RC21543(97152)9AUG1999 ComputerScience/Mathematics

99470412
Research Report

A Computing Strategy for Applications Involving
Offsets, Sweeps, and Minkowski Operations

E.E. Hartquist
Sibley School of Mechanical and Aero Engineering

Comell University
Ithaca, NY 14853

J.P. Menon
IBM T. J. Watson Research Center
P. O. Box 218
Yorktown Heights, NY 10598

K. Suresh
Research and Development Engineering

Kulicke and Soffa Industries
Willow Grove, PA 19090

H.B. Voelcker
Sibley School of Mechanical and Aero Engineering
Cornell University
Ithaca, NY 14853

J. Zagajac
Product and Development
Ford Motor Company

Dearborn, MI 48126

==-=2= Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submutied for publicatson outside of 1BM and will probably be copyrighted if accepied for publication. It has been issued as a Rescarch Report
for cardy dissemination of its contents. In view of the transfer of copynight o the outade publisher, s deatribut:on oulsde HBM_pnawpuannwdheln-dwpammwmmdnwa&mm

Some reports are availablc on e merEL 8t hup/domwo. walson. ibm.comlibrary/CyberDig s fhome etmail reporu@us.ibm.com
Copics may be requesicd from 1BM T.). Walson Rescarch Center [Publications 16-220 ykt] P. O. Boa 218, Yorkiown Heights, NY 10598 USA

A computing strategy for applications involving offsets. sweeps, and
Minkowski operations

E.E. Hartquist®, J.P. Menon®, K. Suresh®, H.B. Voelcker®*, J. Zagajac®

“The Sibley School of Mechanical and Aerc Engineering, Cornell University, Ithaca, NY, USA
*T.J. Watson Research Center. I[BM Corporation, Yorkiown Heighrs, NY. USA
‘Research and Development Engineering, Kulicke and Soffa Industries, Willow Grove, PA. [/SA
{Product Development Svstems. Ford Motor Company. Dearborn. Ml LUSA

Received 29 June 1998: accepted 24 September 199¥

Abstract

Offsets, sweeps, and Minkowski operations (M-ops) are easy to define in the existential (representation-free) mathematics of point sets, but
computing "values for offset. swepl, and M-summed entities is thought 10 be difficult by many - This article argues that such computations
may be easy if (1) they are cast in specitic application contexts. and (2) relevant mathematical defimtions are discretized and implemented
directly, The argument is based on 10 years of research on a range of motional. process-madeling. and visualization problems that involved
offsetting, sweeping, and M-ops: the solution paradigm common to all was direct approximation of mathematical definitions, using ray
representations and parallel computation as primary media. This article presents no new results; it merely summarizes a body of well
documented research that illustrates an approach to problem solving. whose primary tenets are: compute only what vou need to solve the
problem at hand. and do that as directly as possible. © 1999 Elsevier Science Ltd. All rights reserved.

Kevwords: Offsets; Sweeps: Minkowski sums; Ray representations

1. Introduction

Offsets, sweeps. and Minkowski operations (M-ops) are
easy to define in the existential (representation-free) mathe-
matics of point sets. For example:

Sweep : Sweep(A on B) = U A@M(b), (H

bEB
where A is usually a three-dimensional (3D) *solid” set (an r-
set). B a set of dimension < 6, and M(b) a rigid motion
applied to A.

M-sum : ADB={a+b|ciseal. (2a)
M-sum : A@ B = Sweep(4 on B), | (2b)
M-sum : A@ B = Sweep(B on A). (20)

where A and B typically are 3D "solid* sets and a + b
denotes addition of vectors representing points a. b.
Some useful simplifications are also easy to establish. For

* Corresponding author. Tel.: +1-607-255-9654; fax: +1-617-255-

1222

E-mail address: hbvl @comell.edu (H.B. Voelcker)

example, when B is a singly connected set containing the
origin 0. Egs. (2a~-c) can be rewritten as follows.

M-sum - AT B=AU(B®IA, (3)

where dA denotes the boundary of A, See [4] for refined
versions of Eq. (3) that relax the restrictions on B.

While defining offsets, sweeps, and M-ops is easy,
computing useful representations of offset, swept, and
Minkowski-summed (or -differenced) entities is widely
viewed as dithcult and expensive — and indeed this can be
s0 if one insists on representing explicitly the exact bound-
ary geometry of such entities. Fortunately, explicit bound-
ary geometry is not needed in a surprising variety of
engineering applications. Ten years of research on a range
of motional, process-modeling, and visualization problems
that involved offsetting, sweeping, and M-ops convinced us
that an application’s intrinsic mathematical requirements
should dominate the design of an implementation; when
these are specificd, representations and algorithms can be
designed to satisty them. We illustrate this approach later
by reviewing un examplary application - NC-program
verification.

This short article offers no new results. It simply
seeks 1o demonstrate that one can arrive at effective

176

Table 1
Mathematical operations intrinsic to NC verification
Application requirement Mathematical operation(s) Operand(s) Result
Collision detection (1) Regularized intersection (1) Swept solid, solid (1) Solid

(2) Null-object detection (2) Solid (2) Boolean
Invasive machining detection (1) Regularized intersection {1) Swept solid. solid (1) Solid

(2) Null-object detection {2) Solid (2) Boolean
Material removal modeling Regularized difference Solid, swept solid Solid
Feature-localized tolerancing Dilation, contraction Solid Solid
Machining dynamics checking d/dr Volume (solid) Solid Real number
Table 2
Mathematical operations associated with discretionary graphics
Graphic requirement Mathematical operation(s) Operand(s) Result
Rendering Surface gradient Local boundary Vector
Visibility Sorting Points {ray:bdry intercepts) Visible bdry segment

implementations of applications involving offsets, sweeps,
and M-ops by

¢ focusing on the computational requirements intrinsic to
the application,

* using direct approximations of relevant mathematical
definitions, and

e providing copious computing resources, so that imple-
mentations can be designed for simplicity, clarity, and
robustness, rather than simply for resource conservation
(i.e. classical efficiency).

1

2. Modeling and representation in NC verification

NC verification (our exemplary application) connotes an
automated procedure that determines whether an NC
program will produce a Finished Part from specified stock
without damage to the machining environment or cutters. A
verification procedure is summarized here in simplified
form [5,6]. In essence, the procedure simulates the machin-
ing process specified by the program, checks each machin-
ing operation for undesirable conditions, and performs a
final goal attainment test. '

Verify (NC_Program, Stock, Finished_Part, Fixtures, ...
(more))

Workpiece «— Stock
For each cutter-motion instruction in NC_program do

Decode the instruction
{represent the spatial region traversed by the cutter
on the current trajectory)
V «— Sweep (Cutter on Trajectory)
{check viability)

! Subscripts on operators ¢.g. N, denote regularization in an appropriate
n-dimensional topology.

if VN5 Fixtures # ¢ rhen Collision_Exit
if (VN3 Contraction (Finished_Part) ¢) then
Invasive_Machining_Exit
if (Rate (VN, Stock) > Limit) then Dynamic_
Overload_Exit
{...and more}
{update the workpiece representation by
‘subtracting’ the cutter-swept region}
Workpiece — Workpiece —3 V
end_do

if (Workpiece @ Dilation (Finished_Part)) then
Out_of_Tolerance_Exit
end_Verify.

The mathematical operations intrinsic to NC verification,
as defined by the simplified procedure given before, are
summarized in Table 1.

Graphic displays provide helpful diagnostics, but are not
intrinsic to automatic NC-program verification. Table 2
caters for discretionary graphics.

The cntical implementation decisions reside in selecting
representations for the Operands and Results that enable
the mathematical operations to be implemented with effi-
cacious (simple, clear, robust, ... acceptably efficient)

7 (P(5i), 3H;)

ANNN

x\\

S

S

Fig. 1. A ray-rep of a 2D solid 'A’.

Fig. 2. Boolean simplification in E*

algorithms. If the use of approximations of adjustable
accuracy is admitted at the outset, nearly all the intrinsic
requirements can be met by providing representations and
algorithms that support the following

* Set operations on solids: repeated unions for generat-
ing discrete sweep approximations, and for imple-
menting by discrete approximation the M-ops
needed to dilate and contract the desired Part; inter-
sections to generate the test solids (e.g. VN, Fixtures)
used to detect error conditions; set-differences to
model material removal and to test for containment;

* Null-object detection: to determine whether the test
solids are empty. Null-object detection is trivial in
representation schemes that provide a unique repre-
sentation (typically the empty representation) for the
empty set, but not trivial in other schemes, such as
Constructive Solid Geometry (CSG).

Thus, the key decisions devolve to a search for represen-
tations and algorithms that support these two central
capabilities.’

The literature on NC verification abounds with articles
describing verifiers based on boundary representations
(B-reps), CSG representations, spatial enumerations,
graphic z-buffers, and some hybrid schemes. Our experi-
ence indicates that ray representations (ray-reps) provide
the most efficacious hosts for NC verification, and for
several other demanding applications cited briefly later.

} These requirements are intrinsic to the particular model we used for
verification, rather than to verification per se. Model-building is an exercise
in engineering judgement. The rationale for our current model is reported in
[6.10]. This model reflects 15 years of research on verification. during
which we built three generations of verification systems.

Thus, we shall devote the remaining sections of this arti-
cle to summarizing (1) the properties that make ray-reps
so powertul, and (2) some computing strategies for hand-
ling ray-reps.

3. Ray representations

Fig. 1 shows a ray-rep RR(A;G) of a two-dimensional
(2D) solid ‘A", Tt is a collection of line segments generated
by ‘clipping’ (i.e. classifying) a regular grid of lines, G,
against A. In 3D, the ray-rep may be defined as follows:

RR(4;G) = J L, N, A),)

where L, is a line in a 3D grid G indexed by m and n.
RR(A;G) is represented as a collection of parametric
endpoints, each with one or more associated tags, plus
seven numbers that define the position, direction, and
spacings of the grid G. In Fig. 1, the tag dH; denotes a
pointer to the halfspace boundary that generated p(r,); tags
can carry other information as well, such as material and
surface properties. The data in RR(A;G) are triply indexed -
by the m and n indices of the grid, and by parametric r-
values along each line.

Ray-reps are relatively verbose. For example, G may
contain 10" X 10" lines, and each active line may be decom-
posed into several line segments by the classification
process; each segment requires several bytes to define its
endpoints, and more bytes to carry its tag(s). However, the
very simple and regular structure of ray-reps makes them
easy to store, retrieve, and address. The major properties of
ray-reps may be summarized as follows:

1. Spatial addressability and spatial hashing. As noted
earlier, ray-reps are triply indexed, and hence are

178

M@y

Fig. 3. Spatial sweeping in £

bidirectionally addressable. In other words, the mappings

(mr n, i) - P(X, Y, Z)' (53)

pPx,y,2) — (m,n,i) (5b)

are computable in essentially constant time.

2. Directionality. Ray-reps may be regarded merely as
sampled boundary representations, but ray-rep sample sets
have a special property — directionality — that makes them
almost unique amongst practical representations for solids.
A complete directional representation at a point (usually
within the solid) would represent the solid with ordered sets
of boundary intercepts along all rays emanating from the point.
Directional reps are optimal for certain applications, e.g. those
involving raytracing, but they are usually impractical because
they are essentially existential. A ray-rep may be regarded as a
section of acomplete directional rep, and several such sections
- three, say, in orthogonal directions — provide practical
means for calculating approximations to complete direc-
tional reps. Ray-reps are the only ‘practical’ representation
we know that exhibit directionality.

3. Boolean simplification. Fig. 2a shows a simple boolean
composition of (2D) solids. A ray-rep of the composition
can be obtained by composing the rays-reps of each solid
(Fig. 2b), viz.

RR(A{op),B: G) = RR(A; G){op); RR(B; G),)

where (op), denotes a regularized boolean operation
(Nor U or=) on n-dimensional solids regularized in the
topology of E”, and {op), denotes (op) applied to segments
in each line and regularized in the one-dimensional (1D)
topology of the line. This property reduces an n-dimensional
(usually 3D) problem into a series of independent 1D
problems.
4. Rigid motion. It is easy to show that, in general,

RR(A@M; G) # RR(A; G)@M, Q]

i.e. motion transformation and ray-rep are not commutative.
However, it is also easy to show that for any rigid motion,

RR(A@M; G) = RR(A;: GeM HeM, (8)

and this is useful, especially when the representation of A
has a large number of primitives requiring transformation by
M; see [4] or [1].

3. Discrete translations. These are an important class of
rigid motions - specifically, translations by integer
distances that correspond to the line spacings in the grid
G. Eq. (7) becomes an equality when M is a discrete transla-
tion, and RR(A @M;G) may be computed simply by shifting
indices and adding a constant to every r-value in RR(4;G).

6. Null-set representation. The empty ray-rep represents
the empty set.

7. Complereness. Approximate representations of solids
can be constructed easily from ray-reps; columnar decom-
positions, faceted b-reps (via ‘tiling’of ray end-points), and
octrees are examples. As the spacing between rays
increases, the quality of the approximation decreases and
small features are lost. Less obviously, under suitable condi-
tions ray-reps with boundary tags can be complete (unam-
biguous) and exact representations. To see what this means,
let CSGi{(A) and CSG(A) be two possibly different CSG
representations of a solid A. (CSG; and CSG, are complete
and unambiguous but generally not unique,) A ray-rep of A
is produced from CSG{A), viz.

RR(A; G) = f(CSG(A)), (9a)
and if the ray-rep i1s complete,
CSG,(A) = g(RR(A; G)). (9b)

The conversion f (ray-rep generation) is discussed briefly
later. See [8] for an explanation of the conversion g, which
is new and unusual, and the conditions governing ray-rep
completeness.

4. Using ray representations

The properties of ray-reps summarized before can be used
effectively in a variety of applications. We survey briefly
those listed in Tables 1 and 2 that are relevant to NC veri-
fication. For details and examples of other uses of ray-reps
see {7).

* Regularized set operations on solids for collision and
invasive machining detection, as well as material
removal modeling, can be processed effectively by
using the Boolean simplification property.

e Ray-reps provide a direct and simple, albeit approx-
imate and computationally intense, solution to

(c) (d)

Fig. 4. Mapping a CSG classification algorithm into hardware.

computing swept solids: simply instantiate ray-reps of
A in Eq. (1) at closely spaced points on M, viz.

Sweep(4 on M(1)) = | JA@M(s)), (10)

and then use the boolean simplification property to
calculate the union of all instances. Fig. 3 illustrates
this approach. Many examples can be found in [1,6,7]
and other Cormell publications.

+ M-ops are needed in feature-localized tolerancing to
model offset (dilated, contracted) solids. They may be
implemented as sweeps - specifically, through unions
of repeated instantiations of one solid on the boundary
of the other, per Eq. (3). (This is a very loose descrip-
tion; see [4,6,7) for more rigorous definitions and a
variety of examples.)

Mass-properties can be obtained from a columnar
decomposition that is naturally induced from a ray-
rep. and variations of material properties can be
tracked via tags.

Simple graphic rendering, e.g. Phong shading, can be
performed by using approximated surface normals in
tiled b-reps inferred from ray-reps. For more refined
graphics, such as in ray-tracing, rays cast in arbitrary
directions must be classified against solids. This can
be done approximately, but very cheaply, against ray-
reps by using a ‘2.5-D DDA (Digital Differential
Analyzer)’ that ‘hashes’ the random ray against the
ray-rep, i.e. exploits the addressability of the ray-rep.
Details, examples, and applications are discussed in
[7,11].

Visibility determination for viewing directions along
rays in the ray-rep grid is easy because ray-reps

contain all ‘in’ segments along the ray, and thus the
problem can be solved by table look-up.

5. Processing ray representations in parallel

Ray-treps are simple but relatively verbose, and thus
ray-rep processing involves straightforward but intense
computation. For example, generating the ray-rep of a
sphere using a grid with 10* x 10’ lines requires O(10%)
arithmetic operations. Contemporary serial computers can
sustain this level of effort but, in general, ray-rep processing
requires more power than contemporary or near-term fore-
seeable serial computers can provide. To see this, consider
evaluating the Minkowski sum of the sphere with itself
using the simple-minded approach described earlier, i.e.
instantiate one sphere at every ray intercept of the other.
At the given grid resolution, the computational requirements
now increase by orders of magnitude, rendering the task
difficult, if not hopeless, in contemporary workstations.

Sometimes the computational intensity associated with
ray-rep processing can be reduced by better algorithms.
There are obvious simplifications in the foregoing example
but, in general, algorithmic improvements are hard to
contrive and have limited scope. A more powerful strategy
exploits the properties of ray-representations to create
simple algorithms that utilize copious but easily paralleliz-
able calculations, and then deploy overwhelming computing
power. The key to effective use of this ‘brute-force’
approach lies in (1) exploiting suitable decompositions of
ray-rep computations, and (2) understanding the data-acces-
sibility requirements that each such decomposition imposes.
The former determines what can be processed in parallel,
whereas the latter establishes processing precedence (order
of calculations) and the character of the ‘data trafficking’
that is necessary.

We shall examine these issues briefly and review some
parallel computer architectures that we studied and found

" suitable. The discussion is organized in terms of two major

families of decompositions: structural, which exploit intrin-
sic parallelism in the syntactic structure of the representa-
tion of solid A, and spatial, which achieve parallelism by
subdividing the defining grid G.

5.1. Structural decomposition

Useful structural decompositions derive from algorithms
for generating ray-reps. The fundamental computation in
such algorithms is line:solid classification [9]: to generate
R(A:G), each line in the grid G must be classified against the
solid A and divided into *‘in’’ and ‘‘out’” segments. The
design of line:solid classification algorithms, and hence
the opportunities for decomposition, are dominated by the
character of the representation of the solid A [1.3]. (Ref. [1]
summarizes the logic used to avoid handling “‘on"’
segments in the classification process.)

180

A
A .

subtrees with fewer

! than N leaves each (a)

cum.ula:ive classification w/r subtree
classi
N]
N \
N]
Buff ‘ X
er v

; v (b
N [}
N '
!]
v)
N [}

CSG subtree

Fig. 5. Processing large ray-reps via recirculation.

The simplest case arjses when A is given as a boolean
union or intersection of multiple ray-reps. This occurs when
computing spatial sweeps or processing M-ops by the
instantiation method described earlier. As discrete versions
of these operations involve sequences of commutative
operators, the computation breaks naturally into a (large)
set of independent tasks that can be carried out in any
order. As a result, the data trafficking requirements are
simple and cap be accommodated easily. (An example is
shown in Fig. 5 and explained later.)

When the solid is represented in CSG, the following
recursive classification procedure defines a natural struc-
tural decomposition. (When the solid is represented in
other schemes, the opportunities for decomposition and
their consequences must be examined on a case-by-case
basis. This is usually a non-trivial exercise.)

Classify (Grid, Solid)
if (Solid is a Primitive_Solid) then return PrimClass
(Grid, Solid)

{PrimClass classifies the Grid against a primitive
solid)
else return Combine (Classifv (Grid, Left_Subitree
(Solid), Classify (Grid, Right_Subtree (Solid), Operator
(Solid))

{Combine implements the boolean composition of
the subtree classifications}
end_Clussify.

Observe that there are just two generic calculations,

PrimClass and Combine. An ‘unwinding’ of this recur-

sive algorithm reveals that invocations of PrimClass are

independent of one another. Hence, all PrimClass calcu-
lations may be done in parallel. In contrast, invocations of

Combine require the results of two subtree combinations

and must be properly sequenced. Supplying the operands

to a succession of Combine operations can be effectively
handled by ‘pipelining’. These observations can guide the
design of algorithms to control general purpose paralle]
computers, or can guide the design of specialized hard-
ware — highly parallel computers organized specifically
for (Grid, CSG (Solid)) classification. We shall summar-
ize an extant hardware solution - the RayCasting Engine
(RCE) ~because it is novel and effective [1,3].

Independent Processors

%

Fig. 6. Simple spatial decomposition with static load allocation.

Processor Network

G2~ P2
Gl= PI
(a)

®)

G3 > P3
G4~ P4

G33™ P3
G3il™ P2 G344~ P
(c)

G32= P3

Fig. 7. Dynamic load balancing.

The RCE provides thousands of specialized processors
that implement the PrimClass and Combine procedures,
and can be configured (i.e. interconnected, via program-
ming) to mimic any CSG representation of a solid. For
practical reasons dictated by VLSI technology, the
specialized processors are embedded in a 2D grid, with
all PrimClass processors on the bottom of the grid. Two
key facts motivated the architecture: (1) any CSG tree
may be reorganized as a right-heavy tree, and (2) the
nodes of any MN-leaf right-heavy tree may be mapped
into an N X log; N grid.

Fig. 4 shows such a mapping. The CSG tree in Fig. 4a is
re-represented as a right-heavy tree in Fig. 4b; this is
associated with the programmably configured hardware
tree in Fig. 4c, whose leaves are primitive classifiers
(PCs) and whose nodes are classification combiners
(CCs). The hardware tree is then mapped into the
hardware array shown in Fig. 4d. Each PC classifies the
lines in the grid G against a particular primitive solid
in the CSG representation, with results pipelined
bottom-up through the array of CCs. The final result is
‘returned’ (one ray at a time) by the top-left (root)
processor. As the PC and CC calculations are simple,
the data traffic through the dedicated processor inter-
connections can be accurately predicted, and the predic-
tions can be used to optimize the hardware design. See (3]
and references cited therein for a fuller explanation of the
design strategy, hardware specifics, and performance
benchmarks.

While the architecture in Fig. 4d has many interesting
properties, we emphasize only the property that is
most relevant to our discussion. The capacity of the
RCE (as characterized by N, the number of PCs)
limits the complexity of the mechanical parts that
can be processed in a single pass through the
machine. However, because a CSG tree may be parti-
tioned into subtrees, ray-reps of ‘large’ objects may be
accumulated by combining ‘old’ results with the current
subtree classifications. This strategy, called recirculation,
requires buffer storage and a direct-entry path into the CC

array via interconnection busses, see Fig. 5. Recirculation
also provides an ideal mechanism for processing boolean
unions or intersections of multiple ray-reps - for
example, to produce representations of sweeps and
M-sums.

5.2. Spatial decomposition

Spatial decomposition entails partitioning the defining
grid G of a ray-rep RR(A;G) into ‘manageable clumps’ of
rays that can be processed separately. Such partitioning is
facilitated by the very regular, indexable, and spatially
addressable structure of the grid G. An example of this
approach is shown in Fig. 6, where a grd is split into four
equal parts and processing is performed on distinct proces-
sors. The only significant data traffic involved in this simple
computational model is collecting ray-rep segments from
remote locations as they are produced in order to merge
them into a single data stream.

Spatial decomposition is the most obvious source of
parallelism in ray-rep processing, but harnessing spatial

. parallelism in practice is harder than the previous example

indicates. Simple static partitioning produces coarse,
uneven, and unpredictable partitions of the work to be
done, and engenders highly non-uniform loading of the
computational resources.

One effective approach to solving this problem is to use
dynamic load balancing to control the operation of a
network of peer processors capable of asynchronous all-
to-all communication. The main idea is illustrated in Fig.
7. Initial task assignments are generated by partitioning the
grid into parts that are expected to yield an equal distribu-
tion of work among processors (Fig. 7b). Any processor that
“‘finishes early’” may request additional work from over-
loaded peers. Subsequent task parceling is done by subdi-
viding overloaded processors’ grids, e.g. in the quadtree
fashion illustrated in Fig. 7c, and assigning new (sub)tasks
to underloaded processors. This approach is suitable for a
variety of Fig. 7Ta-type architectures ranging from clusters of
warkstations to the IBM SP Power Paralle] machines.

182

The foregoing discussion illustrates two primary
approaches - structural and spatial — to computational parti-
tioning, which is central to efficient parallel processing of
ray-reps. Each approach has several variants, and effective
ray-rep systems use both approaches.

Our interest in parallel processing dates back to the
1970s. We became practically involved in 1982, when the
RCE collaboration with Gershon Kedem was launched [10).
The pivotal period was 1989-1993; in those five years,
Kedem’s 2000-processor RCE-1.0 ran flawlessly, our appli-
cation R&D burgeoned, and most of the views expressed
here were formed. In the mid-1990s we gradually shifted
our computing resource base from the hardware RCE to
RCE emulators running on workstations and on SP-1 and
SP-2 Power Parallel computers, and then we moved from
RCE emulation to more general distributed processing, in
which structural partitioning was exploited within a ‘global’
spatial partitioning strategy. OQur most recent work was
focused on load balancing in distributed ray-rep processors
[2].

6. Remarks

The message set forth at the outset is simple: focus on the
mathematical requirements that are intrinsic to a particular
application, and exploit the continuing proliferation of
computing power to construct solutions that are mathema-
tically direct, clear, and robust.

NC verification provides a textbook example for illustrat-
ing the applicagion of these principles. We identified as
central requirements null-object detection and set opera-
tions on stationary, swept, and Minkowski-summed and
-differenced (i.e. dilated and contracted) solids. We elected
1o implement solution facilities through ray-reps, because
ray-reps enable swept and M-summed solids to be approxi-
mated, composed, and null-tested directly and robustly, and
at affordable cost if the natural decompositions associated
with ray-reps and ray-rep procedures are exploited to design
effective distributed algorithms or hardware.

We do not claim that ray-reps are the optimal implemen-
tational medium for NC verification or the other applica-
tions we have studied (rendering, boundary-value problem
solving, and more, see [1,7,11] and references cited therein).
They are simply the most effective representations we found
for the cited applications, and they make adherence to our
problem-solving principles very easy.

A final reiteration, ‘‘Essentially unlimited (really cheap)
computing power, if used sensibly, can yield excellent
application (problem-solving) systems - systems that are
robust, responsive, easy to use, easy to build, and easy to
understand. Copious computing allows one to reformulate
problems from first principles, which often means

implement or approximate the mathematical definitions as
directly as possible [3].""

Acknowledgements

The research summarized here was supported or abetted
by a sequence of grants from the National Science
Foundation, by contracts from Sandia National Labora-
tories, by software contributed by the Unigraphics Division
of Electronic Data Systems Inc., and by a graduate fellow-
ship provided by the IBM Corporation.

References

(1] Ellis J, Kedem G, Lyerly T, Thielman D, Marisa R, Menon J,

Voelcker H. The ray-casting engine and ray representations: a tech-

nical summary. International Journal of Computational Geometry and

Applications, 1991;1(4): 347-80, see also Proc. ACM /SIGGRAPH

Symposium on Solid Modeling Foundations and CAD/CAM Appli-

cations, pp. 255-67; Austin, TX; 1991.

Hartquist EE, et al. Processing ray-representations in parallel: options,

algorithms and results, Technical Report CPA98-4, Sibley School of

Mechanical Engineering, Comnell University, 1998.

Kedem G, Voelcker HB. The ray casting project: massively paraliel

computation for mechanical design and manufacturing. In: Snyder L,

editor. Proc. NSF Conference on Experimental Research in Computer

Systems, Arlington, VA: National Science Foundation, 1996 pp. 69-88.

Menon J, Voelcker H. Mathematical foundations 1: set theoretic prop-

ertics of ray representations and M-ops on solids, Technical Report

CPA91-9, Sibley School of Mechanical Engineering, Cornell Univer-

sity, 1991; rev. 1993.

Menon JP, Voelcker HB. Toward a comprehensive formulation of NC

verification as a mathematical and computational problem, Proc.

ASME 1992 Winter Annual Mecting, Anaheim CA. In: Dutta D, et

al., editors. American Society of Mechanical Engincers, New York,

1992, Vol. 59, pp. 147-164;. Also Journal of Design and Manufactur-

ing 1993;3:263=77.

Menon JP, Robinson DM. Advanced NC verification via massively

parallel raycasting: extensions to new phenomena and geometric

domains. ASME Manufacturing Rev. 1993:6(2).141-54,

{71 Menon J, Marnisa R, Zagajac J. More powerful solid modeling through

ray representations. IEEE Computer Graphics and Applications

1994:14(3):22-35.

Menon J. Voelcker H. On the completeness and conversion of ray

representations of arbitrary solids, Proc. ACM/IEEE Third Sympo-

sium on Solid Modeling and Applications, Salt [.ake City, UT, 1995,

pp. 175-86.

Tilove RB. Set membership classification: a unified approach to

geometric intersection problems. IEEE Trans. on Computers

1980;C-29(20):874-83.

[10] Voelcker HB, Requicha AAG. Research in solid modeling at the
University of Rochester: 1972-1987, Fundamental Developments
of Computer-Aided Geometric Modeling In: Piegl L, editor. London:
Academic Press Ltd., 1993, pp. 203-54.

(11] Zagajac J. A fast method for estimating discrete ficld values in carly
engineering design. IEEE Transactions on Visualization and Compu-
ter Graphics 1996; 2(1) 35-43; see also Proc. ACM/IEEE Third
Sympesium on Solid Modeling and Applications, Salt Lake City,
UT, 1995. pp. 420-30.

(2

[3

—

(4

(5

[6

(8

{9

—

: Eugene Hartquist is the Computer Operations
Manager for the Sibley School of Mechanical
and Aerospace Engineering at Cornell Univer-
sity. He worked as a senior research engineer
in the field of solid modeling from 1973 to
1998, first at the University of Rochester (the
PADL-! and -2 Projects) and then at Comel!
(the RayCasting and BCSG Projects). He
earmned a BS/EE degree from the university of
Rochester in 1969, and a MS/EE degree at
Ohio State University in 1972.

Jai Menon is 2 Program Director of Internet
Media in the [BM Internet Division. where he
leads research, development, and marketing on
media technologies to facilitate electronic
commerce, and an Adjunct Professor at
SUNY/Stony-Brook. He earned degrees in
mechanical engineering at IIT/Delhi (BS,
1986) and Comnell University (MS, 1989,
PhD, 1992), the last for research on Construc-
o tive Shell Representations for representing
“ freetorm surfaces and solids in CSG environ-
ments. His current interest range over
geometric modeling, graphics and visualization, parallel computation,
and manufacturing.

K. Suresh is a senior R&D engineer at Kulicke
& Soffa Industries, Inc., where he is designing
semiconductor assembly equipment. He
¢amed BS, MS and PhD degrees in mechanical
engineering at [IT/Madras, UCLA, and Cornell
Universities, respectively, the last in 1998 for
rescarch on interior (dual) formulations of
boundary value problems. His current primary
interest is in developing new representations,
methods, and tools for conceptual design.

Herbert Yoelcker has held the Charles Lake
Chair 1in mechanical engmeering at Cornell
University since 1986. Before that he was a
member of the electrical engineering faculty
at the University of Rochester for 25 years
He holds degrees in mechanical and electrical
engineering from MIT and the Impenal
College of Science and Technology (London).
and has worked in helds ranging from aural
perception and ionospheric propagation to
CNC systems and mechanical design.

Jovan Zagajac is a Principal Computer Appli-
cations Engineer in the CAD/CAM & CAE
Systems Department of the Ford Motor
Company. where he is involved with automo-
tive modeling, shape optimization, and struc-
tural analysis. In the later 1980 he was a
pnmary designer of the EDVIS (European)
structural modeling system. He camed BS
and MS degrees in nuclear engineering from
the Polytechnic Institute of New York and the
University of Michigan in the early 1980s. and
a PhD in mechanical engineering from Comell

University in 1997 for research on statistical methods for solving boundary

value problems.

	E:\WORK\a1.tif
	E:\WORK\a2.tif
	E:\WORK\a3.tif
	E:\WORK\a4.tif
	E:\WORK\a5.tif
	E:\WORK\a6.tif
	E:\WORK\a7.tif
	E:\WORK\a8.tif
	E:\WORK\a9.tif
	E:\WORK\aa10.tif

