
 
RC 21736 (97580) 12 April 2000 
Computer Science/Mathematics 
 

IBM Research Report 
 
Using a Mandatory Secrecy and Integrity Policy on 
Smart Cards and Mobile Devices 
 
 
Paul A. Karger, Vernon R. Austel, and David C. Toll 
IBM Research Division 
Thomas J. Watson Research Center 
P. O. Box 704 
Yorktown Heights, NY 10598 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Research Division 

IBM Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich 



Using a Mandatory Secrecy and Integrity Policy on Smart Cards and 
Mobile Devices 

 
Paul A. Karger, Vernon R. Austel, and David C. Toll 

IBM Research Division 
Thomas J. Watson Research Center 

P. O. Box 704 
Yorktown Heights, NY 10598 

 
Accepted for publication at the EUROSMART Security Conference 

13-15 June 2000, Marseilles, France 
 



 

1

 
Using a Mandatory Secrecy and Integrity Policy on Smart Cards and 

Mobile Devices 
 

Paul A. Karger, Vernon R. Austel, and David C. Toll 
IBM Research Division 

Thomas J. Watson Research Center 
P. O. Box 704 

Yorktown Heights, NY 10598 
 

1 Introduction 
 
IBM®1 has developed a new mandatory security 
model, combining both secrecy and commercial 
data integrity requirements [16].  This model was 
developed as part of an effort to design a high 
assurance operating system [6] for the Philips 
SmartXA chip – an operating system that could 
be evaluated at the highest security levels of the 
ITSEC [5] or the Common Criteria [2-4].   
 
This paper shows how using the new security 
model can permit applications developers to 
solve security-related problems that could never 
be addressed before, either in smart cards or in 
larger computer systems.  In particular, the secu-
rity model and the operating system are designed 
to permit in-the-field downloading of applica-
tions written either in native languages (such as 
C or assembler) or in interpreted languages (such 
as Java Card TM 2).  These downloaded applica-
tions could be mutually hostile, yet the operating 
system will prevent unauthorized interference 
between the applications, yet still allow con-
trolled sharing of information between selected 
applications, subject to the constraints of the new 
security model. 
 
The paper will cover three hypothetical applica-
tions – an electronic purse, an airline loyalty 
scheme, and cell phone – personal digital assis-
tant (PDA) that handles classified message traf-
fic in a military scenario. None of the examples 
are intended to be a precise guide to implementa-
tion.  The examples are somewhat contrived to 
show the use of the security model.  Applying 
the model in real applications would take signifi-
                                                                 
1 IBM is a trademark of the International Busi-
ness Machines Corporation in the United States, 
other countries, or both. 
2 Java Card is a trademark of Sun Microsystems, 
Inc. in the United States, other countries, or both. 

cant application-specific design work.   The pa-
per will only summarize the aspects of the pro-
tection model itself.  For full details of how the 
model was developed, see [16]. 
 

2 What are Mandatory Ac-
cess Controls? 

There are two primary classes of access controls 
in computer systems – discretionary access con-
trols and mandatory access controls.   
 
Discretionary access controls  are the commonly 
available security controls based on the fully 
general Lampson access matrix.  They are called 
discretionary, because the access rights to an ob-
ject may be determined at the discretion of the 
owner or controller of the object.  Both access-
control-list and capability systems are examples 
of discretionary access controls.  The presence of 
Trojan horses in the system can cause great diffi-
culties with discretionary controls.  The Trojan 
horse could surreptitiously change the access 
rights on an object or could make a copy of pro-
tected information and give that copy to some 
unauthorized user.  All forms of discretionary 
controls are vulnerable to this type of Trojan-
horse attack. 
 
Mandatory access controls  have been developed 
to deal with the Trojan horse problems of discre-
tionary access controls.  The distinguishing fea-
ture of mandatory access controls is that the sys-
tem manager or security officer may constrain 
the owner of an object in determining who may 
have access rights to that object.  Mandatory ac-
cess controls were developed to solve what 
Lampson has called the confinement problem 
[17] to control the leaking of information by 
Trojan horses.3  Lipner [19] and Denning [12] 

                                                                 
3 A full treatment of these issues is beyond the 
scope of this paper.   The interested reader 
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have shown that for lattice security models, 

unlike for fully general access matrices, it is pos-
sible to solve the confinement problem.  All 
mandatory controls, to date, have been based on 
lattice security models.  The use of mandatory 
access controls in smart cards has been proposed 
by Girard of GEMPLUS [14]. 
 
A lattice security model consists of a set of ac-
cess classes that form a partial ordering.  Any 
two access classes may be less than, greater than, 
equal to, or not ordered with respect to one an-
other.   
 

2.1 Secrecy Lattices 
A very simple secrecy lattice might consist of 
two access classes: LOW and HIGH. LOW is 
less than HIGH.  LOW is system low, and HIGH 
is system high.  A slightly more complex exa m-
ple might be a list of secrecy levels, such as 
UNCLASSIFIED, CONFIDENTIAL, SECRET, 
and TOP SECRET.  Each level in the list repre-
sents data of increasing secrecy. 
 
There is no requirement for strict hierarchical 
relationships between access classes.  The U.S. 
military services use a set of access classes that 
have two parts: a secrecy level and a set of cate-
gories.  Categories represent compartments of 
information for which an individual must be spe-
cially cleared.  To gain access to information in a 
category, an individual must be cleared, not only 
for the secrecy level of the information, but also 
for the specific category.  For example, if there 
were a category NUCLEAR, and some informa-
tion classified SECRET-NUCLEAR, then an in-
dividual with a TOP SECRET clearance would 
not be allowed to see that information, unless the 
individual were specifically authorized for the 
NUCLEAR category. 
 
Lattice models were first developed at the 
MITRE Corporation by Bell and LaPadula [8] 
and at Case Western Reserve University by Wal-
ter [24] to formalize the military security model 
and to develop techniques for dealing with Tro-
jan horses that attempt to leak information.  At 
the time, no one knew how to deal with Trojan 
horses at all, and it came as quite a surprise that 
two quite simple properties could prevent a Tro-

                                                                                         
should consult Denning [11, chapters 4 and 5] 
for a more complete treatment. 

jan horse from compromising sensitive informa-
tion. 
 
First, the simple security property says that if a 
subject wishes to gain read access to an object, 
the access class of the object must be less than or 
equal to the access of the subject.  This is just a 
formalization of military-security-clearance pro-
cedures that one may not read a document unless 
one is properly cleared. 
Second, the confinement property or *-property 4 
requires that if a subject wishes to gain write ac-
cess to an object, the access class of the subject 
must be less than or equal to the access class of 
the object.  The net effect of enforcing the con-
finement property is that any Trojan horse that 
attempts to steal information from a particular 
access class cannot store that information any-
where except in objects that are classified at an 
access class at least as high as the source of the 
information.  Thus, the Trojan horse could tam-
per with the information, but it could not dis-
close the information to any unauthorized indi-
vidual.  A more detailed discussion of the 
confinement property and its interpretation in the 
context of a practical time-sharing system can be 
found in [8].  A survey on formal security mo d-
els in general can be found in [18]. 
 

2.2 Integrity Lattices 
Secrecy lattices, while useful for protecting 
against unauthorized information disclosure, do 
not deal with unauthorized tampering or sabo-
tage of information.   The early military models 
focused only on secrecy, and even Girard’s pro-
posal [14] for mandatory access control on smart 
cards is only a secrecy model.  A commercial 
system, however, cannot be limited to only pro-
tecting the secrecy of information.  Assuring that 
information is not tampered with is often much 
more important in a commercial setting.  
Whether a smart card is used as a cash card or as 

                                                                 
4 The confinement property was called the *-
property in [9].  It was so named as a place 
holder until a better name could be found.  No 
better name was found prior to publication, so *-
property was used, and much of the literature on 
non-discretionary controls continues to use the 
name *-property  (pronounced star property).  In 
1977, Jerry Saltzer [21] urged that a more mean-
ingful name be found.  Thus, some of the litera-
ture has since used the term confinement prop-
erty.   
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a loyalty card, ensuring that the correct amount 

of money or loyalty points are transferred may 
be much more important than keeping secret how 
much money or how many loyalty points were 
transferred. 
 
Biba [10] developed a model of mandatory integ-
rity that is a mathematical dual of the Bell and 
LaPadula mandatory-security model.  Biba de-
fines a set of integrity access classes that are 
analogous to security access classes and defines 
simple-integrity and integrity-confinement prop-
erties that are analogous to the simple-security 
and confinement properties.  The difference be-
tween integrity and security is that the direction 
of the less-than signs are all reversed, so that a 
program of high integrity is prevented from read-
ing or executing low integrity objects that could 
be the source of tampering or sabotage.  The 
principal difficulty with the Biba integrity model 
is that it does not model any practical system.  
Unlike the security models that developed from 
existing military security systems, the Biba in-
tegrity model developed from a mathematical 
analysis of the security models.  However, Biba 
did not suggest how to actually decide which 
programs deserved a high integrity access class 
and which did not.  This has made practical ap-
plication of the Biba model very difficult. 
 
Lipner developed a commercial integrity model 
[20] that used both the mandatory security and 
mandatory integrity models to represent a soft-
ware development environment in a bank.  It tied 
the integrity modeling closer to reality than the 
Biba model did, but it was still quite complex 
and did not provide for how to assign integrity 
levels to programs, either.  To our knowledge, no 
effort has been made to actually implement the 
Lipner commercial integrity model. 
 

2.3 IBM Combined Secrecy and 
Integrity Lattice 

How do we actually decide which programs are 
worthy of a higher integrity level?  Since smart 
card issuers will be particularly worried about 
the security of applications on their cards (since 
they might be held liable in a court), we need to 
improve on the Biba model.   
 
The Biba model also prevents high integrity ap-
plications from reading low-integrity data, in fear 
that the application might be compromised in 
some form.  This makes it difficult to describe 

applications that have been designed with high 
integrity to specifically process low integrity 
data input and to rule on its appropriateness.  
This processing of low integrity data is called 
sanitization.  How do we modify the model to 
support sanitization (both for integrity and se-
crecy)? 
 
Our new model solves the problem of assigning 
integrity levels by using third-party evaluation.  
Just as for the ActiveX and Java policies, devel-
opers digitally sign their applications.  However, 
we go beyond this.  If an application has been 
independently reviewed and digitally signed by 
the certifying body, then we can grant it a higher 
level of integrity.  For example, we could define 
integrity levels for ITSEC [5] or Common Crite-
ria [2-4] evaluated applications.  The Commer-
cially Licensed Evaluation Facility (CLEF) 
would evaluate the application and the certifying 
body would digitally sign the application and its 
ITSEC E-level.  A card issuer (such as a bank) 
might lay a requirement on vendors who want to 
download applications onto their cards.  Your 
application must have received at ITSEC evalua-
tion of some level to be acceptable. 
 
The approach we have defined for assigning 
ITSEC E-levels as integrity levels does not ad-
dress integrity categories.  Biba defined integrity 
categories, and Lipner proposed use of them in 
his commercial data integrity model [20].  Inter-
estingly, the Shirley and Schell program integrity 
model [23] also does not use integrity catego-
ries.  However, we have not yet identified a use 
for integrity categories in this new model.  We 
continue to include them for mathematical com-
pleteness and because someone may develop a 
use for integrity categories in the future, but all 
examples in this paper will only have integrity 
levels. 
 
To solve the sanitization requirements, we will 
mark a process with TWO separate integrity ac-
cess classes – one for read permission and one 
for write and execute permission.  The 
write/execute integrity access class will be the 
level determined by the independent evaluator.  
If the read integrity access class equals the 
write/execute class, then we have the standard 
Biba model.  If the read integrity access class is 
lower than the write/execute integrity access 
class, then we have a process permitted to sani-
tize and upgrade input that is initially marked at 
a low integrity access class. Not just any pro-
gram will be trusted for sanitization, but rather 
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only programs explicitly evaluated for the pur-

pose.  Identifying the range of levels across 
which a program is allowed to sanitize will be 
specified as part of the digitally signed informa-
tion from the CLEF.  The operating system ker-
nel will read that information when starting a 
program into execution to know what range of 
integrity classes to assign the process.  Separat-
ing the execute permission from the read permis-
sion originated in the program integrity model of 
Shirley and Schell [23].  The policy was further 
developed in the GEMSOS security model [22] 
that specified a range of levels within which in-
tegrity downgrading could occur.   
 
We do essentially the same for secrecy sanitiza-
tion or downgrading.  We define a pair of se-
crecy access classes, rather than integrity levels, 
and the read and write rules are reversed.  There 
would be two secrecy access classes – one for 
read/execute and one for write.  Note that for se-
crecy, we keep execute tied to read permission, 

because a process at a low secrecy level should 
not be permitted to execute high secrecy program 
code.  This is not for anti-piracy purposes, but 
rather to maintain the secrecy of algorithms or 
constants in the code that must not be revealed, 
even by mere use of the program.  Software pi-
racy protection is outside the scope of this secu-
rity model. 
 
The combined access rules are shown in Figure 
1.  Note that we separate execute permission into 
two subclasses – normal transfers and a special 
CHAIN operation.  A normal transfer is the exe-
cution of a branch instruction or a subroutine call 
instruction.  CHAIN is a way to start a separate 
process executing at some other integrity and se-
crecy access class.  Due to the limited memory 
of a smart card, the process executing the 
CHAIN operation is immediately terminated.  
The intended use of CHAIN is to start a guard or 
sanitization process or for a guard process to 
start a recipient of sanitized information.   

 
Read permission 
  Secrecy read/execute access class (process) >= secrecy access class (object) 
  Integrity read access class (process) <= integrity access class (object) 
Write permission 
  Secrecy write access class (process) <= secrecy access class (object) 

Integrity write/execute access class (process) >= integrity access class (object) 
Execute permission 
     Transfer 
  Secrecy read/execute access class (process) >= secrecy access class (object) 
  Integrity write/execute access class (process) <= integrity access class (object) 

The target program of a transfer runs at the integrity level of the caller.   A high integrity 
program cannot call or transfer to lower integrity code. 

     Chain 
  Secrecy read/execute access class (process) >= secrecy access class (object) 
  Secrecy write access class (process) <=  

runtime read/execute secrecy class (new process) 
  Integrity write/execute access class (process) >= 

integrity read access class (new process) 
The first rule ensures that chain is possible only to files to which the caller has secrecy 
read permission.  Integrity read permission is NOT required, because a high integrity 
process is always allowed to start a low integrity process.  Contrast this with the rule that 
a high integrity program is not allowed to transfer directly to a low integrity program in 
the same process.  The second rule ensures that the target process must have secrecy read 
permission to any passed arguments.  The third rule ensures that the target process is not 
contaminated by a low integrity argument.  The target program runs in a new process at 
the integrity access class specified in the digitally signed certificate of the program.  This 
is a very important distinction.  The process that issues the CHAIN operation does not de-
termine the access class at which the target process executes.  Rather, it is determined by 
the third party evaluator and certifying body who have digitally signed the code file. 

Figure 1.  Access Control Rules
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3 Electronic Purse Exam-
ple 

The simplest example is a smart-card based elec-
tronic purse.   The new security goal is to assure 
to the merchant terminal that the electronic purse 
application is not just genuine, but has been 
evaluated to an appropriate level of assurance 
under the ITSEC or Common Criteria.  Simulta-
neously, the same kind of assurance can be pro-
vided to the purse application on the smart card 
that the merchant application has been similarly 
evaluated.  Such a scenario is shown in Figure 2. 
 
This example has only slightly stronger require-
ments than current conventional smart cards can 
meet.  The difference is that the new security 
model can cryptographically identify the purse 
application, and also can identify the level of 
evaluation that has been applied to the applica-
tion.  This is accomplished by using the com-
mercial data integrity part of the model. 
 
The purse application on the smart card must be 
evaluated under the ITSEC scheme, and digitally 
signed by the certifying body to have met the re-
quirements of a particular E level.  For purposes 
of this example, let us assume that purses need to 
be evaluated E4.  Whenever the smart card is to 
be used, mutual authentication must be per-
formed between the card and either the mer-

chant’s terminal or some higher-level server ap-
plication.  The digital certificates exchanged 
during that mutual authentication must include 
the mandatory access class information about 
both the smart card application and either the 
merchant’s terminal or the higher-level server, as 
appropriate.  The secure operating systems on 
both ends must check the mandatory access 
rights before allowing the communications to 
proceed.  If the merchant terminal is set up to 
require an E4-evaluated purse, then unless there 
is an appropriate E4 purse on the card, the com-
munications would not even be allowed to start. 
 
The details of the cryptographic protocols to au-
thenticate mandatory access controls cannot be 
specified here, due to limitations of space.  How-
ever, they would be based on standard public-
key authentication protocols extended by the 
MISSI program [7] to include mandatory access 
control checks.  The MISSI protocols only check 
secrecy access classes, but the commercial ver-
sion would include integrity access classes.  A 
commercial version would also need support for 
multi-organizational access classes that are not 
supported in MISSI.  See [15] for more details.  
These authentication protocols would be built 
into the smart card operating system and inde-
pendently evaluated for correctness as part of the 
ITSEC evaluation of the operating system. 
 

 
 
 

Inserted

Smart Card

Smart Card
Reader

Merchant Terminal
or Server

 

Figure 2.  Electronic Purse Example

4 Airline Loyalty Example 
This example shows off more of the features of 
the model.   Assume that we have an airline loy-
alty program that partners with two different car 
rental companies and two different hotel chains.   

Assume that those two car rental companies are 
mutually hostile (and highly unethical) competi-
tors and would be willing even to plant Trojan 
horses into their competitor’s code.   This exa m-
ple shows how the new security model can per-
mit each car rental company to download appli-
cations to the same smart card. 
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The two applications can selectively share in-

formation with the airline applications on the 
smart card, yet no information can leak from one 
car-rental company’s application to the other car-
rental company’s application.  Even if the appli-
cations of one car rental company contain delib-
erately planted Trojan horse code, written by a 
mole in the first company’s software develop-
ment shop who really works for the second com-
pany. 
 
The example is significantly different from Lip-
ner’s proposals for using non-discretionary con-
trols for commercial applications [20], and we 
believe it is more easily understood and imple-
mented.  Assume we have an airline A with ties 
to hotel chains H and M and rental car chains B 
and D.  Staying at the hotel chains earns airline 
loyalty points.  Hotel H gives hotel loyalty points 
in addition to airline points, while hotel M gives 
hotel points or airline points, but not both.  Hotel 
H loyalty points and Hotel M loyalty points are 
completely separate systems.  Furthermore, the 
hotel chains consider the information about 
where and when the customer has stayed to be 
valuable marketing information, since the com-
peting hotel chain could use this information to 
do target marketing.  However, the customer and 
the airline would like all three loyalty systems to 
be managed from a single smart card, so that the 
customer need only carry one card, and that card 
is branded by the airline.  Hotel chains H and M 
do not trust one another, but are both willing to 
cooperate with the airline A.   
Based on these assumptions, the software that 
manages hotel H loyalty points must behave dif-
ferently from the software that manages hotel M 
loyalty points.  This is because the hotels have 
different policies on double dipping in which the 
customer earns points in both hotel and airline 
plans.  Furthermore, the software for both hotel 
chains and for the airline may need periodic up-
dating to reflect limited time special offers (e.g.: 
stay five times in one month and earn 500 bonus 
points), to reflect newly contracted partners, or 
other significant changes.  Another type of spe-
cial program that would depend on code on the 
smart card itself would be bonuses if you fly the 
airline, stay at hotel H, and rent a car from B, all 
on the same day.  Tracking combined bonuses 
like that could be more easily done on the smart 
card itself, rather than requiring the central serv-
ers for the airline, the hotel, and the rental car 
companies to all communicate with one another.   
 

We define the following secrecy and integrity 
levels and categories for the loyalty application: 
 
Integrity Levels: E6 > E5 > E4 > E3 > E2 > E1 
Secrecy Levels: System-Low 
Secrecy Categories:  A, H, M, B, D 
 
There will be data files storing loyalty informa-
tion for each company.  Each company will have 
a Bell and LaPadula secrecy category.  Initially, 
the customer goes to the airport to fly on airline 
A.  The airline’s application with secrecy clear-
ance A will run and grant some airline loyalty 
points. These are recorded in a file classified A.  
The airline must also make today’s flight infor-
mation available to all partners.  It wants to indi-
cate that the customer has flown today, but it 
might not want to give full flight details, due to 
either company confidentiality concerns and/or 
customer privacy concerns.  Therefore, it writes 
into a different file that is classified system-low 
that the customer flew today, but with no further 
details.  Now any partner application can read 
that information.  (This assumes that there is 
only one airline on the card.)  The partner appli-
cations do not run at this time.  They are only 
invoked when the customer later rents a car or 
checks into a hotel. 
 

Now the customer rents a car from company B.  
B’s application code runs with secrecy clearance 
B and computes how many airline loyalty points 
to grant.  It must communicate this information 
to the airline application, but it does not want the 
information to be known by rental car company 
D.  Furthermore, B may not want A to know eve-
rything about its customer, either.  Therefore, 
B’s application writes the number of points 
earned into a communications file.  It then up-
grades the classification of that file to require 
both secrecy category A and secrecy category B.  
It can do this, because that is a write-up opera-
tion from secrecy level B to secrecy level A and 
B.   Next, the B application code must start a B-
downgrader process into operation that runs code 
at a higher integrity level.   The B-downgrader 
will hold a secrecy clearance for both categories 
A and B.  Its program code will be evaluated to a 
higher ITSEC level.  The B-downgrader will in-
spect the communications file contents and en-
sure that the data being transferred to the airline 
does not compromise any of B’s confidential in-
formation.  It then downgrades the information 
by removing the B secrecy category and passes 
the information to the airline’s software which 
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runs in another process with only the A secrecy-

category.   

Figure 3 shows the procedure for communication 
between rental car company B and airline A 
through a guard or downgrader process.  Ovals 
are processes, and boxes are data files.  Arrows 
show the direction of information flow, and 
lightning bolts show Chain operations. 

The net result is that only the program that actu-
ally inspects the information to be passed from B 
to A has to undergo a higher-level ITSEC 
evaluation.  The bulk of the applications code 

that runs on behalf of B and on behalf of A can 
be either unevaluated or only evaluated to a 
lower level. 
 
Now let us consider a more complex exa mple.  
Assume that A, B, and H have created a special 
bonus program in which if your fly A, rent from 
B, and stay at H, all on the same day, then you 
get extra bonus points.  To implement this, all 
three partners must share information, since the 
flight, car rental, and hotel stay could happen in 
any order. 

 

Process
Rental Car Company B
Secrecy Category: B

Integrity: Low

Process
Airline A

Secrecy Category: A
Integrity: Low

Guard Process
Secrecy Category: B, A

Integrity: High
Permitted to downgrade

Data File
Secrecy Category: B

Integrity: Low

Data File
Secrecy Category: A

Integrity: Low

W
rit

e

Read
Write

R
eadCha

in
Chain

 

Figure 3.  Information flow through a downgrading guard. 

 
Each partner, A, B, and H would need to record 
in an individual file that a rental, flight, or hotel 
stay had occurred that day.  Each of these files 
would be marked with all three secrecy catego-
ries A, B, and H.  Writing these files is a write-
up operation and does not require special privi-
leges.  They would then each start up a high in-
tegrity application that was cleared to read A, B, 
and H category information.  That application 
would check to see if all three transactions had 
occurred, and only if all three had occurred, then 
and only then would the high integrity applica-
tion downgrade some information to category A 
only to award the bonus points.  Note that most 
of the code for implementing the bonus opera-
tion can be written by each of the partners and 
only has access to that partners data.  Only the 
downgrader needs access to data from all three 
partners, and it can be formally evaluated to the 

higher integrity level to ensure that it does not 
compromise data. 

5 Cell-Phone - PDA for Mili-
tary Messaging Example 

The most complex example will show how the 
model could be used in a cell-phone-based PDA 
to be used by a military service.   Imagine a cell 
phone messaging service issued to a military of-
ficer.   That messaging service should allow the 
officer to send and receive unclassified messages 
from his or her family, confidential messages 
concerning routine military operations, and top 
secret messages alerting the officer to immediate 
war alerts.   The messaging software might come 
from an Internet-based company that views its 
source code as highly proprietary.  Therefore, the 
code of the messaging system cannot be checked 
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for security.  Furthermore, the messages might 

be permitted to contain embedded active content 
(such as the macros that can be embedded in 
word processing packages, such as Microsoft® 5 
Word or Lotus® Word Pro TM 6).  Such embedded 
active content could easily contain viruses or 
Trojan horses, as could the messaging software 
itself.   The conventional approach is to ban such 
active content in high security environments.   
The paper will show how the new security model 
can permit such active content to execute, yet 
still ensure that the top secret messages aren’t 
compromised. 
  
There are several possible design approaches for 
this messaging scenario.  Which is best would 
depend on the details of the messaging software 
itself.  The first approach (shown in Figure 4) 
would be to maintain several instantiations of the 
messaging software, one for each secrecy access 
class involved.  The messaging software itself 
would be stored as a shared read-only program 
file in ROM or EEPROM, mapped into the ad-
dress space of each instantiation.  There would 
be three databases of messages, one at each of 
the three access classes – unclassified, confiden-
tial, and top secret.  When an incoming message 
arrives, a trusted demultiplexer would first mu-
tually authenticate the sender and determine the 
appropriate access class.  It would then start a 
process at that access class, running the read-
only code of the messaging system.  The process 
would only have write access to the database at 
the proper access class, but it could also have 
read access to the databases at lower access 
classes.  This approach minimizes the amount of 
trusted, evaluated code required, but when the 
user is reading a confidential message, he or she 
cannot have access to top secret messages, even 
to know whether any such messages exist.  This 
approach of a totally untrusted messaging system 
was first developed for a US Air Force messag-
ing system [1].  That approach ultimately 
evolved into the SACDIN network [13], the first 
high assurance messaging system ever devel-
oped. 
 
The second approach (shown in Figure 5) would 
be to store the messages in a single protected da-
tabase that was inaccessible to the messaging 

                                                                 
5 Microsoft is a trademark of Microsoft Corpora-
tion in the United States, other countries, or both. 
6 Lotus and Word Pro are trademarks of Lotus 
Development Corporation in the United States, 
other countries or both. 

software.  A trusted demultiplexer is still re-
quired, but all the messages can be stored in a 
single database.  Access to the database would 
have to be mediated through a high-integrity 
program that was evaluated to a sufficiently high 
ITSEC E-level to adequately separate the mes-
sages of different classifications.  Such an ap-
proach was taken in the design of message seg-
ments to support multi-level electronic mail in 
the Multics system [25], although the message 
segments were implemented as part of the oper-
ating system, rather than as a separate high-
integrity application.  However, the message 
segments were implemented in ring 1, rather 
than in the most privileged ring 0, thus making 
use of the Shirley and Schell [23] integrity 
model. 
 
Both the first and second approaches retain much 
of the messaging system software as unevaluated 
code, which will significantly reduce the cost of 
software development.  The third approach 
(shown in Figure 6) would be to fully evaluate 
the entire messaging system software to a high 
ITSEC E-level.  Then, the de-multiplexing, mes-
sage processing, and message storage could all 
be done in a single monolithic system.  The prin-
cipal drawback is that this approach requires all 
code undergo a high level ITSEC evaluation, 
which would result in the highest development 
and evaluation costs.  Furthermore, this would 
require either that the macro-extension language 
be shown totally secure, or require avoiding the 
use of such macros entirely.  The history of secu-
rity flaws in such macro languages makes it 
unlikely that such an extension language could 
pass evaluation easily.  The only interpreted lan-
guage to successfully pass a high-level ITSEC 
evaluation is MEL, the  MULTOS Executable 
Language, and that evaluation put extreme con-
straints on the language, such as no sharing of 
data between applications.  MEL is also a much 
more constrained language than Visual Basic or 
LotusScript. 

6 Conclusions 
 
We have developed a new model for mandatory 
access controls that solves a number of problems 
in the existing Bell and LaPadula model for se-
crecy and the Biba model for integrity.   We have 
shown several examples of how this model could 
be used in smart card and PDA applications.  
Will this new model actually prove successful in 
the commercial world?  It is much too early to 
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tell.  None of the previous commercial data in-

tegrity models have truly succeeded in the com-
mercial world, so it would be presumptuous to 
claim that this new model will succeed where 
previous ones have not.   We will not know 
whether the new model proposed in this paper 
will be commercially successful until the model 
has been exposed both to security experts and to 
real commercial developers.  This paper is a step 
in that process. 
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