
RC21444 (96156) 18 November 1998 Computer Science

IBM Research Report

Multi-Search of Video Segments Indexed by
Time-Aligned Annotations of Video Content

 Anni Coden, Norman Haas, Robert Mack

 IBM Research Division
Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract:

This paper describes an approach to the design and
implementation of a video content management
system that enables the efficient indexing and
storing, and searching and browsing of video
segments defined by annotation of video content
attributes. The annotation values represent the
durations of independently indexed and potentially
overlapping attributes of the video content, such as
camera motion, shot distance and face count, and
associated information, such as spoken words in
the soundtrack. These values define segments of
video of any granularity from entire programs down
to arbitrarily short segments. Boolean searches on
these multiple indexed criteria can be performed,
and temporal intervals corresponding to video
segments can be computed that reflect the union
and intersection of search results meeting these
Boolean conditions. We propose a relational
database-based model for storing indexed attributes
which is flexible and because it does not index or
store any fixed temporal segmentation of the
video. Rather annotation values can be stored in
any way appropriate for an open-ended set of
annotation methods representing attributes of video
content. The system is part of a project to exploit a
set of automatic annotation methods for the visual
attributes of video content, and to develop a
component of a complete studio for broadcasting
digital HDTV (High Definition Television).

Keywords : Media Content Management, Video
Database, Query System

Introduction

Digital video asset management systems are
becoming more pervasive as analog video tape
archives are being converted to digital format, and
new videos are produced in digital format. Key
video management tasks are ingest, annotation or
indexing, database modeling, search and browsing
of stored content. Commercial systems are
beginning to develop technological solutions for
these video management tasks. A key challenge is
annotation: developing search indices of descriptors
for video content.. Aguierre-Smith and Davenport
put the challenge this way: “[The organization of a]
video database system is a challenging information
management problem because the way that a
particular sequence of images is described effects
[how] a maker will retrieve it and incorporate it into
a movie” [1].

However, the nature/type of metadata being stored
is changing rapidly. Historically, “card catalog”
metadata were associated with a video, such as
title and production date. Such metadata attributes
are descriptions of the video as a whole. Video
asset management systems being developed in
research projects and in some commercial systems
(examples include ISLIP [2], based on InforMedia
research prototype [3] AVID [4], VIRAGE [5],
EXCALIBUR [6]) are beginning to go beyond
limited sets of metadata attributes and index video
content on a video segment granularity (time unit)
considerably less than traditional program clips.
With the advance of automatic indexing of
advanced content-related features in videos
programs (e.g., detecting faces or other objects, the
motion of these objects, etc.), it is becoming
increasingly necessary to index metadata of
different types and relate them to varying

 Multi-Search of Video Segments Indexed by Time-Aligned
Annotations of Video Content
Anni Coden, Norman Haas, Robert Mack
IBM Thomas J. Watson Research Center

anni, nhaas, rlamck@us.ibm.com
Hawthorne, NY USA

granularities in the database: to "index into the clip"
[7]. The types of annotations can be open-ended,
they can overlap (e.g., multiple visual events can
occur within the same segment of video), and the
duration of the annotation features can vary widely
depending on the content of the video. This
requirement adds complexity to the database
storing the metadata and to the corresponding
processes of querying and browsing.
What does it mean to retrieve a segment of video
based on a query specification that refers to
multiple annotation criteria? How can we enable
users to browse video content in a way that closely
relates to the annotation criteria specified in a query
specification? We will address these issues in the
rest of the paper.

In the system we describe here, video indexing is
done by storing start and stop times of video
segments corresponding to the value of a particular
annotation feature (e.g., number of faces in a
segment of video). A given segment of video can
contain overlapping segments corresponding to
overlapping annotation values. In our system,
operations of indexing, searching and browsing can
be defined over these segments in flexible ways:
e.g., indexing may store segment specifications for
a set of annotation features. A query specification
may return a set of computed segments
corresponding to some Boolean combination of
annotation values. Browsing can consist of
playback of these computed result segments, but
also allows expanding the limits of playback of the
larger video segments containing the result
segments, or contracting the limits to playback
smaller segments contained in the result segment.
Our system stores and operates on segment
specifications, and as we will show, provides great
flexibility in searching and browsing video.

Annotating Video Content

The full spectrum of subject matter and format of
videos that might occur in an unconstrained
collection of video is quite diverse. Consider what is
typically presented each day on television broadcast
networks: news and weather reports, dramas,
sports, sitcoms, concerts, wildlife documentaries
and movies. The content of these programs vary

widely in the amount of visual action, the
importance of the spoken material to the visual
image, the abundance or absence of humans, the
presence of superimposed text, etc. In addition to
program content, which typically runs for tens of
minutes, a collection would include commercials
and station promos, which might be at most one
minute in length, and as short as ten seconds or
less. The length of shots would vary widely over
this material. Also, an unconstrained collection
would include produced, edited and raw footage.
These types of video differ greatly, in that raw
footage tends to have very much longer shots, to
contain segments in which there is no action or no
meaningful action, and does not have
closed-caption text. The challenge is to develop an
approach to annotation that is open-ended,
increasingly content-driven, and takes into account
the temporal duration in which annotation criteria
apply within the video.

Some promising work has been done on how to
build systems that do represent content-driven
segmentation and annotation of videos.

The stratification system of Aguierre-Smith and
Davenport [1] uses a set of predefined keywords
and free text to describe parts of a video. The
notion is that the keywords provide a context for
the free text. For example, a keyword may say
“house” or “garden”, whereas the free text
associated with a frame may specify “someone
eating”. Searching for the word “eating” will find
two separate segments, the keywords will give the
context - eating in the house or in the garden. The
free text is associated with a single frame, whereas
a set of frames are associated with each keyword.
Multiple keywords can be associated with a set of
frames. All the data is stored in ASCII files and
annotations are purely text-based.

Such a system, however, does not lend itself to the
inclusion of other types of function-valued
metadata, in particular, a value cannot be
associated with a metadata attribute. For instance,
it is not clear how to extend the system to store the
information that there are ‘three’ faces visible in a
particular sequence of frames. The system allows
for only one free text description per frame and

2

Submitted to ACM MultiMedia 99 Conference 03/15/99

hence, as the author points out, “simple annotations
depend on the linearity of the medium and random
access does not give contextual information to the
search results.” A content managment system has
to allow for all types of data to be stored and
searched and for the results to be viewed in a
context as appropriate for the application.

Davis [8x] makes another case for video
stream-based annotations. In particular, he points
out that “different segmentations are necessary as
video content/features continue across a given
segmentation or exist within a segmentation
boundary. Stream based annotations generate new
segmentations by virtue of their unions,
intersections, overlaps, etc. In short, in addressing
the challenges of representing video for large
archives what we need are representations which
make clips, not representations of clips.” After
laying this ground work, his system starts with a
fixed segmentation based on grouping sets of
frames into shots represented as icons which are
used as building blocks for a visual language which
is geared towards understanding the semantics and
syntax of video. Similarly to the stratification
system, a video in this system can be is described
by a fixed (but potentially large) set of words or
icons. A drawback of it is that adding new
annotations implies extending the language and all
the functions operating on it.

Commercial systems ([2], [4], [5], [6]) similarly are
based on storing annotations implying a fixed
segmentation criteria for the video, and retrieving
this fixed segmentation regardless of the annotation
criteria specified in the query specification.
Furthermore, the time segments are defined at
ingest time and cannot be changed later on in the
process.

Multisearch and Browse Prototype

Our prototype system does not require fixed
segmentation and can accommodate different of
annotation values: Annotations asserting the values
of metadata attributes can be made using any
scalar or vector data type as appropriate - text,
number, or graph to name the most common ones.

For instance, the following attributes are presently
associated with a video: keywords, free text, motion
direction, motion magnitude, face count, face size,
shot distance, OCR text, and speech transcription.
For each annotation, the exact interval of time over
which an metadata attribute and its value is true is
recorded and the value itself is associated with this
time interval. Clearly, the time intervals recorded
are of varying length. Hence, multiple annotations
can overlap within any given segment of video, and
Figure 1 illustrates this capability, in schematic
form.

Figure 1 Multiple overlapping annotations
time-aligned with video.

If appropriate, spatial data can also be stored in
conjunction with an annotation. For instance, the
rectangle in which three faces appear may be
known and could be recorded. One can easily
impose an x-y coordinate on a video where the x
coordinate coincides with the time line and hence,
only the y-coordinate needs to be stored.

A simple query involves a single attribute of the
video, such as one or more free text terms (in
associated text) or a value of motion magnitude.
For example: find all the video segments where the
word ‘impeachment’ is mentioned or find all the
video segments where the camera motion is ‘fast’.
A query can also be composed of one or more
attribute (attribute values) in any well-formed
Boolean combination, for instance: “Find the video
segments where (“impeachment” is spoken AND
you see one face in close-up) OR there are two

3

Submitted to ACM MultiMedia 99 Conference 03/15/99

people moving fast”. The result of such a
"multisearch query" is the set of time segments in
which the query is satisfied. The start and stop
times of these segments must be determined by
computation.

Our approach to content annotation is to use
modular “annotation operators”, which are
independent of one another (although the time
intervals where their values are true might
overlap). At present, the descriptors we can detect
and index are: camera motion (pan, zoom), face
count (0 - 6, many), shot length (close-up, long shot
and several intermediate lengths, not to be confused
with the shot’s temporal duration), spoken text
(speech recognition), closed caption text (human
transcription, carried external to the image), and
open captioning (text encoded as pixels in the
image; usually superimposed titling, such as the
score in a sporting match). In principle, there could
be any number of such descriptors.

The prototype does not predetermine the unit of
segmentation (granularity), other than the inherent
limit of a single frame. Rather, segmentation is
determined automatically, based on the video
content, and as a consequence of applying the
annotation operators. When a new video is
annotated, annotation descriptors scan the video,
and “measure” a value for each frame. This value
might be a scalar, a character string or a vector, -
(such as a histogram). When the value changes for
some frame, the annotation operator emits a

 “keyword = value (in point, out point)”

assertion, where the keyword is unique to that
operator, and “in point” and “out point” are the first
frame and last frame of the interval,- over which
that value held. For example, the “zoom” annotation
descriptor can automatically detect within a video
when the camera is performing a zoom operation,
and extract for each zoom operation the start and
end frames and its value (e.g., ‘zoom in’ or ‘zoom
out’). Thus segmentation boundaries are a function
of the value of the annotation feature in the video
content itself.

The search and browse prototype also annotates
text associated with video, either as caption text, or
recognized speech, or manually entered
descriptions. Caption text associated with video
provides topic-related "new story" segments, whose
duration in the video can be determined by
extracting story delimiters embedded in the
closed-captioning, using a caption text annotation
operator. An example is a typical newscast of
television evening news which is comprised of
“stories.” The closed caption text contains special
markers “>>>” which denote news story breaks
(these are manually inserted by professional
transcribers). The prototype can also annotate the
duration of recognized speech text associated with
the video. In this case, there are no markers
delimiting topic or "story" sgementations. Several
options exist for recording the time at which a
word is spoken. One option is to "time-align"
indexed terms: i.e., track the actual time each
word is spoken. However, for purposes of indexing
the text content of recognized speech it is
convenient to have the notion of a “document”
collection. Hence, we record sequences of words
(typically in the order of a 100), and index each 100
word chunk as a “document”. [9] The video
segment corresponding to the document is defined
to be the interval from when the first word of the
document was uttered until the last word is uttered.
For a variety of reasons (speed, reliability of
ranking, especially when the search key is multiple
words), we group words into blocks (typically,
order of 100), and search them first, then search
the ten best matching blocks for occurrences of the
individual words. In addition to indexing these
“documents”, we also record the time interval for
each word, to provide time-aligned browsing of
video by text terms. For example, suppose we are
searching a sports program aired after "September
1, 1997" where the announcer shouts “goal”,
where the camera zooms in when this word is
uttered, and where three faces are visible. After
performing the search, the user interface can show
the sports event by playing the video, display the
announcer’s comments in text format with the
word “goal” highlighted, and allow the user to jump
from one “goal” to another in the text and see a
close-up of the event in the video at the same time.

4

Submitted to ACM MultiMedia 99 Conference 03/15/99

Figure 2 Multisearch on segments: Combining results from Boolean combinations of search
criteria.

This example indicates the "multi-search" capability
of our system. This means that a user can pose
Boolean combinations of different types of indexed
criteria, and the system will combine component
results to return a single result set. Furthermore, the
system will compute the exact time intervals in
which the events occured. In the next section, we
will explain multi-search in a more formal way.
Multi-search shows quite clearly how the flexible
granularity of recording the content-related
metadata comes into play. In our previous example,
the knowledge of the exact time when “goal” was
shouted enables us to highlight the corresponding
text and play the corresponding video. However,
the time interval where the camera was zooming
could differ (e.g., it might be a longer or shorter
relative to the segment where “goal” was shouted).

Figure 2 shows an example of a Boolean query, the
component result segments, and a computed
intersection.

5

Submitted to ACM MultiMedia 99 Conference 03/15/99

The system can compute the exact time interval in
which all the specified events happen (“goal” is
shouted, camera is zooming in, and three faces are
shown). Clearly, the data does not to be loaded in a
specific way to be able to carry out this precise
calculation. Furthermore, our system is not only
able to play the relevant video segment, users can
also chose to view only the frames where the word
“goal” is shouted, or view the whole video segment
which contains the retrieved segment where
zooming occurs or view only the video segments
where both events occur. This enables flexible
nonlinear browsing of by end users (the user
interface is discussed below). The “granularity” of
the browsing can be different from the granularity
of the “querying”, a typical desire of a user to
change the specification as the application shifts
from querying mode to browsing mode.

User Interface for Search and Browse

It is worth describing an end-user's view of these
annotation methods, and the search and browsing
capabilities they enable. Figure 3 shows a screen
shot of a query input form for a prototype
graphical user interface (GUI) which enables a
user to pose queries in using multiple search
criteria, including caption text and speech terms,
camera motion attributes, face attributes, and
program level meta data (e.g., title and play date).
Using a fixed form to build query specifications
limits the type of Boolean queries that can be
made. Consequently, we also implemented a query
language where (expert) users can specify a
Boolean query of arbitrary complexity using
parentheses and a query syntax (an example of a
query using this langauge is shown in Figure 2).

The results of a search are shown in Figure 4. For
each result, the relevant text and some key frames
for the first few shots comprising the result
segment are shown. The system also allows for
“drilling down” into the content of a selected
search result segment, viewing all the information
associated with the segment, as shown in Figure 5
For each result segment, end users can view closed
caption and recognized speech text, video content,
shot story board with key frames, etc. In addition
the various VCR style controls allow users to
navigate through the video program containing the

result segment, according to various segmentation
criteria that may not have been part of the original

query specification. Examples include shot
boundaries, story boundaries (based on caption text
markers), frames, seconds, etc. This implies that all
the index feature values for the result segment are
available to the browser, even if these values were
not specified in the original search specification. In
effect, end users are able to browse the results in
terms of any indexed value expressed in the
segment. The display panel of a selected search
result segment becomes a starting point for flexible
and broad-based browsing functions.

Figure 3 Query input form for text terms, motion direction and magnitude, and program level
attributes.

Query Model and Processing

Underlying the query and browse application in
Figures 2, 3, 4 and 5 is a query model, including
query processing methods, designed to handle the
content-oriented, and time-based annotations we
have described. A query can be an arbitrary
Boolean combination, including parentheses and
negation of constraints, and more advanced
operations related to combining results, each of
which we discuss in turn.

Queries in our prototype are conjunctions of
inequality constraints (including equalities) of the
form “keyword <relational operator> value”,
where <relational operator> could include “=”

and annotation operator-specific vector distance
metrics along the lines of “distance metric N(value,
V0) < k”, for some constant vector value V0 and
scalar value k. In addition, a “like” operator is
supported (in SQL this corresponds to a substring
match operator). Values can be specified exactly,
but wild cards are also supported. For text, the
constraints are of the form “contains lexical unit 1 ,
... lexical unit N”, where a lexical unit is a single
word or a multi-word (proper name, phrase, etc.).
Furthermore, a text query can have the form
“contains a Boolean expression of words and/or
phrases”. These constraints can be augmented with
a set of linguistic attributes such as language,
morphology and synonyms to mention a few.

Figure 4 Search result page, showing storyboard keyframes for video result segments and
caption text excerpts.

For example, a query could be of the form:
determine the time intervals in videos where the
genre is sports, the announcer talks about goals or
scores, the score is greater than three, and the
camera zooms in.

The search result set produced by each constraint
is a list of (interval, ranking) pairs, where each
(temporal) interval is a (video ID, in point, out point)
triple. The answer set for a complete query is
obtained by computing, for each video, the
intersections/unions of the intervals. The following
pair wise interval relationships occur [10]:

� two intervals may be identical
� one may lie entirely within the other
� they partially overlap, or
� they are completely disjoint.

Finally, the intersection/union of the surviving
answer set intervals is computed, to return the
answer. Recall that Figure 2 showed an example
of a Boolean query, the component result segments,
and a computed intersection. The query can be an
arbitrary Boolean expression including parentheses

Figure 5 Detailed content view of a specific result video segment, with video playback controls.

of the above mentioned constraints, and hence the
intersection or union is defined according to the
query specification. Furthermore, other time-based
operations can be performed which we discuss in
the next section.

In the case of unions, arising from disjunction of
constraints, the following pair wise interval
relationships occur [10]:
� two intervals may be identical
� one may lie entirely within the other
� they partially overlap, or
� they abut one another.

then, the two intervals can be combined into one.
Finally, the union of the surviving answer intervals
is returned as the query result.

The value of this approach is the ability to handle a
diversity of source material, where any attempt to
define a segmentation that was roughly based
around a generic time constant or a fraction of the
total length of the video would not generally be
appropriate. Units of segmentation that would be
well-suited to some queries would almost certainly
be inappropriate for others. Also, the in- and out-
points for different annotation operators are, in
general, completely different from each other, and
consequently would generate a sparse set of
annotations. Our database schema allows for very
efficient storage of such sparse sets.

Also, the in- and out- points in the result set of a
particular query is a function of the query itself.
Full flexibility is available for applications to apply
whatever granularity of segmentation is appropriate
for user queries or for the content indexing needed.
For instance, some commercially available systems
use shot transitions as their segmentation of video
and results are returned at the granularity of a
scene. Our system automatically indexes scene
transitions, and an application can easily map the
results into “scenes” if so desired. This feature,
called rounding up is discussed in more detail in
the next section.

Additional Operations on Time-Based
Segment Specifications

Our system contains special features which are
useful in manipulating search results for purposes
of helping users find relevant results, or relating
video segments to a larger video context from
which the results are derived.

Combining Multiple Rankings. Searching video
segments by text associated with the video (e.g.,
caption text) returns results when a full text index is
searched. Multiple search engines may return
additional rank ordered result sets, e.g., search on
recognized speech text (which can be indexed
separately from caption text). In these cases, the
system needs to compute a combined rank for a
combined result set. Different considerations have
to be taken into account in this combination
process, such as the different types of content, user
preferences or the reliability of the search. For
example, the results of text search against the
written transcript are 100% accurate whereas a
search against recognized speech transcript does
not in general achieve the same accuracy. Hence
when combining these two ranks, more weight
should be given to the rank returned from the
search against the written transcript.

Segment Padding. In some cases, the
constraint-satisfying interval in a search result is
very short, e.g., corresponding to utterances of
individual words. We provide a user-settable
“padding factor” time constant, which is used to
extend both the start and the end of each final
answer set interval. Padding can be done at
different times: one can pad the result sets of each
sub query (e.g., the results from a text search, the
result from a parametric search); or one can pad
the final result set after combining the result sets of
the sub queries. Our system allows for all these
methods of padding. Padding intervals may be
application specific, and values may be defined by
default settings or exposed to end users who
choose values based on their search requirements.

Rounding Up. A related feature is rounding up.
In some cases, such as news stories, users may
wish to resort to predefined semantic partitioning of
the videos which would be captured as an
annotation feature. They might want, for example,
 to view a complete story containing a result
segment. Our scheme allows for overriding result

segment boundaries computed for Boolean queries
along the following lines: Take each time interval T
in the result set and determine the smallest
predefined time interval T1 which contains T in its
entirety. (Note that T1 could be a combination of
several adjoining predefined time intervals.) This
feature exposes the strength of our flexible
segmentation. Any fixed segmentation (like the one
defined by higher level segment criteria such as
new story boundaries) can be imposed after the
result set for a query has been defined, and hence
the user is not restricted to seeing the results in
terms of the segmentations produced by the
original indexing methods.

Conclusions

In this paper we presented a video content
management system which is designed for storing
and retrieving digital videos and metadata
associated with them. Our system focuses on
representing and storing the temporal duration of
the metadata, using methods that result in efficient
storage, efficient retrieval, and flexible searching
and browsing. Each metadata annotation
determines the segment granularity at which it is to
be represented in the database index. Additional
time-based operations allow an application (user) to
determine the granularity at which the video data is
presented as a search result and when result sets
are browsed and played back.

Acknowledgments

We would particularly like to acknowledge Michael
Concannon’s programming contributions to making
the end user interface prototype a reality. We also
thank the other members of the project team who
developed the annotation methods referred to in this
paper: Chitra Dorai and Jonathan Connell (and
their IBM Research manager Ruud Bolle).

Our system is being developed as part of a
cooperative, multicompany effort to design and
implement an architecture for a complete studio for
producing and broadcasting high-definition
television (HDTV) using MPEG-2 compressed
bitstreams. The specification, known as “Digital
Studio Command and Control” (DS-CC) is a
distributed objects model, implemented in CORBA.

It has been submitted to the Society of Motion
Picture and Television Engineers (SMPTE) as a
recommendation as a broadcasting industry
standard. The prototype system described here and
the underlying server support are implemented in
Java as DS-CC objects.

The work was funded in part by the National
Institute of Standards and Technology, The
Advanced Technology Program (NIST/ATP)
under contract No. 70NANB5H1174. We are also
grateful for the support of the NIST program, in
particular the NIST Technical Program Manager,
David Hermreck, and for the IBM Research
Principal Investigator, James Janniello, who leads
the studio infrastructure aspects of the NIST ATP
project.

References

[1] Aguierre Smith, T.G. and Davenport, G., ”The
Stratification System, A Design Environment for
Random Access Video”, Network and Operating
Systems Support for Digital Audio and Video. Third
International Workshop Proceedings 1993, p.
250-61, La Jolla, CA, USA 12-13 Nov. 1992.
Springer Verlag

[2] ISLIP Media, Inc. "www.islip.com", Pittsburgh,
PA 15312, USA.

[3] Christel, M., Stevens, S., Wactlar, H.,
"Informedia Digital Video Library," In Proceedings
of the ACM Multimedia '94 Conference. New
York, ACM. pp. 480-481, October, 1994.

[4]"Avid’s Open Media Management Initiative,"
Content Watch Vol 1, No 5. 1998.

[5] Virage Inc., “www.virage.com”, San Mateo,
CA, USA.

[6] Excalibur Technologies Corporation.
"www.excalibur.com", Vienna, VA 22182, USA.

[7] R. M. Bolle, B.-L. Yeo, M. M. Yeung,
“Videoquery: Research Directions”, IBM Journal
of Research and Development, Volume 42,
Number 2, March 1998

[8] M. Davis, “ Media Streams: An Iconic Viusal
Language for Video Representation”, Proceedings
of the 1993 Symposium on Visual Languages, pp.
196-202.

[9] S. Dharanipragada, and S. Roukos,
``Experimental results in Audio-Indexing'',
Proceedings of 1997 Speech Recognition
Workshop,Chantilly,Virginia, February 1997.

[10] James F. Allen “Maintaining Knowledge about
Temporal Intervals,” Communications of the ACM,
Vol 26, No 11, 1983

[11] Juliano, M., and Pendyala, K. Use of Media
asset management systems in broadcast news
environments. Whitepaper in: NAB Multimedia
World Journal, 1997.

