
RC 21628 (97505) 20DEC1999 Computer Science/Mathematics

Research Report
Developing Highly-Responsive User Interfaces with

DHTML and Servlets

Katherine Betz, Avraham Leff, James T. Rayfield
IBM Research Division

T.J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE
This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a
Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM
prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by
reprints or legally obtained copies of the article (e.g., payment of royalties).

Some Reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home email reports@us.ibm.com
Copies may be requested from IBM TJ Watson Research Center (Publications 16-220 YKT) P.O. Box 218, Yorktown Heights, NY 10598 USA

- 2 -

Abstract

Due to communication overhead and latency, Web-
based user interfaces that rely exclusively on the server
to refresh client screens suffer from poor performance.
In this paper we show that implementation of the classic
Model-View-Controller architecture on the client
enables the client to refresh the screen in certain cases,
and thus improves performance. This “dual-MVC”
approach is discussed in the context of a sample Web-
based application.

1. Introduction

When implementing Web-based user interfaces, it is
tempting to rely exclusively on the server to refresh the
client’s screens. In this approach, whenever the client
edits the screen (e.g., by clicking on a button), the
request is forwarded to the server which:

1. Based on the client’s input, modifies the state of
the application’s business objects.

2. Constructs an HTML representation of the rele-
vant set of business objects.

3. Refreshes the client’s screen by writing the
HTML to the browser.

In terms of the classic model-view-controller (or
MVC) architecture [1][2]: the

• Model (the set of business objects) resides
entirely on the server.

• View resides on the client’s Web browser, and
the view-generating logic resides on the server (the code
that generates the HTML).

• Controller resides partially on the client (the
code that detects that the button was clicked and submits
the HTTP request to the server), but mostly resides on
the server (the code that receives the client’s HTTP

request and invokes the appropriate methods so as to
update the state of the model’s business objects).

In this server-centric approach, the main role of the
client is to be a View of the server-side Model. Figure 1
sketches the architecture of this implementation
approach. In this paper we introduce an alternative
architecture, termed “dual-MVC”, that provides better
performance than the server-centric approach in certain
cases.

2. Motivating Example

To help understand the performance issues
addressed in this paper, we introduce a simplified exam-
ple of a Web-based user interface and application. This
example will be used to point out where traditional
implementation approaches overlook potential perfor-
mance improvements and how our approach of client-
side screen refreshes can improve the response time of
Web-based user interfaces.

Picture a “Help Desk” application in which help
desk consultants use a Web interface to record and track
reported problems. The consultant, in other words, is sit-
ting in front of the Web-based user interface, and is
using that interface to communicate with the Help Desk
server. When a customer calls to report a problem:

1. The consultant, looking at the panel shown in
Figure 2 asks the customer to specify an id so that the
problem report can be associated with the right person;
the id is entered in the appropriate entry field.

2. The client application validates the id by submit-
ting the form to the server which queries a database to
get information about the customer.

3. If the query is successful, the server sends the
customer’s name and phone number back to the client;

Developing Highly-Responsive User Interfaces with DHTML and Servlets

Katherine Betz, Avraham Leff, James T. Rayfield
IBM T. J. Watson Research Center
{kbetz,avraham,jtray}@us.ibm.com

- 3 -

the consultant’s screen is refreshed to look like the top
panel of Figure 3.

4. The consultant asks the customer which operating
system she is using. The server then refreshes the con-
sultant’s screen with a system-specific panel that must
be filled in. If the customer is using Windows NT, the
consultant selects this option from the pull-down list.
The screen is refreshed, and now looks like Figure 3.
The consultant queries the customer to fill in the version,
platform, and hostname entries.

5. When the hostname is filled in, the client asks the
server to return the IP address associated with the host-
name.

6. When the consultant has sufficient information,
he presses the Save button, and the problem report is
transmitted to the server.

7. A client may have more than one problem to
report. In such cases the consultant presses the Add
Another Problem button, and the server refreshes the
screen with an additional row in which the ID, Name,
and Phone entries are already filled in.

3. The Problem

The “server-centric” approach described in Section
1 has the advantage of simplicity as it almost completely
factors out the role of the client: developers are able to
focus on the server part of the application. The problem
with this approach is that the server must always be
involved whenever the client’s screen needs to be
refreshed, and the resulting communication overhead
and latency degrades response time. Entering n problem

reports requires 3n + 1 round-trip interactions between
the web-browser and the web server.

In our sample application, two steps do not intrinsi-
cally require server involvement. Step # 4 (where the
screen is refreshed to show a system-specific configura-
tion panel) and step # 7 (where a new problem report
row is added to the panel) require only information that
is already available at the client. In such situations,

FIGURE 1. Model-View-Controller for “server-centric” user interface implementation

HTTP

Client
(Browser)

Server

Web
Server

Server-side View (HTML)
Server-side Controller

Servlet

Servlet Engine

Client-side View
Client-side Controller

Business Objects

Model Model

FIGURE 2. Initial panel of Help-Desk application

- 4 -

response time is improved by not involving the server in
the screen refresh process.

Note that we do not claim that all screen refreshes
can be done solely by the client. In our sample applica-
tion, steps # 2 (mapping the customer id to customer
name and phone number), and # 5 (mapping the host-
name to the IP address) do require the server to refresh
the screen since this information is maintained only on
the server.

The point here is that many user interface applica-
tions contain screen refresh points in which the server
need not be involved, and that performance can be
improved if the client is able to do the screen refresh
itself. In addition, the “thicker” the client -- e.g., if a
small “host” database were maintained on the consult-
ant’s machine -- the more opportunities exist to exploit
client screen refreshes.

3.1. A Partial Solution

The performance problems associated with the
server-centric approach are well known, and are often
addressed with a limited form of client-side processing.
For example, syntactic validation of user input is done
on the client to avoid the round-trip delay incurred by
server-side validation. Scripting languages such as Java-
Script [5][6] are good tools for such client-side process-
ing.

This “mixed” (i.e., “server plus JavaScript”)
approach, however, ignores the type of optimization dis-
cussed above, since situations in which user input trig-
gers a screen refresh are handled by asking the server to
refresh the screen. Client-side refreshing of the screen
requires that some subset of the server-side Model exist
on the client as well. Without a Model, even if there is
knowledge of how to refresh a screen, there is no version
of the current state that can be refreshed.

3.2. DHTML versus Applets?

Because applets run on the client, and therefore can
perform client-side screen refreshes, they offer another
solution to the performance issues raised in this paper.
Also, because they offer the programmer better control
of user interface factors such as color and placement,
applets might seem to be the better technology for Web-
based user interface applications. However, we feel that
the “browser incompatibility problem” imposes a con-
siderable disadvantage for applets. Because clients in
the real world use different browsers, each supporting
different versions of the JDK, deploying an large-scale
application based on applets is problematic. Admittedly,
there are considerable differences between DHTML ver-
sions; however, as long as the application does not
exploit advanced DHTML features, most browsers will
support DHTML in common.

FIGURE 3. Consultant’s panel after customer has specified an NT-related problem

- 5 -

4. Our Approach

Our approach to implementing Web-based user
interfaces exploits the potential performance improve-
ment in which screen refreshes are performed on the cli-
ent side whenever possible. This requires that the client
side role of the application be enhanced relative to its
roles in the server-centric or mixed approaches. Specifi-
cally, a Model corresponding to the relevant subset of
server-side business objects must be maintained on the
client; the state of this Model is typically more current
than the state of the server-side Model. Since this
approach requires that the client also maintain a Model-
View-Controller of its own -- and not rely on the server-
side Model -- we term it the dual MVC approach. If tran-
sient session information (e.g. name, ID) are contained
in the client-side model, the display of Figure 3 can be
generated without an interaction with the server. Enter-
ing n problem reports requires n + 2 round-trip interac-
tions under the Dual-MVC approach (instead of 3n + 1).

Implementation of the user interface is done by
defining Controllers -- that drive updates to the applica-
tion’s business objects -- using the document object
model (or DOM) [3][4], and declaring them in dynamic
HTML (or DHTML) [4]. (Of course, XML[10]/
XSL[11] can be used to declare the DOM instead of
DHTML.) The business objects can be of any type: in
our current work Java clients access Enterprise Java
Beans running on the server. The client communicates
with the server via HTTP and server-side servlets [7]
that implement the server-side Controllers and access the
application’s business objects. When the Model is
refreshed, other servlets dynamically generate DHTML
corresponding to the new View, and send the DHTML
back to the client.

At a high-level, the implementation of the user inter-
face is simply partitioned into server-resident and client-
resident portions, with both portions containing Views
and Controllers of the same Model. While not required
by the dual-MVC approach, we find it useful to partition
each client screen into two frames: an invisible frame
that serves as a stable “anchor point” for the client-side
portion of the implementation, and a visible frame with
which the user actually interacts (see Figure 4). This is
necessary to enable the DHTML running on the client to
contain the code to write (in addition to the current
frame) all possible subsequent frames that may need to
be drawn in response to user input. Although HTML 4

features such as style sheets and layers provide hooks for
“refresh in place”, writing the DHTML to generate all
possible frames is a tedious process. We therefore factor
out the code generation function, and implement it in the
invisible frame which is never rewritten on the client.
This allows the visible frame to respond to user input by
sending it to the invisible frame for processing.

4.1. Anchor Frame

As we explained above, an anchor frame is needed
to provide a stable point within the application from
which the visible (interaction) frame (Section 4.2) can be
refreshed “in place”. Because it is invisible, the anchor
frame does not declare its Model using DHTML.
Instead, the Model is declared using JavaScript objects,
and typically makes use of JavaScript variables to hold
the relevant set of business objects.

Despite its invisibility, the anchor frame has a
View: namely, it generates DHTML source that repre-
sents its Model, and then writes the DHTML to the inter-
action frame. Whenever a user inputs a change that does
not require server processing, the interaction frame
invokes the anchor frame’s Controller (JavaScript code)
which examines the user’s input and updates the state of
the anchor frame’s Model.

4.2. Interaction Frame

The structure of the interaction frame is similar to
that of the client screen under the “mixed” approach.
That is, the frame is supplied with DHTML input from
the anchor frame (the anchor frame’s View). Because
the DHTML contains JavaScript the browser engine is
able to interpret and render this View on the fly. User
inputs (e.g., button clicks) are processed by the interac-
tion frame’s JavaScript, which updates the anchor
frame’s Model by modifying its JavaScript variables. If
the server does not need to be involved in the refresh, the
screen refresh is performed when the anchor frame
updates its View to reflect the changed state of its
Model, and then writes the new View to the interaction
frame.

If the server must be involved (e.g., the application
must perform a database query), the anchor frame sends
an HTTP request to the server; the server runs its Con-
troller, updates its Model, updates its View and returns it

- 6 -

to the anchor frame. This View is then mapped to an
updated anchor frame Model, thus closing the loop.

4.3. Using the Dual-MVC Approach to
Develop an Application

In this section we describe how we implemented the
help-desk application of Section 2 under the dual-MVC
approach.

4.3.1. Defining the Server-Side and Client-Side
Models. Figure 5 shows the Help-Desk application’s
object model.

A persistent version of this model is implemented
on the server as a set of Enterprise Java Beans. The
Model’s objects are grouped on a per-session (i.e., sin-
gle consultant/customer interaction) basis for convenient
access via the HttpSession associated with a servlet’s
HttpServletRequest object.

 On the client side, the model is maintained in a set
of JavaScript variables:

• A customer Object (with ID, name, and phone
properties) maintains customer state.

• A problemReports Array, in which each Array
element’s properties maintains the state associated with
a single problem report.

4.3.2. Client-Side View Generation. As explained in
Section 4.1, the anchor frame contains DHTML code
that generates the View. In our implementation, we
coded JavaScript functions such as writeBlankFrame,
writeOSSpecificFrame, and writeHelpDeskFrame that
emit HTML (via document.write commands) as a func-
tion of the state of the client-side Model. For example, if
the Model does not yet contain a problem report, only
HTML corresponding to Figure 2 is generated. If the
Model’s “current” problem is an NT problem report, the
JavaScript function generate HTML corresponding to
Figure 3.

4.3.3. Client-Side Updates to Client-Side Model.

Conceptually, this part of the application is funda-
mental to the dual-MVC approach because it enables the

FIGURE 4. Dual-MVC architecture for “partitioned approach” user interface implementation

ServerClient
(Browser)

HTTP Web
Server

Server-side View (HTML)
Server-side Controller

Servlet

Servlet Engine

Business Objects

Model
Model

Anchor frame (invisible)

Interaction frame (visible)

Client-side View
Client-side controller

(interaction)

Client-side model (JavaScript)
Client-side controller (anchor)

Client-side view generator

- 7 -

screen to be refreshed without server involvement. In
terms of implementation, however, this task is straight-
forward: DHTML code changes the state of the relevant
JavaScript variables and then invokes the JavaScript
“screen rewrite” functions (Section 4.3.2) to refresh the
screen.

4.3.4. Client-Side Updates to Server-Side Model.

Clients modify the server-side model through a set
of Controllers implemented as servlets:

• ProcessHostNameServlet: invoked when a cus-
tomer supplies the name of the machine associated with
the problem report.

• ProcessIDServlet: invoked when a customer
supplies her ID.

• ProcessSaveServlet: invoked when the consult-
ant saves a problem report.

(Servlet invocation typically causes the server-side
to refresh the View so that the client is presented with a
screen update. This process is described in Section
4.3.5.) These controllers are invoked via HTML
onChange or onClick directives associated with the rele-
vant input fields. This occurs because input field modifi-
cation is associated with a JavaScript method which:

1. Extracts the relevant parts of the client-side
Model from the JavaScript variables and from the
Form’s input fields.

2. Loads the Model’s state into the hidden fields of
a JavaScript Form object.

3. Invokes the Form object’s submit method. This
triggers the Form’s Action attribute: namely, the servlet
that will process the client’s information.

This set of steps expands, in Step # 1 of the help-
desk example (when the consultant enters the customer’s
id), as follows:

1. The HTML for an empty Customer field specifies
that the anchor frame’s getNamePhone() function is
invoked when the input field is changed.

2. The JavaScript customer.ID property is set to the
value of the input field.

3. The “process ID” Form’s ID.value is set to cus-
tomer.ID.

4. The “process ID” Form is submitted.
5. The “process ID” Form’s Action specifies the

ProcessIDServlet, passing the ID as a hidden field.

The Controller servlets update the server-side
Model. In the case of ProcessIDServlet, a findByPrima-
ryKey(ID) operation is invoked on the Customer Home
to locate the Customer object. If no such object is found,
the server throws an exception. Otherwise, the server-
side Model loads the returned Customer object into the
set of state associated with the consultant’s current ses-
sion. The server now has to generate an updated View
that reflects the Customer’s Name and Phone.

VMProblemReport

getSystemName()

(from sample1)

<<Interface>>

Customer

getID()
getName()
getPhone()

(from sample1)

<<Interface>> ProblemReport

getRemark()
getOS()
getCustomer()
getPhone()

(f ro m sample 1)

<<Interface>>

NTProblemReport

getVersion()
getMachineName()
getIPAddress()

(from sample1)

<<Interface>>

References

FIGURE 5. Server-side Object Model for Help-Desk application

- 8 -

4.3.5. Server-Side View-Generation. In this task, the
server has to generate (and return to the client browser)
DHTML consisting of:

• the JavaScript code that declares the variables
that provide the client-side View (Section 4.3.1), and the
code that sets these variables to the state of the corre-
sponding server-side Model.

• the JavaScript functions that generate the client-
side View (Section 4.3.2).

• the JavaScript functions that provide client-side
Controller function (Section 4.3.4).

Our implementation uses Java Server Pages technol-
ogy [9]. JSPs enable us to separate the static content of
the page (the JavaScript functions) from the dynamic
content (the code that sets the state of the JavaScript
variables that define the client-side Model. The dynamic
portion is generated through JSP “scriptlets” that:

• set the JavaScript customer variable’s properties
to those of the EJB Customer object.

• less trivially, generate and load a JavaScript
problemReport Array from the Enumeration returned by
a findByCustomer query on the EJB NTProblemReport
Home. Problem reports for other platforms (e.g.,
VMProblemReport) are similarly accessed via queries to
the appropriate Home and loaded into the client-side
Model’s JavaScript variables.

In our simple application, a single JSP suffices to
generate all of the Views required by the help-desk
application. By using this JSP, the servlets discussed in
Section 4.3.3 do not directly generate and return
DHTML to the client. Instead, after updating the server-
side Model, the servlets:

• Create a RequestDispatcher, and pass it the loca-
tion of the JSP.

• Forward the processing of the client’s request to
the RequestDispatcher.

4.3.6. Priming the Pump. How does this complex
cycle of dual-MVC interaction get started? The consult-
ant connects to the server by pointing her browser at
FramePage.html; this file contains vanilla HTML to
draw Figure 2 and also loads startServlet in an invisible
frame. By entering data into the form, the consultant ini-
tiates startServlet processing. This creates a new, empty,
server-side Model that will be associated with the con-
sultant’s session, and then forwards the request to the

JSP which results in the server generating the initial
View (Section 4.3.5).

5. Future Work

When an application’s characteristics offer the
opportunity for client-side screen refreshes, Web-based
user interface implementations can use the Dual-MVC
approach described in this paper to improve response
time. An important issue that we are currently exploring
relates to development environments for such implemen-
tations. Ideally, the development environment will use a
single representation to store information about an appli-
cation’s set of Models, Views, and Controllers in order
that deployment decisions -- server-side versus client-
side -- can be deferred as much as possible. A “canoni-
cal form”, in other words, coupled with emitter tools
would remove the need to have separate implementa-
tions for the dual MVC representations, and would
enable far more flexible deployment.

6. References

1. Glenn E. Krasner and Stephen T. Pope, A cookbook for
using the model view controller interface paradigm in Small-
talk-80, Journal of Object Oriented Programming, 1(3):26-49,
August/September 1988.
2. A. Goldberg, Smalltalk 80: The Interactive Program-
ming Environment, Addison Wesley, 1984.
3. HTML Document Object Model http://
www.w3c.org/DOM/
4. Danny Goodman, Dynamic HTML, The Definitive Ref-
erence, OReilly, 1998.
5. Standard ECMA-262, ECMAScript Language Specifica-
tion
http://www.ecma.ch/stand/ecma-262.htm
6. David Flanagan, JavaScript, The Definitive Guide, 3rd
edition, OReilly, 1998
7. Java Servlet API
http://java.sun.com/products/servlet/
index.html
8. Enterprise JavaBean Specification Version 1.0,
http://java.sun.com/products/ejb/docs.html
9. Java Server Pages, http://java.sun.com/prod-
ucts/jsp/
10. W3C XML Specification DTD, available at
http://www.w3.org/XML/1998/06/xmlspec-report-
19990205.htm
11. XSL Transformations (XSLT), Version 1.0, W3C Work-
ing Draft 13 August 1999, available from http://www.w3.org/
1999/08/WD-xslt-19990813

