RC 21035 (94182) 11/19/1997
Computer Sciences/M athematics

|IBM Research Report

Bounds—Based Loop Performance Characterization: Application to
Post-Silicon Analysis and Tuning

Pradip Bose”, Sunil Kim™, Francis P. O’Connell™ and William A. Ciarfella™

*IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

**High—End Processor Development, IBM Austin.

LIMITED DISTRIBUTION NOTICE

Thisreporthas been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has beenissued
as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution
outside of IBMpriorto publicationshouldbe limitedto peercommunications and specificrequests. Afteroutside publication, requests should
be filed only by reprints or legally obtained copies of the article (e.g. payment of royalties).

Research Division
Almaden @ Austin @ China @ Haifa @ Tokyo @ T.J.Watson @ Zurich

Bounds-Based L oop Performance Characterization: Application
to Post—Silicon Analysisand Tuning

Pradip Bose", Sunil Kim*, Francis P. O’ Connell* and William A. Ciarfella*

IBM Corporation
*T. J. Watson Research Center, Yorktown Heights, NY
*High—End Processor Development, Austin, TX

ABSTRACT

We consider the floating point microarchitecture support in high—end RI SC superscal ar proces-
sors. We propose asimple, yet effective bounds model to deduce the “ best—case” |oop performance
limits for these processors. We compare these bounds to simulation-based (and where available,
hardware—based) performance measurementsfor actual compiler—generated code sequences. From
thisstudy, weidentify loop tuning opportunitiesto bridge the gap between “best—case” and “ actual”
performance in a post—silicon setting. Some of the results of such analysis point to fundamental
hardware performance bugs which may be removed through relatively minor microarchitectural
changes. Morefreguently, theanalysisisuseful for suggesting compiler enhancements. Theanalysis
methods described have been used in actual high—end processor development projects within our
company. We report our experimental results in the context of a set of application—based |oop test
cases, designed to stress various resource limits in the core (infinite cache) microarchitecture.

Corresponding author:

Pradip Bose

IBM T. J. Watson Research Center
P.O. Box 218 (Route 134)
Yorktown Heights, NY 10598.
Tel: 914-945-3478

Fax: 914-945-2141

Email: bose@watson.ibm.com

1. Introduction

Themajor focus of post—silicon tuning of processor performance is machine—specific compiler
optimization. Thisisespecially truefor the processor corelogic: the on—chip processor microarchi-
tecture, which determines the infinite cache performance of the processor. Thisis because: (a) per-
turbing the core logic usually implies are-verification effort, which is costly; (b) increasingly, for
high—performance (esp. high MHz) designs, the hardware enhancement opportunitiesarelargest in
the cache/memory subsystem design. Thus, in considering performance tuning options after “first
silicon”, the attention is primarily limited to: (i) compiler enhancements, (ii) technology—specific
circuit tuning and (iii) enhancementsto thememory hierarchy organization. Changesinthelast cate-
gory areoftenlimitedto high-evel features, like cache geometry parameters(e.g. Size, associativity
and linesize). Although compiler optimizations geared to exploit memory hierarchy features are
also addressed during the post—silicon phase, the machine—specific core optimizations tend to get
emphasized and seem to require more resources. One of the reasonsfor thismay bethe need to pub-
lish performancefiguresfor processor benchmarks (which are often cache—contained); another rea-
son may be that detailed understanding of a newer microarchitecture isrelatively more difficult to
acquire and use in refining the existing optimization algorithms.

In thispaper, we consider the problem of oop transformation and instruction scheduling for per-
formance tuning of high—end superscalar, RISC machines. In particular, we focus on the core fl oat-
ing point microarchitectures of recent, high-end processors (e.g. [4-6]) used in the RS/6000™
family of technical workstations and servers. The original POWER1 processor [1] has a single
floating point unit, supported by a single integer—cum- oad/store unit (along with other functional
units). The prior high—end PowerPC™ processors (e.g. [2, 3]) have asingle |load—store unit (LSU)
and asinglefloating point unit (FPU), with several separate integer units. The microarchitecture of
the POWER2TM [4] and itsfollow—on single chip version (P2SC) [5] has enhanced support for tech-
nical computing: it hasan additional floating point unit, supported by an additional LSU. The POW-
ER3™ . amorerecently completed processorl[6], also hasthe dual—L SU/FPU feature, in addition
to other enhancements. In this paper we consider two basic classes of floating point microarchitec-
tures: (1 LSU, 1 FPU)—super scalar machines[1-3] and (2 LSU, 2 FPU)—machines[4—6]. Notethat
for the purposes of this paper, we do not need to distinguish adecoupled L SU from one which com-
bines the function of an LSU with that of an integer arithmetic unit.

1Thisprocr product will beannounced at Microprocessor Forum, in October, 1997. Itistargeted for high—end technical and com-
mercial workstationsand servers. UnlikethePOWER2family, thePOWER3isPowerPCTM[13] compatible. It hasadditional strengths

incorporated viafeatureslike: data—sideprefetch, superiorinteger and branch handling, and support for symmetric multiprocessing.

A key problem in determining the tuning opportunity for agiven loop or other benchmark isto
understand the fundamental limits of achievable performance. For a given instruction set architec-
tureand machineorganization, it isimportant to be ableto computeaset of achievableboundsfor the
loop kernelsof interest. These bounds may rangefromthe* best—case” (idealized) tothosewhichare
morerealistically achievable, inthe context of given machineparameters. We proposeasimple mod-
el for computing such boundsfor loopswith adefined structure. Thismodel isbased on simpleband-
width argumentsandisvalid for fully pipelined, super scalar execution models. Initially, weusethis
model to compute the “best—case” bounds for representative (1 LSU, 1 FPU)— and (2 LSU, 2
FPU)—processors. Later, we derive a corresponding set of “realistic” bounds, by factoring in re-
sourceand data—dependencies.We comparethese boundsto actual (measured) performanceto assess
tuning opportunities.

Theobserved performance gaps|ead ustoinvestigate the causesand suggest enhancements. The
bounding techniquesused are, in principle, robust enough to handlearbitrarily complex loopswhich
have sequential (i.e. branch—free) bodies. However, with complex test loops exhibiting intra— and
inter—iteration dependencies, analytical formulation can sometimes become unwieldy and proneto
errors. In such cases, it may become necessary to use a detailed, cycle—accurate simulator (or “tim-
er”) [7], tovalidate the analytical expectations. In any case, assume that the micro—architectureis
modelled to the accuracy needed and the “expected” or “redlistic” loop performance bounds are
known and understood precisely, Oncethisis achieved, the measured performance may match the
expectationfairly well. But even so, the original idealized bounds (if significantly different from the
measured values) areextremely useful in guiding usto post—silicon tuning opportunities. Most of the
software opportunities are related to loop unrolling, with attendant scheduling intelligence. Where
applicable, software pipelining schedulesmay beimproved to reducethe performance gap. We show
how the bounds model allows usto deduce the optimal unrolling depths and the need for scheduling
improvements in a straightforward manner. In fact, the methods used can in principle be incorpo-
rated within the compiler to produce code which resultsin improved loop performance.

2. A Parameterized Floating Point Microarchitecture Model

Figure 1 shows the assumed high— evel machine organization of ageneric processor, for which
(parameterized) performance modelsare considered. Thismachine model can process simplefloat-
ing point loopsonly. Thatis, aninput programisrestricted to beasingleloop which hasasequential
loop body consisting of floating point |oads, stores and arithmetic operationsonly. Theloop body is
terminated by asingle conditional branch instruction, which causesthe control to branch back to the
beginning of theloop if thereare moreiterationsto execute. The conditional branch instruction used
in such loopsisassumed to be one whose outcome can be resolved exactly by simply decrementing

and testinga COUNT register [13]. Thisregister isassumed to be pre- oaded by theiteration count.
The branch target addressis assumed to be specified asan immediate offset (relative to the program
counter) in the branch instruction itself. Thus, in this machine, the branch unit is very simple, with
facilities for branch target computation and branch resolution only. No history—based prediction
mechanisms (for branch direction) are required. Branch instruction execution is single—cycle, and
perfectly overlapped with other computation. However, depending on the lookahead mechansim
and whether or not fetch—prediction logicispresent (e.g. intheform of abranchtarget addresscache
or BTAC[2,3]), up to asingle—cycle pipeline stall may be visible during the instruction fetch or
dispatch process at the beginning of each loop iteration. Also, if theloop body straddlesacacheline
boundary, some processors (e.g. [2,3,6]) may exhibit an additional stall condition in the fetch pro-
cess, depending on the size of the loop body. These perturbations to the fetch semantics will not be
explicitly addressedinthispaper. Asexplained |l ater, we handlethe branch processing variationsby a
single parameter, which determines the effective dispatch stall under steady—state loop processing.
Every cycle, a number of instructions (determined by the fetch bandwidth parameter) may be
fetched from the instruction cache into the instruction buffer. The fetch addressis provided by the
“fetch unit” and is either the next sequential address (determined by the last fetch address and the
number of instructions fetched during the last cycle) or the target address of the taken, loop—ending
branch. The maximum number of instructions which can be decoded, renamed and dispatched per
cycleisdetermined by the dispatch bandwidth, which is another parameter. For each of theinstruc-
tion classes modelled (i.e., branch, load-store and floating point arithmetic) there is a reservation
station, which for the purposes of this paper isa(bypassable) FIFO queue. Thus, out—of—order issue
of instructionsfrom these queues (BRQ, L SQ and FPQ) into the corresponding execution unitsisnot
allowed. The number of instructions which may be issued (per cycle) from a given queue into the
corresponding execution unitsis equal to the number of distinct execution pipes within each class.
Each pipe within the branch unit (BRU) and load-store—unit (LSU) isa single stage (i.e. 1-cycle
execution). Each pipewithin thefloating point unit (FPU) ismulti—stage, thelatency being specified
by aparameter. Bypassing effectswithin each FPU pipeismodelled by parameterswhich specify the
“dependencebubbles’ (or stall cycles) for back—to—back dependent operations. Register renamingis
present for all modelled instructions. The number of floating point rename buffersisamodel param-
eter. The number of fixed point rename buffers is effectively assumed to be infinite, without any
effect on our results, because we are limited in scope to simple floating point loops only.
Instruction dispatch is controlled by rules which may prevent the attainment of the maximum
dispatch bandwidth (or rate) on agiven cycle. Most of these constraintshaveto do with finite sizesof
resourceslikethe completion (reorder) buffer, reservation stations, rename buffers, etc. Thus, under
infinite queue/buffer assumptions, for branch—free sequential code, the peak dispatch rateisalways
attained. Dispatch is obviously dependent on fetch, so the effect of fetch stalls (due to loop—ending

branches) can manifest itself as adispatch stall. Theissue process (from the reservation stations to
the units) involves dependence analysis to determine the number of instructions (of a given class)
which may beissued for execution onagiven cycle. Effectively, inloopswhich exhibit |oop—carried
dependencies, the analysis to determine the steady—state i ssue bound may require consideration of
multipleiterations. Under idealized conditions of inter—instruction independence, aparticularissue
rate is bound by the number of execution pipes of the class under consideration.

Instruction completion is governed by rules which enforce the in—order retirement of instruc-
tions: a feature implemented in most modern processors (e.g. [2, 3, 6]) using a reorder buffer [9]
mechanism. Thisenablesthe support for preciseinterruptsinsuch processors. During dispatch, each
instructionistagged by aninstructionidentifier (iid), logically associated by theparticular ot inthe
reorder buffer which holdsits“in—flight” attributes. One of these attributesisa“finish” bit, whichis
setto“true” whenthat instruction*”finishes’ execution. For loadsand arithmetic operations, the“fin-
ish” cycleisthe oneinwhich the result iswritten into arename buffer. For stores, “finish” may be
defined asthe cyclein which the datato be stored iswritten into the pending store queue and is suc-
cessfully paired up with the corresponding store address. Compl etion is synonymouswith the actual
retirement of the iid from the processor state. It is often implemented to occur simultaneously with
thetransfer of datafrom thetarget rename buffer tothereal architected register. (Inthe caseof stores,
thiswould correspond to the actual writing of datafrom the pending store queueto the cachearrays).
However, thisisnot absolutely necessary: in some processors, (e.9. [3,6]), dueto cycle-timeor com-
plexity criteria, completion (retirement) and architectural writeback may be separated by acycle or
more. Every cycle, the completion logic examinesthe next group of eligibleiid’sin the completion
(reorder) buffer, as given by the completion bandwidth parameter. Of these, the consecutive (i.e. in
program order) iid’swhich have their “finish” bitsturned on are actually retired. For our purposes,
we need to consider only the completion bandwidth: the maximum number of iid’s which can be
retired per cycle. This parameter isusually at least aslarge as the dispatch bandwidth to ensure that
the size of the completion (reorder) buffer does not become the primary performance bottleneck.

For theclass of real machinesreferredtoin Section 1, the number of L SU’sisequal to the number
of FPU’saswell asto the number of data cache ports, to provide a“ bal anced, bandwidth—matched”
design. However, in our simulation model, arbitrary combinations of these (and other) parameters
may be applied. In (1LSU, 1 FPU)-modeor in (2 LSU, 2 FPU)—-mode with proper parameter set-
tings, the model can be used to (accurately) represent the floating point microarchitecture of agiven
high—end super scalar machine among the ones referred to in Section 1.

Let usrefer to this generic machine model (Figure 1) asthe L S-FP processor core. The corre-
sponding architectural simulation model iscoded to handle only thefollowing instructions: Ifd, Ifdu,
stfd, stfdu, Ifq, Ifqu, stfq, stfqu, fadd, fsub, fmul, fdiv, fmadd, fnmadd and bc (conditional branch).
The assembly language syntax and register transfer level semanticsof thefloating point instructions

are given below:

Ifd, Ifdu: load floating point double without and with update:

Syntax:

Ifd(u) FRT,D(RA)

Notational Semantics:

if RA=0thenb<—0

else b<—(RA)

EA <— b+ EXTS(D)

FRT <— MEM(EA, 8)

For Ifdu only: RA <—EA

Explanation in English:
L et the effective address (EA) be the sum of the contents of fixed point register RA and the sign—ex-
tended displacement D. The doubleword (8 bytes) in storage addressed by EA is placed into the
double—precision floating point register FRT. For Ifdu, EA isplaced into register RA (which must be
non—zero) as the final micro—operation.

stfd and stfdu: store floating point register without and with update:

Syntax:

stfd(u) FRS, D(RA)

Notational Semantics:

if RA=0thenb<—0

else b<—(RA)

EA <— b+ EXTS(D)

MEM(EA, 8) <— (FRS)

For stfdu only: RA <— EA

Explanation in English:

The EA iscomputed as before. The contents of the double—precision floating point register FRSare
stored into the doubleword in memory addressed by EA. For stfdu, the EA isplaced intoregister RA,
which must be non—zero.

Thelfg(u) and stfg(u) instructions have similar syntax and sematics except that two doubl e preci-
sionfloating point registers (16 bytes) areloaded from or stored to memory. Thus, two floating point
registers are specified in these instructions. (These load and store quadword instructions are avail-
able only on the POWER2 and P2SC [4,5] processors).

fadd, fsub, fmul, fdiv: floating point arithmetic operations:
Syntax:

fop FRT, FRA, FRB (wherefop can be fadd, fsub, fmul or fdiv).

Notational Semantics:

FRT <—FRA (+,— * or/) FRB

Explanation in English:
The floating point operand in register FRA is operated upon (i.e. add/subtract/multiply/divide) by
the floating point operand in register FRB; the result is placed in register FRT.

fmadd and fnmadd: floating point multiply—add and negative multiply—add operations.

Syntax:

fmadd FRT, FRA, FRC, FRB

Notational Semantics:

FRT <— [(FRA)X(FRC)] + (FRB)

Explanation in English:
The floating point operand in register FRA is multiplied by the floating point operand in register
FRC. Thefloating point point operand in register FRB isadded to thisintermediate result, whichis
placed in register FRT.

For the fnmadd instruction, the negated result of the above computation is placed in the target
register FRT.

3. Loop Performance Bounds Model

Mangione-Smith et al. [11] have proposed a procedure for establishing loop performance
bounds for super scalar machines like the orginal POWERL [1]. Thisis based on the analysis of
source—code level description of application loop kernels. In this section, we propose ageneralized
boundsmodel, based on the compiled codefor such kernels. Thishasbeenimplemented aspart of an
early stage loop performance specification and bounding tool, called eliot (see Figure 2).

Theinitial (idealized) machine assumptions and parameterization underlying the bounds model
are stated below. A performance bound obtained under these assumptions may be referred to vari-
oudy as the* best—case”, " idealized” or " infinite—queue” bound (or in short, as|-Bound) in this
paper. (Aswe shall see later in Section 4.0, a more realistic R-Bound can be computed, once the
main hardware performance inhibitor(s) are identified).

Model assumptions for |-Bound computation:

1. All buffer or queue resources are effectively infinitein size. (Thisincludes the caches aswell). Examples are: size
of thereorder buffer, number of rename buffers, size of the pending store queue, size of theinstruction buffer, sizes
of reservation stations, etc.

> Icache

!

) Instruction Buffer ,5
Fetch Unit 8 5
A Decode/Dispatch/Rename %g
Unit (DDRU) S

N\
4)0

< Dispatch/Compl etion Buses D4
\ 4 \ 4 \ 4
__BRQO | L FQ | [s |

[Branch Unit I X]
A T +(no. of Is units = Is_units)
FPU (no. of fp units = fp_units)

General Purpose

Floating—point Register File &

Register File & Rename Buffers

Rename Buffers

\ 7 A 4
L oad/Sore Queues < > Dcache

Figure 1. Example L S-FP super scalar machine organization

2. Thegeneral processing paradigm assumed is. in—order fetch (under control of the next fetch address supplied by the
Fetch Unit) from the perfect (infinite) icache to the instruction buffer; in—order dispatch from the instruction buffer
to the unit reservation stations; in—order issue within each instruction class; out—of—order execution between differ-
ent instruction classes; and in—order completion, implemented using a standard reorder buffer mechanism. Also,
full register renaming support is assumed, with effectively infinite number of rename buffers. (For some proces-
sors, e.g. [1], target renaming is available for load instructions only.

3. Thenumbers of LSUsand FPUs are given by the parametersls_unitsand fp_unitsrespectively. Normally, Is_units
=fp_units. Thereisasingle, simple branch unit, whichisableto predict the loop—ending branches perfectly (in the
steady—state sense). The number of penalty (stall) cycles, p (= 0) in processing such abranch isasimple parameter

inthemodel. Thus, if p=0, the branch is perfectly overlapped and the correct (taken) branch path can be fetched and
dispatched without any pipelinestall; p=1impliesadispatch pipelinestall of 1 cycle, and so on. Thevalue of p used
for a given hardware model, may depend on the number of instructions per iteration of the input loop, and other
factors, such ascacheline crossings. In this paper, for smplicity, we shall assume aconstant value of p=1 (in close
conformity with current generation processors [3,5,6]). Even though the POWER?2 or P2SC processor does not
haveaBTAC, it has asuperior branch lookahead and “folding” hardware, which enablesit to enjoy the same value
of p(=1). Sincepisconstant, it will not appear explicitly in the bounds formulation equations.

4. The maximum number of instructions which can be fetched per cycle (from the instruction cache to the instruction
buffer) is governed by the parameter, fetch_bw.

5. The numbers of load and store ports to the data cache are parameters (I_portsand s_ports). The cache is normally
assumed to be perfect, with no interleaf conflicts.

6. The instruction dispatch bandwidth is a parameter, disp_bw. It specifies the maximum number of instructions
which can be dispatched, per cycle, from the instruction buffer to the unit reservation stations. The instruction
completion bandwidth is a parameter, compl_bw. It specifies the maximum number of instructions which can be
completed (from the reorder buffer) per cycle.

7. The LSU and FPU unit issue bandwidths are given by parameters Isu_issue bw and fpu_issue_bw respectively.
They specify the maximum number of instructions (of the load—store or floating op kind, respectively) per cycle
that can be issued from the corresponding reservation station to the underlying functional unit pipe(s). Normally,
(i.e. for one of the real machinesreferred to in Section 1) Isu_issue bw =fpu_issue bw =Is units=fp_units.

8. Instructions waiting to be issued into execution from a given reservation station (e.g. LSQ or FPQ) are data—inde-
pendent; i.e., an instruction can be issued as soon as an execution pipe is available.

9. Thenumber of read and write ports of the (rename and architectural) register arrays are more than the peak require-
ments; i.e. they are effectively infinite.

10. Once an instruction is issued to an execution pipe, its latency is fixed, determined by the number of stages of the
pipeline. All operations are assumed to be fully pipelined.

11. There are no result bus contentions between multiple pipes. There is no hard limit on the number of instructions
which may “finish” per cycle, except as constrained by the total number of execution pipes.

The basic performance metric which we shall compute using the bounds model, is steady—state
cycles—per—teration, denoted by cpl. From this number, the steady—state cycles—per—instruction
(cpi) performance is simply computed using the equation:

cpi = cpl/N e, (3.1
where, N is the number of instructions per loop iteration. Recall that the instructions within each
iteration consist of floating point |oad/store instructions, floating point arithmetic operations and a
single, loop—ending conditional branch instruction (bc). Since floating point divide instructions are
typically implemented as|ong— atency, non—pipelined operations, in order to abide by item number
10 in thelist of assumptions above, let us limit our discussion to loops which do not have floating
point divide instructions.
L et us assume that, on a per iteration basis,
(a) the number of load instructions = N

10

(b) the number of store instructions = Ng

(c) the number of floating point arithmetic instructions (excluding compound operationslikefmadd/
fnmadd and non—pipelined operations like fdiv): add (fadd), subtract (fsub), and multiply (fmul)
instructions = Ng

(d) the number of floating point multiply—add instructions (fmadd or fnrmadd) = Ny a

Thus, clearly, N = N + Ng+ N + Nya + 1, where the final *1’ counts the loop—ending branch
instruction. Note also that an fmadd instruction counts as two floating point operations, so that the
number of floating point operations (flops) F, per loop iteration is given by: F = Ng + 2*Nya.

Following well—established understanding of steady—state pipeline flow, the steady—state cpl
performance can be easily seen to be given by:
cpl = max (cplfetch-bound: CPI agen—bound: CP!1oad—port—bound: TP store—port—bound: P! dispatch-bounds

Cplisu_issue_bounds CP!fpu-issue-bound, CPplcompl—bound) ~ eeeeees (32
where, each of the individua hardware resource bounds are derived as follows:

Pl tetch—bound = [N/fetch_bw | . (33
CPlioad—port—bound = [NL/I_ports] e (34)
Cpl store—port-bound = [Ng/s_ports] e (3.9)
CPlgispatch-bound = [N/disp_bw | ... (3.6)
Cpl compl-bound = [N/compl_bw | e (3.7)
CPlagenbound = [(NL + Ng)/Is_units] ... (3.8)

cPlisu-issue-bound = [(NL + Ns)/Isu_issue_bw] .. (3.9)

CPlpu-issue-bound = [NF/fpu_issue bw] ... (3.10)
The corresponding bound for cycles—per—floating—point—operation (cpf) are obtained by dividing
the cpl bounds by the number of flops per iteration, F.

The above equations reflect the fundamental limits of loop performance, under the ssimplifying
assumptions stated. For example, the address generation related bound, cpl agen—hound IS determined
by the maximum number of address generations (agens) possible, per loop iteration. The maximum
number of agens per cycle must be equal to the number of load—store units (L SUs), as given by the
parameter: Is_units. Thisisbecause each LSU is equipped with an address generation adder, and up
tols_unitsload or storeinstructionscan beissued fromthe L SQ (reservation station) per cycle. Since
the number of load/store instructions per iterationis (N + Ng), equation (3.8) becomes clear. The
ceiling function is required to take care of the cases where (N + Ng) is odd: for example, 3 or 4
load/store instructions would both take 2 cycles for agen, if there are 2 LSUs.

Similarly, the other bounds equations can be seen to hold true. The overall equation (3.2) is
merely a statement of the fact that steady—state loop performance is determined by the narrowest

bottleneck, i.e. by the hardware constraint which results in the largest, individual cpl bound. Note
that under the stated assumptions, individual unit pipeline latencies do not need to be considered in
these (idealized) 1-Bound formulations. Thus, the latency of the FPU execution pipes, or the data
cache access latency do not figure in these equations. The key underlying assumptions are: (a) all
cache access and instruction processing paths are fully pipelined at the machine cycle granularity;
(b) al queue, buffer and cache size resources are effectively infinite; and (c) there are no direct data
dependenciesbetweeninstructionseligiblefor issuein either reservation station (L SQ and FPQ). We
shall seeexampleslater (see sub—section 4.3) where pipelatency parametersare used in computing a
realistic R—Bound, in which finite resources and data dependencies are considered.

It should be noted that in practice, it may be useful to assign morethan onevalueto agiven band-
width parameter, depending on the particular context. For example, the dispatch bandwidth,
disp_bw may depend ontheinstruction mix. For the original POWER1 processor [1], amaximum of
4 instructions can be dispatched per cycle: a branch, alogic—on—condition—egister (LCR) instruc-
tion, afixed point instruction (which may be an integer operation or aload/store instruction) and a
floating point instruction. However, for our specific context of simple floating point loops (as de-
fined), we can think of the POWERL as a 3—dispatch machine (since LCR instructions are absent).
Furthermore, when considering the execution of the branch—freeloop body, the POWER1lisa2-dis-
patch processor since branches are not encountered. Thus, disp_bw can have at least two distinct
values (2 and 3) during the course of a simple loop execution in POWERL.

Asindicated earlier on, the I-Bounds formulation can be incrementally augmented to factor in
additional effects. These may relate to the input loop characteristics; or, they may concern realistic
limits on resources and bus arbitration capabilities. For example, the assumption listed in item 8
above may proveto betoorestrictivefor agivenloop. If thereareintra—-oop or loop—carried depen-
dencies, the cpl fpu—issue-bound May need to be computed on aloop-by—oop basis; ageneral formula-
tion becomes cumbersome, with the need to introduce parameters to describe the dependence
relations (graph). Special cases may be more easily dealt with. For example, |et the Ng floating ops
(say fadds) have a pair—wise, successive dependence chain, with no loop—carried dependence. If the
Ng fadds are part of the same issue group, then, a simple augmentation is possible, as follows:

Cplfpu-issuebound = 1+ (NF—1)*fpu_dep delayccccvvviiencnnninn, (3.10b)
wherefpu_dep_delay isthe pipelinestall between successiveinitiationsof apair of dependent float-
ing point operations into the FPU execution pipes.

Thus, for example, consider a sequence of 4 fadd instructionsthat could be dispatched inasingle
cycle of a 4—issue superscalar machine. If they are “back—to—back”, pairwise data dependent and
fpu_dep_delay is1cycle, thenittakes((1+4-1) =4) cyclestoissuethe4 fadds. If fpu_dep delayis2

12

cycles, theissue sequencewoul d bethe same string of fadds, but with anintervening null-ssuecycle
between every pair; hence the number of issue cycles would be ((1 + (4-1)*2) = 7) cycles.

Asweshall see, thel-Bound formulation, given by equations(3.2) through (3.10), isvery useful
in diagnosing the primary causes of performance shortfall. For example, let usassumethat the mea-
sured performance is much worse compared to the idealized bounds. On examining the code se-
guence, if itisfound that therearealot of dependent fl oating point operations, we can suspect that the
Cplpu-issue—bound formulation is optimistic. Consequently, this may point to an opportunity for im-
provement of the register alocation and/or scheduling.

An example loop and its performance potential on a (1 LSU, 1 FPU)—model:

L et usconsider thewell known daxpy application kernel, whichisthe key loop within the float-
ing point benchmark called Linpack. The FORTRAN specification of daxpy is:

doi=1,n
X(i) =x(i) + s y(i)
enddo

where, the 1-dimensional arrays X, y and the scalar s are declared to be double precision floating
point variables. The corresponding compiled code, per inner loop iteration, is as follows:

A: Ifd 1, 0x8(6) /* load flt reg 1; 0x8: hex displacement; base address register: #6 */
B: fmadd 1, O, 2, 1 /* flt mpy—add */

C: Ifdu 2, 0x8(5) /* load flt reg 2, with update */

D: dofdu 1, 0x8(6) /* storefltreg 1, with update */

E: bc <addr specifier>

(Notethat thereisaninitial load to floating point register 2, beforethe mainloop isentered. Thisis
not shown, but is assumed implicitly. The instructions above are labelled with alphabets A, B, C, D
and E for ease of referral in the discussion below. The compiler is used in PowerPC architecture
mode. The exact sequence of instructions may vary with the compiler version).

Let’stry toapply our boundsmodel to thisloop for a(1LSU, 1 FPU) machine (such astheorigi-
nal POWER1[1]). We consider theloop processing under steady—state operation of the super—sca-
lar pipeline, i.e. after many iterations have aready been completed. For this processor, the
parameters of interest are:

13

fetch_bw = 4;

disp_bw =3, 2, 1 or 0 depending on context as follows:
On agiven dispatch cycle (machine cycle n), let usrefer to the next 3 instructions available for dispatch
intheinstruction buffer asthedispatch—group. If the dispatch—group consistsof aload or store, afloating
point arithmetic operation and a terminating branch (e.g. the group C-D—E above) then disp_bw = 3.
However, in this case, since the branch was resolved to be taken, instructions from the taken path will
be available for dispatch in the instruction buffer only in machine cycle n+2. Any conditionaly dis-
patched instructionsin cycle n+1 (from the not-taken or sequential path) will be cancelled. So, effective-
ly, disp_bw = 0 in cycle n+1. If the dispatch—group consists of non—branch instructions only, then
disp_bw = 2. On occasion, the number of instructions eligible for dispatch in the instruction buffer may
be anumber d, with 1<{d<3. For example, assumethat D—E or E aloneisthe only correct instruction(s)
availablefor dispatch on agiven cycle. The sequential instructionsbeyond the branch, although available
for conditional dispatch, arelater cancelled after the branch isresolved taken. Hence, in such situations,
we assume the effective disp_bw to be d (< 3) = number of eligible instructions in the dispatch buffer.
Asinthedisp bw = 3 case, however, the following cycle will necessarily be a O—dispatch cycle.

|_ports=s ports=Is units=Isu_issue bw = 1;
fp_units=fp_issue bw=1

Thus, for the POWER1 processor, and the daxpy loop, we get the following bounds:
cpltetch-bound = [5/41=2;
cpldispatch-bound = [2/2]+[3/2] = 3;
Cpl agen-bound = CPl|su-issue-bound = [3/1]=3;
¢pl|oad—port—bound = [2/1] =2,
cpl store—port-bound = [1/1]=1;
Cplfpu issue bound = [1/1]=1;

The cpl compl—bound IS Not applicable for this processor, since it does not have a completion mecha-
nism (as described for our general model, Figure 1) using areorder buffer. (In—order completion for
precise interrupt support is implemented using a checkpointing scheme).

Clearly, this loop is load—store bound, in that equation (3.8) will always be the gating factor.
Thus, theoverall boundinthiscaseis3 cyclesper iteration, whichimpliesacpi (cycles—per—instruc-
tion) of 3/5=0.6. Thisagreesexactly with actual measurement on an existing POWER1 worksta-
tion. In other words, the hardware—compiler pair works effectively in attaining the peak infinite
cache daxpy performance on the POWERL1 for thisloop; thereisno room for further post—hardware
tuning in this particular case.

On the other hand, due to the presence of dispatch restriction rules and other constraints, some
prior processors do not attain their idealized daxpy bounds (see [15]). The description in [6] shows
how the POWER3 design attainsitsdaxpy performancebound, by careful consideration of thelaten-
cy, bandwidth and resource parameters. In apost—silicon framework, when the hardware cannot be

14

altered, compiler—based loop tuning methods (like unrolling with scheduling) can be employed to
achieve or approach the best—case cpl values for certain loops. Such application of bounds—based
characterization isprecisely what we shall attempt to illustrate in the next section for two of the most
recent processor products developed at IBM for the RS/6000 server family.

4. Loop Bounds, Measurement and Tuning Opportunities

In this section, we first present a set of basic loops, taken from our full test case repository. We
then show the measured performance numbers and compare them with the “best—case” and “redlis-
tic” bounds. This procedure setsthe stage for identifying the “root causes’ behind the performance
gaps. Where post—silicon hardware fixes are deemed to be infeasible, we experiment with software
loop tuning. These include enhancementsto loop unrolling, software pipelining, register allocation
and instruction scheduling.

Experimental Set-Up:

Figure 2 showsthe overall tool s-based methodology used in our post—silicon performance val-
idation and tuning experiments. A given sourcetest caseis compiled into an executabl e (xcoff) file.
This can be traced and run on a cycle—accurate processor simulator (or “timer”) [7] such asthe H—
timer tool usedintheinitial phaseof the POWER3 devel opment project. It can also be convertedinto
aformat suitablefor running onthefull RTL simulator (DSL/Texsim) which essentially capturesthe
full function and timing behavior of the processor. The compiled test cases may al so be run on exist-
ing hardware, with similar microarchitecturesin order to do a comparative analysis. The methods
used for hardware measurement of loop performance are as described in [8]. The cycle-by—cycle
pipeline flow behaviors, visualized using the timer and the Texsim models, can be compared to
cross-validate the detailed timings predicted by the two models. A special—purpose, loop timer
called eliot isused to computel oop performance bounds (I-Bound and R—Bound). Thisisdevel oped
during the early—stage design definition stage [6] in order to set performance targets for key test
cases. It isalso used in post—silicon validation and tuning, as discussed later in this section. Eliot—
based bounds computation can also be used to predict optimal loop unrolling depths, asdiscussed in
sub—section 4.4.

4.1 Loop Test Cases

Tablellistsaset of elementary Fortran DO LOOPtest cases. Thesewerecompiled and (&) runon
the actual hardware or the Texsim model; and (b) traced and run on the eliot tool for projection of
“best—case” and “realistic” bounds. Each loop was unrolled to adepth indicated by thevalue of uin
column 1. These loops, selected from awide range of real applications, form the very basic set of

15

manual tweaks

manual
loop
Assembler Test C/Fortran Test source
Case Case changes
eliot—based assem
predictor of list file
oounds asm XIc/xf
and loop :
(assem- compiler
unroll bler)
factor (u)
*x xcoff (a.out
xtrace < file (a.out) »- xcoff_to_avp
. DSL/Texsim
H—timer
Model
$ Y
) . - i ; or P2SC
Timeline Timeline < (xapa toolkit)-€—— Maching
Performance
Validation Performance Bounds Numbers
Y(I—Bounda—Bound)
Simulation—based
performance * the xapa visualization toolkit was developed by Steve Hoxey,

projections IBM Toronto (compiler group)

** xtrace is a software instrumentation and tracing tool developed
by Ravi Nair, IBM Research

Figure2.Post—RTL Performance Validation and Tuning Methodology

16

application—based test cases used for assessment of infinite cache (floating point) performance tun-
ing opportunities. (The actual list of test kernels used in practice is much larger, of course).

Table 1. Description of Selected Fortran Loop Test Cases

TRACE Instrs/original it- Loop body (origi- Instrs/unrolled it- | Loop body (origi-

(manual source eration nal, u=1, Pow- eration nal, source)

unroll, u=2, is used erPC, assembly), | (—O3optimization

priortoauto—un- compiler xIf ver. toinvokeauto—un-

roll) 3.2.5.xPre—630) |roll)

loop01.tr (u=16) 2 {stfdu, bc} 17 x(i) =s

loop02.tr (u=8) 3 {lfdu, stfdu, bc} 17 x(i) = y(i)

loop03.tr (u=4) 5 {fadd, Ifdu, Ifdu, 17 x(i) = a(i) + b(i)
stfdu, bc}

loopO4.tr (u=4) 5 {fadd, Ifdu, Ifd, 17 x(i)=x(i) + b(i)
stfdu, bc}

loop05.tr (u=4) 4 {fadd, Ifdu, stfdu, 13 x(i)=u+a(i)
bc}

loop06.tr (u=4) 6 {fadd, Ifdu, fadd, 21 x(i)=u+a(i)+b(i)
Ifdu, stfdu, bc}

loop07.tr (u=2) 8 {Ifdu, fadd, Ifdu, 15 x(i)=u+a(i)+b(i)
fadd, stfdu, Ifdu, + ¢(i)
fadd, bc}

loop08.tr (u=2) 9 {Ifdu, fadd, Ifdu, 17 x(i)=a(i)+b(i)+c(i)+
Ifdu, fadd, Ifdu, d(i)
fadd, stfdu, bc}

loopQ9.tr (u=4) 6 {Ifdu, Ifdu, Ifdu, 21 x(i) = c(i)+b(i)*a(i)
fma, stfdu, bc}

loop10.tr (u=4) 6 {fmadd, Ifd, Ifdu, 21 x(i)=x(i)+b(i)*a(i)
Ifdu, stfdu, bc}

loop25.tr (u=4) 9 {fmadd, fmadd, 33 s1 =s1 + b(i)*a(i)
Ifdu, fmadd, Ifdu, s2 = s2 + b(i)*c(i)
fmadd, Ifdu, Ifdu, s3 = s3 + d(i)*a(i)
bc} s4 =s4 + d(i)*c(i)

daxpy.tr (u=4) 5 {fmadd, Ifdu, Ifd, 17 x(i)=x(i)+s*y(i)
stfdu, bc}

ddot.tr (u=4) 4 {fmadd, Ifdu, Ifdu, 13 s=s+x(i)*y(i)
bc}

4.2 POWER3 Loop Performance

In this section, we compare the actual loop performance of the POWER3! processor and
compare it with the (idealized) I-Bound and (realistic) R—Bound predictions aswell as pre-silicon
full model timer runs. Asindicated in Section 1, thisprocessor isa(2 LSU, 2 FPU) processor, with
many new features to provide enhanced performance [6]. The data cache has two load ports and a

17

singlestoreport. However, thecachearray itself is4—way interleaved, and bank conflictsprevent the
effect of atrue dual—port cache.

Table2 showsacomparison of the“best—case” performance specification bounds predicted by
eliot and thereal performance of the (“ taped—out”) POWERS processorl. All resultsassumeor sim-
ulate a perfect (infinite) cache model. (Recall: Texsm isan RTL—level ssimulator of the integrated
chip logic model, coded using an IBM internal hardware description language called DSL. Texsim
simulation speed is about 50-100 target machine cycles per second, which istoo slow for perfor-
mance studies. Trace—driven timer model speedsare at |east two orders of magnitudefaster: hence
their use in pre-silicon architecture analysis studies). The comparison data shown in Table 2 was
collected shortly after the first tape—out for fabrication.

Columns(A) and (B) show “best—case” bounds predicted by the earl y—stage specification timer,
eliot (see Figure 2 and related description). Column (A) shows the most optimistic (idealized)
bounds, based on a true dual- oad—ported, perfect data cache (without any cache interleave con-
flicts) and with no execution cyclestallsfor datadependenciesinthefloating point unit. Column (B)
reflects amore realistic set of bounds, with stalls caused by factoring in L1 interleaved data cache
conflicts and a 2—cycle bubble caused by back-to—back data dependencies in the floating point
execution unit. Column (C) shows data obtained by the detailed, trace—driven POWERS timer,
which was developed for pre-silicon analysis. Column (E) shows the corresponding performance
numbers obtained from the Texsim (RTL) model runs. Column (D) shows the timer run data ob-
tained by turning off interleaved data cache conflict checking. We see from Table 2 that the POW-
ERS3 timer and the Texsim models agree (exactly) for all thetest cases considered, (cf. columns(C)
and (E)) except for loop03. (The discrepancy for |oop03 was found to be dueto amodelling error in
the timer). In comparing the eliot—specified bounds with actual RTL model performance, we find
significant performance gapsin many of these basic cases, except for loop01 and loop02, where the
expectation wasmet precisely. These performance gapspointed usimmediately to post—silicon tun-
Ing opportunities.

Table 3 summarizes the diagnosis of the performance bugs and the initial set of recommenda-
tions, based on the results presented. These are under current consideration by the design team, in
league with our compiler experts. The main deficienciesidentified are: (a) interleaved data cache
conflict—related stallsof thedual |oad—store unit; (b) floating point operationissuestallsdueto large
valuesof thefpu_dep delay (see equation 3.10b) in the currently implemented design; (¢) inability-
tofetch acrossan I-cacheline boundary in agiveninstruction fetch cycle; and, (d) anidentified per-
formance bug in the initial “tape—out” RTL model, which causes stores to finish acycle later than
they should.

IMeasured numbers for POWERS are based on Texsim/RTL simulation of the first tapeout model.

18

Table 2. Eliot generated bounds vs. timer vs. Texsim model results (POWERS)
Loop—Tface |“Best—case” |“Realistic” POWER3 POWER3 Texsim
(eliot) bounds |achievable CPU timer timer (full RTL
(asin Table 1, bounds w/o interl. model)
withpre— (Bound) confl.
POWERS (R—Bound)
compiler) (A) (B) (E)
(C) (D)
Cpiss Cpiss Cpiss Cpiss Cpiss
loop01 0.941 0.941 0.941 0.941 0.941
(u=16)
loop02 (u=8) |[0.471 0.471 0.471 0.471 0.471
loop03 (u=4) |[0.353 0.412 0.412 0.381 0.426
loop04 (u=4) |[0.353 0.373 0.382 0.373 0.382
loop05 (u=4) |[0.307 0.307 0.333 0.333 0.333
loop06 (u=4) |0.286 0.333 0.381 0.381 0.381
loop07 (u=2) |0.267 0.333 0.422 0.422 0.422
loop08 (u=2) [0.294 0.353 0.451 0.431 0.451
loop09 (u=4) |0.381 0.476 0.476 0.381 0.476
loop10 (u=4) |0.381 0.428 0.476 0.429 0.476
loop25 (u=4) [0.273 0.303 0.333 0.303 0.333
ddot (u=4) 0.307 0.615 0.923 0.923 0.923
daxpy (u=4) |0.353 0.353 0.382 0.382 0.382
Eliot bounds for column (A) assume absence of L1 bankconflictsand0—cyclebubbleforback—to—backfltopdepen-
dence

Eliotboundsforcolumn (B)assumeL1cachebankconflicts,and2—cyclebubbleforback—to—backfltopdependence,
per current design specs.

Cpiss (steady—state cycles per instruction) is calculated from the steady—state partofthecorrespondingcycle—by—
cycle listing for these loop traces.

Loop unrolling and instruction scheduling; measured impact:

Most, if not all of the hardware changerecommendationsin Table 3, for example, haveapossible
compiler solution. However, in some cases, agenera hardwarefix, if feasible, isthe preferred solu-
tion. Inother cases, ahybrid hardware/software compromise sol ution may be sought. For examplea
localized re—ordering technique, using a crossbar to sort even/odd references and an “address bel-
low” register hasbeen usedinaprior processor [10] (developed by Silicon Graphics Computer Sys-
tems) asahardware aid to resolve conflictsin the interleaved data cache. This mechanism easesthe
local misalignment problem for the processor referred to; but, as stated in [10], the compiler is still
expected to be responsible for solving the global even/odd address mix problem.

Another exampleof softwaretuningiscompiler loop transformation[12], which offersaknown
potential for floating point performance enhancement. Loop unrolling, in particular, isan important
transformation for enhancing floating point performancein dual—fpu superscalar processorslikethe

19

POWER2, POWERS or the TFP processor [10]. Sufficient unrolling alows additional instruction
scheduling opportunitiesto the compiler within theloop body, and reducesthe number of |oop—end-
ing branchesto be predicted. Excessive unrolling, on the other hand, can cause overhead “ spill code’
to be generated, or may cause instruction dispatch stall cycles due to resource limits (e.g. the finite
number of register rename buffers). In order to feed back POWER3-specific loop unrolling and
scheduling heuristicsto the compiler group, we experimented with various|oop tuning alternatives.

Table 4 shows data from one such experiment using the same loop traces described earlier. We
initially used an older, pre-POWER3 compiler, which supported automatic loop unrolling, but
which did not have a POWERS3—specific scheduling option. With a“—qtune=pwr2” flag, we could
obtain code scheduled with the POWER2 processor organization [4,5,8] in mind; without this op-
tion, the compiler generates code assuming a (1 LSU, 1 FPU) organization. Column (A) showsthe
performance datafor codes obtained by manually unrolling the given loop once, and then applying
compiler auto—unrolling. Column (C) is the same as Column (A), except that the “—gtune=pwr2”
option wasadded. Column (B) al so uses*—qtune=pwr2” but skipping themanual unrolling step used
for Column (A). Column (D) shows the results obtained with a newer compiler, with some very
preliminary POWER3-specific optimizations. Theeffectiveunrolling depth in each caseisindicated
by the parameter u.

Theeffect of initial unrolling of the sourceloop by hand (Columns (A) or (C)) wasto reducethe
number of “load—floating—point—with—update” or Ifduinstructions, infavor of plain“load—floating—
point” (Ifd) instructions. The semanticsof an Ifdu instruction in the PowerPC architecture[13] calls
for updating the addressindex register contentsby theaddresscomputedinthe current (Ifdu) instruc-
tion. With machines like the POWER?2 [4], in which a 3—input adder is available as part of the ad-
dress generation logic, such an instruction can be executed (“finished”) in a single cycle. In the
POWERS, suchaninstruction canstill executeinasinglecycle, butif animmediately followingload
Instruction usesthesameindex register, it will not beableto execute concurrently with thelfdu. Thus
agenera heuristic which enablesreduction of the number of Ifdu’sgenerated will help boost POW-
ER3 loop performance; or, in particular, Ifdu-fd pair generation (with a common index register)
should beavoided inaPOWERS3—specific compiler switch. Thisisobservablefromthedatain Table
4: column (B) shows degraded performance (compared to column (A) in amajority of the cases. It
benefits in cases where the code is compute-intensive, and is further enhanced by improved code
scheduling (“—qtune=pwr2”).

In comparing columns (C) and (D), we see that the biggest improvement achieved in the newer
version of the compiler (with a POWER3-specific optimization switch) is reflected in the perfor-
mance of the dot product loop test case, ddot. Thisloop exhibited the worst performance gap from
the eliot—predicted early bounds specification (see Tables 2 and 3) when using the older compiler.
However, the problem caused by generation of excessive (Ifdu-fd) sequencesis still seen in the
newer results. Also, theloop unrolling depths used by the compiler isnot aways optimal, from the
point of view of steady—stateloop cpi values. Notethat with auto—unrolling, the old and new compil-
ersdo not alwaysusethe sameunrolling depths(cf. columns (B) and (D)). Inarecent paper [14], we
presented methods for predicting the “ best” loop unrolling depths for POWERS3-ike machines, us-
ing static bounds—based heuristics. We touch on thisissue briefly in sub—section 4.4.

20

Table 3. Performance Bug Diagnosis Table and Recommended Solutions

Test Case Deviation of | Primary Secondary Possible Current Rec-
tape—out Cause of Cause fix(es), ommendation
model perf deviation, or or, possible
from eliot— of poor per- enhance-
basedbest— [formance ments
case, ideal- rmance
ized) specs

LoopO1 ~0 % 1 store port (Eff.) 2 store |None

(Dcache) ports
Loop02 0% Same;above Same;above |None
Loop03 17.8 % Dcache interl. |Ifetch/disp True2—ported | Mem. request
conflicts restrictions dcache; or, reorder buffer
memory re- (ROB)
quest reorder |scheme +
buffer and/or | compiler
compiler help |support

Loop04 16.7 % Dcache interl. Same;above |Same;above

conflicts

Loop05 91 % Icache line Ifetch across | Investigate

crossing, line boundary |h/w logic add
ifetch/disp in same cycle |to fix
restrictions problem

Loop06 31.8 % flt. pipe de- Tuneut—of— [Improve logic,

pendency order flt disp. |circuit design

delay and result for- | for dep.
warding logic; |check, reor-
compiler tune |dering

Loop07 54.8 % Same;above Same;above |Same;above

Loop08 29.5 % Same;above |Dcache interl. |See above See above

conflicts (loops 06, 03) (loops 06, 03)

Loop09 37.4 % Dcache interl. |Flt. pipe dep. |See above See above

confl. stall (loops 03, 06) (loops 03, 06)
Loop10 25.7 % Dcache interl. |Flt. pipe dep. |See above See above

confl. stall (loops 03, 06) (loops 03, 06)
Loop25 21.9% Dcache interl. |Ifetch/disp See above See above

confl restrictions (loops 03, 05) (loops 03, 05)
ddot 99.7 % flt pipe dep. See above (loop06) | See above (loop06)
daxpy 8.21 % late store fin H/w fix H/w fix

21

Table 4. Compiler Scheduling Sensitivity

cpigs values for POWER3—Texsim (RTL) model runs
Old (pre—POWERS3) Compiler Newer compiler
with some (pre-
liminary) POW-
ER3—specific
L T scheduling
oop race (xIf ver. 4.1.0.3)
a) hand—-un- a)auto un- a)hand-un- auto—unrolled
rolled once rolled(-03) rolled once (-03)
b) then auto— b)gtune=pwr2 b)then auto—un-
unrolled (—0O3) rolled(—03)
c)qtune=pwr2
(A) (B) (©) (D)
Loop01 0.941 (u=16) 0.889 (u=8) 0.941 (u=16) 0.889 (u=8)
Loop02 0.471 (u=8) 0.471 (u=8) 0.471 (u=8) 0.485 (u=16)
Loop03 0.426 (u=4) 0.412 (u=4) 0.441 (u=4) 0.470 (u=8)
Loop04 0.382 (u=4) 0.412 (u=4) 0.455 (u=4) 0.409 (u=8)
Loop05 0.333 (u=4) 0.385 (u=4) 0.333 (u=4) 0.320 (u=8)
Loop06 0.381 (u=4) 0.321 (u=4) 0.321 (u=4) 0.341 (u=8)
Loop07 0.422 (u=2) 0.333 (u=2) 0.356 (u=2) 0.336 (u=4)
Loop08 0.451 (u=2) 0.467 (u=2) 0.364 (u=2) 0.432 (u=4)
Loop09 0.476 (u=4) 0.619 (u=4) 0.619 (u=4) 0.500 (u=8)
Loop10 0.476 (u=4) 0.537 (u=8) 0.476 (u=4) 0.512 (u=8)
Loop25 0.333 (u=4) 0.471 (u=2) data not avail. 0.424 (u=4)
daxpy 0.353 (u=4) 0.485 (u=8) 0.394 (u=4) 0.409 (u=8)
ddot 0.923 (u=4) 0.960 (u=8) 0.960 (u=4) 0.385 (u=4)
partial manual too many Ifdu’s; |partial manual Ifdu problem still
unrolling reduces |hurts many unrolling reduces |present
REMARKS number of Ifdu’s | loops; number of Ifdu’s
gtune=pwr2 POWERS3—spe
helps reduce penalty due to flt pipe | cific scheduling
dep. delays does an even
better job of re-
ducing penalty
due to flt pipe
dep. delays
(esp. ddot)

It should be noted that the steady state loop cpi values (cpiss) shown in Tables 2 and 4 can be
dlightly misleading when comparing thetotal execution timesfor afinite number of iterations of the

22

original (not unrolled) loop. A more meanigful metric to use, in such studies, may be cycles per log-
ical (not unrolled) iteration, cpl. The relation between cpiss and cplss is given by:

cplss = (CPis* ip)/u (4.3.1)
where, ipl denotes the number of instructions per iteration in the unrolled loop and u is the depth of
unrolling. (Note: upper case | is used to abbreviate iteration; lower case i stands for instruction).
Thus, for exampleinloop01, theoriginal (not unrolled) loop body consists of asingle floating point
storewith update (stfdu) followed by theloop—ending branch, soipl =2 for u=1. Withu=8(columns
(B) or (D)), wehaveipl=9 (8 stores plusabranch); withu=16 (columns(A) or (C)), ipl=17 (16 stores
plus abranch). With these values, the cpl s value (using equation 4.3.1) for any of the columns (A),
(B), (C) or (D) for loop01 would be 1.0. That is, the steady—state cycles per (logical) iteration perfor-
mance for loop01 is 1.0, irrespective of the compiler options experimented with (Table 4).

Inthe POWER2/P2SC | oop performance tuning studiesreported in the next sub—section, we use
the cycles—per—(logical)—iteration (cpl) metric as the basis of evaluation.

4.3 POWER2 and P2SC Loop Performance

The POWER?2 (and P2SC) infinite cache, floating point microarchitectureis similar to that of
the POWERS, in that both are (2 LSU, 2 FPU) machines. There are some important distinctions,
though. The POWER?2 architecture hastheload/store fl oating point quadword i nstructions (see Sec-
tion 2); POWER3 does not. On the other hand, the POWERS3 has a branch target address cache
(BTAC) [3] mechanismfor fetch prediction, which eliminatesfetch stallsfor loop—ending branches.

Let us first examine some comparative performance data to understand the characteristics of
POWER2. This dataillustrates how the performance may vary drastically, even though the basic
organization is still a (2 LSU, 2 FPU)—structure and the compiler version is unchanged. Table 5
showsthe comparative* cyclesper logical iteration” (cpl) performance of POWER2 and POWERS3.
The POWER3 datashown isof course based on thelatest available RTL simulation results, with the
latest available compiler (column (D) datain Table 4). The POWER2 hardware measurement data
arereported for the same compiler, but with two different options of the instruction set architecture.
The"“—garch=com” mode generatescodein the so—called“ common” mode, whichimpliesan “inter-
section” of POWER™, POWER2™ PowerPC™ architecture opcode domains (see [13]). The
—garch=pwr2 alowstheuse of additional instruction opcodeswhich are uniqueto the POWER2 ma-
chine: in particular, the floating point load and store quadword instructions (see Section 2).

We see from Table 5, that in terms of architectural (cycles—per—iteration) performance, the
POWERZ2 does better than the initial tape—out version of POWER3 (and compiler) for many of the
elementary loop test casesconsidered inthispaper. (Of course, the POWER3 sMHz performanceis
considerably higher than that of the latest POWER?2 and P2SC processors. Also, in terms of real,
finite cache performance, which isbeyond the scope of thispaper, other featureslike datacache pre-
fetch enablethe POWERS to meet pre—silicon targets. The POWER3 design factorsin requirements
for server products with abroader overall market than its predecessors. It providesfor PowerPC ar-
chitecture compatibility, superior integer/branch performance and support for multiprocessing. As

23

stated in the introduction, overall system performance and tuning issues are not dealt with in this
paper).

Table 5. POWERS cycles—per—Iteration (cpl) comparison with POWER?2 hardware measurements
POWER2(—garch=com) POWER2 (—garch=pwr2) POWER3 RTL simulation
(—garch=com)
loopO1 0.84 0.42 1.0
loop02 1.02 0.51 1.0
loop03 177 1.01 1.94
loop04 152 0.89 1.69
loop05 127 1.20 1.0
loop06 1.65 152 175
loop07 3.53 153 2.44
loop08 354 2.53 3.56
loop09 2.03 157 2.56
loop10 2.03 154 2.63
loop25 253 253 25
ddot 1.02 0.77 1.25
daxpy 1.78 0.89 1.69

Theamount of benefit exploited by POWER?2 using | oad/store quadword i nstruction support can
be seen by comparing datacolumns1and 2 of Table5. Oncetheeffect of |oad/storequadsisfactored
out, the POWER3 performance (data column 3) compares favorably with POWER2 performance
(data column 1): in acouple of cases (loop05 and loop07) the POWERS actually does quite a bit
better, because of its superior out—of—order instruction scheduling.

L et usnow examinetheloop performance characteristics of the POWER2/P2SC microarchitec-
tureindetail. In Table 6, we present |oop performance datameasured on a160 MHz P2SC processor,
using thelatest avail able compilers. We comparethiswith predicted I-and R—Bounds. Wehavealso
listed the primary hardware constraints which inhibit attainment of the “best—case” I-Bounds.

Asbefore, the effective unroll factor (u) isshown for eachloop in Table 6. For lack of space, itis
not possibleto discuss each loop in detail. Let us consider acouple of the oneswhich exhibit alarge
gap between the I-Bound and either the corresponding R—Bound or the actual measured perfor-
mance. These loops are: 10op01, |0op05, 100p06 and 100p08. Of these, |0op05 and 100p06 have the
same underlying cause behind their performance shortfall. Let us consider loopO1 and 1oop05 in
some detail. The compiled code sequence of interest for loopOl is:

stfq 31, 0, 16(3)
stfq 31, 0, 32(3)
stfq 31, 0, 48(3)

24

stfqu 31, 0, 64(3)

bc
Table 6. Actual measured performance (cycles per iteration, cpl): P2SC
LOOP Current xIf |Current Primary Compiler
compiler™ [xlhpf com- [I-Bound R—Bound |h/w solution ?
piler* bottlenecks

loop01(u=8) | 0.43 0.43 0.25 0.417 store—q size No

loop02(u=8) | 0.52 0.52 0.50 0.50 — —

loop03(u=4) | 0.89 0.89 0.75 0.85 store—q, re- No
name buffs

loopO4(u=4) | 0.85 0.85 0.75 0.85 —as above- |—as above—

loop05(u=4) | 1.01 1.01 0.50 1.0 store-add |unroll deep-
anti—dep., |er, sw
renames pipeline

loop06(u=4) | 1.76 1.76 10 1.25 —as above- |-asabove-

loop07(u=4) | 1.66 1.53 15 15 — —

loop08(u=4) | 3.02 2.28 15 1.75 rename improved
buffs reg alloc

loop09(u=4) | 1.15 1.14 1.0 1.15 —as above- |-as above—

loop10(u=4) | 1.15 1.14 1.0 1.15 —as above- |-as above—

loop25(u=4) | 2.07 2.06 2.0 2.0 comp. bound | better
(2FPU), reg | schedule
pressure

daxpy(u=8) 0.85 0.85 0.75 0.85 see loop03 | seeloop03

ddot(u=4) 0.77 0.77 0.50 0.75 load—fma |schedule
direct dep.

* xIf version 4.1.0.4, with -O3 —garch=pwr2
+ xlhpf version 1.2. with —gnohpf —O3 —garch=pwr2

(Inusing xIhpf, anew, improved register allocator is invoked)

Note that store quadword instructions have been used, since they are available on the POWER2
and P2SC machines. Each stfq corresponds to two stfd instructions and hence two iterations of the
original, not—unrolled loop (see Table 1). Thus, clearly, the effective unrolling depth invoked by the
compiler in this caseisu=8. Each stfq instruction stores the pair of floating point registers: #31 and
#0. Thetwo doublewords (or one quadword) forming the data, are stored at the addressspecified by a
displacement and a base address register. The latter is specified to be the fixed point register #3 in
each case. Thedifference between two successive displacements(e.g. 16 and 32) is 16 bytes, which
isone quadword. Sincethe number of LSU’sis 2, and the number of store—portsis?2, itiseasy to see

25

that the steady state cycles per iteration bound of thisloopis4/2 = 2. (The branchisoverlapped with
store execution). However, oneiteration of thisloop correspondsto 8 iterations of the original loop.
Hence, the steady—state cycles—per—logical)—-instruction I-Bound is: cpl = 2/8 = 0.25.

Theactual measured performancefor thisloop onthe P2SCiscpl =0.43. Sincethe code consists
essentially of asequenceof stores, the primary suspect intermsof finite hardwareresources, isclear-
ly the pending store queue. For this machine, the size of this queueis 6. As verified through exact
cycle-by—cyclesimulation data, thislimitation causestheactual, steady—state compl etion pattern of
stores (stfq's) to be: 2—2—2-0-0-2-2-2-0-0-.......; i.e, three consecutive pairs of completion, fol-
lowed by 2 stall cycles. Thisresultsinacycle count of 5 cyclesfor 12 (original, not—unrolled) itera-
tions, which gives: cpl =5/12 = 0.417. The stalls happen because of the latency mismatch between
the address generation path and the path which reads the store data from the source registers and
writesit into the store queue. L et usdenote these two pipelatenciesto be agen pipeand sdata_pipe.
If these effectivelatency numbersarefactored into the bounds model, thestall pattern above canbe
predicted. If (sdata_pipe—agen_pipe) > 3, then after every 3 cycles(or 6 stfqagens), thestorequeue
fillsup, causing astall. The number of stall-cycles can easily be shown to be given by (sdata_pipe—
agen_pipe—2). Forthe P2SC, sdata_pipe=5andagen_pipe= 1. (Note, these aretheeffective values
of theselatencies under steady—state processing of theloop shown. The hardwarelatency of the sda-
ta_pipeisactually only 3. However, an agen-stall occurs a cycle before the store queue fills up.
Similarly, thereisacycleloss because acache—array writefrom the head of the store queue beginsa
cycle after the store data is paired with the store address in the queue. This results in an effective
sdata pipelatency of 3+1+1 =5. Thetwo extralatency cyclesare subtracted out during the calcula-
tion of the number of stall cycles. Thisisbecause, the agen—stall iseliminated immediately after the
storequeuebeginsto get drained). Thus, the R—Bound (= 0.417) generated by eliot agreeswith simu-
|ation—based expectation for the P2SC microarchitecture.

Given the nature of the hardware constraint, which results in an R—Bound of about 0.42, it is
quite clear that changes to the loop unrolling depth will not help in reducing the gap between |-
Bound and R—Boundinthiscase. Irrespective of theunrolling depth, the effective code sequenceisa
string of stores, whichresultsinthestall pattern shown. Of course, the use of store quadword instruc-
tionshel ps; use of thelower bandwidth stfdu instructionswould glean acpl of 0.84 (see Table5, first
data column).

For loop05, the compiler—generated loop body is as follows:
stfq 0, 1, 16(4)
stfqu 6, 7, 32(4)
fadd 0, 31,2
fadd 1,31, 3

26

Ifqg 2,3, 16(3)
fadd 6,31,4
fadd 7,31,5
Ifqu 4,5, 32(3)
bc

In-Bound mode, the steady—stateissue groupswould be: (stfq, stfqu, fadd, fadd) and (Ifq, fadd,
fadd, I1fqu, bc), yielding arolled-oop cpl of 2. Since the effective unrolling depth is u=4, the real
[-Bound iscpl = 2/4 = 0.5. The actual measured performanceis 1.01, which ishalf the speed of the
“best—case” expectation. Thereason behind the performance gap isnot hard to infer: the data depen-
dencies between the stores and the subsequent fadd instructions. In the POWER?2 and P2SC imple-
mentations, target register renaming is supported only for floating point loads, not for functional
operations. Thus the anti—dependency between the first stfq and the first fadd (via register #0),
causesanissuestall of (sdata_pipe—agen pipe—1) =(3—1-1)=1cycle. Notethat inthiscase, the
effectivevalue of sdata pipeisequal to the hardwarelatency of 3 stages, sincethereisno agen—stall
tobeconsidered. Theother 1 cycle saving occursdueto storedataforwarding to the FPU pipe. Thus,
the steady—state issue groups, in R—Bound mode are: (stfq, stfqu), (), (fadd, fadd, Ifq), (fadd, fadd,
Ifqu, bc). Thisgivesarolled—oop cpl of 4 and thefinal R—-Bound cpl is4/4 = 1, which matchesthe
hardware measurement.

Anytimethere are dependency—caused stallsasabove, the questionto ask is: canthe |-Bound be
met or approached through better register all ocation and/or scheduling?In such situations, it isoften
the case that deeper unrolling exposes better opportunitiesto create a schedule which isfree of de-
pendence-stalls. In the above case, by using manual unrolling at the source-level, we were able to
coax the compiler into generating a software—pipelined schedule, with ameasured cpl of 0.64. The
inner loop of interest in this case was as follows:
stfq 2, 3, 16(4)
fadd 4, 31, 4
Ifg 2,3, 16(3)
fadd 5,31,0
stfq 6, 7, 32(4)
fadd 1,31,1
Ifqg 6,7, 32(3)
fadd 0, 31,0
stfq 4, 5, 48(4)
fadd 2, 31, 2
Ifqg 4,5, 48(3)

27

fadd 3,31, 3
stfqu O, 1, 64(4)
fadd 6, 31, 6
Ifqu 0O, 1, 64(3)
fadd 7,31, 7
bc

Thisscheduleeliminatesthe dependence—stall and resultsinarolled cpl of 4, and an1-Bound cpl
of 4/8 = 0.5. The degraded value of the measured cpl (0.64) can now be explained as being due to
dispatch stall sresulting from rename buffer pressure. Since therenamed | oadsrun ahead of the com-
putation (dueto thelonger latency FPU pipes), there are eventually stalls created because of lack of
free rename buffers. For the above case, it can be shown that the effective rolled cpl becomes 5,
yielding an R—Bound of 5/8 = 0.63, which matches the measured performance.

4.4 Prediction of Optimal Loop Unrolling Depth

In this section, we briefly illustrate the use of bounds—based characterization in determining a
suitable loop unrolling depth in order to get the best performance [14]. Thisis atopic of ongoing
work and the details of the unrolling algorithms will be reported later in a separate report. Here, we
discuss the basic comcept only, with the use of a simple example from our suite of loops.

Let usconsider loop03 whichisthethird loop in our suite. The compiled codefor theinnermost
loop for acertain compiler version (without unrolling, i.e. with u=1) was:

Ifd 0, 0x808(4)
Ifd 1, 0x1608(1)
fadd O, O, 1
stfdu 0, 0x8(4)
bc

The compiled codes for u =2 and u=3 are also given below:

Foru=1, anda(1LSU, 1 FPU)-machine, performanceisl|oad—store bound. The steady—state,
idealized cycles—per—instruction (cpi) and cycles per—flop (cpf) performance of 1oop03 can be com-
puted using the simple bounds model asbeing: (cpl =3) ==> cpi = 0.6 and cpf (cycles per floating
point operation) = 3.0. For u=2, itisstill load—store (agen) bound, and theidealized performanceis:
(cpl =6) ==>cpi =0.66, cpf = 3.0. For u=3, wehave: (cpl =9) ==> cpi =0.69, cpf = 3.0. For u=4, we
would have: (cpl = 12) ==> cpi =0.705, cpf = 3.0. Ingeneral, wewould have: cpl =3*uand N =4*u
+ 1, and Ng = u. From these, the above values can be computed.

28

u=2: u=3
lfd 0, 0x808(4) Ifd 0, 0x808(4)
Ifd 1, Ox1608(4) Ifd 1, 0x1608(4)
fadd 2, 0, 1 fadd 3, 0, 1
lfd 0, Ox816(4) Ifd 2, Ox1624(4)
lfd 1, Ox1616(4) Ifd 0, Ox816(4)
fadd 0, 0, 1 lfd 1, 0x1616(4)
stfd 2, Ox8(4) fadd 1, 0, 1
stfdu 0, 0x8(4) stfd 3, 0x8(4)
bc lfd 0, Ox824(4)
fadd 0, 0, 2

stfd 1, 0x16(4)
stfdu 0, 0x24(4)
bc

Thus, for a (1LSU, 1FPU)—machine, it would not pay to unroll aloop likethat illustrated above
to get additional floating point performance. Thisisclear from simple bounds—based reasoning, but

was verified via detailed timer runs.

Let usnow look at an enhanced design: a(2 L SU, 2 FPU)—machine, like POWERS, with|_ports
=2, s ports=1, anddisp_bw =compl_bw =4. Theloop performance (with or without unrolling) is
still agen—bound; however, now we can see abenefitin unrolling. For u=1, we have: (cpl =[3/2] =
2) ==>cpi =0.4and cpf = 2.0. For u=2, weget: (cpl =[6/2]=3) ==>cpi =0.33, cpf =1.5. Foru=3,
we have: (cpl =[9/2]=5) ==> cpi = 0.38, cpf = 1.67. For u=4, we get: (cpl =[12/2]=6) ==>cpi =
0.353, cpf =1.5. Ingeneral, wewould have: cpl =[(3*u)/2], N = (4*u) + 1, and Ng = u. Fromthese,
the above values can be computed. Clearly, from an idealized, steady—state cpf (megaflops) perfor-
mance, U= 2, 4, 6, ... etc would result in the optimal performance of cpf = 1.5. However, inthereal
case, dueto other limitslike the number of rename buffersor the size of thereorder buffer, etc., per-
formance would actually go down for higher choices of u. In fact, using a pre-silicon timer (e.g.
H-timer; see Figure 2) we verified that for a POWER3, peformance actually degradesfor u= 6 and

beyond.

5. Conclusion

We have presented the practical use of asimple, bounds—based analysis method in the context of
post—silicon loop performance validation and tuning. After themicroprocessor chipisback fromthe
silicon fabrication process, the first concern, of course is functional validation. Once the key test
cases are operational (i.e. they produce correct results), the next concern is performance. The post—

29

silicon analysis and tuning experiments generate knowledge and understanding required for ma-
chine—specific compiler tuning. In order to validate performance, one needs to know what the
desired specifications (or targets) are. Bounds—based analysis providesameansfor fixing arange of
such targets: from the “best—case” or idealized, to amore practical, achievable one. Comparison of
the idealized and realistic bounds tells us how much degradation is caused by hardware resource
constraints and data dependencies. Comparing the bounds with the actual performance data allows
usto assessthe effectiveness of the (microarchitecture, compiler) pair. In some cases, itispossibleto
suggest very specific compiler enhancement ideas to bridge the observed performance gap.

Loop performance can be a crucial determinant of overall floating point performance. As
reported earlier [15], a ssimple hardware “fix” to achieve the daxpy performance I-Bound for a
pre—-POWER3 design point resulted in a SPECfp92 performance boost of 14 %. (Since this
performance bug had to do with store instruction latency and store queue size, the solution led to an
unexpected 11 % boost in SPECint92 performance as well!). In this paper, we illustrated the
application of bounds—based analysisto post—silicon diagnosi sand tuning for two of the most recent
super scalar processorsdevel oped by IBM. Both of these processorsare designed to provide superior
floating point performance, and are targeted for high—end RS/6000 workstations and servers. We
discussed the basic concepts and their application in the context of a few application—based |oop
kernels. In practice, asuite of well over 100 |oops and other test cases, along with other applications
are used in our post—silicon performance validation and tuning exercises.

REFERENCES

1. G.F. Grohoski, “Machine organization of the|BM RISC System/6000 processor,” IBM J. Res. Develop.,
vol. 36, no. 1, pp. 37-58, January 1990.

2. S. Song, M. Denman and J. Chang, “The PowerPC 604 RISC microprocessor,” |EEE Micro, pp. 8-17,
October 1994,

3. D. Levitan, T. Thomasand P. Tu, “ The PowerPC 620™ microprocessor: a high performance superscalar
RISC microprocessor,” Proc. COMPCON, pp. 285-291, March 1995.

4. S.W. Whiteand S. Dhawan, “POWER2: next generation of the RISC System/6000 family,” in PowerPC
and POWER2: Technical Aspectsof the New IBM RISC System/6000, |BM Corporation, publication no.
SA23-2737-00, 1994.

5. L. Gwennap, “IBM crams Power2 on to single chip,” Microprocessor Report, August 26, 1996.

6. H.Q.Le, P.Bose, D. Schroter and M. Mayfield, “ Design point definition of the coremicroarchitecture of
ahigh end PowerPC™ processor,” (under clearance for publication).””

7. P.Boseand S. Surya, “ Architectural timing verification of CMOS RISC processors,” |IBM Journ. Res. &
Develop., val. 39, no. /2, pp. 113-129, January/March 1995.

30

8. E.L.Hannon, F. P. O’ Connell and L. J. Shieh, “POWER2 performance on engineering/scientific applica-
tions,” in PowerPC and POWER?2: Technical Aspectsof the New IBM RISC/System/6000™, IBM Pub-
lication Number SA23-2737-00, 1994; see also, Proc. ICCD, pp. 336—339, October 1994.

9. J E. Smith and A. R. Pleszkun, “Implementation of precise interrupts in pipelined processors,” Proc.
Int’l. Symp. on Computer Architecture (I1SCA), pp. 3644, 1985.

10.P. Y-T Hsu, “Design of the TFP Microprocessor,” Proc. IEEE Micro, 1994.

11.W. Mangione-Smith, T.—P. Shieh, S. G. Abraham, and E. S. Davidson, “ Approaching a machine applica-
tion—bound in delivered performance on scientific code, Proc. |EEE, vol. 81, pp. 1166-1178, August
1993.

12.D.F.Bacon, S. L. Grahamand O. J. Sharp, “ Compiler transformationsfor high—performance computing,”
ACM Computing Surveys, vol. 26, no. 4, pp. 345420, December 1994.

13.C. May, E. Silha, R. Simpson, H. Warren, ed., The PowerPC Architecture: A Specificationfor aNew Fam-
ily of RISC Processors, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2nd. edition, May 1994.

14.P. Bose and J-D Wellman, “Compiler—aided loop tuning opportunities for high-end PowerPC™ Ma-
chines,” Proc. Workshop on Interaction between Compilers and Computer Architectures, (held in con-
junctionwith 3rd. Int’'l. Symp. on High—Perf. Computer Arch., HPCA-3), Feb. 1997; availableasan |IBM
Research Report.

15.P. Bosg, “Performance analysis and verification of super scalar processors,” IBM Research Report RC
20094, June 1995; parts of thiswere presented as atalk at the |SCA—95 workshop on pre-silicon perfor-
mance analysis and validation, Santa Margherita, Italy, 1995.

IBM is a registered trademark, and POWER, PowerPC, PowerPC Architecture, PowerPC 604, PowerPC 620,
POWER2, POWERS and RISC System/6000 are trademarks of International Business Machines Corporation. In this
document the terms “604” and “620” are used as abbreviations for the phrases “ PowerPC 604 microprocessor” and
“PowerPC 620 microprocessor” respectively. SPEC is a registered trademark of Systems Performance Evaluation
Corporation.

** Thisis aPowerPC processor, developed by IBM, which will be announced as POWERS.

31

Copies may be requested from:

IBM Thomas J. Watson Research Center
Publications Office, 16220

Post Office Box 218

Yorktown Heights, NY 10598

Some reports are available via the
Cyberjourna on the WWW.
http://www.watson.ibm.com:8080

32

