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Abstract

High frequency design and instruction-level parallelism (ILP) are two keys to
high performance microprocessor implementation. To achieve these sometimes
competing goals, the Binary-translation Optimized Architecture (BOA) aims to bring
code translation techniques based on continuous profiling into the mainstream. Ini-
tially, code is interpreted to detect code hot spots and gather profile information to
guide dynamic optimizations. To achieve compatibility with the established Pow-
erPC architecture, a binary translation layer translates PowerPC instructions into
simple VLIW operation primitives. These primitives are then scheduled using VLIW
scheduling techniques to a variable length, six issue VLIW/EPIC processor. Binary
translation eliminates the binary compatibility problem faced by other processors,
while dynamic recompilation enables adaptive re-optimization of critical program
code sections and eliminates the need for dynamic scheduling hardware.

As a result, the BOA execution platform can be designed for multiple Giga-
hertz operation. The hardware execution platform includes novel microarchitec-
tural features to eliminate complex stall and exception logic. Special support is
also provided for binary translation in the form of several primitives designed for
system-level binary translation functions. The data types of the binary translation
processor are similar to that of the emulated PowerPC architecture to eliminate
data representation issues which could necessitate potentially expensive data for-
mat conversion operations. In this work we examine the implications of binary
translation on processor architecture and software translation and how we support
a very high frequency PowerPC implementation via dynamic binary translation.
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Chapter 1

Introduction

High frequency design and instruction-level parallelism are two keys to high per-
formance microprocessor implementation. The Binary-translation Optimized Ar-
chitecture (BOA) is an implementation of the IBM POWER processor family which
tries to combine these techniques based on a binary translation and dynamic opti-
mization framework.

In this context, binary translation and dynamic optimization are used to achieve
hardware simplicity by bridging a semantic gap between the PowerPC RISC in-
struction set and even simpler hardware primitives, and by providing the ability to
extract instruction-level parallelism by dynamically adapting the executed code to
changing program characteristics in response to online profiling. [1, 2]

Previous processors such as Pentium Pro and POWER4 implementations have
tried to achieve the high frequency and instruction-level parallelism goals using a
hardware cracking scheme, where an instruction decoder in the pipeline generates
multiple micro-operations which can then be scheduled out of order.

We explore an alternative software approach to both decompose complex op-
erations and generate schedules. Software allows more elaborate scheduling and
optimization than hardware, yielding higher performance. At the same time com-
plex control hardware responsible for operation decomposition is eliminated from
the critical path. Thus, a binary translation-based processor implementation is able
to achieve maximum performance by enabling high frequency processors while still
exploiting available parallelism in the code.

Our work was inspired by our previous experience with DAISY [3, 4, 5, 6, 7]
which uses binary translation for scheduling PowerPC code to a VLIW. However,
the machine described here is narrower, with primary importance given not to min-
imizing CPI (Cycles Per Instruction), but to maximizing processor frequency. The
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resulting smaller size has the benefit of allowing multiple cores to be placed on a
single integrated circuit.

In looking forward to future high performance microprocessors, we have adopted
the dynamic binary translation approach as it promises a desirable combination of
(1) high frequency design, (2) greater degrees of parallelism, and (3) low hardware
cost. Unlike native EPIC architectures, (1) the dynamic nature of the compilation
algorithm presented here allows the code to change in response to different pro-
gram profiles and (2) compatibility between EPIC generations is provided by using
PowerPC as the binary format for program distribution.

Dynamic optimization and response to changing program profiles is particularly
important for wide issue platforms to identify which operations should be executed
speculatively. Dynamic response as inherent in this described approach offers
significant advantages over a purely static compilation approach as exemplified
by Intel and HP’s IA-64 architecture. From what has been disclosed, IA-64 relies
purely on static profiling which makes it impossible to adapt to program usage.

In addition to purely performance limitations and technical hurdles, the IA-64
static profiling approach requires that extensive profiling be performed on products
by Independent Software Vendors (ISVs), and that they generate differently opti-
mized executables corresponding to each generation of the processor. Given the
reluctance of ISVs to ship code with traditional compiler optimizations enabled, it
may be difficult to induce ISVs to take the still more radical step of profiling their
code.

The remainder of this report describes our approach in designing a high fre-
quency PowerPC compatible microprocessor through dynamic binary translation.
Chapter 2 describes how the processor builds traces of PowerPC operations and the
translation process into the BOA architecture, as well as optimization and schedul-
ing of operations in a VLIW BOA trace. Chapter 3 describes the BOA instruction set
architecture and details the high frequency implementation. Chapter 4 gives ex-
perimental microarchitectural performance results, and Chapter 5 concludes and
describes future work.
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Chapter 2

Binary Translation Strategy

In BOA, binary translation is a transparent process: As depicted in Figure 2.1,
when a system based on the BOA architecture boots, control transfers to the VMM
(Virtual Machine Manager), which implements the binary translation system. The
VMM is part of a BOA system firmware, although it is not visible to the software
running on it, much like microcode is not visible in a microcoded machine.

After BOA VMM initialization, the BOA VMM interpreter initiates the PowerPC
boot sequence. In other words, a PowerPC system built on a BOA architecture
executes the same steps as it would on a native PowerPC implementation. Thus,
the architected state of the virtualized PowerPC is initialized, and then PowerPC
execution starts at the bootstrap address of the emulated PowerPC processor, i.e.,
0xFFF00100.

Similar to a native PowerPC system, a PowerPC boot ROM is located at that
address, which will be executed under control of the BOA VMM. When the boot
ROM initialization has completed after loading a kernel, and control passes to that
kernel, the BOA VMM in turn starts the interpretation and translation of the kernel,
and after that has been initialized, of the user processes.

Actual instruction execution always remains under full control of the BOA VMM,
although the locus of control does not necessarily have to be within the VMM
proper, i.e., the interpreter, translator, exception manager, or memory manager. If the
locus of control is not within the VMM nucleus, it will be within VMM-generated
translation traces. Traces are translated carefully so as to only transfer control to
each other, or back to the VMM as part of a service request, such as translating
previously untranslated code, or handling an exception.

This determinism in control transfer guarantees system safety and stability. No
PowerPC code can ever access, modify or inject new code into the translated code.
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Figure 2.1: Components of a BOA System.

In fact, no code can even determine that it is hosted upon a layer of code imple-
mented by the BOA VMM.

When the BOA VMM first sees a fragment of PowerPC code, it interprets it to
implement PowerPC semantics. During this interpretation, code profile data is col-
lected which will later be used for code generation. Each code piece is interpreted
several times, up to a given interpretation threshold, before it is translated into BOA
machine code.

Interpretation serves multiple purposes: first, it serves as a filter for rarely exe-
cuted code, i.e., much initialization code is executed only a few times, i.e., it has low
code re-use. Thus, any cost expended on translating such code would be wasted,
since the translation cost can never be recuperated by the faster execution time in
subsequence executions.

Interpretation also allows for the collection of profiling data, which is used to
guide optimization. Currently, we use this information to determine the path of
translation traces generated by the BOA VMM, as well as for branch prediction.
Other uses are possible and planned for the future, such as guiding optimization
aggressiveness, control and data speculation, and value prediction.

Traces have two types of exits: side exits which represent a mispredicted branch,
and end of trace exits, which represent translation stopping points. Wise choice
of such stopping points can limit trace size and help improve Instruction Cache
(ICache) performance.

BOA gathers PowerPC operations from a single straightline path or trace in the
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Figure 2.2: Effective window of operations can be small if interpreter does not correct
predict the most-likely path through a group ofPowerPC operations.

PowerPC code and puts them in a group. Examples of straightline traces are A-B-C-
E and A-B-C-F in Figure 2.2. A group with both A-B-C-E and A-B-C-F would not be
a straightline trace. Use of straightline traces simplifies many areas of scheduling
and optimization, thus helping to meet BOA’s real-time requirements. For example,
there is at most one reaching definition for each value allowing use of inexpensive
algorithms and data structures. In addition translated BOA code for a trace can
be laid out contiguously in memory, which may require that the sense of some
conditional branches be inverted from the original PowerPC code. This contigu-
ous layout improves ICache packing and improves the ability to fetch instructions
quickly, similar to static code layout techniques [8].

On the downside if the most likely trace during interpretation turns out not to be
the most likely trace later, then there is a smaller effective instruction window from
which BOA can extract operations to run in parallel. For example trace A-B-D-H in
Figure 2.2 might be most likely during interpretation, while trace A-B-C-F turns out
to be most likely later. Instead of being able to take advantage of any parallelism
among PowerPC operations on the long path A-B-D-H, only parallelism among the
smaller number of operations along the A-B path is usefully exploited.

2.1 Trace Formation

BOA instruction traces are formed along a single path after interpreting the entry
point of a PowerPC operation sequence several times. We decided to follow single
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Figure 2.5:PowerPC code for a program yields several BOA groups.

paths for two reasons: (1) Instructions can be fetched more quickly and easily if
they typically are grouped consecutively in memory. If the most likely direction
of a PowerPC branch is taken, then the sense of the branch is inverted and the
target code added to the trace as straightline code. (2) The number of operations
can easily increase exponentially over the number of native PowerPC operations if
multiple paths are followed. In Figure 2.3, the subf occurs only once in the original
PowerPC code, but could occur 4 times in a multipath group.

During BOA’s interpretation phase, statistics are kept on the number of times
each conditional branch is executed as well as on the total number of times it is
taken, thus allowing a dynamic assessment of the probability the branch is taken.
Similar information is also kept about the targets of register branches.

Figure 2.4 gives a flowchart of how BOA operates. As can be seen in Fig-
ure 2.4, once the trace entry has been seen beyond a threshold number of times,
the code starting at the entry point is assembled into a PowerPC trace, and trans-
lated into a BOA instruction trace for efficient execution on the underlying hardware.
At each conditional branch point, the most likely path is followed. As each condi-
tional branch is reached during the translation, the probability of reaching this point
from the start of the trace decreases. When the probability goes below a threshold
value, the trace is terminated.
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A trace can also be terminated if the total number of operations in it exceeds a
threshold or if the number of store operations in it exceeds the number of entries
in the store buffer, as detailed in Section 3. Register branches can optionally end
the trace.

Alternatively a register branch such as blr can be replaced by a test of the
most likely branch target, followed by a conditional branch:

cmpi cr_X,LR,<MOST_LIKELY_LR_VALUE>
bne EXIT_TRACE
<> # Code Translation from

# <MOST_LIKELY_LR_VALUE>
...
EXIT_TRACE:
blr

2.2 Code optimization and Scheduling

As traces are formed, the VLIW operations are passed to the code optimizer and
scheduler to generate native VLIW code. Complex operations are cracked at this
point, and multiple simple VLIW operations are passed to the optimization and
scheduling step.

Optimization is particularly useful for dealing with legacy code, but it also brings
significant performance improvements to already optimized code. This is possible
because unlike a static compiler, the dynamic optimizer does not need to consider
the entire control flow graph in making optimization decisions. Instead, short traces
are “carved” out of the control flow graph, eliminating all control flow joins.

Eliminating control flow joins opens up numerous optimization possibilities be-
cause data usage only has a single reaching definition for each use. We can take
advantage of this by performing constant propagation, copy propagation, com-
bining, strength reduction, load/store telescoping, and loop unrolling. Figure 2.6
shows how carving two traces from a control flow graph eliminates multiple reach-
ing definitions into an operation, thereby opening optimization and scheduling op-
portunities. It is difficult to profitably perform these optimizations in a traditional
static compiler, since there are exponentially many paths through code and it is dif-
ficult to know which to choose. Profiling an execution of an application and using
the results in the next compilation mitigates this problem to some degree, although
such profiling is infrequently used for real applications, as we noted earlier. Even if
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Figure 2.6: Dynamic optimization opens new optimization opportunities. Two definitions
reaching use of?x in original program can be carved into twotraces in BOA binary trans-
lation.

profiling is done, it yields a single answer, and cannot adapt to changes in program
behavior.

In addition to their own benefit, these optimizations also reduce dependencies
and thereby reduce schedule height, allowing more operations to be scheduled in
parallel so as to exploit BOA’s parallel execution units more effectively.

BOA operations are scheduled to maximize ILP opportunities, taking advantage
of speculation possibilities supported by the underlying architecture. The current
scheduling approach is greedy, i.e., each operation is scheduled to execute at the
earliest possible time when (1) all input operands are available, (2) there is a function
unit available on which to execute the operation, and (3) there is a free register in
which to put the result. In determining this earliest possible time, BOA makes use of
copy propagation, load-store telescoping, and the other optimizations mentioned
above. Thus scheduling, optimization, and register allocation are all performed at
once, i.e., operations are dealt with only once.

Since this scheme can schedule operations out of order, and since we wish
to support precise exceptions for the underlying (PowerPC) architecture, it must
be possible to generate the proper PowerPC register and memory values when an
exception occurs. Memory ordering is guaranteed by scheduling stores in their
original program order. We have looked at several methods to compute the correct
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register values in the presence of exceptions.
A first approach consisted of using a modification of DAISY’s approach of plac-

ing any out-of-order results in registers not architected in PowerPC (e.g., R32-R63).
DAISY then inserted a COPY operation at the original location to copy the value
to its proper PowerPC register. The number of such COPY operations can be high.
BOA attempts to reduce this number by performing COPY operations only at trace
exits. All values not in their architected PowerPC register are copied to the appro-
priate PowerPC register on trace exit.

An alternate approach is to copy all register contents to backup registers upon
entering a trace. Values are computed directly into their PowerPC destination reg-
ister. If the trace incurs any exception, the backup registers are restored, and the
trace is interpreted. Stores go only to a store buffer in this scheme, and hence are
never truly reflected to the memory. If no exception occurs by trace end, the store
buffer contents are flushed to memory. This approach has the disadvantage that
if the exception occurs near the end of the trace, all the useful work that was done
prior to that point must be discarded.

Finally, we chose a hybrid hardware/software approach based on maintaining
precise checkpoints at trace transition boundaries and the ability to roll back to such
a checkpoint otherwise.

Checkpointing is achieved by copying all registers to a set of backup registers at
trace transitions. Within a trace, instructions are scheduled out of order and regis-
ters are renamed to support speculative execution. Store operations are executed
in original program order, but are marked as pending so they can be revoked if
an exception occurs. At basic block boundaries within a trace (i.e., at any point
were control can transfer out of a trace through a side exit), all architected PowerPC
registers are in their home locations, e.g., R3 is in R3 not in R45.

When a trace is exited during the course of normal execution, the PowerPC
registers are committed into the checkpoint registers, pending stores are marked
definite, and execution continues with the next trace. (Control between traces is
occurs via a checkpoint and branch operation.) When an exception occurs,
the working registers and all pending stores are discarded and the processor
state is recovered from the checkpoint registers.

2.3 System issues

Out-of-order loads must be treated specially during scheduling (and execution) so
as to conform with PowerPC memory ordering semantics. Each LOAD and STORE
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in a trace is assigned a number indicating its sequence in the trace, e.g., the first
LOAD/STORE is assigned 1, the second 2, etc. If the hardware detects (1) that a
LOAD with a later sequence number has executed earlier than a STORE with an
earlier sequence number and (2) that they are to overlapping addresses, an excep-
tion is signaled, with the result that the problem LOAD (and any subsequent oper-
ations dependent upon it) are eventually re-executed, so as to receive the proper
values. Compared to an approach such as LOAD-VERIFY [9], this approach re-
quires fewer memory ports, as most loads are executed only once, instead of twice
- once speculatively and for verification.

In a multiprocessor system, PowerPC memory semantics also require that if
two load operations occur to the same location, the second load cannot receive a
value older than the first load. With our scheduling approach, this could happen if
the second load were speculatively placed before the first. To detect when errors
arise from this problem, the hardware uses the sequence numbers to check not
only if a speculative LOAD has an address overlapping with a STORE address,
but also if it has passed another LOAD with an overlapping address. Either case
triggers an exception.

Another issue with speculative load operations occurs when a speculative load
attempts to access non-cacheable memory, such as an I/O location. Such opera-
tions cannot be allowed to complete, as they can have side effects. For example,
many I/O devices use a single location for all reads, and sequentially place a new
value at the location each time it is read. To avoid this problem, BOA has special
hardware to detect and quash any non-cacheable load operations. Detection is
relatively simple since we are translating PowerPC code and uncacheable memory
areas are designated by the TLB. While speculative loads are squashed silently,
non-speculative memory operations raise an exception and require special han-
dling by the VMM. Code segments which frequently trigger exceptions due to mem-
ory operations into I/O space can be translated using serial semantics to reduce
excessive overhead. This approach meets the double requirements of preserv-
ing semantic correctness in all cases, and ensuring good performance on actual
device driver code performing operations in the I/O space.

BOA uses an LRA (Load-Real-Address) operation when branching between
traces of translated instructions.. LRA operations are placed at the start of each
trace by the scheduler. When executed, LRA checks that the TLB and page tables
still map the virtual address for the start of this trace in the same way that they did
when this trace was originally translated. If not, a trap occurs, and the BOA system
software destroys this trace and begins interpreting at the proper address.

We have investigated whether LRA and its accompanying operations should
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be scheduled as a separate “prologue” to the trace or whether they should be
scheduled in the trace itself. Scheduling as a prologue has the advantage that
another trace on the same page can branch directly to the “real” code for the trace
and skip the prologue, since the LRA check was already made by this prior trace (or
perhaps some trace prior to it). Scheduling LRA and its accompanying operations
into the trace has the advantage that their operation can often be overlapped with
normal trace execution. In general we found this second scheme to work better,
although typically by less than 5%.
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Chapter 3

BOA Architecture Support for Binary
Translation

BOA is specifically architected to reduce control logic and facilitate simple high
frequency implementation, even if some operations require additional cycles to
execute or some PowerPC operations need to be cracked into multiple simpler BOA
operations.

3.1 Instruction Set Architecture

BOA is an unexposed architecture with an instruction set specifically designed to
support binary translation. As such, the architecture is not intended as a plat-
form for handwritten user code, but instead provides a number of primitives and
resources to make it a good target for binary translation. These primitives include
operations to support the efficient execution of the translated code and the binary
translation firmware.

The BOA architecture defines execution primitives similar to the PowerPC archi-
tecture in both semantics and scope. However, not all PowerPC operations have
an equivalent BOA primitive. Many PowerPC operations are intended to be layered,
i.e., implemented as a sequence of simpler BOA primitives to enable an aggres-
sive high-frequency implementation. To this end, instruction semantics and data
formats in the BOA architecture are similar to the PowerPC architecture to eliminate
data representation issues which could necessitate potentially expensive data for-
mat conversion operations.

The BOA architecture provides extra machine registers to support efficient code
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Figure 3.1: BOA instruction formats.

scheduling and aggressive speculation using register renaming. Data are stored in
one of 64 integer registers, 64 floating point registers, and 16 condition code reg-
isters. This represents a twofold increase over the architected resources available
in the PowerPC architecture. Speculation is further supported by speculative state
bits associated with each register, such as the carry, overflow and exception
bits. These state bits enable state changes from speculative operations to be re-
named in conjunction with the speculative destination register until such point that
the state change would occur in the original in-order PowerPC program.

BOA uses a statically-scheduled, compressed instruction format, similar to an
EPIC (Explicitly Parallel Instruction Code) architecture, or a variable length VLIW
(Very Long Instruction Word) architecture. A parallel instruction, hereafter referred
to as a packet, can simultaneously issue up to six operations per cycle as illustrated
in Figure 3.1(a). Code generation guarantees that no dependencies exist between
operations in a packet , so they can safely be issued in parallel. As also illustrated
in Figure 3.1(a), the six issue slots can contain operations for up to nine different
execution units: two memory units, four fixed-point units, two floating-point units,
and one branch unit. Any combination of operations can be issued in a packet, but
to simplify instruction decoding and dispatch, operations must be encoded in this
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order in a packet.
To ensure efficient memory layout, operations are packed into 128-bit bundles

containing three operations. Each operation contains 39 bits and one stop bit, us-
ing a total of 120 bits among the three operations, leaving 8 bits for future system
enhancements, such as support for predication, or additional system functions.
Stop bits are used to delineate the packets of parallel operations. A de-asserted
stop bit indicates the current operation and the next operation belong to the same
packet, while an asserted stop bit indicates the current operation is the last opera-
tion of a packet and the next operation begins a new packet. Bundles are distinct from
packets in that a bundle defines a group of three not-necessarily parallel operations
aligned on 128-bit boundaries, while a packet defines a variable-sized group of par-
allel operations (up to six) that is not aligned in memory. Figure 3.1(a) depicts a
packet consisting of 2 bundles and 6 independent operations. Figure 3.1(b) depicts
one bundle with 3 packets and 3 operations which must be executed sequentially.

To simplify decoding and instruction fetch, a restriction was placed on branch
targets, requiring them to be aligned on double bundle (two bundles) boundaries.
Prepare-to-branch operations are available for prefetching operations using static
branch prediction.

According to its statically-scheduled nature, operation latencies are exposed in
the BOA architecture. All branch and fixed-point operations have a single cycle
latency, memory accesses require three cycles for performing address generation
(AGEN), cache access, and TLB access (TLB), and floating point operations have
multi-cycle latencies. Additionally, each operation has an additional one cycle la-
tency penalty because no bypassing is provided within the BOA architecture. One
cycle must elapse before a result may be used by a successor operation. The lack
of bypass is due to high frequency wire delay costs of broadcasting each result to
all execution units. A full pipeline stage, broadcast (BC), is required for supporting
this wire delay.

3.2 Implementation

Figure 3.2 depicts a possible implementation of the BOA architecture. For achiev-
ing high frequency, the processor assumes a simple hardware design with a medium-
length pipeline. The basic processor provides stall-on-use capability, dynamic sup-
port for out-of-order loads and stores, decoupled fetch and execute pipelines, and
a commit/recirculate scheme for pipeline control. The pipeline consists of two fetch
stages (F1 and F2), one instruction decode stage (D1), one issue stage (I1), a
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Figure 3.2: The BOA Processor.

register access stage (RF), one to four execution stages (EX), a broadcast stage
(BC), and a writeback stage (WB). Only static branch prediction is provided, with a
branch misprediction penalty of 7 cycles.

While dynamic scheduling and dynamic branch prediction are considered effec-
tive techniques for increasing the execution rate of a processor, designing for high
frequency allows only limited dynamic processing support. The first support mech-
anism uses register scoreboarding to attempt to lessen the impact of stalled load
operations, enabling in-order issue to continue in the presence of non-dependent
memory stalls. The processor also provides load and store queues for checking
for address conflicts between loads and stores which have been reordered during
translation, as described in Section 2.3. The third dynamic support mechanism
is the use of instruction buffers to decouple the fetch pipeline from the execute
pipeline, which is effective at hiding some of the instruction fetch stall penalties,
improving overall performance.

The final dynamic support mechanism is a novel pipeline control method that
enables the pipeline to automatically advance on each processor cycle [10]. As-
suming the code is scheduled properly, only memory stalls should be capable of
holding up the execution pipeline. Instead of checking for the existence of a stall
before proceeding, the pipeline is automatically advanced every cycle. Upon issu-
ing a new packet, the packet is both issued and copied into the recirculation buffer
(see Figure 3.2), which holds a copy of the contents of every packet currently exe-
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Cache Bytes Line Size Assoc Hit Latency
I1 256K 256 4 1
D1 64K 128 2 4
Shared L2 4M 128 8 14

Table 3.1: BOA Cache Hierarchy

cuting. The existence of a stall in the execution pipeline may then be determined
late in the execution process and indicated to the appropriate packets prior to their
committing results during the writeback stage. The dependent packet and all sub-
sequent packets are canceled and then reissued from the recirculation buffer. The
recirculating packets will repeat the process of issuing, progressing down the ex-
ecution pipeline. While the stall condition remains during reissue, the packets are
continually canceled and reissued from the recirculation buffer until the processor
stall completes. This assumed pipeline advancement strategy simplifies pipeline
control.

The processor contains separate first-level data and instruction caches, and a
joint second level cache. Cache hierarchy details are shown in Table 3.1.

3.3 High Frequency Design Considerations

While a simple instruction set is a requirement for achieving high frequency, many
additional factors go into the design of high frequency processors. One significant
performance limitation is processor control logic. In previous processor genera-
tions, logic delay was the primary limiting factor of processor speed, while wire de-
lay had minimal impact. Newer technologies show wire delay becoming the more
significant factor. Novel microarchitectural design and circuit techniques are nec-
essary to meet the frequency challenge presented by the 1999 ITRS (International
Technology Roadmap for Semiconductors).

The 1999 ITRS calls for achieving a high performance microprocessor with a
2 GHz on-chip clock by the middle of the next decade, while CMOS technology is
predicted to provide only 1:9� increase in FET performance, with an 8� increase
in numbers of transistors per chip over typical 1999 0.18�m CMOS capabilities. To
meet and exceed these cycle time goals, the BOA microarchitecture is designed to
allow a worst case cycle time of 700ps in a current 0.18�m CMOS bulk technology
under nominal process and temperature conditions. This cycle time target repre-
sents more then 50% improvement over reported 0.25�m designs [12, 13] scaled
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to 0.18�m based on the 1997 ITRS roadmap and should allow operation in excess
of 2 GHz in the next few years.

The BOA microarchitecture also accommodates the expected relative increase
in wire delay of future advanced CMOS processes by allowing a full cycle to trans-
mit data across the CPU core, as indicated by the Broadcast Results stage of the
BOA pipeline in Figure 3.2. With these constraints, the BOA pipeline and con-
trol were designed to use static scheduling, in-order execution, and a stall-on-use
scoreboarding method to hide load latencies.

The BOA general purpose register file is implemented as replicated two-read,
six-write register file. Each of the four fixed point units and two load/store units has
its own copy. Coherency is maintained by simultaneous write-back of results to all
six copies.

Floorplanning studies also show a wire length benefit from having separate
GPR copies for each unit.
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Chapter 4

Experimental Results

At the outset, we note that all CPI measurements in this paper refer to PowerPC
equivalent CPI. Thus, if a PowerPC program executes 200 operations, and BOA
requires 100 cycles to execute this program, then the CPI would be 0.50. Our
simulation environment utilized a set of trace-based tools for performance analy-
sis. Both SPECint95 and TPC-C traces were analyzed. Each SPECint95 trace was
composed of 100M operations consisting of 50, 2M operation segments represent-
ing the critical code loops. The TPC-C trace was composed of 170M operations.

4.1 Overhead Calculations and Reporting Technique

In order to get a detailed understanding of BOA architectural performance, a num-
ber of factors were taken into account. These factors included results obtained
directly from the tool set as well as additional CPI performance adders arising from
the binary translation technique. These overheads are dependent on key measure-
ments of both the hardware and attributes of the executing code and are reported
in table 4.1.

The overall CPI was calculated from nine components: the base CPI repre-
sents the execution time of executing VLIW instructions in translated trace groups.
Branch misprediction is modeled separately, and included as branch misprediction
penalty. Cache memory adders account for the cost of cache misses, broken down
as instruction and data cache misses at the first level, and misses from the joint
second level cache. In addition, TLB miss traffic is modeled. The VMM cost is
broken down into the cost of profiling and interpretation, translation, and system
cost for achieving precise exceptions. This cost includes the adverse effects that
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Variable Description Value
R Reuse Rate: precomputed average num-

ber of times a given instruction is reused
in a program

100000

T Retranslation Rate: average number of
times an instruction is translated

calculated at runtime

CPITranslator Translator CPI: estimated average num-
ber of cycles to translate a single instruc-
tion by software

2500

CPIInterpreter Interpreter CPI: estimated average num-
ber of cycles to interpret a single instruc-
tion

20 (30 if looking for
exit points after RFI)

E Exception Rate: estimated average rate of
synchronous exceptions encountered dur-
ing execution

1 exception / 20000
instructions

ICPT I-Cache Pollution Impact per Translation:
we estimate every translation flushes the
first-level instruction cache

2048 lines/cache
* 10 cycles/line =
20480 cycles/cache

P Path Length: number of sequential Pow-
erPC instructions comprising a translation

computed at runtime

Pt Profile Threshold: number of times a pro-
file block must be interpreted before it
triggers translation

15

CPIProfiler Profiler CPI: estimated average number of
cycles to update/create profile block, per
interpreted instruction

100 cycles / 5 in-
structions = 20 cy-
cles/instruction

Table 4.1: Parameters for computing binary translation overhead
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VMM execution has on the memory hierarchy be expelling data and instruction
from caches to hold code from the BOA VMM.

The base CPI is computed as the number of cycles spent executing in transla-
tion groups:

CPIBase =
Cycles Executing BOA Groups

PowerPC Instructions in Those Groups

The cost of translation overhead is computed by amortizing the retranslation
rate T , i.e., the number of times each instruction is translation, over the reuse rate
R and then multiplying it with the cost of translating a single instruction. Translation
causes additional penalties by displacing already translated VLIW code from the
translated program parts from the cache as the translator executes. This event
event occurs in for each translation which is created, but since multiple instructions
are created at the same time, it is amortized over the reuse of all instructions which
have been translated in a group:

CPITranslation =
T

R
� CPITranslator +

ICPT � T

R � P

Detailed analysis of SPECint95 benchmarks as well as real-time instrumenta-
tion of server workloads (such as databases and webserving applications) sug-
gest code reuse rates are substantially greater than our lower bound average of
R = 100; 000. However, there are workloads which have significantly lower reuse
rates, thereby increasing the translation component of CPI.

Interpretation and profiling CPI is computed by estimating that for each transla-
tion T created, the instructions has previously been interpreted a threshold number
Pt and the amortize it over the reuse rate R:

CPIInterp and Profile =
T � Pt

R
� (CPIInterpreter + CPIProfiler)

When the system returns from servicing an exception, a new group is not
formed. Instead, execution is started interpretatively, until an existing group is
found. This is intended to prevent the formation of groups at random starting ad-
dresses in response to exceptions. The cost of this interpretation is a function of
the exception rate E and the average distance of an excepting instruction from the
beginning of the next group approximated as P=2:

CPIException =
E � P

2
� (CPIInterpreter + CPIInterpreter with Exit Check)
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Figure 4.1: BOA Baseline CPI

The memory CPI components are computed by cache simulation, and the
branch misprediction penalty is derived by the frequency of the misprediction rate
of the static branch prediction used in BOA.

4.2 Data and Results

Figure 4.1 details the preliminary BOA CPI performance for the SPECint95 suite
as well as TPC-C (DB2). These results provide the basis for comparison on sub-
sequent data charts. Notice that the two largest components are the Base CPI and
the branch overhead.

In our experimentation, we found quickly that the largest component, the Base
CPI, was a function of achievable dynamic trace size. The reason for this relation-
ship was that the scheduler needed enough operations to optimize effectively. In
order to obtain larger average dynamic trace size, we found the two most relevant
properties were: (1) the static length and (2) “quality” of the traces where quality
refers to a measure of how likely control flow is to reach the end of the trace.

Clearly, there is a balance to be obtained as statically long traces offer opportu-
nity to perform more scheduling, however longer traces also increase the likelihood
of exiting the trace early. An early exit from a trace further detracts from CPI in
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Figure 4.2: Average BOA Trace Sizes

that scheduling opportunity has been lost, since operations from the wrong stream
were executed speculatively. Dynamic trace sizes observed from the experiment
above are shown in Figure 4.2.

Premature group exit has additional associated penalties due to branch mispre-
dictions and instruction cache effects. Since side exit branches within a trace are
predicted to be not taken, branch misprediction occurs on premature group exit.
Branch repair in the current architecture costs 7 cycles, and thus can degrade per-
formance substantially in the case of frequent branch mispredictions. Overly long
static traces also use up instruction cache space, leading to less dense packing
because infrequently executed code at the end of trace segments is interspersed
with more frequently executed code in the same cache line. Thus, fewer frequently
executed instructions can be placed in the instruction cache and higher cache miss
rates result.

We next conducted experiments to increase the static predictability of branches
and thereby enhance the “quality” of traces. This was achieved by profiling branches,
and using selective trace extension: only if a branch was likely to be taken a certain
percentage of the profiled iterations would the trace be extended by appending the
operations at the target of the branch. Otherwise, the trace would be terminated
and a new trace would be started. We expected this approach to drastically reduce
the number of early exits (i.e., branches which are taken out of the trace before the
trace end is reached). Figure 4.3 shows the reduction in early exits achieved for
bias values of 8, 12, and 15 out of 15 iterations. Note how higher bias values for
extending the trace improve the quality of the traces.
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Figure 4.3: Effect of Bias on BOA Early Exits
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Figure 4.4: Effect of Bias on BOA CPI
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Figure 4.5: “Oracle” Static Conditional Branch Prediction

By reducing the number of early exits, we hoped to improve the CPI of the sys-
tem under evaluation. However, Figure 4.4 demonstrates that the reduced num-
ber of early exits and misspeculation cannot compensate for reduced static trace
length, and as a result the overall CPI suffered. The lesson to draw from this is that
static trace length is overall a more important contributor to the average dynamic
trace length and performance than the number of early exits. It is noteworthy that
longer static trace length does result in more code duplication which reduces in-
struction cache effectiveness. This effect is responsible for the reduced instruction
cache CPI adder for higher bias values.

Since our results showed that trace length was key to performance, we pro-
posed an additional experiment where we approximated an upper bound value for
static prediction, which we refer to as “Oracle Static Prediction.” Oracle Static Pre-
diction is based on perfect static branch prediction using profile-directed feedback
from the same run of the trace by processing the trace twice. A first scan through
the trace selects the most likely direction for each branch. This direction was used
in building the traces on a second iteration. Figure 4.5 compares the results ob-
tained for this oracle prediction with our initial baseline results, based on profiling
performed during the interpreted executions of each branch.
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Chapter 5

Conclusion

We have described the BOA architecture, and how dynamic binary translation can
be used to make it compatible with PowerPC. We have also outlined how BOA can
be implemented in a very high speed design, so as to be able to run at a speed of
more than 2 GHz by the middle of the next decade, assuming that the assumptions
in the ITRS Roadmap hold true. The CPI of BOA is around 1, but varies somewhat
across benchmarks in a manner roughly proportional to the dynamic trace size,
thus substantiating the expected result that a larger window of operations permits
better CPI. A CPI of 1 is comparable to that reported for many modern-day su-
perscalar processors, but is a bit worse than that reported for other experimental
architectures. However, BOA is backed up by an extremely high frequency design,
which can compensate for some CPI loss.

Binary translation has been shown to be a viable technique for generating com-
petitive performance on existing workloads. Our analysis suggests that the critical
performance sensitivities are minimizing instruction cache overheads, maximiz-
ing dynamic trace lengths, and effectively managing the amortization of translation
overhead.

The placement of optimized traces in memory allows for efficient prefetching
and helps keep down instruction cache penalties. Saving only the most likely
branch path code minimizes the potential explosive bloating of trace code in mem-
ory (and the subsequent expensive retranslation). We believe that this approach
has managed the instruction cache penalty to the extent that it may be relaxed to
obtain improvements in other areas.

Dynamic trace length optimization appears to be the main source of improve-
ments in CPI. We have shown that with relatively simple profiling and scheduling
we can obtain traces of reasonable length and CPI. Although care must be taken
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to avoid code bloat and attendant instruction cache penalties, we believe that fur-
ther balanced improvements in profiling and scheduling may lead to overall perfor-
mance gains and are an area for future investigation.
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