execution of Floating-Point Instructions

The first part of the operation is a multiplication. The multi-
plication has two 53-bit significands as inputs, which are
assumed to be prenormalized, and produces a result con-
forming to the above model. If there is a carry out of the
significand (into the C bit), then the significand is shifted
right one position, shifting the L bit (leading unit bit) into the
most significant bit of the fraction, and shifting the C bit
(carry out) into the L bit. All 106 bits (L bit, the fraction) of
the product take part in the add operation. If the exponents
of the two inputs to the adder are not equal, the significand
of the operand with the smaller exponent is aligned
(shifted) to the right by an amount which is added to that
exponent to make it equal to the other input's exponent.
Zeros are shifted into the left of the significand as it is
aligned and bits shifted out of bit 105 of the significand are
ORed into the X' bit. The add operation also produces a
result conforming to the above model with the X' bit taking
part in the add operation.

The result of the addition is then normalized, with all bits of
the addition result, except the X' bit, participating in the
shift. The normalized result serves as the infinitely precise
intermediate result that is input to the rounder.

For rounding, the conceptual Guard, Round and Sticky bits
are defined in terms of accumulator bits. Figure 32 shows
the positions of the Guard, Round and Sticky bits for dou-
ble-precision and single-precision floating-point numbers in
the multiply-add execution model.

The rules of rounding the intermediate result are the same
as those given in Section Section 6.4.1, “Execution Model
for IEEE Operations,” on page 130.

If the instruction is Floating Negative Multiply-Add or Float-
ing Negative Multiply-Subtract the final result is negated.

6.5 Speculative Execution of Floating-
Point Instructions

In the ForestaPC architecture, speculative execution is a
technique usable by the compiler/programmer for improv-
ing performance. A speculative operation is one that has
been placed out-of-order with respect to a sequential exe-
cution stream, on the speculation that the result will be
needed. If subsequent events indicate that the speculative
instruction would not have been executed, or the results of
the speculative instruction are not valid, any result pro-
duced by the speculative instruction are not used. Typi-
cally, instructions are placed speculatively by the compiler/
programmer when there are resources that would other-
wise be idle so that the operation is done without cost, or to
reduce delays in the program.

No error of any kind other than Machine Check should be
reported due to the execution of a speculative instruction,
until the result from its execution is used non-speculatively.
If there were errors, the instruction should be re-executed
at that point, as well as any other speculative instructions
already executed that depend on the faulting instruction.

A floating-point value that has been loaded speculatively
must be committed before it can be used non-speculatively
(usually at the original place in the sequential execution
stream). Floating-point values are committed using the
instruction Commit Speculative Floating-Point Register
(csfr).

Floating-point instructions other than Load can be specu-
lated without explicit indication.

Floating-point instructions can be paired with an Extend
FSR (xfps) instruction in the right-adjacent slot to the one
containing the instruction. The Extend primitive specifies a
GPR where an FSR-Image is placed, which can later be
used to update FPSCR.

Programming Note: Floating-point instructions
implicitly use the control fields from FPSCR
(exception enable fields, rounding mode field, and
so on). A speculative floating-point operation uses
the values in the FPSCR control fields when the
instruction is executed. Consequently, the specu-
lation of a floating-point instruction across an
instruction that may change the contents of the
FPSCR control fields is a programming error.

0 1 105

S C L FRACTION X’

Figure 33: Multiply-Add 64-bit Execution Model

Format Guard Round Sticky

Double 53 54 OR of 55:105, X’

Single 24 25 OR of 26:105, X’

Figure 34: Location of the Guard, Round and Sticky
bits in the multiply-add execution model

Floating-Point Instructions 133

6.6 Floating-Point Instructions

6.6.1 Floating-Point Move Instructions
These instructions copy data from one floating-point regis-
ter to another, altering the sign bit (bit 0) as described
below for fneg, fabs, and fnabs. These instructions treat
NaNs just like any other kind of value (e.g., the sign bit of
the NaN may be altered by fneg, fabs, and fnabs). These
instructions do not generate a FSR-Image.

Floating Move Register X10-form

fmr FRT,FRA

FRT ← (FRA)

The contents of register FRA are placed into register FRT.

Special Registers Altered:
None

FSR-Image Fields Generated:
None

Floating Absolute Value X10-form

fabs FRT,FRA

FRT ← 0 || (FRA) 1:63

The contents of register FRA with bit 0 set to zero are
placed into register FRT.

Special Registers Altered:
None

FSR-Image Fields Generated:
None

Floating Negate X10-form

fneg FRT,FRA

FRT ← ¬(FRA) 0 || (FRA) 1:63

The contents of register FRA with bit 0 inverted are placed
into register FRT.

Special Registers Altered:
None

FSR-Image Fields Generated:
None

Floating Negative Absolute Value X10-form

fnabs FRT,FRA

FRT ← 1 || (FRA) 1:63

The contents of register FRA with bit 0 set to 1 are placed
into register FRT.

Special Registers Altered:
None

FSR-Image Fields Generated:
None

0 4 10 16 22

0 FRT FRA /// 518

0 4 10 16 22

0 FRT FRA /// 517

0 4 10 16 22

0 FRT FRA /// 520

0 4 10 16 22

0 FRT FRA /// 519

 134 Floating-Point Instructions

6.6.2 Floating-Point Arithmetic
Instructions

6.6.2.1 Floating-Point Elementary
Arithmetic Instructions

Floating Add [Single] X10-form

fadd FRT,FRA,FRB

fadds FRT,FRA,FRB

The floating-point operand in register FRA is added to the
floating-point operand in register FRB.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR and placed into register FRT.

Floating-point addition is based on exponent comparison
and addition of the significands. The exponents of the two
operands are compared, and the significand accompany-
ing the smaller exponent is shifted right, with its exponent
increased by one for each bit shifted, until the two expo-
nents are equal. The two significands are then added or
subtracted as appropriate, depending on the sign of the
operands, to form an intermediate sum. All 53 bits in the
significand as well as all three guard bits (G, R, and X)
enter into the computation.

If a carry occurs, the sum's significand is shifted right one
bit position and the exponent is increased by one.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI

Floating Subtract [Single] X10-form

fsub FRT,FRA,FRB

fsubs FRT,FRA,FRB

The floating-point operand in register FRB is subtracted
from the floating-point operand in register FRA.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR and placed into register FRT.

The execution of the Floating Subtract instruction is identi-
cal to that of Floating Add, except that the contents of FRB
participates in the operation with its sign bit (bit 0) inverted.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI

0 4 10 16 22

0 FRT FRA FRB 256

0 4 10 16 22

0 FRT FRA FRB 257

0 4 10 16 22

0 FRT FRA FRB 262

0 4 10 16 22

0 FRT FRA FRB 263

Floating-Point Instructions 135

Floating Multiply [Single] X10-form

fmul FRT,FRA,FRB

fmuls FRT,FRA,FRB

The floating-point operand in register FRA is multiplied by
the floating-point operand in register FRB.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR and placed into register FRT.

Floating-point multiplication is based on exponent addition
and multiplication of the significands.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX XX
VXSNAN VXIMZ

Floating Divide [Single] X10-form

fdiv FRT,FRA,FRB

fdivs FRT,FRA,FRB

The floating-point operand in register FRA is divided by the
floating-point operand in register FRB. The remainder is
not supplied as a result.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR and placed into register FRT.

Floating-point division is based on exponent subtraction
and division of the significands.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1
and Zero Divide Exceptions when FPSCRZE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX ZX XX
VXSNAN VXIDI VXZDZ

0 4 10 16 22

0 FRT FRA FRB 260

0 4 10 16 22

0 FRT FRA FRB 261

0 4 10 16 22

0 FRT FRA FRB 258

0 4 10 16 22

0 FRT FRA FRB 259

 136 Floating-Point Instructions

Floating Square-Root [Single] X10-form

fsqrt FRT,FRA

fsqrts FRT,FRA

The square-root of the floating-point operand in register
FRA is placed into register FRT.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR and placed into register FRT.

Operation with various special values of the operand is
summarized below.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX XX
VXSNAN VXSQRT

a. No result if FPSCRVE=1

Floating Reciprocal Estimate Single X10-form

fres FRT,FRA

A single-precision estimate of the reciprocal of the floating-
point operand in register FRA is placed into register FRT.
The estimate placed into register FRT is correct to a preci-
sion of one part in 256 of the reciprocal of (FRB),
i.e.,

where x is the initial value in FRB. Note that the value
placed into register FRT may vary among implementations,
and among different executions on the same implementa-
tion.

Operation with various special values of the operand is
summarized below.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1
and Zero Divide Exceptions when FPSCRZE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR (undefined) FI (undefined)
FX OX UX ZX
VXSNAN

Architecture Note: No double-precision version of this
instruction is provided because graphics applica-
tions are expected to need only the single-precision
version, and no other important performance-critical
applications are expected to need a double-preci-
sion version.

a. No result if FPSCRZE=1

b. No result if FPSCRVE=1

0 4 10 16 22

0 FRT FRA /// 524

0 4 10 16 22

0 FRT FRA /// 525

Operand Result Exception
-∞ QNaN a VXSQRT

<0 QNaN a VXSQRT

-0 -0 None

+∞ +∞ None

SNaN QNaNa VXSNAN

QNaN QNaN None

0 4 10 16 22

0 FRT FRA /// 521

Operand Result Exception

-∞ -0 None

-0 -∞ a ZX

+0 +∞ a ZX

+∞ +0 None

SNaN QNaN b VXSNAN

QNaN QNaN None

ABS
estimate 1 x⁄–

1 x⁄

 1
256
---------≤

Floating-Point Instructions 137

Floating Reciprocal Square-Root Estimate X10-
form

frsqrte FRT,FRA

A double-precision estimate of the reciprocal of the square-
root of the floating-point operand in register FRA is placed
into register FRT. The estimate placed into register FRT is
correct to a precision of one part in 32 of the reciprocal of
the square-root of (FRB), i.e.,

where x is the initial value in FRB. Note that the value
placed into register FRT may vary among implementations,
and among different executions on the same implementa-
tion.

Operation with various special values of the operand is
summarized below.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1
and Zero Divide Exceptions when FPSCRZE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR (undefined) FI (undefined)
FX ZX
VXSNAN VXSQRT

Architecture Note: No single-precision version of this
instruction is provided because it would be superflu-
ous: if (FRB) is representable in single format, then
so is (FRT).

a. No result if FPSCRVE=1

b. No result if FPSCRZE=1

6.6.2.2 Floating-Point Multiply-Add
Instructions
These instructions combine a multiply and add operation
without an intermediate rounding operation. The fraction
part of the intermediate product is 106 bits wide, and all
106 bits take part in the add/subtract portion of the instruc-
tion.

Status bits in the FSR-Image are set as follows:

• Overflow, Underflow, and Inexact Exception bits, the
FR and FI bits, and the FPRF field are set based on
the final result of the operation, and not on the result of
the multiplication.

• Invalid Operation Exception bits are set as if the multi-
plication and the addition were performed using two
separate instructions (fmul[s], followed by fadd[s] or
fsub[s]). That is, multiplication of infinity by 0 or multi-
plication of anything by an SNaN, and/or addition of an
SNaN, cause the corresponding exception bits to be
set.

0 4 10 16 22

0 FRT FRA /// 523

Operand Result Exception
-∞ QNaN a VXSQRT

<0 QNaN a VXSQRT

-0 -∞ b ZX

+0 +∞ b ZX

+∞ +0 None

SNaN QNaN a VXSNAN

QNaN QNaN None

ABS
estimate 1 x()⁄–

1 x()⁄

 1
32
------≤

 138 Floating-Point Instructions

Floating Multiply-Add [Single] X4-form

fmadd FRT,FRA,FRC,FRB

fmadds FRT,FRA,FRC,FRB

The operation

FRT ← [(FRA) × (FRC)] + (FRB)

is performed.

The floating-point operand in register FRA is multiplied by
the floating-point operand in register FRC. The floating-
point operand in register FRB is added to this intermediate
result.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR and placed into register FRT.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ

Floating Multiply-Subtract [Single] X4-form

fmsub FRT,FRA,FRC,FRB

fmsubs FRT,FRA,FRC,FRB

The operation

FRT ← [(FRA) × (FRC)] - (FRB)

is performed.

The floating-point operand in register FRA is multiplied by
the floating-point operand in register FRC. The floating-
point operand in register FRB is subtracted from this inter-
mediate result.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR and placed into register FRT.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ

0 4 10 16 22 28

12 FRT FRA FRB FRC 4

0 4 10 16 22 28

12 FRT FRA FRB FRC 5

0 4 10 16 22 28

12 FRT FRA FRB FRC 6

0 4 10 16 22 28

12 FRT FRA FRB FRC 1

Floating-Point Instructions 139

Floating Negative Multiply-Add [Single] X4-form

fnmadd FRT,FRA,FRC,FRB

fnmadds FRT,FRA,FRC,FRB

The operation

FRT ← −([(FRA) × (FRC)] + (FRB))

is performed.

The floating-point operand in register FRA is multiplied by
the floating-point operand in register FRC. The floating-
point operand in register FRB is added to this intermediate
result.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR, then negated and placed into
register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Add instruction and
then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their “sign” bit.

• QNaNs that are generated as the result of a disabled
Invalid Operation Exception have a “sign” bit of zero.

• SNaNs that are converted to QNaNs as the result of a
disabled Invalid Operation Exception retain the “sign”
bit of the SNaN.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ

Floating Negative Multiply-Subtract [Single] X4-
form

fnmsub FRT,FRA,FRC,FRB

fnmsubs FRT,FRA,FRC,FRB

The operation

FRT ← −([(FRA) × (FRC)] - (FRB))

is performed.

The floating-point operand in register FRA is multiplied by
the floating-point operand in register FRC. The floating-
point operand in register FRB is subtracted from this inter-
mediate result.

The result is normalized if the most significant bit of the
resultant significand is not 1. The result is rounded to the
target precision under control of the Floating-Point Round
Control field RN of FPSCR, then negated and placed into
register FRT.

This instruction produces the same result as would be
obtained by using the Floating Multiply-Subtract instruction
and then negating the result, with the following exceptions:

• QNaNs propagate with no effect on their “sign” bit.

• QNaNs that are generated as the result of a disabled
Invalid Operation Exception have a “sign” bit of zero.

• SNaNs that are converted to QNaNs as the result of a
disabled Invalid Operation Exception retain the “sign”
bit of the SNaN.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX XX
VXSNAN VXISI VXIMZ

0 4 10 16 22 28

12 FRT FRA FRB FRC 2

0 4 10 16 22 28

12 FRT FRA FRB FRC 3

0 4 10 16 22 28

12 FRT FRA FRB FRC 7

0 4 10 16 22 28

12 FRT FRA FRB FRC 0

 140 Floating-Point Instructions

6.6.3 Floating-Point Rounding and
Conversion Instructions

Floating Convert to Integer Doubleword X10-form

fctid RT,FRA

The floating-point operand in register FRA is converted to a
64-bit signed fixed-point integer, using the rounding mode
specified by FPSCRRN, and placed into fixed-point register
RT.

If the operand in FRA is greater than 263 - 1, then RT is set
to 0x7FFF_FFFF_FFFF_FFFF. If the operand in FRA is

less than -263, then RT is set to 0x8000_0000_0000_0000.

Except for enabled Invalid Operation Exceptions, FSR-
ImageFPRF is undefined. FSR-ImageFR is set if the result is
incremented when rounded. FSR-ImageFI is set if the
result is inexact.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF(undefined) FR FI
FX XX
VXSNAN VXCVI

Floating Convert to Integer Doubleword with
round toward Zero X10-form

fctidz RT,FRA

The floating-point operand in register FRA is converted to a
64-bit signed fixed-point integer, using the rounding mode
Round toward Zero, and placed into fixed-point register
RT.

If the operand in FRA is greater than 263 - 1, then RT is set
to 0x7FFF_FFFF_FFFF_FFFF. If the operand in FRA is

less than -263, then RT is set to 0x8000_0000_0000_0000.

Except for enabled Invalid Operation Exceptions, FSR-
ImageFPRF is undefined. FSR-ImageFR is set if the result is
incremented when rounded. FSR-ImageFI is set if the
result is inexact.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF(undefined) FR FI
FX XX
VXSNAN VXCVI

0 4 10 16 22

0 RT FRA /// 513

0 4 10 16 22

0 RT FRA /// 514

Floating-Point Instructions 141

Floating Convert to Integer Word X10-form

fctiw RT,FRA

The floating-point operand in register FRA is converted to a
32-bit signed fixed-point integer, using the rounding mode
specified by FPSCRRN, and placed into bits 32:63 of the
fixed-point register RT. Bits 0:31 of register RT are unde-
fined.

If the operand in FRA is greater than 231 - 1, then bits
32:63 of RT are set to 0x7FFF_FFFF. If the operand in

FRA is less than -231, then bits 32:63 of RT are set to
0x8000_0000.

Except for enabled Invalid Operation Exceptions, FSR-
ImageFPRF is undefined. FSR-ImageFR is set if the result is
incremented when rounded. FSR-ImageFI is set if the
result is inexact.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF(undefined) FR FI
FX XX
VXSNAN VXCVI

Floating Convert to Integer Word with round
toward Zero X10-form

fctiwz RT,FRA

The floating-point operand in register FRA is converted to a
32-bit signed fixed-point integer, using the rounding mode
Round toward Zero, and placed into bits 32:63 of fixed-
point register RT. Bits 0:31 of register RT are undefined.

If the operand in FRA is greater than 231 - 1, then bits
32:63 of RT are set to 0x7FFF_FFFF. If the operand in

FRA is less than -231, then bits 32:63 of RT are set to
0x8000_0000.

Except for enabled Invalid Operation Exceptions, FSR-
ImageFPRF is undefined. FSR-ImageFR is set if the result is
incremented when rounded. FSR-ImageFI is set if the
result is inexact.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF(undefined) FR FI
FX XX
VXSNAN VXCVI

0 4 10 16 22

0 RT FRA /// 515
0 4 10 16 22

0 RT FRA /// 516

 142 Floating-Point Instructions

Floating Convert From Integer Doubleword X10-
form

fcfid FRT,RA

The 64-bit signed fixed-point operand in fixed-point register
RA is converted to an infinitely precise floating-point oper-
and. If the result of the conversion is already in double-pre-
cision range, it is placed into floating-point register FRT.
Otherwise, the result of the conversion is rounded to dou-
ble-precision using the rounding mode specified by
FPSCRRN, and placed into floating-point register FRT.

FSR-ImageFPRF is set to the class and sign of the result.
FSR-ImageFR is set if the result is incremented when
rounded. FSR-ImageFI is set if the result is inexact.

This instruction is defined only for 64-bit implementations.
Using it on a 32-bit implementation will cause the system
illegal instruction error handler to be invoked.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX XX

Floating Round to Single-Precision X10-form

frsp FRT,FRA

If it is already in single precision range, the floating-point
operand in register FRA is placed into register FRTs. Oth-
erwise, the floating-point operand in register FRA is
rounded to single-precision using the rounding mode spec-
ified by FPSCRRN and placed into register FRT.

FSR-ImageFPRF is set to the class and sign of the result,
except for Invalid Operation Exceptions when FPSCRVE=1.

Special Registers Altered:
None

FSR-Image Fields Generated:
FPRF FR FI
FX OX UX XX
VXSNAN

0 4 10 16 22

0 FRT RA /// 512

0 4 10 16 22

0 FRT FRA /// 522

Floating-Point Instructions 143

6.6.4 Floating-Point Compare
Instructions
The floating-point compare instructions compare the con-
tents of two floating-point registers. Comparison ignores
the sign of zero (i.e., regards +0 as equal to -0). The com-
parison can be ordered or unordered.

The comparison sets one bit in the designated CR field to
1, and the other three to 0.

The CR field specified by the instruction is interpreted as
follows:

Floating Compare Unordered X10-form

fcmpu CRT,FRA,FRB

if (FRA) is a NaN or
 (FRB) is a NaN then c ← 0b0001
else if (FRA) < (FRB) then c ← 0b1000
else if (FRA) > (FRB) then c ← 0b0100
else c ← 0b0010
CRCRT ← c

if (FRA) is a SNaN or
 (FRB) is a SNaN then
 FSR-Image VXSNAN ← 1

The floating-point operand in register FRA is compared to
the floating-point operand in register FRB. The result of the
compare is placed into CR field CRT.

If either of the operands is a NaN, either quiet or signaling,
then CR field CRT is set to reflect unordered. If either of the
operands is a Signalling NaN, then FSR-ImageVXSNAN is
set.

Special Registers Altered:
CR Field CRT

FSR-Image Fields Generated:
FX
VXSNAN

Bit Name Description

0 FL (FRA) < (FRB)

1 FG (FRA) > (FRB)

2 FE (FRA) = (FRB)

3 FU (FRA) ? (FRB) (unordered)

0 4 8 10 16 22

0 CRT // FRA FRB 265

 144 Floating-Point Instructions

Floating Compare Ordered X10-form

fcmpo CRT,FRA,FRB

if (FRA) is a NaN or
 (FRB) is a NaN then c ← 0b0001
else if (FRA) < (FRB) then c ← 0b1000
else if (FRA) > (FRB) then c ← 0b0100
else c ← 0b0010
CRCRT ← c

if (FRA) is a SNaN or
 (FRB) is a SNaN then
 FSR-Image VXSNAN ← 1

 if VE=0 then FSR-Image VXVC ← 1

else if (FRA) is a QNaN or
 (FRB) is a QNaN then FSR-Image VXVC ← 1

The floating-point operand in register FRA is compared to
the floating-point operand in register FRB. The result of the
compare is placed into CR field CRT.

If either of the operands is a NaN, either quiet or signaling,
then CR field CRT is set to reflect unordered. If either of the
operands is a Signalling NaN, then FSR-ImageVXSNAN is
set and, if Invalid Operation is disabled (VE=0), FSR-Ima-
geVXVC is set. If neither operand is a Signalling NaN but at
least one operand is a Quiet NaN, then FSR-ImageVXVC is
set.

Special Registers Altered:
CR Field CRT

FSR-Image Fields Generated:
FX
VXSNAN VXVC

6.6.5 Floating-Point Select Instruction

Floating Select X4-form

fsel FRT,FRA,FRC,FRB

if (FRA) ≥ 0.0 then FRT ← (FRC)
else FRT ← (FRB)

The floating-point operand in register FRA is compared to
the value zero. If the operand is greater than or equal to
zero, register FRT is set to the contents of register FRC. If
the operand is less than zero or is NaN, register FRT is set
to the contents of register FRB. The comparison ignores
the sign of zero (i.e. regards +0 as equal to -0).

Special Registers Altered:
None

FSR-Image Fields Generated:
None

Architecture Note: The select instruction is similar to a
Move Instruction, and therefore does not alter
FPRF

Warning Note: Care must be taken in using fsel if
IEEE compatibility is required, or if the values being
tested can be NaNs or infinities.

0 4 8 10 16 22

0 CRT // FRA FRB 264

0 4 10 16 22 28

11 FRT FRA FRB FRC 15

 145

Appendix A. Book II and Book III Instructions

The following instructions are described in Book II, Foresta
Virtual Environment Architecture and Book III, Foresta
Operating Environment Architecture:

dcbt Data Cache Block Touch
dcbtst Data Cache Block Touch for Store
dcbi Data Cache Block Invalidate
dcbf Data Cache Block Flush
dcbst Data Cache Block Store
dcbz Data Cache Block Set to Zero
eciw External Control In Word
ecow External Control Out Word
eieio Enforce In-order Execution of I/O
isync Instruction Synchronize
icbi Instruction Cache Block Invalidate
icbt Instruction Cache Block Touch
mftb Move From Time-Base Register
mfmsr Move from Machine State Register
mtmsr Move to Machine State Register
rfi Return From Interrupt
slbia SLB Invalidate All
slbie SLB Invalidate Entry
slbiex SLB Invalidate Entry by Index
tlbia TLB Invalidate All
tlbie TLB Invalidate Entry
tlbiex TLB Invalidate Entry by Index
tlbsync TLB Synchronize

 146

 147

Appendix B. ForestaPC User Instruction Set Sorted by
Opcode

This appendix lists all the instructions in the ForestaPC
Architecture. A page number is shown for instructions that
are defined in this Book (Book I, ForestaPC User Instruc-
tion Set Architecture), and the Book number is shown for
instructions that are defined in other Books (Book II, Fore-
staPC Virtual Environment Architecture, Book III, Fore-
staPC Operating Environment Architecture). If an
instruction is defined in more than one Book, the lowest-
numbered Book is used.

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 148

0 1 X10 nop No-operation - 93

0 128 X10 crand Condition Register AND - 61

0 129 X10 crandc Condition Register AND with Complement - 63

0 130 X10 creqv Condition Register Equivalent - 62

0 131 X10 crnand Condition Register NAND - 62

0 132 X10 crnor Condition Register NOR - 62

0 133 X10 cror Condition Register OR - 61

0 134 X10 crorc Condition Register OR with Complement - 63

0 135 X10 crxor Condition Register XOR - 62

0 192 X10 divd Divide Doubleword - 79

0 193 X10 divdu Divide Doubleword Unsigned - 81

0 194 X10 divw Divide Word- 80

0 195 X10 divwu Divide Word Unsigned - 82

0 223 B10 skip Skip Conditional - 34

0 224 B10 icbi Instruction Cache Block Invalidate - 145

0 225 B10 icbt Instruction Cache Block Touch - 145

0 256 X10 fadd Floating Add - 134

0 257 X10 fadds Floating Add Single - 134

0 258 X10 fdiv Floating Divide- 135

0 259 X10 fdivs Floating Divide Single- 135

0 260 X10 fmul Floating Multiply - 135

0 261 X10 fmuls Floating Multiply - 135

0 262 X10 fsub Floating Subtract - 134

0 263 X10 fsubs Floating Subtract Single - 134

0 264 X10 fcmpo Floating Compare Ordered - 144

0 265 X10 fcmpu Floating Compare Unordered - 143

0 272 X10 mulhd Multiply High Doubleword - 77

0 273 X10 mulhdu Multiply High Doubleword Unsigned- 77

0 274 X10 mulhw Multiply High Word - 78

0 275 X10 mulhwu Multiply High Word Unsigned - 78

0 276 X10 mulld Multiply Low Doubleword - 76

0 277 X10 mullw Multiply Low Word - 76

0 288 X10 slsd Shift Left String Doubleword - 105

0 289 X10 slsw Shift Left String Word - 105

0 290 X10 srsd Shift Right String Doubleword - 106

0 291 X10 srsw Shift Right String Word - 106

0 304 X10 cmp Compare - 84

0 305 X10 cmpl Compare Logical - 85

0 306 X10 cntlzd Count Leading Zeros Doubleword - 94

0 307 X10 cntlzw Count Leading Zeros Word - 94

0 308 X10 extsb Extend Sign Byte - 92

0 309 X10 extsh Extend Sign Halfword - 92

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 149

0 310 X10 extsw Extend Sign Word - 93

0 313 X10 td Trap Doubleword- 87

0 314 X10 tw Trap Word- 87

0 512 X10 fcfid Floating Convert From Integer Doubleword - 142

0 513 X10 fctid Floating Convert to Integer Doubleword- 140

0 514 X10 fctidz Floating Convert to Integer Doubleword with round toward Zero- - - - - - - - - - - - 140

0 515 X10 fctiw Floating Convert to Integer Word- 141

0 516 X10 fctiwz Floating Convert to Integer Word with round toward Zero - - - - - - - - - - - - - - - - 141

0 517 X10 fabs Floating Absolute Value - 133

0 518 X10 fmr Floating Move Register - 133

0 519 X10 fnabs Floating Negative Absolute Value - 133

0 520 X10 fneg Floating Negate- 133

0 521 X10 fres Floating Reciprocal Estimate Single - 136

0 522 X10 frsp Floating Round to Single-Precision - 142

0 523 X10 frsqrte Floating Reciprocal Square-Root Estimate- 137

0 524 X10 fsqrt Floating Square-Root - 136

0 525 X10 fsqrts Floating Square-Root Single- 136

0 768 X10 xadd Extend Add - 70

0 769 X10 xsub Extend Subtract- 71

0 770 X10 xfps Extend FSR - 69

0 771 X10 xsrx Extend XSR - 68

0 772 X10 xsrxe Extended Extend XSR - 68

0 773 X10 xtf Extend FSR and Trap - 70

0 774 X10 xtx Extend XSR and Trap - 69

0 775 D10 xstb Extend Store Byte - 57

0 776 D10 xstd Extend Store Doubleword- 55

0 777 D10 xsth Extend Store Halfword - 56

0 778 D10 xstw Extend Store Word - 56

0 779 B10 xcst Extend Conditional Store - 55

0 782 X10 uxsr Update XSR From Image - 109

0 783 X10 ufsr Update FPSCR From Image- 111

0 784 X10 mtspr Move To Special-Purpose Register - 108

0 785 X10 mfspr Move From Special-Purpose Register - 109

0 786 X10 mftb Move From Time-Base Register - 145

0 787 X10 mtfsf Move To FPSCR Fields - 112

0 788 X10 mtfsfi Move To FPSCR Field Immediate - 111

0 789 X10 mffs Move From FPSCR - 110

0 790 X10 mtfsb0 Move To FPSCR Bit 0 - 112

0 791 X10 mtfsb1 Move To FPSCR Bit 1 - 113

0 792 X10 csr Commit Speculative Register - 115

0 793 X10 csfr Commit Speculative FPR - 115

0 794 X10 eciw External Control In Word - 145

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 150

0 795 X10 ecow External Control Out Word - 145

0 796 X10 mffpr Move from Floating-Point Register - 114

0 797 X10 mtfpr Move to Floating-Point Register- 114

0 798 X10 tdi Trap Doubleword Immediate - 86

0 799 X10 twi Trap Word Immediate- 86

0 800 X10 mfcrf Move from Condition Register Field - 64

0 801 X10 mtcrf Move to Condition Register Field - 64

0 802 X10 mcrf Move Condition Register Field- 64

0 803 X10 mcrfi Move Condition Register Field Immediate- 64

0 804 X10 mcrfs Move to Condition Register From FPSCR- 110

0 805 X10 mfcrw Move From Condition Register Word - 65

0 806 X10 mtcrw Move to Condition Register Word - 66

0 808 X10 mfmsr Move from Machine State Register - 145

0 809 X10 mtmsr Move to Machine State Register - 145

0 810 X10 slbie SLB Invalidate Entry - 145

0 811 X10 slbiex SLB Invalidate Entry by Index - 145

0 812 X10 slbia SLB Invalidate All - 145

0 813 X10 tlbie TLB Invalidate Entry - 145

0 814 X10 tlbiex TLB Invalidate Entry by Index - 145

0 815 X10 tlbia TLB Invalidate All - 145

0 816 X10 mbr Move Branch Register - 60

0 817 X10 mcrxr Move to Condition Register from XSR - 109

0 818 X10 br Branch Register - 34

0 819 X10 eieio Enforce In-order Execution of I/O- 145

0 820 X10 isync Instruction Synchronize- 145

0 822 X10 rfi Return From Interrupt - 145

0 823 X10 sc System Call - 35

0 825 X10 sync Synchronize- 54

0 826 X10 tlbsync TLB Synchronize - 145

0 835 X10 mfcr Move From Condition Register - 65

0 836 X10 mtcr Move to Condition Register - 66

1 I0 addi Add Immediate- 73

2 I0 subfi Subtract from Immediate- 74

3 I0 mulli Multiply Low Immediate - 75

4 I0 andi AND Immediate - 89

5 I0 ori OR Immediate - 90

6 I0 xori XOR Immediate - 90

7 M0 rlwnm Rotate Left Word then AND with Mask - 99

8 0 I1 cmpi Compare Immediate- 83

8 1 I1 cmpli Compare Logical Immediate - 84

9 0 M1 rlwinm Rotate Left Word Immediate then AND with Mask - 97

10 0 B2 b Branch Unconditional - 34

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 151

10 1 B2 cbri Compute Branch Register Immediate - 60

11 0 D4 lhbr Load Halfword Byte-Reversed - 44

11 1 D4 lhz Load Halfword and Zero - 39

11 2 D4 lwz Load Word and Zero - 40

11 3 D4 lsd Load String Doubleword - 48

11 4 D4 lwbr Load Word Byte-Reversed - 44

11 5 D4 lha Load Halfword Algebraic - 39

11 6 D4 lbz Load Byte and Zero - 39

11 7 D4 ld Load Doubleword - 40

11 8 D4 lswz Load String Word and Zero- 47

11 9 D4 lwa Load Word Algebraic - 40

11 10 D4 ltocd Load TOC Doubleword- 46

11 11 D4 ltocwz Load TOC Word and Zero - 46

11 12 D4 lfs Load Floating-Point Single - 42

11 13 D4 lfd Load Floating-Point Double - 42

11 14 X4 rldicr Rotate Left Doubleword Immediate then Clear Right - 96

11 15 X4 fsel Floating Select - 144

12 0 X4 fnmsubs Floating Negative Multiply-Subtract Single - 139

12 1 X4 fmsubs Floating Multiply-Subtract Single - 138

12 2 X4 fnmadd Floating Negative Multiply-Add - 139

12 3 X4 fnmadds Floating Negative Multiply-Add Single - 139

12 4 X4 fmadd Floating Multiply-Add - 138

12 5 X4 fmadds Floating Multiply-Add Single - 138

12 6 X4 fmsub Floating Multiply-Subtract - 138

12 7 X4 fnmsub Floating Negative Multiply-Subtract - 139

12 8 X4 selii Select Immediate-Immediate - 88

12 9 X4 selir Select Immediate-Register - 88

12 10 X4 selri Select Register-Immediate - 89

12 11 X4 selrr Select Register-Register- 89

12 12 X4 rldcl Rotate Left Doubleword then Clear Left - 98

12 13 X4 rldcr Rotate Left Doubleword then Clear Right - 99

12 14 X4 rldic Rotate Left Doubleword Immediate then Clear - 97

12 15 X4 rldicl Rotate Left Doubleword Immediate then Clear Left - 96

13 0 D5 sthbr Store Halfword Byte-Reversed - 45

13 1 D5 sth Store Halfword - 41

13 2 D5 stwcr Store Word Conditional Reserve - 52

13 3 D5 stb Store Byte- 41

13 4 D5 stwbr Store Word Byte-Reversed- 45

13 5 D5 stsw Store String Word - 48

13 6 D5 stw Store Word - 41

13 7 D5 stsd Store String Doubleword - 49

13 8 D5 std Store Doubleword - 41

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 152

13 9 D5 stdcr Store Doubleword Conditional Reserve - 53

13 10 D5 stfs Store Floating-Point Single - 43

13 11 D5 stfd Store Floating-Point Double - 43

13 12 D5 lwar Load Word and Reserve - 51

13 13 D5 ldar Load Doubleword and Reserve - 51

14 0 X6 sradi Shift Right Algebraic Doubleword Immediate - 102

14 1 X6 srawi Shift Right Algebraic Word Immediate - 103

14 2 X6 srad Shift Right Algebraic Doubleword- 103

14 3 X6 sraw Shift Right Algebraic Word - 104

14 4 X6 srd Shift Right Doubleword - 101

14 5 X6 srw Shift Right Word- 102

14 6 X6 sld Shift Left Doubleword - 100

14 7 X6 slw Shift Left Word- 101

14 8 X6 and AND - 90

14 9 X6 xor XOR - 91

14 10 X6 nand NAND - 91

14 11 X6 nor NOR - 91

14 12 X6 or OR - 90

14 13 X6 andc AND with Complement - 92

14 14 X6 orc OR with Complement - 92

14 15 X6 eqv Equivalent - 91

14 16 X6 add Add- 73

14 17 X6 subf Subtract From - 74

14 32 X6 sldia Shift Left Doubleword Immediate then Add - 107

14 33 X6 slwia Shift Left Word Immediate then Add- 107

15 0 I8 xicr Extend Immediate and Condition Register - 67

15 1 X8 csrcr Commit Speculative and Condition Register Field - 115

15 16 D8 dcbtst Data Cache Block Touch for Store- 145

15 17 D8 dcbt Data Cache Block Touch - 145

15 18 D8 dcbi Data Cache Block Invalidate - 145

15 19 D8 dcbf Data Cache Block Flush - 145

15 20 D8 dcbst Data Cache Block Store - 145

15 21 D8 dcbz Data Cache Block Set to Zero - 145

 153

Appendix C. ForestaPC User Instruction Set Sorted by
Mnemonic

This appendix lists all the instructions in the ForestaPC
Architecture. A page number is shown for instructions that
are defined in this Book (Book I, ForestaPC User Instruc-
tion Set Architecture), and the Book number is shown for
instructions that are defined in other Books (Book II, Fore-
staPC Virtual Environment Architecture, Book III, Fore-
staPC Operating Environment Architecture). If an
instruction is defined in more than one Book, the lowest-
numbered Book is used.

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 154

14 16 X6 add Add- 73

1 I0 addi Add Immediate- 73

14 8 X6 and AND - 90

14 13 X6 andc AND with Complement - 92

4 I0 andi AND Immediate - 89

10 0 B2 b Branch Unconditional - 34

0 818 X10 br Branch Register - 34

10 1 B2 cbri Compute Branch Register Immediate- 60

0 304 X10 cmp Compare - 84

8 0 I1 cmpi Compare Immediate- 83

0 305 X10 cmpl Compare Logical - 85

8 1 I1 cmpli Compare Logical Immediate - 84

0 306 X10 cntlzd Count Leading Zeros Doubleword - 94

0 307 X10 cntlzw Count Leading Zeros Word - 94

0 128 X10 crand Condition Register AND - 61

0 129 X10 crandc Condition Register AND with Complement - 63

0 130 X10 creqv Condition Register Equivalent - 62

0 131 X10 crnand Condition Register NAND - 62

0 132 X10 crnor Condition Register NOR - 62

0 133 X10 cror Condition Register OR - 61

0 134 X10 crorc Condition Register OR with Complement - 63

0 135 X10 crxor Condition Register XOR - 62

0 793 X10 csfr Commit Speculative FPR - 115

0 792 X10 csr Commit Speculative Register - 115

15 1 X8 csrcr Commit Speculative Register and Condition Register Field - - - - - - - - - - - - - - - 115

15 19 D8 dcbf Data Cache Block Flush - 145

15 18 D8 dcbi Data Cache Block Invalidate - 145

15 20 D8 dcbst Data Cache Block Store - 145

15 17 D8 dcbt Data Cache Block Touch - 145

15 16 D8 dcbtst Data Cache Block Touch for Store- 145

15 21 D8 dcbz Data Cache Block Set to Zero - 145

0 192 X10 divd Divide Doubleword - 79

0 193 X10 divdu Divide Doubleword Unsigned - 81

0 194 X10 divw Divide Word- 80

0 195 X10 divwu Divide Word Unsigned - 82

0 794 X10 eciw External Control In Word- 145

0 795 X10 ecow External Control Out Word - 145

0 819 X10 eieio Enforce In-order Execution of I/O- 145

14 15 X6 eqv Equivalent - 91

0 308 X10 extsb Extend Sign Byte - 92

0 309 X10 extsh Extend Sign Halfword - 92

0 310 X10 extsw Extend Sign Word - 93

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 155

0 517 X10 fabs Floating Absolute Value - 133

0 256 X10 fadd Floating Add - 134

0 257 X10 fadds Floating Add Single - 134

0 512 X10 fcfid Floating Convert From Integer Doubleword - 142

0 264 X10 fcmpo Floating Compare Ordered - 144

0 265 X10 fcmpu Floating Compare Unordered - 143

0 513 X10 fctid Floating Convert to Integer Doubleword- 140

0 514 X10 fctidz Floating Convert to Integer Doubleword with round toward Zero- - - - - - - - - - - - 140

0 515 X10 fctiw Floating Convert to Integer Word- 141

0 516 X10 fctiwz Floating Convert to Integer Word with round toward Zero - - - - - - - - - - - - - - - - 141

0 258 X10 fdiv Floating Divide - 135

0 259 X10 fdivs Floating Divide Single - 135

12 4 X4 fmadd Floating Multiply-Add - 138

12 5 X4 fmadds Floating Multiply-Add Single - 138

0 518 X10 fmr Floating Move Register - 133

12 6 X4 fmsub Floating Multiply-Subtract - 138

12 1 X4 fmsubs Floating Multiply-Subtract Single - 138

0 260 X10 fmul Floating Multiply - 135

0 261 X10 fmuls Floating Multiply Single - 135

0 519 X10 fnabs Floating Negative Absolute Value - 133

0 520 X10 fneg Floating Negate- 133

12 2 X4 fnmadd Floating Negative Multiply-Add - 139

12 3 X4 fnmadds Floating Negative Multiply-Add Single - 139

12 7 X4 fnmsub Floating Negative Multiply-Subtract - 139

12 0 X4 fnmsubs Floating Negative Multiply-Subtract Single - 139

0 521 X10 fres Floating Reciprocal Estimate Single - 136

0 522 X10 frsp Floating Round to Single-Precision - 142

0 523 X10 frsqrte Floating Reciprocal Square-Root Estimate- 137

11 15 X4 fsel Floating Select - 144

0 524 X10 fsqrt Floating Square-Root - 136

0 525 X10 fsqrts Floating Square-Root Single- 136

0 262 X10 fsub Floating Subtract - 134

0 263 X10 fsubs Floating Subtract Single - 134

0 224 B10 icbi Instruction Cache Block Invalidate- 145

0 225 B10 icbt Instruction Cache Block Touch - 145

0 820 X10 isync Instruction Synchronize - 145

11 6 D4 lbz Load Byte and Zero - 39

11 7 D4 ld Load Doubleword - 40

13 13 D5 ldar Load Doubleword and Reserve- 51

11 13 D4 lfd Load Floating-Point Double - 42

11 12 D4 lfs Load Floating-Point Single - 42

11 5 D4 lha Load Halfword Algebraic - 39

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 156

11 0 D4 lhbr Load Halfword Byte-Reversed - 44

11 1 D4 lhz Load Halfword and Zero - 39

11 3 D4 lsd Load String Doubleword - 48

11 8 D4 lswz Load String Word and Zero - 47

11 10 D4 ltocd Load TOC Doubleword - 46

11 11 D4 ltocwz Load TOC Word and Zero- 46

11 9 D4 lwa Load Word Algebraic - 40

13 12 D5 lwar Load Word and Reserve - 51

11 4 D4 lwbr Load Word Byte-Reversed - 44

11 2 D4 lwz Load Word and Zero- 40

0 816 X10 mbr Move Branch Register - 60

0 802 X10 mcrf Move Condition Register Field- 64

0 803 X10 mcrfi Move Condition Register Field Immediate- 64

0 804 X10 mcrfs Move to Condition Register From FPSCR- 110

0 817 X10 mcrxr Move to Condition Register from XSR - 109

0 835 X10 mfcr Move From Condition Register - 65

0 800 X10 mfcrf Move from Condition Register Field - 64

0 805 X10 mfcrw Move From Condition Register Word - 65

0 796 X10 mffpr Move from Floating-Point Register - 114

0 789 X10 mffs Move From FPSCR - 110

0 808 X10 mfmsr Move from Machine State Register - 145

0 785 X10 mfspr Move From Special-Purpose Register - 109

0 786 X10 mftb Move From Time-Base Register - 145

0 836 X10 mtcr Move to Condition Register - 66

0 801 X10 mtcrf Move to Condition Register Field - 64

0 806 X10 mtcrw Move to Condition Register Word - 66

0 797 X10 mtfpr Move to Floating-Point Register- 114

0 790 X10 mtfsb0 Move To FPSCR Bit 0 - 112

0 791 X10 mtfsb1 Move To FPSCR Bit 1 - 113

0 787 X10 mtfsf Move To FPSCR Fields - 112

0 788 X10 mtfsfi Move To FPSCR Field Immediate - 111

0 809 X10 mtmsr Move to Machine State Register - 145

0 784 X10 mtspr Move To Special-Purpose Register - 108

0 272 X10 mulhd Multiply High Doubleword - 77

0 273 X10 mulhdu Multiply High Doubleword Unsigned- 77

0 274 X10 mulhw Multiply High Word - 78

0 275 X10 mulhwu Multiply High Word Unsigned - 78

0 276 X10 mulld Multiply Low Doubleword - 76

3 I0 mulli Multiply Low Immediate - 75

0 277 X10 mullw Multiply Low Word - 76

14 10 X6 nand NAND - 91

0 1 X10 nop No-operation - 93

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 157

14 11 X6 nor NOR- 91

14 12 X6 or OR - 90

14 14 X6 orc OR with Complement - 92

5 I0 ori OR Immediate- 90

0 822 X10 rfi Return From Interrupt- 145

12 12 X4 rldcl Rotate Left Doubleword then Clear Left - 98

12 13 X4 rldcr Rotate Left Doubleword then Clear Right - 99

12 14 X4 rldic Rotate Left Doubleword Immediate then Clear - 97

12 15 X4 rldicl Rotate Left Doubleword Immediate then Clear Left - 96

11 14 X4 rldicr Rotate Left Doubleword Immediate then Clear Right - 96

9 0 M1 rlwinm Rotate Left Word Immediate then AND with Mask- 97

7 M0 rlwnm Rotate Left Word then AND with Mask- 99

0 823 X10 sc System Call- 35

12 8 X4 selii Select Immediate-Immediate - 88

12 9 X4 selir Select Immediate-Register - 88

12 10 X4 selri Select Register-Immediate - 89

12 11 X4 selrr Select Register-Register- 89

0 223 B10 skip Skip Conditional - 34

0 812 X10 slbia SLB Invalidate All - 145

0 810 X10 slbie SLB Invalidate Entry - 145

0 811 X10 slbiex SLB Invalidate Entry by Index - 145

14 6 X6 sld Shift Left Doubleword- 100

14 32 X6 sldia Shift Left Doubleword Immediate then Add- 107

0 288 X10 slsd Shift Left String Doubleword - 105

0 289 X10 slsw Shift Left String Word - 105

14 7 X6 slw Shift Left Word - 101

14 33 X6 slwia Shift Left Word Immediate then Add - 107

14 2 X6 srad Shift Right Algebraic Doubleword - 103

14 0 X6 sradi Shift Right Algebraic Doubleword Immediate - 102

14 3 X6 sraw Shift Right Algebraic Word - 104

14 1 X6 srawi Shift Right Algebraic Word Immediate - 103

14 4 X6 srd Shift Right Doubleword- 101

0 290 X10 srsd Shift Right String Doubleword - 106

0 291 X10 srsw Shift Right String Word- 106

14 5 X6 srw Shift Right Word - 102

13 3 D5 stb Store Byte- 41

13 8 D5 std Store Doubleword - 41

13 9 D5 stdc Store Doubleword Conditional Reserve - 53

13 11 D5 stfd Store Floating-Point Double - 43

13 10 D5 stfs Store Floating-Point Single - 43

13 1 D5 sth Store Halfword - 41

13 0 D5 sthbr Store Halfword Byte-Reversed - 45

Mnemonic Instruction Page
Opcode

Prim. Ext. Form

 158

13 7 D5 stsd Store String Doubleword- 49

13 5 D5 stsw Store String Word- 48

13 6 D5 stw Store Word - 41

13 4 D5 stwbr Store Word Byte-Reversed - 45

13 2 D5 stwc Store Word Conditional Reserve - 52

14 17 X6 subf Subtract From - 74

2 I0 subfi Subtract from Immediate- 74

0 825 X10 sync Synchronize- 54

0 313 X10 td Trap Doubleword - 87

0 798 X10 tdi Trap Doubleword Immediate - 86

0 815 X10 tlbia TLB Invalidate All - 145

0 813 X10 tlbie TLB Invalidate Entry - 145

0 814 X10 tlbiex TLB Invalidate Entry by Index - 145

0 826 X10 tlbsync TLB Synchronize - 145

0 314 X10 tw Trap Word - 87

0 799 X10 twi Trap Word Immediate- 86

0 783 X10 ufsr Update FPSCR From Image - 111

0 782 X10 uxsr Update XSR From Image - 109

0 768 X10 xadd Extend Add - 70

0 779 B10 xcst Extend Conditional Store - 55

0 770 X10 xfps Extend FSR- 69

15 0 I8 xicr Extend Immediate and Condition Register - 67

14 9 X6 xor XOR - 91

6 I0 xori XOR Immediate - 90

0 771 X10 xsrx Extend XSR- 68

0 772 X10 xsrxe Extended Extend XSR - 68

0 775 D10 xstb Extend Store Byte - 57

0 776 D10 xstd Extend Store Doubleword - 55

0 777 D10 xsth Extend Store Halfword - 56

0 778 D10 xstw Extend Store Word- 56

0 769 X10 xsub Extend Subtract - 71

0 773 X10 xtf Extend FSR and Trap- 70

0 774 X10 xtx Extend XSR anf Trap - 69

