
1

RC 21035 (94182) 11/19/1997
Computer Sciences/Mathematics

IBM Research Report

Bounds–Based Loop Performance Characterization: Application to
Post–Silicon Analysis and Tuning

Pradip Bose*, Sunil Kim**, Francis P. O’Connell** and William A. Ciarfella**

*IBM T. J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

**High–End Processor Development, IBM Austin.

LIMITED DISTRIBUTION NOTICE
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued
as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution
outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should
be filed only by reprints or legally obtained copies of the article (e.g. payment of royalties).

Research Division
Almaden � Austin � China � Haifa � Tokyo � T.J.Watson � Zurich

2

 Bounds–Based Loop Performance Characterization: Application
to Post–Silicon Analysis and Tuning

Pradip Bose*, Sunil Kim+, Francis P. O’Connell+ and William A. Ciarfella+

IBM Corporation
*T. J. Watson Research Center, Yorktown Heights, NY

+High–End Processor Development, Austin, TX

ABSTRACT

We consider the floating point microarchitecture support in high–end RISC superscalar proces-
sors. We propose a simple, yet effective bounds model to deduce the “best–case” loop performance
limits for these processors. We compare these bounds to simulation–based (and where available,
hardware–based) performance measurements for actual compiler–generated code sequences. From
this study, we identify loop tuning opportunities to bridge the gap between “best–case” and “actual”
performance in a post–silicon setting. Some of the results of such analysis point to fundamental
hardware performance bugs which may be removed through relatively minor microarchitectural
changes. More frequently, the analysis is useful for suggesting compiler enhancements. The analysis
methods described have been used in actual high–end processor development projects within our
company. We report our experimental results in the context of a set of application–based loop test
cases, designed to stress various resource limits in the core (infinite cache) microarchitecture.

Corresponding author:
Pradip Bose
IBM T. J. Watson Research Center
P.O. Box 218 (Route 134)
Yorktown Heights, NY 10598.
Tel: 914–945–3478
Fax: 914–945–2141
Email: bose@watson.ibm.com

3

1. Introduction

The major focus of post–silicon tuning of processor performance is machine–specific compiler

optimization. This is especially true for the processor core logic: the on–chip processor microarchi-

tecture, which determines the infinite cache performance of the processor. This is because: (a) per-

turbing the core logic usually implies a re–verification effort, which is costly; (b) increasingly, for

high–performance (esp. high MHz) designs, the hardware enhancement opportunities are largest in

the cache/memory subsystem design. Thus, in considering performance tuning options after “first

silicon”, the attention is primarily limited to: (i) compiler enhancements, (ii) technology–specific

circuit tuning and (iii) enhancements to the memory hierarchy organization. Changes in the last cate-

gory are often limited to high–level features, like cache geometry parameters (e.g. size, associativity

and linesize). Although compiler optimizations geared to exploit memory hierarchy features are

also addressed during the post–silicon phase, the machine–specific core optimizations tend to get

emphasized and seem to require more resources. One of the reasons for this may be the need to pub-

lish performance figures for processor benchmarks (which are often cache–contained); another rea-

son may be that detailed understanding of a newer microarchitecture is relatively more difficult to

acquire and use in refining the existing optimization algorithms.

In this paper, we consider the problem of loop transformation and instruction scheduling for per-

formance tuning of high–end superscalar, RISC machines. In particular, we focus on the core float-

ing point microarchitectures of recent, high–end processors (e.g. [4–6]) used in the RS/6000TM

family of technical workstations and servers. The original POWER1 processor [1] has a single

floating point unit, supported by a single integer–cum–load/store unit (along with other functional

units). The prior high–end PowerPCTM processors (e.g. [2, 3]) have a single load–store unit (LSU)

and a single floating point unit (FPU), with several separate integer units. The microarchitecture of

the POWER2TM [4] and its follow–on single chip version (P2SC) [5] has enhanced support for tech-

nical computing: it has an additional floating point unit, supported by an additional LSU. The POW-

ER3TM , a more recently completed processor1 [6], also has the dual–LSU/FPU feature, in addition

to other enhancements. In this paper we consider two basic classes of floating point microarchitec-

tures: (1 LSU, 1 FPU)–super scalar machines [1–3] and (2 LSU, 2 FPU)–machines [4–6]. Note that

for the purposes of this paper, we do not need to distinguish a decoupled LSU from one which com-

bines the function of an LSU with that of an integer arithmetic unit.

–––
1This processor product will be announced at Microprocessor Forum, in October, 1997. It is targeted for high–end technical and com-

mercial workstations and servers. Unlike the POWER2 family, the POWER3 is PowerPCTM [13] compatible. It has additional strengths

incorporated via features like: data–side prefetch, superior integer and branch handling, and support for symmetric multiprocessing.

4

A key problem in determining the tuning opportunity for a given loop or other benchmark is to

understand the fundamental limits of achievable performance. For a given instruction set architec-

ture and machine organization, it is important to be able to compute a set of achievable bounds for the

loop kernels of interest. These bounds may range from the “best–case” (idealized) to those which are

more realistically achievable, in the context of given machine parameters. We propose a simple mod-

el for computing such bounds for loops with a defined structure. This model is based on simple band-

width arguments and is valid for fully pipelined, super scalar execution models. Initially, we use this

model to compute the “best–case” bounds for representative (1 LSU, 1 FPU)– and (2 LSU, 2

FPU)–processors. Later, we derive a corresponding set of “realistic” bounds, by factoring in re-

source and data–dependencies.We compare these bounds to actual (measured) performance to assess

tuning opportunities.

The observed performance gaps lead us to investigate the causes and suggest enhancements. The

bounding techniques used are, in principle, robust enough to handle arbitrarily complex loops which

have sequential (i.e. branch–free) bodies. However, with complex test loops exhibiting intra– and

inter–iteration dependencies, analytical formulation can sometimes become unwieldy and prone to

errors. In such cases, it may become necessary to use a detailed, cycle–accurate simulator (or “tim-

er”) [7], to validate the analytical expectations. In any case, assume that the micro–architecture is

modelled to the accuracy needed and the “expected” or “realistic” loop performance bounds are

known and understood precisely, Once this is achieved, the measured performance may match the

expectation fairly well. But even so, the original idealized bounds (if significantly different from the

measured values) are extremely useful in guiding us to post–silicon tuning opportunities. Most of the

software opportunities are related to loop unrolling, with attendant scheduling intelligence. Where

applicable, software pipelining schedules may be improved to reduce the performance gap. We show

how the bounds model allows us to deduce the optimal unrolling depths and the need for scheduling

improvements in a straightforward manner. In fact, the methods used can in principle be incorpo-

rated within the compiler to produce code which results in improved loop performance.

2. A Parameterized Floating Point Microarchitecture Model

Figure 1 shows the assumed high–level machine organization of a generic processor, for which

(parameterized) performance models are considered. This machine model can process simple float-

ing point loops only. That is, an input program is restricted to be a single loop which has a sequential

loop body consisting of floating point loads, stores and arithmetic operations only. The loop body is

terminated by a single conditional branch instruction, which causes the control to branch back to the

beginning of the loop if there are more iterations to execute. The conditional branch instruction used

in such loops is assumed to be one whose outcome can be resolved exactly by simply decrementing

5

and testing a COUNT register [13]. This register is assumed to be pre–loaded by the iteration count.

The branch target address is assumed to be specified as an immediate offset (relative to the program

counter) in the branch instruction itself. Thus, in this machine, the branch unit is very simple, with

facilities for branch target computation and branch resolution only. No history–based prediction

mechanisms (for branch direction) are required. Branch instruction execution is single–cycle, and

perfectly overlapped with other computation. However, depending on the lookahead mechansim

and whether or not fetch–prediction logic is present (e.g. in the form of a branch target address cache

or BTAC [2,3]), up to a single–cycle pipeline stall may be visible during the instruction fetch or

dispatch process at the beginning of each loop iteration. Also, if the loop body straddles a cache line

boundary, some processors (e.g. [2,3,6]) may exhibit an additional stall condition in the fetch pro-

cess, depending on the size of the loop body. These perturbations to the fetch semantics will not be

explicitly addressed in this paper. As explained later, we handle the branch processing variations by a

single parameter, which determines the effective dispatch stall under steady–state loop processing.

 Every cycle, a number of instructions (determined by the fetch bandwidth parameter) may be

fetched from the instruction cache into the instruction buffer. The fetch address is provided by the

“fetch unit” and is either the next sequential address (determined by the last fetch address and the

number of instructions fetched during the last cycle) or the target address of the taken, loop–ending

branch. The maximum number of instructions which can be decoded, renamed and dispatched per

cycle is determined by the dispatch bandwidth, which is another parameter. For each of the instruc-

tion classes modelled (i.e., branch, load–store and floating point arithmetic) there is a reservation

station, which for the purposes of this paper is a (bypassable) FIFO queue. Thus, out–of–order issue

of instructions from these queues (BRQ, LSQ and FPQ) into the corresponding execution units is not

allowed. The number of instructions which may be issued (per cycle) from a given queue into the

corresponding execution units is equal to the number of distinct execution pipes within each class.

Each pipe within the branch unit (BRU) and load–store–unit (LSU) is a single stage (i.e. 1–cycle

execution). Each pipe within the floating point unit (FPU) is multi–stage, the latency being specified

by a parameter. Bypassing effects within each FPU pipe is modelled by parameters which specify the

“dependence bubbles” (or stall cycles) for back–to–back dependent operations. Register renaming is

present for all modelled instructions. The number of floating point rename buffers is a model param-

eter. The number of fixed point rename buffers is effectively assumed to be infinite, without any

effect on our results, because we are limited in scope to simple floating point loops only.

 Instruction dispatch is controlled by rules which may prevent the attainment of the maximum

dispatch bandwidth (or rate) on a given cycle. Most of these constraints have to do with finite sizes of

resources like the completion (reorder) buffer, reservation stations, rename buffers, etc. Thus, under

infinite queue/buffer assumptions, for branch–free sequential code, the peak dispatch rate is always

attained. Dispatch is obviously dependent on fetch, so the effect of fetch stalls (due to loop–ending

6

branches) can manifest itself as a dispatch stall. The issue process (from the reservation stations to

the units) involves dependence analysis to determine the number of instructions (of a given class)

which may be issued for execution on a given cycle. Effectively, in loops which exhibit loop–carried

dependencies, the analysis to determine the steady–state issue bound may require consideration of

multiple iterations. Under idealized conditions of inter–instruction independence, a particular issue

rate is bound by the number of execution pipes of the class under consideration.

 Instruction completion is governed by rules which enforce the in–order retirement of instruc-

tions: a feature implemented in most modern processors (e.g. [2, 3, 6]) using a reorder buffer [9]

mechanism. This enables the support for precise interrupts in such processors. During dispatch, each

instruction is tagged by an instruction identifier (iid), logically associated by the particular slot in the

reorder buffer which holds its “in–flight” attributes. One of these attributes is a “finish” bit, which is

set to “true” when that instruction “finishes” execution. For loads and arithmetic operations, the “fin-

ish” cycle is the one in which the result is written into a rename buffer. For stores, “finish” may be

defined as the cycle in which the data to be stored is written into the pending store queue and is suc-

cessfully paired up with the corresponding store address. Completion is synonymous with the actual

retirement of the iid from the processor state. It is often implemented to occur simultaneously with

the transfer of data from the target rename buffer to the real architected register. (In the case of stores,

this would correspond to the actual writing of data from the pending store queue to the cache arrays).

However, this is not absolutely necessary: in some processors, (e.g. [3,6]), due to cycle–time or com-

plexity criteria, completion (retirement) and architectural writeback may be separated by a cycle or

more. Every cycle, the completion logic examines the next group of eligible iid’s in the completion

(reorder) buffer, as given by the completion bandwidth parameter. Of these, the consecutive (i.e. in

program order) iid’s which have their “finish” bits turned on are actually retired. For our purposes,

we need to consider only the completion bandwidth: the maximum number of iid’s which can be

retired per cycle. This parameter is usually at least as large as the dispatch bandwidth to ensure that

the size of the completion (reorder) buffer does not become the primary performance bottleneck.

 For the class of real machines referred to in Section 1, the number of LSU’s is equal to the number

of FPU’s as well as to the number of data cache ports, to provide a “balanced, bandwidth–matched”

design. However, in our simulation model, arbitrary combinations of these (and other) parameters

may be applied. In (1 LSU, 1 FPU)–mode or in (2 LSU, 2 FPU)–mode with proper parameter set-

tings, the model can be used to (accurately) represent the floating point microarchitecture of a given

high–end super scalar machine among the ones referred to in Section 1.

 Let us refer to this generic machine model (Figure 1) as the LS–FP processor core. The corre-

sponding architectural simulation model is coded to handle only the following instructions: lfd, lfdu,

stfd, stfdu, lfq, lfqu, stfq, stfqu, fadd, fsub, fmul, fdiv, fmadd, fnmadd and bc (conditional branch).

The assembly language syntax and register transfer level semantics of the floating point instructions

7

are given below:

 lfd, lfdu: load floating point double without and with update:

 Syntax:

 lfd(u) FRT,D(RA)

 Notational Semantics:

 if RA = 0 then b <–– 0

 else b <–– (RA)

 EA <–– b + EXTS(D)

 FRT <–– MEM(EA, 8)

 For lfdu only: RA <–– EA

 Explanation in English:

Let the effective address (EA) be the sum of the contents of fixed point register RA and the sign–ex-

tended displacement D. The doubleword (8 bytes) in storage addressed by EA is placed into the

double–precision floating point register FRT. For lfdu, EA is placed into register RA (which must be

non–zero) as the final micro–operation.

 stfd and stfdu: store floating point register without and with update:

 Syntax:

 stfd(u) FRS, D(RA)

 Notational Semantics:

 if RA = 0 then b <–– 0

 else b <–– (RA)

 EA <–– b + EXTS(D)

 MEM(EA, 8) <–– (FRS)

 For stfdu only: RA <–– EA

 Explanation in English:

The EA is computed as before. The contents of the double–precision floating point register FRS are

stored into the doubleword in memory addressed by EA. For stfdu, the EA is placed into register RA,

which must be non–zero.

 The lfq(u) and stfq(u) instructions have similar syntax and sematics except that two double preci-

sion floating point registers (16 bytes) are loaded from or stored to memory. Thus, two floating point

registers are specified in these instructions. (These load and store quadword instructions are avail-

able only on the POWER2 and P2SC [4,5] processors).

 fadd, fsub, fmul, fdiv: floating point arithmetic operations:

 Syntax:

8

 fop FRT, FRA, FRB (where fop can be fadd, fsub, fmul or fdiv).

 Notational Semantics:

 FRT <–– FRA (+, –, * or /) FRB

 Explanation in English:

The floating point operand in register FRA is operated upon (i.e. add/subtract/multiply/divide) by

the floating point operand in register FRB; the result is placed in register FRT.

 fmadd and fnmadd: floating point multiply–add and negative multiply–add operations.

 Syntax:

 fmadd FRT, FRA, FRC, FRB

 Notational Semantics:

 FRT <–– [(FRA)x(FRC)] + (FRB)

 Explanation in English:

The floating point operand in register FRA is multiplied by the floating point operand in register

FRC. The floating point point operand in register FRB is added to this intermediate result, which is

placed in register FRT.

 For the fnmadd instruction, the negated result of the above computation is placed in the target

register FRT.

3. Loop Performance Bounds Model

Mangione–Smith et al. [11] have proposed a procedure for establishing loop performance

bounds for super scalar machines like the orginal POWER1 [1]. This is based on the analysis of

source–code level description of application loop kernels. In this section, we propose a generalized

bounds model, based on the compiled code for such kernels. This has been implemented as part of an

early stage loop performance specification and bounding tool, called eliot (see Figure 2).

The initial (idealized) machine assumptions and parameterization underlying the bounds model

are stated below. A performance bound obtained under these assumptions may be referred to vari-

ously as the “best–case”, ”idealized” or ”infinite–queue” bound (or in short, as I–Bound) in this

paper. (As we shall see later in Section 4.0, a more realistic R–Bound can be computed, once the

main hardware performance inhibitor(s) are identified).

Model assumptions for I–Bound computation:

1. All buffer or queue resources are effectively infinite in size. (This includes the caches as well). Examples are: size
of the reorder buffer, number of rename buffers, size of the pending store queue, size of the instruction buffer, sizes
of reservation stations, etc.

9

Icache

Dcache

Fetch Unit

Floating–point
Register File &
Rename Buffers

General Purpose
Register File &
Rename Buffers

Load/Sore Queues

Dispatch/Completion Buses

Figure 1. Example LS–FP super scalar machine organization

FPQ LSQBRQ

Decode/Dispatch/Rename
Unit (DDRU)

Branch Unit

.

.
.
.

.

C
om

pl
et

io
n

B
uf

fe
r

FPU

LSU......

(no. of fp units = fp_units)

(no. of ls units = ls_units)

Instruction Buffer

2. The general processing paradigm assumed is: in–order fetch (under control of the next fetch address supplied by the
Fetch Unit) from the perfect (infinite) icache to the instruction buffer; in–order dispatch from the instruction buffer
to the unit reservation stations; in–order issue within each instruction class; out–of–order execution between differ-
ent instruction classes; and in–order completion, implemented using a standard reorder buffer mechanism. Also,
full register renaming support is assumed, with effectively infinite number of rename buffers. (For some proces-
sors, e.g. [1], target renaming is available for load instructions only.

3. The numbers of LSUs and FPUs are given by the parameters ls_units and fp_units respectively. Normally, ls_units
= fp_units. There is a single, simple branch unit, which is able to predict the loop–ending branches perfectly (in the
steady–state sense). The number of penalty (stall) cycles, p (� 0) in processing such a branch is a simple parameter

10

in the model. Thus, if p=0, the branch is perfectly overlapped and the correct (taken) branch path can be fetched and
dispatched without any pipeline stall; p=1 implies a dispatch pipeline stall of 1 cycle, and so on. The value of p used
for a given hardware model, may depend on the number of instructions per iteration of the input loop, and other
factors, such as cache line crossings. In this paper, for simplicity, we shall assume a constant value of p = 1 (in close
conformity with current generation processors [3,5,6]). Even though the POWER2 or P2SC processor does not
have a BTAC, it has a superior branch lookahead and “folding” hardware, which enables it to enjoy the same value
of p (= 1). Since p is constant, it will not appear explicitly in the bounds formulation equations.

4. The maximum number of instructions which can be fetched per cycle (from the instruction cache to the instruction
buffer) is governed by the parameter, fetch_bw.

5. The numbers of load and store ports to the data cache are parameters (l_ports and s_ports). The cache is normally
assumed to be perfect, with no interleaf conflicts.

6. The instruction dispatch bandwidth is a parameter, disp_bw. It specifies the maximum number of instructions
which can be dispatched, per cycle, from the instruction buffer to the unit reservation stations. The instruction
completion bandwidth is a parameter, compl_bw. It specifies the maximum number of instructions which can be
completed (from the reorder buffer) per cycle.

7. The LSU and FPU unit issue bandwidths are given by parameters lsu_issue_bw and fpu_issue_bw respectively.
They specify the maximum number of instructions (of the load–store or floating op kind, respectively) per cycle
that can be issued from the corresponding reservation station to the underlying functional unit pipe(s). Normally,
(i.e. for one of the real machines referred to in Section 1) lsu_issue_bw = fpu_issue_bw = ls_units = fp_units.

8. Instructions waiting to be issued into execution from a given reservation station (e.g. LSQ or FPQ) are data–inde-
pendent; i.e., an instruction can be issued as soon as an execution pipe is available.

9. The number of read and write ports of the (rename and architectural) register arrays are more than the peak require-
ments; i.e. they are effectively infinite.

10. Once an instruction is issued to an execution pipe, its latency is fixed, determined by the number of stages of the
pipeline. All operations are assumed to be fully pipelined.

11. There are no result bus contentions between multiple pipes. There is no hard limit on the number of instructions
which may “finish” per cycle, except as constrained by the total number of execution pipes.

The basic performance metric which we shall compute using the bounds model, is steady–state

cycles–per–iteration, denoted by cpI. From this number, the steady–state cycles–per–instruction

(cpi) performance is simply computed using the equation:

 cpi = cpI/N (3.1)

where, N is the number of instructions per loop iteration. Recall that the instructions within each

iteration consist of floating point load/store instructions, floating point arithmetic operations and a

single, loop–ending conditional branch instruction (bc). Since floating point divide instructions are

typically implemented as long–latency, non–pipelined operations, in order to abide by item number

10 in the list of assumptions above, let us limit our discussion to loops which do not have floating

point divide instructions.

 Let us assume that, on a per iteration basis,

(a) the number of load instructions = NL

11

(b) the number of store instructions = NS

(c) the number of floating point arithmetic instructions (excluding compound operations like fmadd/

fnmadd and non–pipelined operations like fdiv): add (fadd), subtract (fsub), and multiply (fmul)

instructions = NF

(d) the number of floating point multiply–add instructions (fmadd or fnmadd) = NMA

Thus, clearly, N = NL + NS + NF + NMA + 1, where the final ’1’ counts the loop–ending branch

instruction. Note also that an fmadd instruction counts as two floating point operations, so that the

number of floating point operations (flops) F, per loop iteration is given by: F = NF + 2*NMA.

Following well–established understanding of steady–state pipeline flow, the steady–state cpI

performance can be easily seen to be given by:

 cpI = max (cpIfetch–bound, cpIagen–bound, cpIload–port–bound, cpIstore–port–bound, cpIdispatch–bound,

 cpIlsu_issue_bound, cpIfpu–issue–bound, cpIcompl–bound) (3.2)

where, each of the individual hardware resource bounds are derived as follows:

 cpIfetch–bound = �N/fetch_bw� (3.3)

 cpIload–port–bound = �NL/l_ports� (3.4)

 cpIstore–port–bound = �NS/s_ports� (3.5)

 cpIdispatch–bound = �N/disp_bw� (3.6)

 cpIcompl–bound = �N/compl_bw� (3.7)

 cpIagen–bound = �(NL + NS)/ls_units� (3.8)

 cpIlsu–issue–bound = �(NL + NS)/lsu_issue_bw� .. (3.9)

 cpIfpu–issue–bound = �NF / fpu_issue_bw� (3.10)

The corresponding bound for cycles–per–floating–point–operation (cpf) are obtained by dividing

the cpI bounds by the number of flops per iteration, F.

The above equations reflect the fundamental limits of loop performance, under the simplifying

assumptions stated. For example, the address generation related bound, cpIagen–bound is determined

by the maximum number of address generations (agens) possible, per loop iteration. The maximum

number of agens per cycle must be equal to the number of load–store units (LSUs), as given by the

parameter: ls_units. This is because each LSU is equipped with an address generation adder, and up

to ls_units load or store instructions can be issued from the LSQ (reservation station) per cycle. Since

the number of load/store instructions per iteration is (NL + NS), equation (3.8) becomes clear. The

ceiling function is required to take care of the cases where (NL + NS) is odd: for example, 3 or 4

load/store instructions would both take 2 cycles for agen, if there are 2 LSUs.

Similarly, the other bounds equations can be seen to hold true. The overall equation (3.2) is

merely a statement of the fact that steady–state loop performance is determined by the narrowest

12

bottleneck, i.e. by the hardware constraint which results in the largest, individual cpI bound. Note

that under the stated assumptions, individual unit pipeline latencies do not need to be considered in

these (idealized) I–Bound formulations. Thus, the latency of the FPU execution pipes, or the data

cache access latency do not figure in these equations. The key underlying assumptions are: (a) all

cache access and instruction processing paths are fully pipelined at the machine cycle granularity;

(b) all queue, buffer and cache size resources are effectively infinite; and (c) there are no direct data

dependencies between instructions eligible for issue in either reservation station (LSQ and FPQ). We

shall see examples later (see sub–section 4.3) where pipe latency parameters are used in computing a

realistic R–Bound, in which finite resources and data dependencies are considered.

It should be noted that in practice, it may be useful to assign more than one value to a given band-

width parameter, depending on the particular context. For example, the dispatch bandwidth,

disp_bw may depend on the instruction mix. For the original POWER1 processor [1], a maximum of

4 instructions can be dispatched per cycle: a branch, a logic–on–condition–register (LCR) instruc-

tion, a fixed point instruction (which may be an integer operation or a load/store instruction) and a

floating point instruction. However, for our specific context of simple floating point loops (as de-

fined), we can think of the POWER1 as a 3–dispatch machine (since LCR instructions are absent).

Furthermore, when considering the execution of the branch–free loop body, the POWER1 is a 2–dis-

patch processor since branches are not encountered. Thus, disp_bw can have at least two distinct

values (2 and 3) during the course of a simple loop execution in POWER1.

As indicated earlier on, the I–Bounds formulation can be incrementally augmented to factor in

additional effects. These may relate to the input loop characteristics; or, they may concern realistic

limits on resources and bus arbitration capabilities. For example, the assumption listed in item 8

above may prove to be too restrictive for a given loop. If there are intra–loop or loop–carried depen-

dencies, the cpIfpu–issue–bound may need to be computed on a loop–by–loop basis; a general formula-

tion becomes cumbersome, with the need to introduce parameters to describe the dependence

relations (graph). Special cases may be more easily dealt with. For example, let the NF floating ops

(say fadds) have a pair–wise, successive dependence chain, with no loop–carried dependence. If the

NF fadds are part of the same issue group, then, a simple augmentation is possible, as follows:

 cpIfpu–issue–bound = 1 + (NF – 1)*fpu_dep_delay(3.10b)

where fpu_dep_delay is the pipeline stall between successive initiations of a pair of dependent float-

ing point operations into the FPU execution pipes.

 Thus, for example, consider a sequence of 4 fadd instructions that could be dispatched in a single

cycle of a 4–issue superscalar machine. If they are “back–to–back”, pairwise data dependent and

fpu_dep_delay is 1 cycle, then it takes ((1+4–1) = 4) cycles to issue the 4 fadds. If fpu_dep_delay is 2

13

cycles, the issue sequence would be the same string of fadds, but with an intervening null–issue cycle

between every pair; hence the number of issue cycles would be ((1 + (4–1)*2) = 7) cycles.

As we shall see, the I–Bound formulation, given by equations (3.2) through (3.10), is very useful

in diagnosing the primary causes of performance shortfall. For example, let us assume that the mea-

sured performance is much worse compared to the idealized bounds. On examining the code se-

quence, if it is found that there are a lot of dependent floating point operations, we can suspect that the

cpIfpu–issue–bound formulation is optimistic. Consequently, this may point to an opportunity for im-

provement of the register allocation and/or scheduling.

An example loop and its performance potential on a (1 LSU, 1 FPU)–model:

Let us consider the well known daxpy application kernel, which is the key loop within the float-

ing point benchmark called Linpack. The FORTRAN specification of daxpy is:

do i = 1, n

 x(i) = x(i) + s* y(i)

enddo

where, the 1–dimensional arrays x, y and the scalar s are declared to be double precision floating

point variables. The corresponding compiled code, per inner loop iteration, is as follows:

A: lfd 1, 0x8(6) /* load flt reg 1; 0x8: hex displacement; base address register: #6 */

B: fmadd 1, 0, 2, 1 /* flt mpy–add */

C: lfdu 2, 0x8(5) /* load flt reg 2, with update */

D: stfdu 1, 0x8(6) /* store flt reg 1, with update */

E: bc <addr specifier>

(Note that there is an initial load to floating point register 2, before the main loop is entered. This is

not shown, but is assumed implicitly. The instructions above are labelled with alphabets A, B, C, D

and E for ease of referral in the discussion below. The compiler is used in PowerPC architecture

mode. The exact sequence of instructions may vary with the compiler version).

Let’s try to apply our bounds model to this loop for a (1 LSU, 1 FPU) machine (such as the origi-

nal POWER1 [1]). We consider the loop processing under steady–state operation of the super–sca-

lar pipeline, i.e. after many iterations have already been completed. For this processor, the

parameters of interest are:

14

fetch_bw = 4;

disp_bw = 3, 2, 1 or 0 depending on context as follows:

On a given dispatch cycle (machine cycle n), let us refer to the next 3 instructions available for dispatch
in the instruction buffer as the dispatch–group. If the dispatch–group consists of a load or store, a floating
point arithmetic operation and a terminating branch (e.g. the group C–D–E above) then disp_bw = 3.
However, in this case, since the branch was resolved to be taken, instructions from the taken path will
be available for dispatch in the instruction buffer only in machine cycle n+2. Any conditionally dis-
patched instructions in cycle n+1 (from the not–taken or sequential path) will be cancelled. So, effective-
ly, disp_bw = 0 in cycle n+1. If the dispatch–group consists of non–branch instructions only, then
disp_bw = 2. On occasion, the number of instructions eligible for dispatch in the instruction buffer may
be a number d, with 1�d<3. For example, assume that D–E or E alone is the only correct instruction(s)
available for dispatch on a given cycle. The sequential instructions beyond the branch, although available
for conditional dispatch, are later cancelled after the branch is resolved taken. Hence, in such situations,
we assume the effective disp_bw to be d (< 3) = number of eligible instructions in the dispatch buffer.
As in the disp_bw = 3 case, however, the following cycle will necessarily be a 0–dispatch cycle.

l_ports = s_ports = ls_units = lsu_issue_bw = 1;

fp_units = fp_issue_bw = 1

Thus, for the POWER1 processor, and the daxpy loop, we get the following bounds:

cpIfetch–bound = �5/4� = 2;

cpIdispatch–bound = �2/2� + �3/2� = 3;

cpIagen–bound = cpIlsu–issue–bound = �3/1� = 3;

cpIload–port–bound = �2/1� = 2;

cpIstore–port–bound = �1/1� = 1;

cpIfpu_issue_bound = �1/1� = 1;

The cpIcompl–bound is not applicable for this processor, since it does not have a completion mecha-

nism (as described for our general model, Figure 1) using a reorder buffer. (In–order completion for

precise interrupt support is implemented using a checkpointing scheme).

Clearly, this loop is load–store bound, in that equation (3.8) will always be the gating factor.

Thus, the overall bound in this case is 3 cycles per iteration, which implies a cpi (cycles–per–instruc-

tion) of 3/5 = 0.6. This agrees exactly with actual measurement on an existing POWER1 worksta-

tion. In other words, the hardware–compiler pair works effectively in attaining the peak infinite

cache daxpy performance on the POWER1 for this loop; there is no room for further post–hardware

tuning in this particular case.

On the other hand, due to the presence of dispatch restriction rules and other constraints, some

prior processors do not attain their idealized daxpy bounds (see [15]). The description in [6] shows

how the POWER3 design attains its daxpy performance bound, by careful consideration of the laten-

cy, bandwidth and resource parameters. In a post–silicon framework, when the hardware cannot be

15

altered, compiler–based loop tuning methods (like unrolling with scheduling) can be employed to

achieve or approach the best–case cpI values for certain loops. Such application of bounds–based

characterization is precisely what we shall attempt to illustrate in the next section for two of the most

recent processor products developed at IBM for the RS/6000 server family.

4. Loop Bounds, Measurement and Tuning Opportunities

In this section, we first present a set of basic loops, taken from our full test case repository. We

then show the measured performance numbers and compare them with the “best–case” and “realis-

tic” bounds. This procedure sets the stage for identifying the “root causes” behind the performance

gaps. Where post–silicon hardware fixes are deemed to be infeasible, we experiment with software

loop tuning. These include enhancements to loop unrolling, software pipelining, register allocation

and instruction scheduling.

Experimental Set–Up:

Figure 2 shows the overall tools–based methodology used in our post–silicon performance val-

idation and tuning experiments. A given source test case is compiled into an executable (xcoff) file.

This can be traced and run on a cycle–accurate processor simulator (or “timer”) [7] such as the H–

timer tool used in the initial phase of the POWER3 development project. It can also be converted into

a format suitable for running on the full RTL simulator (DSL/Texsim) which essentially captures the

full function and timing behavior of the processor. The compiled test cases may also be run on exist-

ing hardware, with similar microarchitectures in order to do a comparative analysis. The methods

used for hardware measurement of loop performance are as described in [8]. The cycle–by–cycle

pipeline flow behaviors, visualized using the timer and the Texsim models, can be compared to

cross–validate the detailed timings predicted by the two models. A special–purpose, loop timer

called eliot is used to compute loop performance bounds (I–Bound and R–Bound). This is developed

during the early–stage design definition stage [6] in order to set performance targets for key test

cases. It is also used in post–silicon validation and tuning, as discussed later in this section. Eliot–

based bounds computation can also be used to predict optimal loop unrolling depths, as discussed in

sub–section 4.4.

4.1 Loop Test Cases

Table 1 lists a set of elementary Fortran DO LOOP test cases. These were compiled and (a) run on
the actual hardware or the Texsim model; and (b) traced and run on the eliot tool for projection of
“best–case” and “realistic” bounds. Each loop was unrolled to a depth indicated by the value of u in
column 1. These loops, selected from a wide range of real applications, form the very basic set of

16

C/Fortran Test
Case

xlc/xlf
compiler

xcoff (a.out)
file

Assembler Test
Case

asm
(assem-
bler)

xcoff_to_avp xtrace**

DSL/Texsim

Model

XDUMP*
Texsim
Timeline

Timer
Timeline

Validation

manual tweaks

bounds
and loop
unroll
factor (u)

eliot–based
predictor of

(xapa toolkit)

Figure 2. Post–RTL Performance Validation and Tuning Methodology

H–timer

* the xapa visualization toolkit was developed by Steve Hoxey,
 IBM Toronto (compiler group)

** xtrace is a software instrumentation and tracing tool developed
 by Ravi Nair, IBM Research

manual
loop
source
changes

POWER2
or P2SC
Machine

Performance
NumbersPerformance Bounds

(I–Bound, R–Bound)

Simulation–based
performance
projections

assembly
list file

17

application–based test cases used for assessment of infinite cache (floating point) performance tun-
ing opportunities. (The actual list of test kernels used in practice is much larger, of course).

 Table 1. Description of Selected Fortran Loop Test Cases

TRACE
(manual source
unroll, u=2, is used
prior to auto–un-
roll)

 Instrs/original it-
eration

 Loop body (origi-
nal, u=1, Pow-
erPC, assembly),
compiler xlf ver.
3.2.5.x (Pre–630)

 Instrs/unrolled it-
eration
(–O3 optimization
to invoke auto–un-
roll)

Loop body (origi-
nal, source)

loop01.tr (u=16) 2 {stfdu, bc} 17 x(i) = s

loop02.tr (u=8) 3 {lfdu, stfdu, bc} 17 x(i) = y(i)

loop03.tr (u=4) 5 {fadd, lfdu, lfdu,
stfdu, bc}

 17 x(i) = a(i) + b(i)

loop04.tr (u=4) 5 {fadd, lfdu, lfd,
stfdu, bc}

 17 x(i)=x(i) + b(i)

loop05.tr (u=4) 4 {fadd, lfdu, stfdu,
bc}

 13 x(i)=u+a(i)

loop06.tr (u=4) 6 {fadd, lfdu, fadd,
lfdu, stfdu, bc}

 21 x(i)=u+a(i)+b(i)

loop07.tr (u=2) 8 {lfdu, fadd, lfdu,
fadd, stfdu, lfdu,
fadd, bc}

 15 x(i)=u+a(i)+b(i)
 + c(i)

loop08.tr (u=2) 9 {lfdu, fadd, lfdu,
lfdu, fadd, lfdu,
fadd, stfdu, bc}

 17 x(i)=a(i)+b(i)+c(i)+
d(i)

loop09.tr (u=4) 6 {lfdu, lfdu, lfdu,
fma, stfdu, bc}

 21 x(i) = c(i)+b(i)*a(i)

loop10.tr (u=4) 6 {fmadd, lfd, lfdu,
lfdu, stfdu, bc}

 21 x(i)=x(i)+b(i)*a(i)

loop25.tr (u=4) 9 {fmadd, fmadd,
lfdu, fmadd, lfdu,
fmadd, lfdu, lfdu,
bc}

 33 s1 = s1 + b(i)*a(i)
s2 = s2 + b(i)*c(i)
s3 = s3 + d(i)*a(i)
s4 = s4 + d(i)*c(i)

daxpy.tr (u=4) 5 {fmadd, lfdu, lfd,
stfdu, bc}

 17 x(i)=x(i)+s*y(i)

ddot.tr (u=4) 4 {fmadd, lfdu, lfdu,
bc}

 13 s=s+x(i)*y(i)

4.2 POWER3 Loop Performance

In this section, we compare the actual loop performance of the POWER31 processor and

compare it with the (idealized) I–Bound and (realistic) R–Bound predictions as well as pre–silicon

full model timer runs. As indicated in Section 1, this processor is a (2 LSU, 2 FPU) processor, with

many new features to provide enhanced performance [6]. The data cache has two load ports and a

18

single store port. However, the cache array itself is 4–way interleaved, and bank conflicts prevent the

effect of a true dual–port cache.

Table 2 shows a comparison of the “best–case” performance specification bounds predicted by
eliot and the real performance of the (“taped–out”) POWER3 processor1. All results assume or sim-
ulate a perfect (infinite) cache model. (Recall: Texsim is an RTL–level simulator of the integrated
chip logic model, coded using an IBM internal hardware description language called DSL. Texsim
simulation speed is about 50–100 target machine cycles per second, which is too slow for perfor-
mance studies. Trace–driven timer model speeds are at least two orders of magnitude faster: hence
their use in pre–silicon architecture analysis studies). The comparison data shown in Table 2 was
collected shortly after the first tape–out for fabrication.

 Columns (A) and (B) show “best–case” bounds predicted by the early–stage specification timer,
eliot (see Figure 2 and related description). Column (A) shows the most optimistic (idealized)
bounds, based on a true dual–load–ported, perfect data cache (without any cache interleave con-
flicts) and with no execution cycle stalls for data dependencies in the floating point unit. Column (B)
reflects a more realistic set of bounds, with stalls caused by factoring in L1 interleaved data cache
conflicts and a 2–cycle bubble caused by back–to–back data dependencies in the floating point
execution unit. Column (C) shows data obtained by the detailed, trace–driven POWER3 timer,
which was developed for pre–silicon analysis. Column (E) shows the corresponding performance
numbers obtained from the Texsim (RTL) model runs. Column (D) shows the timer run data ob-
tained by turning off interleaved data cache conflict checking. We see from Table 2 that the POW-
ER3 timer and the Texsim models agree (exactly) for all the test cases considered, (cf. columns (C)
and (E)) except for loop03. (The discrepancy for loop03 was found to be due to a modelling error in
the timer). In comparing the eliot–specified bounds with actual RTL model performance, we find
significant performance gaps in many of these basic cases, except for loop01 and loop02, where the
expectation was met precisely. These performance gaps pointed us immediately to post–silicon tun-
ing opportunities.

Table 3 summarizes the diagnosis of the performance bugs and the initial set of recommenda-
tions, based on the results presented. These are under current consideration by the design team, in
league with our compiler experts. The main deficiencies identified are: (a) interleaved data cache
conflict–related stalls of the dual load–store unit; (b) floating point operation issue stalls due to large
values of the fpu_dep_delay (see equation 3.10b) in the currently implemented design; (c) inability-
to fetch across an I–cache line boundary in a given instruction fetch cycle; and, (d) an identified per-
formance bug in the initial “tape–out” RTL model, which causes stores to finish a cycle later than
they should.
–––
1Measured numbers for POWER3 are based on Texsim/RTL simulation of the first tapeout model.

19

 Table 2. Eliot generated bounds vs. timer vs. Texsim model results (POWER3)

Loop–Trace

(as in Table 1,
with pre–
POWER3
compiler)

“Best–case”
(eliot) bounds

 (I–Bound)

 (A)

“Realistic”
achievable
bounds

 (R–Bound)
 (B)

 POWER3
 CPU timer

 (C)

 POWER3
 timer
 w/o interl.
 confl.

 (D)

 Texsim
(full RTL
 model)

 (E)

 cpiss cpiss cpiss cpiss cpiss

loop01
(u=16)

0.941 0.941 0.941 0.941 0.941

loop02 (u=8) 0.471 0.471 0.471 0.471 0.471

loop03 (u=4) 0.353 0.412 0.412 0.381 0.426

loop04 (u=4) 0.353 0.373 0.382 0.373 0.382

loop05 (u=4) 0.307 0.307 0.333 0.333 0.333

loop06 (u=4) 0.286 0.333 0.381 0.381 0.381

loop07 (u=2) 0.267 0.333 0.422 0.422 0.422

loop08 (u=2) 0.294 0.353 0.451 0.431 0.451

loop09 (u=4) 0.381 0.476 0.476 0.381 0.476

loop10 (u=4) 0.381 0.428 0.476 0.429 0.476

loop25 (u=4) 0.273 0.303 0.333 0.303 0.333

ddot (u=4) 0.307 0.615 0.923 0.923 0.923

daxpy (u=4) 0.353 0.353 0.382 0.382 0.382

Eliot bounds for column (A) assume absence of L1 bank conflicts and 0–cycle bubble for back–to–back flt op depen-
dence
Eliot bounds for column (B) assume L1 cache bank conflicts, and 2–cycle bubble for back–to–back flt op dependence,
per current design specs.

cpiss (steady–state cycles per instruction) is calculated from the steady–state part of the corresponding cycle–by–
cycle listing for these loop traces.

Loop unrolling and instruction scheduling; measured impact:

Most, if not all of the hardware change recommendations in Table 3, for example, have a possible
compiler solution. However, in some cases, a general hardware fix, if feasible, is the preferred solu-
tion. In other cases, a hybrid hardware/software compromise solution may be sought. For example a
localized re–ordering technique, using a crossbar to sort even/odd references and an “address bel-
low” register has been used in a prior processor [10] (developed by Silicon Graphics Computer Sys-
tems) as a hardware aid to resolve conflicts in the interleaved data cache. This mechanism eases the
local misalignment problem for the processor referred to; but, as stated in [10], the compiler is still
expected to be responsible for solving the global even/odd address mix problem.

Another example of software tuning is compiler loop transformation [12], which offers a known
potential for floating point performance enhancement. Loop unrolling, in particular, is an important
transformation for enhancing floating point performance in dual–fpu superscalar processors like the

20

POWER2, POWER3 or the TFP processor [10]. Sufficient unrolling allows additional instruction
scheduling opportunities to the compiler within the loop body, and reduces the number of loop–end-
ing branches to be predicted. Excessive unrolling, on the other hand, can cause overhead “spill code”
to be generated, or may cause instruction dispatch stall cycles due to resource limits (e.g. the finite
number of register rename buffers). In order to feed back POWER3–specific loop unrolling and
scheduling heuristics to the compiler group, we experimented with various loop tuning alternatives.

Table 4 shows data from one such experiment using the same loop traces described earlier. We
initially used an older, pre–POWER3 compiler, which supported automatic loop unrolling, but
which did not have a POWER3–specific scheduling option. With a “–qtune=pwr2” flag, we could
obtain code scheduled with the POWER2 processor organization [4,5,8] in mind; without this op-
tion, the compiler generates code assuming a (1 LSU, 1 FPU) organization. Column (A) shows the
performance data for codes obtained by manually unrolling the given loop once, and then applying
compiler auto–unrolling. Column (C) is the same as Column (A), except that the “–qtune=pwr2”
option was added. Column (B) also uses “–qtune=pwr2” but skipping the manual unrolling step used
for Column (A). Column (D) shows the results obtained with a newer compiler, with some very
preliminary POWER3–specific optimizations. The effective unrolling depth in each case is indicated
by the parameter u.

The effect of initial unrolling of the source loop by hand (Columns (A) or (C)) was to reduce the
number of “load–floating–point–with–update” or lfdu instructions, in favor of plain “load–floating–
point” (lfd) instructions. The semantics of an lfdu instruction in the PowerPC architecture [13] calls
for updating the address index register contents by the address computed in the current (lfdu) instruc-
tion. With machines like the POWER2 [4], in which a 3–input adder is available as part of the ad-
dress generation logic, such an instruction can be executed (“finished”) in a single cycle. In the
POWER3, such an instruction can still execute in a single cycle, but if an immediately following load
instruction uses the same index register, it will not be able to execute concurrently with the lfdu. Thus
a general heuristic which enables reduction of the number of lfdu’s generated will help boost POW-
ER3 loop performance; or, in particular, lfdu–lfd pair generation (with a common index register)
should be avoided in a POWER3–specific compiler switch. This is observable from the data in Table
4: column (B) shows degraded performance (compared to column (A) in a majority of the cases. It
benefits in cases where the code is compute–intensive, and is further enhanced by improved code
scheduling (“–qtune=pwr2”).

In comparing columns (C) and (D), we see that the biggest improvement achieved in the newer
version of the compiler (with a POWER3–specific optimization switch) is reflected in the perfor-
mance of the dot product loop test case, ddot. This loop exhibited the worst performance gap from
the eliot–predicted early bounds specification (see Tables 2 and 3) when using the older compiler.
However, the problem caused by generation of excessive (lfdu–lfd) sequences is still seen in the
newer results. Also, the loop unrolling depths used by the compiler is not always optimal, from the
point of view of steady–state loop cpi values. Note that with auto–unrolling, the old and new compil-
ers do not always use the same unrolling depths (cf. columns (B) and (D)). In a recent paper [14], we
presented methods for predicting the “best” loop unrolling depths for POWER3–like machines, us-
ing static bounds–based heuristics. We touch on this issue briefly in sub–section 4.4.

21

 Table 3. Performance Bug Diagnosis Table and Recommended Solutions

Test Case Deviation of
tape–out
model* perf
from eliot–
based (best–
case, ideal-
ized) specs

Primary
Cause of
deviation, or
of poor per-
formance

Secondary
Cause

Possible
fix(es),
or, possible
enhance-
ments
rmance

Current Rec-
ommendation

Loop01 ~0 % 1 store port
(Dcache)

 (Eff.) 2 store
ports

None

Loop02 0 % Same;above Same;above None

Loop03 17.8 % Dcache interl.
conflicts

Ifetch/disp
restrictions

True 2–ported
dcache; or,
memory re-
quest reorder
buffer and/or
compiler help

Mem. request
reorder buffer
(ROB)
scheme +
compiler
support

Loop04 16.7 % Dcache interl.
conflicts

Same;above Same;above

Loop05 9.1 % Icache line
crossing,
ifetch/disp
restrictions

Ifetch across
line boundary
in same cycle

Investigate
h/w logic add
to fix
problem

Loop06 31.8 % flt. pipe de-
pendency
delay

Tune out–of–
order flt disp.
and result for-
warding logic;
compiler tune

Improve logic,
circuit design
for dep.
check, reor-
dering

Loop07 54.8 % Same;above Same;above Same;above

Loop08 29.5 % Same;above Dcache interl.
conflicts

See above
(loops 06, 03)

See above
(loops 06, 03)

Loop09 37.4 % Dcache interl.
confl.

Flt. pipe dep.
stall

See above
(loops 03, 06)

See above
(loops 03, 06)

Loop10 25.7 % Dcache interl.
confl.

Flt. pipe dep.
stall

See above
(loops 03, 06)

See above
(loops 03, 06)

Loop25 21.9% Dcache interl.
confl

Ifetch/disp
restrictions

See above
(loops 03, 05)

See above
(loops 03, 05)

ddot 99.7 % flt pipe dep. See above (loop06) See above (loop06)

daxpy 8.21 % late store fin H/w fix H/w fix

22

 Table 4. Compiler Scheduling Sensitivity

 cpiss values for POWER3–Texsim (RTL) model runs

Loop Trace

 Old (pre–POWER3) Compiler Newer compiler
with some (pre-
liminary) POW-
ER3–specific
scheduling
(xlf ver. 4.1.0.3)

a) hand–un-
rolled once
b) then auto–
unrolled (–O3)

 (A)

a)auto un-
rolled(–O3)
b)qtune=pwr2

 (B)

a)hand–un-
rolled once
b)then auto–un-
rolled(–O3)
c)qtune=pwr2

 (C)

auto–unrolled
(–O3)

 (D)

Loop01 0.941 (u=16) 0.889 (u=8) 0.941 (u=16) 0.889 (u=8)

Loop02 0.471 (u=8) 0.471 (u=8) 0.471 (u=8) 0.485 (u=16)

Loop03 0.426 (u=4) 0.412 (u=4) 0.441 (u=4) 0.470 (u=8)

Loop04 0.382 (u=4) 0.412 (u=4) 0.455 (u=4) 0.409 (u=8)

Loop05 0.333 (u=4) 0.385 (u=4) 0.333 (u=4) 0.320 (u=8)

Loop06 0.381 (u=4) 0.321 (u=4) 0.321 (u=4) 0.341 (u=8)

Loop07 0.422 (u=2) 0.333 (u=2) 0.356 (u=2) 0.336 (u=4)

Loop08 0.451 (u=2) 0.467 (u=2) 0.364 (u=2) 0.432 (u=4)

Loop09 0.476 (u=4) 0.619 (u=4) 0.619 (u=4) 0.500 (u=8)

Loop10 0.476 (u=4) 0.537 (u=8) 0.476 (u=4) 0.512 (u=8)

Loop25 0.333 (u=4) 0.471 (u=2) data not avail. 0.424 (u=4)

daxpy 0.353 (u=4) 0.485 (u=8) 0.394 (u=4) 0.409 (u=8)

ddot 0.923 (u=4) 0.960 (u=8) 0.960 (u=4) 0.385 (u=4)

REMARKS

partial manual
unrolling reduces
number of lfdu’s

too many lfdu’s;
hurts many
loops;

partial manual
unrolling reduces
number of lfdu’s

lfdu problem still
present

qtune=pwr2
helps reduce penalty due to flt pipe
dep. delays

POWER3–spe-
cific scheduling
does an even
better job of re-
ducing penalty
due to flt pipe
dep. delays
(esp. ddot)

It should be noted that the steady state loop cpi values (cpiss) shown in Tables 2 and 4 can be
slightly misleading when comparing the total execution times for a finite number of iterations of the

23

original (not unrolled) loop. A more meanigful metric to use, in such studies, may be cycles per log-
ical (not unrolled) iteration, cpI. The relation between cpiss and cpIss is given by:
 cpIss = (cpiss * ipI)/u . (4.3.1)
where, ipI denotes the number of instructions per iteration in the unrolled loop and u is the depth of
unrolling. (Note: upper case I is used to abbreviate iteration; lower case i stands for instruction).
Thus, for example in loop01, the original (not unrolled) loop body consists of a single floating point
store with update (stfdu) followed by the loop–ending branch, so ipI = 2 for u=1. With u=8 (columns
(B) or (D)), we have ipI=9 (8 stores plus a branch); with u=16 (columns (A) or (C)), ipI=17 (16 stores
plus a branch). With these values, the cpIss value (using equation 4.3.1) for any of the columns (A),
(B), (C) or (D) for loop01 would be 1.0. That is, the steady–state cycles per (logical) iteration perfor-
mance for loop01 is 1.0, irrespective of the compiler options experimented with (Table 4).

In the POWER2/P2SC loop performance tuning studies reported in the next sub–section, we use

the cycles–per–(logical)–iteration (cpI) metric as the basis of evaluation.

4.3 POWER2 and P2SC Loop Performance

 The POWER2 (and P2SC) infinite cache, floating point microarchitecture is similar to that of
the POWER3, in that both are (2 LSU, 2 FPU) machines. There are some important distinctions,
though. The POWER2 architecture has the load/store floating point quadword instructions (see Sec-
tion 2); POWER3 does not. On the other hand, the POWER3 has a branch target address cache
(BTAC) [3] mechanism for fetch prediction, which eliminates fetch stalls for loop–ending branches.

Let us first examine some comparative performance data to understand the characteristics of
POWER2. This data illustrates how the performance may vary drastically, even though the basic
organization is still a (2 LSU, 2 FPU)–structure and the compiler version is unchanged. Table 5
shows the comparative “cycles per logical iteration” (cpI) performance of POWER2 and POWER3.
The POWER3 data shown is of course based on the latest available RTL simulation results, with the
latest available compiler (column (D) data in Table 4). The POWER2 hardware measurement data
are reported for the same compiler, but with two different options of the instruction set architecture.
The “–qarch=com” mode generates code in the so–called “common” mode, which implies an “inter-
section” of POWERTM, POWER2TM PowerPCTM architecture opcode domains (see [13]). The
–qarch=pwr2 allows the use of additional instruction opcodes which are unique to the POWER2 ma-
chine: in particular, the floating point load and store quadword instructions (see Section 2).

We see from Table 5, that in terms of architectural (cycles–per–iteration) performance, the
POWER2 does better than the initial tape–out version of POWER3 (and compiler) for many of the
elementary loop test cases considered in this paper. (Of course, the POWER3’s MHz performance is
considerably higher than that of the latest POWER2 and P2SC processors. Also, in terms of real,
finite cache performance, which is beyond the scope of this paper, other features like data cache pre-
fetch enable the POWER3 to meet pre–silicon targets. The POWER3 design factors in requirements
for server products with a broader overall market than its predecessors. It provides for PowerPC ar-
chitecture compatibility, superior integer/branch performance and support for multiprocessing. As

24

stated in the introduction, overall system performance and tuning issues are not dealt with in this
paper).

 Table 5. POWER3 cycles–per–Iteration (cpI) comparison with POWER2 hardware measurements

POWER2(–qarch=com) POWER2 (–qarch=pwr2) POWER3 RTL simulation
(–qarch=com)

loop01 0.84 0.42 1.0

loop02 1.02 0.51 1.0

loop03 1.77 1.01 1.94

loop04 1.52 0.89 1.69

loop05 1.27 1.20 1.0

loop06 1.65 1.52 1.75

loop07 3.53 1.53 2.44

loop08 3.54 2.53 3.56

loop09 2.03 1.57 2.56

loop10 2.03 1.54 2.63

loop25 2.53 2.53 2.5

ddot 1.02 0.77 1.25

daxpy 1.78 0.89 1.69

The amount of benefit exploited by POWER2 using load/store quadword instruction support can
be seen by comparing data columns 1 and 2 of Table 5. Once the effect of load/store quads is factored
out, the POWER3 performance (data column 3) compares favorably with POWER2 performance
(data column 1): in a couple of cases (loop05 and loop07) the POWER3 actually does quite a bit
better, because of its superior out–of–order instruction scheduling.

Let us now examine the loop performance characteristics of the POWER2/P2SC microarchitec-

ture in detail. In Table 6, we present loop performance data measured on a 160 MHz P2SC processor,

using the latest available compilers. We compare this with predicted I– and R–Bounds. We have also

listed the primary hardware constraints which inhibit attainment of the “best–case” I–Bounds.

As before, the effective unroll factor (u) is shown for each loop in Table 6. For lack of space, it is

not possible to discuss each loop in detail. Let us consider a couple of the ones which exhibit a large

gap between the I–Bound and either the corresponding R–Bound or the actual measured perfor-

mance. These loops are: loop01, loop05, loop06 and loop08. Of these, loop05 and loop06 have the

same underlying cause behind their performance shortfall. Let us consider loop01 and loop05 in

some detail. The compiled code sequence of interest for loop01 is:

stfq 31, 0, 16(3)

stfq 31, 0, 32(3)

stfq 31, 0, 48(3)

25

stfqu 31, 0, 64(3)

bc

 Table 6. Actual measured performance (cycles per iteration, cpI): P2SC

LOOP Current xlf
compiler*

Current
xlhpf com-
piler+

I–Bound R–Bound

Primary
h/w
bottlenecks

Compiler
solution ?

loop01(u=8) 0.43 0.43 0.25 0.417 store–q size No

loop02(u=8) 0.52 0.52 0.50 0.50 – –

loop03(u=4) 0.89 0.89 0.75 0.85 store–q, re-
name buffs

 No

loop04(u=4) 0.85 0.85 0.75 0.85 –as above– –as above–

loop05(u=4) 1.01 1.01 0.50 1.0 store–add
anti–dep.,
renames

unroll deep-
er, s/w
pipeline

loop06(u=4) 1.76 1.76 1.0 1.25 –as above– –as above–

loop07(u=4) 1.66 1.53 1.5 1.5 – –

loop08(u=4) 3.02 2.28 1.5 1.75 rename
buffs

improved
reg alloc

loop09(u=4) 1.15 1.14 1.0 1.15 –as above– –as above–

loop10(u=4) 1.15 1.14 1.0 1.15 –as above– –as above–

loop25(u=4) 2.07 2.06 2.0 2.0 comp. bound
(2 FPU), reg
pressure

better
schedule

daxpy(u=8) 0.85 0.85 0.75 0.85 see loop03 see loop03

ddot(u=4) 0.77 0.77 0.50 0.75 load–fma
direct dep.

schedule

* xlf version 4.1.0.4, with –O3 –qarch=pwr2
+ xlhpf version 1.2. with –qnohpf –O3 –qarch=pwr2
 (In using xlhpf, a new, improved register allocator is invoked)

Note that store quadword instructions have been used, since they are available on the POWER2

and P2SC machines. Each stfq corresponds to two stfd instructions and hence two iterations of the

original, not–unrolled loop (see Table 1). Thus, clearly, the effective unrolling depth invoked by the

compiler in this case is u=8. Each stfq instruction stores the pair of floating point registers: #31 and

#0. The two doublewords (or one quadword) forming the data, are stored at the address specified by a

displacement and a base address register. The latter is specified to be the fixed point register #3 in

each case. The difference between two successive displacements (e.g. 16 and 32) is 16 bytes, which

is one quadword. Since the number of LSU’s is 2, and the number of store–ports is 2, it is easy to see

26

that the steady state cycles per iteration bound of this loop is 4/2 = 2. (The branch is overlapped with

store execution). However, one iteration of this loop corresponds to 8 iterations of the original loop.

Hence, the steady–state cycles–per–(logical)–instruction I–Bound is: cpI = 2/8 = 0.25.

The actual measured performance for this loop on the P2SC is cpI = 0.43. Since the code consists

essentially of a sequence of stores, the primary suspect in terms of finite hardware resources, is clear-

ly the pending store queue. For this machine, the size of this queue is 6. As verified through exact

cycle–by–cycle simulation data, this limitation causes the actual, steady–state completion pattern of

stores (stfq’s) to be: 2–2–2–0–0–2–2–2–0–0–.......; i.e., three consecutive pairs of completion, fol-

lowed by 2 stall cycles. This results in a cycle count of 5 cycles for 12 (original, not–unrolled) itera-

tions, which gives: cpI = 5/12 = 0.417. The stalls happen because of the latency mismatch between

the address generation path and the path which reads the store data from the source registers and

writes it into the store queue. Let us denote these two pipe latencies to be agen_pipe and sdata_pipe.

If these effective latency numbers are factored into the bounds model, the stall pattern above can be

predicted. If (sdata_pipe – agen_pipe) > 3, then after every 3 cycles (or 6 stfq agens), the store queue

fills up, causing a stall. The number of stall–cycles can easily be shown to be given by (sdata_pipe –

agen_pipe – 2). For the P2SC, sdata_pipe = 5 and agen_pipe = 1. (Note, these are the effective values

of these latencies under steady–state processing of the loop shown. The hardware latency of the sda-

ta_pipe is actually only 3. However, an agen–stall occurs a cycle before the store queue fills up.

Similarly, there is a cycle loss because a cache–array write from the head of the store queue begins a

cycle after the store data is paired with the store address in the queue. This results in an effective

sdata_pipe latency of 3+1+1 = 5. The two extra latency cycles are subtracted out during the calcula-

tion of the number of stall cycles. This is because, the agen–stall is eliminated immediately after the

store queue begins to get drained). Thus, the R–Bound (= 0.417) generated by eliot agrees with simu-

lation–based expectation for the P2SC microarchitecture.

Given the nature of the hardware constraint, which results in an R–Bound of about 0.42, it is

quite clear that changes to the loop unrolling depth will not help in reducing the gap between I–

Bound and R–Bound in this case. Irrespective of the unrolling depth, the effective code sequence is a

string of stores, which results in the stall pattern shown. Of course, the use of store quadword instruc-

tions helps; use of the lower bandwidth stfdu instructions would glean a cpI of 0.84 (see Table 5, first

data column).

For loop05, the compiler–generated loop body is as follows:

stfq 0, 1, 16(4)

stfqu 6, 7, 32(4)

fadd 0, 31, 2

fadd 1, 31, 3

27

lfq 2, 3, 16(3)

fadd 6, 31, 4

fadd 7, 31, 5

lfqu 4, 5, 32(3)

bc

In I–Bound mode, the steady–state issue groups would be: (stfq, stfqu, fadd, fadd) and (lfq, fadd,

fadd, lfqu, bc), yielding a rolled–loop cpI of 2. Since the effective unrolling depth is u=4, the real

I–Bound is cpI = 2/4 = 0.5. The actual measured performance is 1.01, which is half the speed of the

“best–case” expectation. The reason behind the performance gap is not hard to infer: the data depen-

dencies between the stores and the subsequent fadd instructions. In the POWER2 and P2SC imple-

mentations, target register renaming is supported only for floating point loads, not for functional

operations. Thus the anti–dependency between the first stfq and the first fadd (via register #0),

causes an issue stall of (sdata_pipe – agen_pipe – 1) = (3 – 1 – 1) = 1 cycle. Note that in this case, the

effective value of sdata_pipe is equal to the hardware latency of 3 stages, since there is no agen–stall

to be considered. The other 1 cycle saving occurs due to store data forwarding to the FPU pipe. Thus,

the steady–state issue groups, in R–Bound mode are: (stfq, stfqu), (), (fadd, fadd, lfq), (fadd, fadd,

lfqu, bc). This gives a rolled–loop cpI of 4 and the final R–Bound cpI is 4/4 = 1, which matches the

hardware measurement.

Anytime there are dependency–caused stalls as above, the question to ask is: can the I–Bound be

met or approached through better register allocation and/or scheduling? In such situations, it is often

the case that deeper unrolling exposes better opportunities to create a schedule which is free of de-

pendence–stalls. In the above case, by using manual unrolling at the source–level, we were able to

coax the compiler into generating a software–pipelined schedule, with a measured cpI of 0.64. The

inner loop of interest in this case was as follows:

stfq 2, 3, 16(4)

fadd 4, 31, 4

lfq 2, 3, 16(3)

fadd 5, 31, 0

stfq 6, 7, 32(4)

fadd 1, 31, 1

lfq 6, 7, 32(3)

fadd 0, 31, 0

stfq 4, 5, 48(4)

fadd 2, 31, 2

lfq 4, 5, 48(3)

28

fadd 3, 31, 3

stfqu 0, 1, 64(4)

fadd 6, 31, 6

lfqu 0, 1, 64(3)

fadd 7, 31, 7

bc

This schedule eliminates the dependence–stall and results in a rolled cpI of 4, and an I–Bound cpI

of 4/8 = 0.5. The degraded value of the measured cpI (0.64) can now be explained as being due to

dispatch stalls resulting from rename buffer pressure. Since the renamed loads run ahead of the com-

putation (due to the longer latency FPU pipes), there are eventually stalls created because of lack of

free rename buffers. For the above case, it can be shown that the effective rolled cpI becomes 5,

yielding an R–Bound of 5/8 = 0.63, which matches the measured performance.

4.4 Prediction of Optimal Loop Unrolling Depth

In this section, we briefly illustrate the use of bounds–based characterization in determining a

suitable loop unrolling depth in order to get the best performance [14]. This is a topic of ongoing

work and the details of the unrolling algorithms will be reported later in a separate report. Here, we

discuss the basic comcept only, with the use of a simple example from our suite of loops.

Let us consider loop03 which is the third loop in our suite. The compiled code for the innermost
loop for a certain compiler version (without unrolling, i.e. with u=1) was :

lfd 0, 0x808(4)
lfd 1, 0x1608(1)
fadd 0, 0, 1
stfdu 0, 0x8(4)
bc

The compiled codes for u =2 and u=3 are also given below:

For u = 1, and a (1 LSU, 1 FPU)–machine, performance is load–store bound. The steady–state,

idealized cycles–per–instruction (cpi) and cycles per–flop (cpf) performance of loop03 can be com-

puted using the simple bounds model as being: (cpI = 3) ==> cpi = 0.6 and cpf (cycles per floating

point operation) = 3.0. For u=2, it is still load–store (agen) bound, and the idealized performance is:

(cpI = 6) ==> cpi = 0.66, cpf = 3.0. For u =3, we have: (cpI = 9) ==> cpi = 0.69, cpf = 3.0. For u =4, we

would have: (cpI = 12) ==> cpi = 0.705, cpf = 3.0. In general, we would have: cpI = 3*u and N = 4*u

+ 1, and NF = u. From these, the above values can be computed.

29

u = 2:

lfd 0, 0x808(4)

 lfd 1, 0x1608(4)

 fadd 2, 0, 1

 lfd 0, 0x816(4)

 lfd 1, 0x1616(4)

 fadd 0, 0, 1

 stfd 2, 0x8(4)

 stfdu 0, 0x8(4)

 bc

u = 3:

lfd 0, 0x808(4)

 lfd 1, 0x1608(4)

 fadd 3, 0, 1

 lfd 2, 0x1624(4)

 lfd 0, 0x816(4)

 lfd 1, 0x1616(4)

 fadd 1, 0, 1

 stfd 3, 0x8(4)

 lfd 0, 0x824(4)

 fadd 0, 0, 2

 stfd 1, 0x16(4)

 stfdu 0, 0x24(4)

 bc

Thus, for a (1LSU, 1FPU)–machine, it would not pay to unroll a loop like that illustrated above

to get additional floating point performance. This is clear from simple bounds–based reasoning, but

was verified via detailed timer runs.

Let us now look at an enhanced design: a (2 LSU, 2 FPU)–machine, like POWER3, with l_ports

= 2, s_ports = 1, and disp_bw = compl_bw = 4. The loop performance (with or without unrolling) is

still agen–bound; however, now we can see a benefit in unrolling. For u = 1, we have: (cpI = �3/2� =

2) ==> cpi = 0.4 and cpf = 2.0. For u = 2, we get: (cpI = �6/2� = 3) ==> cpi = 0.33, cpf = 1.5. For u = 3,

we have: (cpI = �9/2� = 5) ==> cpi = 0.38, cpf = 1.67. For u=4, we get: (cpI = �12/2� = 6) ==> cpi =

0.353, cpf = 1.5. In general, we would have: cpI = �(3*u)/2�, N = (4*u) + 1, and NF = u. From these,

the above values can be computed. Clearly, from an idealized, steady–state cpf (megaflops) perfor-

mance, u = 2, 4, 6, ... etc would result in the optimal performance of cpf = 1.5. However, in the real

case, due to other limits like the number of rename buffers or the size of the reorder buffer, etc., per-

formance would actually go down for higher choices of u. In fact, using a pre–silicon timer (e.g.

H–timer; see Figure 2) we verified that for a POWER3, peformance actually degrades for u = 6 and

beyond.

5. Conclusion

We have presented the practical use of a simple, bounds–based analysis method in the context of

post–silicon loop performance validation and tuning. After the microprocessor chip is back from the

silicon fabrication process, the first concern, of course is functional validation. Once the key test

cases are operational (i.e. they produce correct results), the next concern is performance. The post–

30

silicon analysis and tuning experiments generate knowledge and understanding required for ma-

chine–specific compiler tuning. In order to validate performance, one needs to know what the

desired specifications (or targets) are. Bounds–based analysis provides a means for fixing a range of

such targets: from the “best–case” or idealized, to a more practical, achievable one. Comparison of

the idealized and realistic bounds tells us how much degradation is caused by hardware resource

constraints and data dependencies. Comparing the bounds with the actual performance data allows

us to assess the effectiveness of the (microarchitecture, compiler) pair. In some cases, it is possible to

suggest very specific compiler enhancement ideas to bridge the observed performance gap.

Loop performance can be a crucial determinant of overall floating point performance. As

reported earlier [15], a simple hardware “fix” to achieve the daxpy performance I–Bound for a

pre–POWER3 design point resulted in a SPECfp92 performance boost of 14 %. (Since this

performance bug had to do with store instruction latency and store queue size, the solution led to an

unexpected 11 % boost in SPECint92 performance as well!). In this paper, we illustrated the

application of bounds–based analysis to post–silicon diagnosis and tuning for two of the most recent

super scalar processors developed by IBM. Both of these processors are designed to provide superior

floating point performance, and are targeted for high–end RS/6000 workstations and servers. We

discussed the basic concepts and their application in the context of a few application–based loop

kernels. In practice, a suite of well over 100 loops and other test cases, along with other applications

are used in our post–silicon performance validation and tuning exercises.

REFERENCES

1. G. F. Grohoski, “Machine organization of the IBM RISC System/6000 processor,” IBM J. Res. Develop.,
vol. 36, no. 1, pp. 37–58, January 1990.

2. S. Song, M. Denman and J. Chang, “The PowerPC 604 RISC microprocessor,” IEEE Micro, pp. 8–17,
October 1994.

3. D. Levitan, T. Thomas and P. Tu, “The PowerPC 620TM microprocessor: a high performance superscalar
RISC microprocessor,” Proc. COMPCON, pp. 285–291, March 1995.

4. S. W. White and S. Dhawan, “POWER2: next generation of the RISC System/6000 family,” in PowerPC
and POWER2: Technical Aspects of the New IBM RISC System/6000, IBM Corporation, publication no.
SA23–2737–00, 1994.

5. L. Gwennap, “IBM crams Power2 on to single chip,” Microprocessor Report, August 26, 1996.

6. H. Q. Le, P. Bose, D. Schroter and M. Mayfield, “Design point definition of the core microarchitecture of
a high end PowerPCTM processor,” (under clearance for publication).**

7. P. Bose and S. Surya, “Architectural timing verification of CMOS RISC processors,” IBM Journ. Res. &
Develop., vol. 39, no. 1/2, pp. 113–129, January/March 1995.

31

8. E. L. Hannon, F. P. O’Connell and L. J. Shieh, “POWER2 performance on engineering/scientific applica-
tions,” in PowerPC and POWER2: Technical Aspects of the New IBM RISC/System/6000TM, IBM Pub-
lication Number SA23–2737–00, 1994; see also, Proc. ICCD, pp. 336–339, October 1994.

9. J. E. Smith and A. R. Pleszkun, “Implementation of precise interrupts in pipelined processors,” Proc.
Int’l. Symp. on Computer Architecture (ISCA), pp. 36–44, 1985.

10.P. Y–T Hsu, “Design of the TFP Microprocessor,” Proc. IEEE Micro, 1994.

11.W. Mangione–Smith, T.–P. Shieh, S. G. Abraham, and E. S. Davidson, “Approaching a machine applica-
tion–bound in delivered performance on scientific code, Proc. IEEE, vol. 81, pp. 1166–1178, August
1993.

12.D. F. Bacon, S. L. Graham and O. J. Sharp, “Compiler transformations for high–performance computing,”
ACM Computing Surveys, vol. 26, no. 4, pp. 345–420, December 1994.

13.C. May, E. Silha, R. Simpson, H. Warren, ed., The PowerPC Architecture: A Specification for a New Fam-
ily of RISC Processors, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 2nd. edition, May 1994.

14.P. Bose and J–D Wellman, “Compiler–aided loop tuning opportunities for high–end PowerPCTM Ma-
chines,” Proc. Workshop on Interaction between Compilers and Computer Architectures, (held in con-
junction with 3rd. Int’l. Symp. on High–Perf. Computer Arch., HPCA–3), Feb. 1997; available as an IBM
Research Report.

15.P. Bose, “Performance analysis and verification of super scalar processors,” IBM Research Report RC
20094, June 1995; parts of this were presented as a talk at the ISCA–95 workshop on pre–silicon perfor-
mance analysis and validation, Santa Margherita, Italy, 1995.

IBM is a registered trademark, and POWER, PowerPC, PowerPC Architecture, PowerPC 604, PowerPC 620,
POWER2, POWER3 and RISC System/6000 are trademarks of International Business Machines Corporation. In this
document the terms “604” and “620” are used as abbreviations for the phrases “PowerPC 604 microprocessor” and
“PowerPC 620 microprocessor” respectively. SPEC is a registered trademark of Systems Performance Evaluation
Corporation.

** This is a PowerPC processor, developed by IBM, which will be announced as POWER3.

32

Copies may be requested from:

IBM Thomas J. Watson Research Center
Publications Office, 16–220
Post Office Box 218
Yorktown Heights, NY 10598

Some reports are available via the
Cyberjournal on the WWW.
http://www.watson.ibm.com:8080

