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A DERIVATION OF THE INSIDE-OUTSIDE
ALGORITHM
FROM THE EM ALGORITHM

JOHN D. LAFFERTY

ABsTRACT. This note is a technical supplement to [4]. The pur-
pose is to show how the Inside-Outside algorithm is a special case
of the EM algorithm [3], and to derive the parameter update for-
mulas. }

1. INTRODUCTION

The purpose of this note is to describe the Inside-Outside algorithm
[1] in the context of the EM algorithm [3]. A derivation of the parame-
ter updates is given, together with a demonstration that the likelihood
of the observed data does not decrease, proving that the algorithm
converges.

2. THE EM ALGORITHM

The general situation of the EM algorithm is that we observe data
y which is incomplete, and assocated with complete data z. That is,
there is a projection
T A —)Y
which is many-to-one. We observe y € ) and the actual z which
generated y is hidden. The fiber over y is the set

X(y) =" (y) = {z|n(z) =y}

We follow (roughly) the notation of [3], and assume that z has a
probability density fs(z) which depends on some vector of parameters
¢ € 2, where Q is an open subset of RY. Typically, { represents var-
ious constraints on the parameters, as will become clear the following
sections. The density of y is obtained by integrating over fibers:

wW)= [, folo)da.
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2 J. LAFFERTY

The basic idea of the EM algorithm is the following. According to the
statistical principle of maximum likelihood, one would like to choose
the parameters so as to maximize the log-likelihood log f4(z). But this
doesn’t quite make sense, since z is unobserved (hidden). Instead, one
can try to maximize the conditional expectation of log f4(z) given the
observation y and an estimate of the parameters ¢.

Here's how this idea is borne out. Define

fo(z)
96(y)

That is, k is the conditional density of z given y, assuming the param-
eter vector ¢. Then

L(¢) = log g4(y) = log fy(z) — log kg(z |y) -

Let E, denote expectation “;ith respect to the parameters ¢. Since
L(¢") is a function of y,

L(¢') = Ey[log fy (z) |y] — Eglky (z|y) |y].
To verify this directly, note that

_ Jxwlos fo(2) fo(z) dz
fx{,,) f¢($) dz
1

= /x o 8 1¢(@) fol2)

ks(z|y) =

Eyllog fy () | Y]

and
Jo(z)
e

Eyllog ky(z |y) |y] = —l—fxm lo fo(z) dz.

94(y)
It follows that

E¢[10g Jo (Z?) | y] = E¢[k¢! (z | y) |y] =
1 1 [
~ 5) fxm e fo®) o)~ 20 fx(u} o8 gzgy; Tol) &
= log g4 ()
= L(¢') .
As a final piece of notation, we'll write L(¢') = Q(¢'|¢) — H(¢'| ¢),
where

Q(¢'| ¢) = Eyllog fo (z) 4]
Lemma 1. For any pair of parameters ¢, ¢' € Q, we have that

H(¢ |¢) < H($| ).
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Proof. Applying the definitions,
H(¢'|¢)— H(d|9) =

- fo@) ¢ s Jo(@) .
- 5(v) (/:’fiv %8 56 ) el / %8 56 (®) oo} d )
. fo(@) ; 9(v)

- 9(v) ([*(#J fo() ol2) d$+f ORTIO), Jo(z) d:c)

s (05~ ()

=0
with the inequality coming from an application of Jensen’s inequality
for conditional expectations. O
Since

L(¢') — L(¢) = [Q(¢' | ¢) — Qe | 9)] + [H (¢ | ) — H(¢'| ¢)]

it follows from the lemma that so long as Q(¢' | @) — Q(¢ | ¢) > 0, the
likelihood of the observed data increases. This motivates the basic EM

algorithm:

Initialize: ¢g € 2
Iterate: E-step: Compute Q(¢ | ¢m)
M-step: Set @41 = argmaxgen Q(@ | dm)

This is a greedy version of the algorithm, maximizing the gain in
likelihood from @ at each step. But it may be computationally expen-
sive to compute the maximum in the M-step. It thus makes sense to

consider a modified EM-algorithm:

Initialize: ¢ €
Iterate: E-step: Compute Q(¢ | dm)
M-step: Set @i = M(¢y,), where M : £ — £ is any map

satisfying Q(M(8) | ¢) = Q(¢|¢).

We find it convenient to modify the choice of @ in [3] in the following
way. Define Q) by

a1 = 5 [l 28y
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Then another application of Jensen’s inequality shows that

O(¢'|¢) = By [logM y}
]

fo(z)

= Jog 2 ()

96(¥)
= L(¢') — L(¢) -

Thus, since Q(qﬁ | #) = 0, the function Q can just as well be used in the
EM algorithm.

Theorem 1. Let ¢g, ¢1, @2, . .. be a sequence for an EM-algorithm such
that

1) |L{¢n)| < C < 0 for all n.

2) Q(¢n+l | ¢ﬂ) - Q(¢ﬂ l¢n) Z )‘”‘ﬁrﬂ-l - ¢’n“2 fOT‘ some )‘ > 0.
Then ¢n — ¢y in L2, for some ¢ € €.
Proof. The proof is a simple dominated convergence argument. Since
L(¢,) is bounded and increasing, it converges to some number L, < 0.
The problem is to show that ¢, converges to a vector ¢,. 1t will follow
that L(¢.) = L.

Since the sequence L(¢;) is Cauchy, for any € > 0 there is an IV such

that

L(¢n+r) - L(¢n) = ZL(QSMJ) - L(¢n+j—1) < E
j=1
forall7 =1,2,... and n > N. This implies that
0< S Qen4s| brai-1) — Q(Praim | Prj—1) <€

i=1

and by assumption 2), that

0<A (i H¢n+j - ¢n+j—l”2) <E€.

i=1
Thus, ¢, converges. O

Condition 2) in the theorem is a rather stringent assumption. It is not
satisfied for many practical M’s and @’s. It is thus possible for the
sequence ¢y, to wander around Q) without ever converging, while the
likelihood steadily increases, and eventually converges.
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3. THE EM ALGORITHM AND LANGUAGE MODELING

The typical situation for the EM algorithm in language modeling is
that we have a set of histories h and futures f and want to maximize
the likelihood of predicting f from h, given a collection of training
events € = {(h, f) }:

L(9) = Y elh, £) log Py(f | b
€

where c(h, f) is the multiplicity (“count”) of the event (A, f) in £. For
example, f might be a word predicted from a history of the previous
two words, or it might be an English sentence to be predicted from a
French sentence. We add “structure” or “linguistics” to this setup by
modeling some hidden quantity that we think is going to help predict
f better. :

3.1. Marginal Models. The incomplete data for most language mod-
els takes the form of a Cartesian product, and the fibers are the as-
sociated level sets. Thus, the models typically take a form where the
“future” f and the hidden data z are specified by a joint distribution,
and the observed data is given by the associated marginal distribution:
L(¢) =D c(h, f) log 3 _ Ps(f,z | h).
£ T

For example, the hidden data z could be a sequence of parts-of-speech,
an alignment between French and English sentences, or a parse tree for
a sentence. Typically the sum }__ is exponential in the size of 4 and f.
Part of the algorithmic art of language modeling is to make this sum
manageable.

The difference in the conditional expectations of the complete data
log-likelihoods given the observed data is written here as

3 P [ (f y T I h’)
"16) =Y clh, £)Y Py(z|h, f)log—=—F——.

For many language models, including probabilistic context-free gram-
mar, this function is convex in ¢', and the maximum can be calculated
in closed form. This class of models is described next.

3.2. Algebraic Models. Most of the models that arise in language
modeling are associated with algebraic expressions; that is, the prob-
abilities are expressed as (typically homogeneous) polynomials in the
parameters. Suppose, for example, that

Py(f,z | h) = I] plw)=®.

wen
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The ¢(w)’s are the parameters, and they are subject to certain linear
constraints, such as
dw)>0 and Y o(w)=1.
wEN

For such models, the M-step in the EM-algorithm can be carried out
exactly, and the parameter updates take on a particularly simple form,
which we now derive.

The EM algorithm tells us to compute the function Q(¢| ¢,) and to
solve the equation

o9

where ) is a Lagrange multiplier, corresponding to the constraint T 0w) =
1. Using the algebraic form of the model we can calculate

Q'18) = Zclh, f) 2L Po(@|h, f)log E((J{: :))

- Selh N Ple N Telwis ) ogd (o)
— S ol £) S Pol( by £) log Po(f 3| 1)

In particular, Q(¢'| ¢) is a concave function of the parameters ¢'(w).

Note that o) 0Pz f1H)
w ¢\ Ty
c(w;z, f,h) = .
Wi W) = P 7TR) 06(w)
Taking partial derivatives of Q and including the Lagrange multiplier,
we are led to the condition that must be obtained at the unique maxi-
mum in the M-step:

c(w;z, h f) _
;dh,f)gf%(wlh;f)—-—-—&(w) =A.

This, in turn, leads to the EM update formula
¢“+1((z)) = )‘—l Z C(h, f) Z Pfﬁn(m | h’: f)c(w; z, h:- f) :
£ T

Thus, the reestimated parameters are normalized expected counts. The
expectation

Eﬁbn[c(W; % h)] = ZP% (5 1 4 h)C(UJ;I, ¥ h)

is interpreted as the expected number of times, under the model ¢,
that w is used in generating f from h. We note that a similar analysis
would hold for any model which is a rational function of its parameters.
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Computing the expected counts usually involves some kind of “forward-
backward” calculation or approximation to make the sum 3>, manage-
able. For general finite-state machines this calculation can be neatly
characterized [2]. The calculation was demonstrated in [1] for the case
where the hidden data is a parse tree derived from a context-free gram-
mar. In the next section we will derive this calculation within the
framework that we have set up.

4. THE INSIDE-OUTSIDE ALGORITHM

Let G be a context-free grammar consisting of a collection of rules
{A — a}, where each o is a string of terminals and nonterminals. For
each string w € L£(G), the language of G, there is a corresponding set
of parse trees ¢, each of which has w = w; wy *+* Wy 88 leaves. If we
observe only w, then for an ambiguous grammar, the actual tree used
to derive w is hidden.

Suppose we have a joint distribution Py(w, t), giving the probability
of deriving w using the tree ¢. Then the marginal distribution

Py(w) = ;P¢(w,t)

gives a language model. In the notation of Section 2, Pg(w,t) is the
complete data density fy(z) and P,y(w) is the incomplete data density
g6(v). The fiber X' (w) over the sentence w is a finite collection of parse
trees. The joint distribution takes the form

Py(w,t) =11 B(w)crt)
= ]:[ ¢'(A — a)c(ﬂ—ra;t,w}

A=ra
where ¢(A — o; t,w) is the number of times that the rule A — o
appears in the parse tree ¢ for the sentence w. The parameters ¢(A —
«) are normalized so that

Y ¢(A—=a)=1.

Thus, there will be a Lagrange multiplier for each nonterminal A.

Such a model may be deficient, and not assign probability one to
finite strings. A sufficient condition that this does not happen can be
expressed by indexing the nonterminals as Ai, ... , An, and letting M
be the N x N matrix given by

Mi; =Y ¢(Ai —= @) nj(@)
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where 7;() is the number of nonterminal symbols A; appearing in c. If
M has largest eigenvalue p < 1, then the language model P4(w) assigns
probability one to finite sentences in the language of the grammar.

The model is parameterized by making the Markov assumption that
the probability with which a nonterminal is rewritten as a string o
depends only on the nonterminal, and not on any surrounding context.
This assumption leads to an efficient training algorithm.

There are two distinct problems associated with this setup. The
first, called the language modeling problem, is to find the set of pa-
rameters which maximize the probability [1,e¢c Pg(w) of some training
corpus C. The second, called the parsing problem, is to maximize the
“correctness” of the most probable parse

i(w) = argmax, P(t|w).

The EM algorithm is directly involved with only the language modeling
problem. Experience has shown it to be difficult to couple the two
problems.

To apply the EM algorithm, we consider the auxiliary function

Q#19) =3 clw) 2_ P(t|w)log i((:ﬁ)) |

w

Taking the derivative 8/9¢'(A — a) gives

8Q(¢'|0) i Py(t | w)c(A = o t,w)
0¢'(A = ) _g ( ); ¢'(A— ) ’

We thus need to compute the expected counts

3 Py(t | w)e(A = a; t,w).

The sum ¥ is potentially exponential. But this is the same as evalu-
ating '

$(A— ) OPy(w) _ |
Py(w) 3¢(A¢-+ o) z:: Py(t|w)e(A — a; 8, w),

and it turns out that there is an efficient way of computing the partial
derivative on the lefthand side.

We'll now assume, but only for convenience, that the grammar is in
Chomsky normal form. Thus, each rule is either of the form A —+ BC
or A — w. The position of a rule A — BC within a tree ¢ can be

specified by a triple (4,4,k), 1 < j < k.
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i kookl j
The partial derivative of the probability Ps(S = w) = Py(w) with
respect to the parameter ¢(A — BC) only involves those parse trees
which use the rule A — BC. Consider the event “S = w using
A — BC in position (,7,k)". Because of the Markov property, the
probability of this event can be written as a product of four terms as
follows:

P4(S = w; using A — BC in position (3,5, k)) =
Py(S = wy + - Wimy AWgy1 - WHN) X

X ¢(A—> BC).P(B = wi'--wj)P(c=:> Wit ---wk).
From this it is not difficult to see that
6P¢(S = 'w) .
06(A — BC)
ST Py(S = wre Wing AWgyr++rwy) P(B = w; -+ wj) P(C = wjyr - wy).
i,k
Thus, the expected number of times that the rule A — BC is used in
generating the sentence w using the model ¢ is given by

E4[c(A = BC;w)] ZP.,,tlw (A— BC; t,w)

B ¢(AP;2w?O h%ﬁ“‘ )aij (B)e1x(C)
where
;i (A) = Py(A = w; -+ w;)
and
Bii(A) = Py(S = wy -+ - wimy AWjyy ++ - WN) -
Similarly,

EylA = a;w] = ¢(A_“I 25 w;) Bi(A).
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There is an efficient method for computing the o’s and A’s using the
CKY chart-parsing algorithm. The method for doing this is implicit in
the following formulas:
aii(A) =3 Y (A — BC)aik(B) a415(C)
B,C i<k<j
CE",;(A) = qﬁ(A “—F ‘LU;')

Bii(A) =3 (B = CA)aui-1(0) Bij(B) +

B,C k<i

o Z Z (B = AC)aj+1x(C) Bix(B)

B,C k>j
Bin(A) = 6s5(A) .
The reestimated parameters are then the normalized counts:
¢'(A = o) = A3 count(A — )

where
count(4 — @) = Y Eylc(4 — a);w].

wee
The sum is over all sentences in the training data £. The Lagrange
multiplier A4 is given by

Aa =) count(A — a).

The results of Sections 2 and 3 prove that the resulting model does not
assign a smaller likelihood to £.
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