

RC 21736 (97580) 12 April 2000
Computer Science/Mathematics

IBM Research Report

Using a Mandatory Secrecy and Integrity Policy on
Smart Cards and Mobile Devices

Paul A. Karger, Vernon R. Austel, and David C. Toll
IBM Research Division
Thomas J. Watson Research Center
P. O. Box 704
Yorktown Heights, NY 10598

Research Division

IBM Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

Using a Mandatory Secrecy and Integrity Policy on Smart Cards and
Mobile Devices

Paul A. Karger, Vernon R. Austel, and David C. Toll

IBM Research Division
Thomas J. Watson Research Center

P. O. Box 704
Yorktown Heights, NY 10598

Accepted for publication at the EUROSMART Security Conference

13-15 June 2000, Marseilles, France

1

Using a Mandatory Secrecy and Integrity Policy on Smart Cards and

Mobile Devices

Paul A. Karger, Vernon R. Austel, and David C. Toll
IBM Research Division

Thomas J. Watson Research Center
P. O. Box 704

Yorktown Heights, NY 10598

1 Introduction

IBM®1 has developed a new mandatory security
model, combining both secrecy and commercial
data integrity requirements [16]. This model was
developed as part of an effort to design a high
assurance operating system [6] for the Philips
SmartXA chip – an operating system that could
be evaluated at the highest security levels of the
ITSEC [5] or the Common Criteria [2-4].

This paper shows how using the new security
model can permit applications developers to
solve security-related problems that could never
be addressed before, either in smart cards or in
larger computer systems. In particular, the secu-
rity model and the operating system are designed
to permit in-the-field downloading of applica-
tions written either in native languages (such as
C or assembler) or in interpreted languages (such
as Java Card TM 2). These downloaded applica-
tions could be mutually hostile, yet the operating
system will prevent unauthorized interference
between the applications, yet still allow con-
trolled sharing of information between selected
applications, subject to the constraints of the new
security model.

The paper will cover three hypothetical applica-
tions – an electronic purse, an airline loyalty
scheme, and cell phone – personal digital assis-
tant (PDA) that handles classified message traf-
fic in a military scenario. None of the examples
are intended to be a precise guide to implementa-
tion. The examples are somewhat contrived to
show the use of the security model. Applying
the model in real applications would take signifi-

1 IBM is a trademark of the International Busi-
ness Machines Corporation in the United States,
other countries, or both.
2 Java Card is a trademark of Sun Microsystems,
Inc. in the United States, other countries, or both.

cant application-specific design work. The pa-
per will only summarize the aspects of the pro-
tection model itself. For full details of how the
model was developed, see [16].

2 What are Mandatory Ac-
cess Controls?

There are two primary classes of access controls
in computer systems – discretionary access con-
trols and mandatory access controls.

Discretionary access controls are the commonly
available security controls based on the fully
general Lampson access matrix. They are called
discretionary, because the access rights to an ob-
ject may be determined at the discretion of the
owner or controller of the object. Both access-
control-list and capability systems are examples
of discretionary access controls. The presence of
Trojan horses in the system can cause great diffi-
culties with discretionary controls. The Trojan
horse could surreptitiously change the access
rights on an object or could make a copy of pro-
tected information and give that copy to some
unauthorized user. All forms of discretionary
controls are vulnerable to this type of Trojan-
horse attack.

Mandatory access controls have been developed
to deal with the Trojan horse problems of discre-
tionary access controls. The distinguishing fea-
ture of mandatory access controls is that the sys-
tem manager or security officer may constrain
the owner of an object in determining who may
have access rights to that object. Mandatory ac-
cess controls were developed to solve what
Lampson has called the confinement problem
[17] to control the leaking of information by
Trojan horses.3 Lipner [19] and Denning [12]

3 A full treatment of these issues is beyond the
scope of this paper. The interested reader

2

have shown that for lattice security models,

unlike for fully general access matrices, it is pos-
sible to solve the confinement problem. All
mandatory controls, to date, have been based on
lattice security models. The use of mandatory
access controls in smart cards has been proposed
by Girard of GEMPLUS [14].

A lattice security model consists of a set of ac-
cess classes that form a partial ordering. Any
two access classes may be less than, greater than,
equal to, or not ordered with respect to one an-
other.

2.1 Secrecy Lattices
A very simple secrecy lattice might consist of
two access classes: LOW and HIGH. LOW is
less than HIGH. LOW is system low, and HIGH
is system high. A slightly more complex exa m-
ple might be a list of secrecy levels, such as
UNCLASSIFIED, CONFIDENTIAL, SECRET,
and TOP SECRET. Each level in the list repre-
sents data of increasing secrecy.

There is no requirement for strict hierarchical
relationships between access classes. The U.S.
military services use a set of access classes that
have two parts: a secrecy level and a set of cate-
gories. Categories represent compartments of
information for which an individual must be spe-
cially cleared. To gain access to information in a
category, an individual must be cleared, not only
for the secrecy level of the information, but also
for the specific category. For example, if there
were a category NUCLEAR, and some informa-
tion classified SECRET-NUCLEAR, then an in-
dividual with a TOP SECRET clearance would
not be allowed to see that information, unless the
individual were specifically authorized for the
NUCLEAR category.

Lattice models were first developed at the
MITRE Corporation by Bell and LaPadula [8]
and at Case Western Reserve University by Wal-
ter [24] to formalize the military security model
and to develop techniques for dealing with Tro-
jan horses that attempt to leak information. At
the time, no one knew how to deal with Trojan
horses at all, and it came as quite a surprise that
two quite simple properties could prevent a Tro-

should consult Denning [11, chapters 4 and 5]
for a more complete treatment.

jan horse from compromising sensitive informa-
tion.

First, the simple security property says that if a
subject wishes to gain read access to an object,
the access class of the object must be less than or
equal to the access of the subject. This is just a
formalization of military-security-clearance pro-
cedures that one may not read a document unless
one is properly cleared.
Second, the confinement property or *-property 4
requires that if a subject wishes to gain write ac-
cess to an object, the access class of the subject
must be less than or equal to the access class of
the object. The net effect of enforcing the con-
finement property is that any Trojan horse that
attempts to steal information from a particular
access class cannot store that information any-
where except in objects that are classified at an
access class at least as high as the source of the
information. Thus, the Trojan horse could tam-
per with the information, but it could not dis-
close the information to any unauthorized indi-
vidual. A more detailed discussion of the
confinement property and its interpretation in the
context of a practical time-sharing system can be
found in [8]. A survey on formal security mo d-
els in general can be found in [18].

2.2 Integrity Lattices
Secrecy lattices, while useful for protecting
against unauthorized information disclosure, do
not deal with unauthorized tampering or sabo-
tage of information. The early military models
focused only on secrecy, and even Girard’s pro-
posal [14] for mandatory access control on smart
cards is only a secrecy model. A commercial
system, however, cannot be limited to only pro-
tecting the secrecy of information. Assuring that
information is not tampered with is often much
more important in a commercial setting.
Whether a smart card is used as a cash card or as

4 The confinement property was called the *-
property in [9]. It was so named as a place
holder until a better name could be found. No
better name was found prior to publication, so *-
property was used, and much of the literature on
non-discretionary controls continues to use the
name *-property (pronounced star property). In
1977, Jerry Saltzer [21] urged that a more mean-
ingful name be found. Thus, some of the litera-
ture has since used the term confinement prop-
erty.

3

a loyalty card, ensuring that the correct amount

of money or loyalty points are transferred may
be much more important than keeping secret how
much money or how many loyalty points were
transferred.

Biba [10] developed a model of mandatory integ-
rity that is a mathematical dual of the Bell and
LaPadula mandatory-security model. Biba de-
fines a set of integrity access classes that are
analogous to security access classes and defines
simple-integrity and integrity-confinement prop-
erties that are analogous to the simple-security
and confinement properties. The difference be-
tween integrity and security is that the direction
of the less-than signs are all reversed, so that a
program of high integrity is prevented from read-
ing or executing low integrity objects that could
be the source of tampering or sabotage. The
principal difficulty with the Biba integrity model
is that it does not model any practical system.
Unlike the security models that developed from
existing military security systems, the Biba in-
tegrity model developed from a mathematical
analysis of the security models. However, Biba
did not suggest how to actually decide which
programs deserved a high integrity access class
and which did not. This has made practical ap-
plication of the Biba model very difficult.

Lipner developed a commercial integrity model
[20] that used both the mandatory security and
mandatory integrity models to represent a soft-
ware development environment in a bank. It tied
the integrity modeling closer to reality than the
Biba model did, but it was still quite complex
and did not provide for how to assign integrity
levels to programs, either. To our knowledge, no
effort has been made to actually implement the
Lipner commercial integrity model.

2.3 IBM Combined Secrecy and
Integrity Lattice

How do we actually decide which programs are
worthy of a higher integrity level? Since smart
card issuers will be particularly worried about
the security of applications on their cards (since
they might be held liable in a court), we need to
improve on the Biba model.

The Biba model also prevents high integrity ap-
plications from reading low-integrity data, in fear
that the application might be compromised in
some form. This makes it difficult to describe

applications that have been designed with high
integrity to specifically process low integrity
data input and to rule on its appropriateness.
This processing of low integrity data is called
sanitization. How do we modify the model to
support sanitization (both for integrity and se-
crecy)?

Our new model solves the problem of assigning
integrity levels by using third-party evaluation.
Just as for the ActiveX and Java policies, devel-
opers digitally sign their applications. However,
we go beyond this. If an application has been
independently reviewed and digitally signed by
the certifying body, then we can grant it a higher
level of integrity. For example, we could define
integrity levels for ITSEC [5] or Common Crite-
ria [2-4] evaluated applications. The Commer-
cially Licensed Evaluation Facility (CLEF)
would evaluate the application and the certifying
body would digitally sign the application and its
ITSEC E-level. A card issuer (such as a bank)
might lay a requirement on vendors who want to
download applications onto their cards. Your
application must have received at ITSEC evalua-
tion of some level to be acceptable.

The approach we have defined for assigning
ITSEC E-levels as integrity levels does not ad-
dress integrity categories. Biba defined integrity
categories, and Lipner proposed use of them in
his commercial data integrity model [20]. Inter-
estingly, the Shirley and Schell program integrity
model [23] also does not use integrity catego-
ries. However, we have not yet identified a use
for integrity categories in this new model. We
continue to include them for mathematical com-
pleteness and because someone may develop a
use for integrity categories in the future, but all
examples in this paper will only have integrity
levels.

To solve the sanitization requirements, we will
mark a process with TWO separate integrity ac-
cess classes – one for read permission and one
for write and execute permission. The
write/execute integrity access class will be the
level determined by the independent evaluator.
If the read integrity access class equals the
write/execute class, then we have the standard
Biba model. If the read integrity access class is
lower than the write/execute integrity access
class, then we have a process permitted to sani-
tize and upgrade input that is initially marked at
a low integrity access class. Not just any pro-
gram will be trusted for sanitization, but rather

4

only programs explicitly evaluated for the pur-

pose. Identifying the range of levels across
which a program is allowed to sanitize will be
specified as part of the digitally signed informa-
tion from the CLEF. The operating system ker-
nel will read that information when starting a
program into execution to know what range of
integrity classes to assign the process. Separat-
ing the execute permission from the read permis-
sion originated in the program integrity model of
Shirley and Schell [23]. The policy was further
developed in the GEMSOS security model [22]
that specified a range of levels within which in-
tegrity downgrading could occur.

We do essentially the same for secrecy sanitiza-
tion or downgrading. We define a pair of se-
crecy access classes, rather than integrity levels,
and the read and write rules are reversed. There
would be two secrecy access classes – one for
read/execute and one for write. Note that for se-
crecy, we keep execute tied to read permission,

because a process at a low secrecy level should
not be permitted to execute high secrecy program
code. This is not for anti-piracy purposes, but
rather to maintain the secrecy of algorithms or
constants in the code that must not be revealed,
even by mere use of the program. Software pi-
racy protection is outside the scope of this secu-
rity model.

The combined access rules are shown in Figure
1. Note that we separate execute permission into
two subclasses – normal transfers and a special
CHAIN operation. A normal transfer is the exe-
cution of a branch instruction or a subroutine call
instruction. CHAIN is a way to start a separate
process executing at some other integrity and se-
crecy access class. Due to the limited memory
of a smart card, the process executing the
CHAIN operation is immediately terminated.
The intended use of CHAIN is to start a guard or
sanitization process or for a guard process to
start a recipient of sanitized information.

Read permission
 Secrecy read/execute access class (process) >= secrecy access class (object)
 Integrity read access class (process) <= integrity access class (object)
Write permission
 Secrecy write access class (process) <= secrecy access class (object)

Integrity write/execute access class (process) >= integrity access class (object)
Execute permission
 Transfer
 Secrecy read/execute access class (process) >= secrecy access class (object)
 Integrity write/execute access class (process) <= integrity access class (object)

The target program of a transfer runs at the integrity level of the caller. A high integrity
program cannot call or transfer to lower integrity code.

 Chain
 Secrecy read/execute access class (process) >= secrecy access class (object)
 Secrecy write access class (process) <=

runtime read/execute secrecy class (new process)
 Integrity write/execute access class (process) >=

integrity read access class (new process)
The first rule ensures that chain is possible only to files to which the caller has secrecy
read permission. Integrity read permission is NOT required, because a high integrity
process is always allowed to start a low integrity process. Contrast this with the rule that
a high integrity program is not allowed to transfer directly to a low integrity program in
the same process. The second rule ensures that the target process must have secrecy read
permission to any passed arguments. The third rule ensures that the target process is not
contaminated by a low integrity argument. The target program runs in a new process at
the integrity access class specified in the digitally signed certificate of the program. This
is a very important distinction. The process that issues the CHAIN operation does not de-
termine the access class at which the target process executes. Rather, it is determined by
the third party evaluator and certifying body who have digitally signed the code file.

Figure 1. Access Control Rules

5

3 Electronic Purse Exam-
ple

The simplest example is a smart-card based elec-
tronic purse. The new security goal is to assure
to the merchant terminal that the electronic purse
application is not just genuine, but has been
evaluated to an appropriate level of assurance
under the ITSEC or Common Criteria. Simulta-
neously, the same kind of assurance can be pro-
vided to the purse application on the smart card
that the merchant application has been similarly
evaluated. Such a scenario is shown in Figure 2.

This example has only slightly stronger require-
ments than current conventional smart cards can
meet. The difference is that the new security
model can cryptographically identify the purse
application, and also can identify the level of
evaluation that has been applied to the applica-
tion. This is accomplished by using the com-
mercial data integrity part of the model.

The purse application on the smart card must be
evaluated under the ITSEC scheme, and digitally
signed by the certifying body to have met the re-
quirements of a particular E level. For purposes
of this example, let us assume that purses need to
be evaluated E4. Whenever the smart card is to
be used, mutual authentication must be per-
formed between the card and either the mer-

chant’s terminal or some higher-level server ap-
plication. The digital certificates exchanged
during that mutual authentication must include
the mandatory access class information about
both the smart card application and either the
merchant’s terminal or the higher-level server, as
appropriate. The secure operating systems on
both ends must check the mandatory access
rights before allowing the communications to
proceed. If the merchant terminal is set up to
require an E4-evaluated purse, then unless there
is an appropriate E4 purse on the card, the com-
munications would not even be allowed to start.

The details of the cryptographic protocols to au-
thenticate mandatory access controls cannot be
specified here, due to limitations of space. How-
ever, they would be based on standard public-
key authentication protocols extended by the
MISSI program [7] to include mandatory access
control checks. The MISSI protocols only check
secrecy access classes, but the commercial ver-
sion would include integrity access classes. A
commercial version would also need support for
multi-organizational access classes that are not
supported in MISSI. See [15] for more details.
These authentication protocols would be built
into the smart card operating system and inde-
pendently evaluated for correctness as part of the
ITSEC evaluation of the operating system.

Inserted

Smart Card

Smart Card
Reader

Merchant Terminal
or Server

Figure 2. Electronic Purse Example

4 Airline Loyalty Example
This example shows off more of the features of
the model. Assume that we have an airline loy-
alty program that partners with two different car
rental companies and two different hotel chains.

Assume that those two car rental companies are
mutually hostile (and highly unethical) competi-
tors and would be willing even to plant Trojan
horses into their competitor’s code. This exa m-
ple shows how the new security model can per-
mit each car rental company to download appli-
cations to the same smart card.

6

The two applications can selectively share in-

formation with the airline applications on the
smart card, yet no information can leak from one
car-rental company’s application to the other car-
rental company’s application. Even if the appli-
cations of one car rental company contain delib-
erately planted Trojan horse code, written by a
mole in the first company’s software develop-
ment shop who really works for the second com-
pany.

The example is significantly different from Lip-
ner’s proposals for using non-discretionary con-
trols for commercial applications [20], and we
believe it is more easily understood and imple-
mented. Assume we have an airline A with ties
to hotel chains H and M and rental car chains B
and D. Staying at the hotel chains earns airline
loyalty points. Hotel H gives hotel loyalty points
in addition to airline points, while hotel M gives
hotel points or airline points, but not both. Hotel
H loyalty points and Hotel M loyalty points are
completely separate systems. Furthermore, the
hotel chains consider the information about
where and when the customer has stayed to be
valuable marketing information, since the com-
peting hotel chain could use this information to
do target marketing. However, the customer and
the airline would like all three loyalty systems to
be managed from a single smart card, so that the
customer need only carry one card, and that card
is branded by the airline. Hotel chains H and M
do not trust one another, but are both willing to
cooperate with the airline A.
Based on these assumptions, the software that
manages hotel H loyalty points must behave dif-
ferently from the software that manages hotel M
loyalty points. This is because the hotels have
different policies on double dipping in which the
customer earns points in both hotel and airline
plans. Furthermore, the software for both hotel
chains and for the airline may need periodic up-
dating to reflect limited time special offers (e.g.:
stay five times in one month and earn 500 bonus
points), to reflect newly contracted partners, or
other significant changes. Another type of spe-
cial program that would depend on code on the
smart card itself would be bonuses if you fly the
airline, stay at hotel H, and rent a car from B, all
on the same day. Tracking combined bonuses
like that could be more easily done on the smart
card itself, rather than requiring the central serv-
ers for the airline, the hotel, and the rental car
companies to all communicate with one another.

We define the following secrecy and integrity
levels and categories for the loyalty application:

Integrity Levels: E6 > E5 > E4 > E3 > E2 > E1
Secrecy Levels: System-Low
Secrecy Categories: A, H, M, B, D

There will be data files storing loyalty informa-
tion for each company. Each company will have
a Bell and LaPadula secrecy category. Initially,
the customer goes to the airport to fly on airline
A. The airline’s application with secrecy clear-
ance A will run and grant some airline loyalty
points. These are recorded in a file classified A.
The airline must also make today’s flight infor-
mation available to all partners. It wants to indi-
cate that the customer has flown today, but it
might not want to give full flight details, due to
either company confidentiality concerns and/or
customer privacy concerns. Therefore, it writes
into a different file that is classified system-low
that the customer flew today, but with no further
details. Now any partner application can read
that information. (This assumes that there is
only one airline on the card.) The partner appli-
cations do not run at this time. They are only
invoked when the customer later rents a car or
checks into a hotel.

Now the customer rents a car from company B.
B’s application code runs with secrecy clearance
B and computes how many airline loyalty points
to grant. It must communicate this information
to the airline application, but it does not want the
information to be known by rental car company
D. Furthermore, B may not want A to know eve-
rything about its customer, either. Therefore,
B’s application writes the number of points
earned into a communications file. It then up-
grades the classification of that file to require
both secrecy category A and secrecy category B.
It can do this, because that is a write-up opera-
tion from secrecy level B to secrecy level A and
B. Next, the B application code must start a B-
downgrader process into operation that runs code
at a higher integrity level. The B-downgrader
will hold a secrecy clearance for both categories
A and B. Its program code will be evaluated to a
higher ITSEC level. The B-downgrader will in-
spect the communications file contents and en-
sure that the data being transferred to the airline
does not compromise any of B’s confidential in-
formation. It then downgrades the information
by removing the B secrecy category and passes
the information to the airline’s software which

7

runs in another process with only the A secrecy-

category.

Figure 3 shows the procedure for communication
between rental car company B and airline A
through a guard or downgrader process. Ovals
are processes, and boxes are data files. Arrows
show the direction of information flow, and
lightning bolts show Chain operations.

The net result is that only the program that actu-
ally inspects the information to be passed from B
to A has to undergo a higher-level ITSEC
evaluation. The bulk of the applications code

that runs on behalf of B and on behalf of A can
be either unevaluated or only evaluated to a
lower level.

Now let us consider a more complex exa mple.
Assume that A, B, and H have created a special
bonus program in which if your fly A, rent from
B, and stay at H, all on the same day, then you
get extra bonus points. To implement this, all
three partners must share information, since the
flight, car rental, and hotel stay could happen in
any order.

Process
Rental Car Company B
Secrecy Category: B

Integrity: Low

Process
Airline A

Secrecy Category: A
Integrity: Low

Guard Process
Secrecy Category: B, A

Integrity: High
Permitted to downgrade

Data File
Secrecy Category: B

Integrity: Low

Data File
Secrecy Category: A

Integrity: Low

W
rit

e

Read
Write

R
eadCha

in
Chain

Figure 3. Information flow through a downgrading guard.

Each partner, A, B, and H would need to record
in an individual file that a rental, flight, or hotel
stay had occurred that day. Each of these files
would be marked with all three secrecy catego-
ries A, B, and H. Writing these files is a write-
up operation and does not require special privi-
leges. They would then each start up a high in-
tegrity application that was cleared to read A, B,
and H category information. That application
would check to see if all three transactions had
occurred, and only if all three had occurred, then
and only then would the high integrity applica-
tion downgrade some information to category A
only to award the bonus points. Note that most
of the code for implementing the bonus opera-
tion can be written by each of the partners and
only has access to that partners data. Only the
downgrader needs access to data from all three
partners, and it can be formally evaluated to the

higher integrity level to ensure that it does not
compromise data.

5 Cell-Phone - PDA for Mili-
tary Messaging Example

The most complex example will show how the
model could be used in a cell-phone-based PDA
to be used by a military service. Imagine a cell
phone messaging service issued to a military of-
ficer. That messaging service should allow the
officer to send and receive unclassified messages
from his or her family, confidential messages
concerning routine military operations, and top
secret messages alerting the officer to immediate
war alerts. The messaging software might come
from an Internet-based company that views its
source code as highly proprietary. Therefore, the
code of the messaging system cannot be checked

8

for security. Furthermore, the messages might

be permitted to contain embedded active content
(such as the macros that can be embedded in
word processing packages, such as Microsoft® 5
Word or Lotus® Word Pro TM 6). Such embedded
active content could easily contain viruses or
Trojan horses, as could the messaging software
itself. The conventional approach is to ban such
active content in high security environments.
The paper will show how the new security model
can permit such active content to execute, yet
still ensure that the top secret messages aren’t
compromised.

There are several possible design approaches for
this messaging scenario. Which is best would
depend on the details of the messaging software
itself. The first approach (shown in Figure 4)
would be to maintain several instantiations of the
messaging software, one for each secrecy access
class involved. The messaging software itself
would be stored as a shared read-only program
file in ROM or EEPROM, mapped into the ad-
dress space of each instantiation. There would
be three databases of messages, one at each of
the three access classes – unclassified, confiden-
tial, and top secret. When an incoming message
arrives, a trusted demultiplexer would first mu-
tually authenticate the sender and determine the
appropriate access class. It would then start a
process at that access class, running the read-
only code of the messaging system. The process
would only have write access to the database at
the proper access class, but it could also have
read access to the databases at lower access
classes. This approach minimizes the amount of
trusted, evaluated code required, but when the
user is reading a confidential message, he or she
cannot have access to top secret messages, even
to know whether any such messages exist. This
approach of a totally untrusted messaging system
was first developed for a US Air Force messag-
ing system [1]. That approach ultimately
evolved into the SACDIN network [13], the first
high assurance messaging system ever devel-
oped.

The second approach (shown in Figure 5) would
be to store the messages in a single protected da-
tabase that was inaccessible to the messaging

5 Microsoft is a trademark of Microsoft Corpora-
tion in the United States, other countries, or both.
6 Lotus and Word Pro are trademarks of Lotus
Development Corporation in the United States,
other countries or both.

software. A trusted demultiplexer is still re-
quired, but all the messages can be stored in a
single database. Access to the database would
have to be mediated through a high-integrity
program that was evaluated to a sufficiently high
ITSEC E-level to adequately separate the mes-
sages of different classifications. Such an ap-
proach was taken in the design of message seg-
ments to support multi-level electronic mail in
the Multics system [25], although the message
segments were implemented as part of the oper-
ating system, rather than as a separate high-
integrity application. However, the message
segments were implemented in ring 1, rather
than in the most privileged ring 0, thus making
use of the Shirley and Schell [23] integrity
model.

Both the first and second approaches retain much
of the messaging system software as unevaluated
code, which will significantly reduce the cost of
software development. The third approach
(shown in Figure 6) would be to fully evaluate
the entire messaging system software to a high
ITSEC E-level. Then, the de-multiplexing, mes-
sage processing, and message storage could all
be done in a single monolithic system. The prin-
cipal drawback is that this approach requires all
code undergo a high level ITSEC evaluation,
which would result in the highest development
and evaluation costs. Furthermore, this would
require either that the macro-extension language
be shown totally secure, or require avoiding the
use of such macros entirely. The history of secu-
rity flaws in such macro languages makes it
unlikely that such an extension language could
pass evaluation easily. The only interpreted lan-
guage to successfully pass a high-level ITSEC
evaluation is MEL, the MULTOS Executable
Language, and that evaluation put extreme con-
straints on the language, such as no sharing of
data between applications. MEL is also a much
more constrained language than Visual Basic or
LotusScript.

6 Conclusions

We have developed a new model for mandatory
access controls that solves a number of problems
in the existing Bell and LaPadula model for se-
crecy and the Biba model for integrity. We have
shown several examples of how this model could
be used in smart card and PDA applications.
Will this new model actually prove successful in
the commercial world? It is much too early to

9

tell. None of the previous commercial data in-

tegrity models have truly succeeded in the com-
mercial world, so it would be presumptuous to
claim that this new model will succeed where
previous ones have not. We will not know
whether the new model proposed in this paper
will be commercially successful until the model
has been exposed both to security experts and to
real commercial developers. This paper is a step
in that process.

7 Acknowledgements

We must thank a number of people for their con-
tributions to the development of this model. At
IBM, our work has benefited from the comments
and suggestions of Elaine Palmer (the project
manager), Jonathan Edwards, Helmut Scherzer,
Klaus Gungl, James Riordan, and Günter Kar-
joth. We must also thank Helmut Kurth of
iABG, Stefan Wittmann of BSI, Gerhard Schell-
horn and Wolfgang Reif of the University of
Ulm, and Axel Schairer of the DFKI for their
inputs. Finally, we must thank the anonymous
referees of our earlier paper for pointing out the
relationship of this work to the GEMSOS sys-
tem.

High-Integrity, Multi-Level
Message Demultiplexor

Unclassified Messaging
Process

Confidential Messaging
Process

Top Secret Messaging
Process

Unclassified Messaging
Database

Confidential Messaging
Database

Top Secret Messaging
Database

Chai
n

Chain

Chain

Shared Messaging System
Program Code

Ma
pp

ed
 M

em
ory

Figure 4. Multiple-Instantiation Messaging Approach

10

High-Integrity Multi-
Level Message
Demultiplexor

Unclassified Messaging
Process

Top Secret Messaging
Process

Confidential Messaging
Process

High Integrity Messaging
Database Mediator

Multi-Level Messaging
Database

Chain

Chain

Ch
ain

Chain

Chain

Cha
in

Figure 5. Multi-Level Database Mediator Approach

High-Integrity Multi-Level Messaging
System

Multi-Level Messaging
Database

Figure 6. Monolithic Messaging Approach

References

1. The Feasibility of a Secure Communications
Executive for a Communications System, MCI-
75-10, August 1974, Electronic Systems Divi-
sion: Hanscom AFB, MA.

2. Information technology - Security techniques
-- Evaluation criteria for IT security -- Part 1:
Introduction and general model, ISO/IEC
15408-1, 1999, International Standards Organi-
zation.

3. Information technology - Security techniques
-- Evaluation criteria for IT security -- Part 2:
Security functional requirements, ISO/IEC

11

15408-2, 1999, International Standards Organi-

zation.

4. Information technology - Security techniques
-- Evaluation criteria for IT security -- Part 3:
Security assurance requirements, ISO/IEC
15408-3, 1999, International Standards Organi-
zation.

5. Information Technology Security Evaluation
Criteria (ITSEC), June 1991, Commission of the
European Communities: Brussels, Belgium.

6. Philips Semiconductors and IBM Research to
co-develop secure smart cards: Highly secure
operating system and processor, suitable for
multiple applications, 4 February 1999. URL:
http://www.semiconductors.philips.com/news/co
ntent/file_384.html

7. SDN.801: MISSI Access Control Concept
and Mechanisms, MCCB-04.02.029, ON636216,
Revision C, 12 May 1999, National Security
Agency: Ft. Meade, MD. URL:
http://www.armadillo.huntsville.al.us/Fortezza_d
ocs/sdn801c.pdf

8. Bell, D.E. and L.J. LaPadula, Computer Secu-
rity Model: Unified Exposition and Multics In-
terpretation, ESD-TR-75-306, June 1975, The
MITRE Corporation, Bedford, MA: HQ Elec-
tronic Systems Division, Hanscom AFB, MA.

9. Bell, D.E. and L.J. LaPadula, Secure Com-
puter Systems: A Mathematical Model, ESD-TR-
73-278, Vol. II, November 1973, The MITRE
Corporation, Bedford, MA: HQ Electronic Sys-
tems Division, Hanscom AFB, MA.

10. Biba, K.J., Integrity Considerations for Se-
cure Computer Systems, ESD-TR-76-732, April
1977, The MITRE Corporation, Bedford, MA:
HQ Electronic Systems Division, Hanscom
AFB, MA.

11. Denning, D.E., Cryptography and Data Se-
curity. 1982, Reading, MA: Addison-Wesley.

12. Denning, D.E., A lattice model of secure in-
formation flow. Communications of the ACM,
1976. 19(5): p. 236-243.

13. Ferdman, M. SAC Digital Network
(SACDIN) Security Methodology. in Proceed-
ings of the Fourth Seminar on the DoD Com-
puter Security Initiative . 10-12 August 1981.

Gaithersburg, MD: National Bureau of Stan-
dards. p. G-1 - G-9.

14. Girard, P. Which Security Policy for Mul-
tiapplication Smart Cards? in Proceedings of
the USENIX Workshop on Smartcard Tech-
nology. 10-11 May 1999. Chicago, IL: The
USENIX Association. p. 21-28.

15. Karger, P.A., Multi-Organizational Manda-
tory Access Controls for Commercial Applica-
tions, RC 21673 (97655), 22 February 2000,
IBM Research Division, Thomas J. Watson Re-
search Center: Yorktown Heights, NY. URL:
http://domino.watson.ibm.com/library/CyberDig.
nsf/home

16. Karger, P.A., V.R. Austel, and D.C. Toll, A
New Mandatory Security Policy Combining Se-
crecy and Integrity, RC 21717 (97406), 15
March 2000, IBM Research Division, Thomas J.
Watson Research Center: Yorktown Heights,
NY. URL:
http://domino.watson.ibm.com/library/CyberDig.
nsf/home

17. Lampson, B.W., A note on the confinement
problem. Communications of the ACM, 1973.
16(10): p. 613-615.

18. Landwehr, C.E., Formal Models for Com-
puter Security. Communications of the ACM,
1981. 13(3): p. 247-278.

19. Lipner, S.B., A comment on the confinement
problem. Operating Systems Review, 1975.
9(5): p. 192-196. Proceedings of the Fifth Sym-
posium on Operating Systems Principles.

20. Lipner, S.B. Non-Discretionary Controls for
Commercial Applications. in Proceedings of the
1982 Symposium on Security and Privacy. 26-
28 April 1982. Oakland, CA: IEEE Computer
Society. p. 2-10.

21. Saltzer, J., Personal communication on the
name of the *-property, 1977, Massachusetts
Institute of Technology.

22. Schell, R.R., T.F. Tao, and M. Heckman.
Designing the GEMSOS Security Kernel for Se-
curity and Performance. in Proceedings of the
8th National Computer Security Conference.
30 September - 3 October 1985. Gaithersburg,
MD: DoD Computer Security Center and Na-
tional Bureau of Standards. p. 108-119.

12

23. Shirley, L.J. and R.R. Schell. Mechanism
Sufficiency Validation by Assignment. in Pro-
ceedings of the 1981 Symposium on Security
and Privacy. 27-29 April 1981. Oakland, CA:
IEEE Computer Society. p. 26-32.

24. Walter, K.G., W.F. Ogden, W.C. Rounds,
F.T. Bradshaw, S.R. Ames, and D.G. Shumway,
Primitive Models for Computer Security, ESD-
TR-74-117, 23 January 1974, Case Western Re-
serve University, Cleveland, OH: HQ Electronic
Systems Division, Hanscom AFB, MA.

25. Whitmore, J., A. Bensoussan, P. Green, D.
Hunt, A. Kobziar, and J. Stern, Design for Mul-
tics Security Enhancements, ESD-TR-74-176,
December 1973, Honeywell Information Sys-
tems, Inc., HQ Electronic Systems Division:
Hanscom AFB, MA. URL:
http://csrc.nist.gov/publications/history/whit74.p
df

