RC 21769 (98003) (06/01/2000)
Computer Science/Mathematics

IBM Research Report

Managing Management Systems:
A Distributed Applications Management Scenario

Alexander Keller

IBM Research Division
T.J. Watson Research Center
Yorktown Heights, New York

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publi-
cation. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright
to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and
specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the arti-
cle (e.g., payment of royalties). Some reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.
Copies may be requested from IBM T.J. Watson Research Center, 16-220, P.O. Box 218, Yorktown Heights, NY 10598 or

send email to reports@us.ibm.com.

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - T.J. Watson - Tokyo - Zurich

This page intentionally left blank.

Managing Management Systems:
A Distributed Applications Management Scenario

Alexander Keller
IBM Research Division, T. J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY, USA
Telephone: (914) 784 7593, Telefax: (914) 784 6183
E-Mail: alexk@us.ibm.com

Abstract

In today’s networks where an arbitrary number of service providers needs to dynamically exchange
customer- and system-related data, the integrated management of networks, systems and applications is
a challenge. Management systems play a strategic role for enabling seamless interworking because they
contain the management information that has to be shared between service providers in order to moni-
tor and enforce service level agreements. However, this interworking is difficult to achieve: On the one
hand, different service providers have chosen different management systems that are bound to specific,
standardized management architectures and, due to the heterogeneity of the underlying frameworks, do
not interoperate easily. Solutions for achieving interoperability between heterogeneous frameworks are
one key factor towards integrated enterprise management and have been studied in the past. On the other
hand, the provisioning of management instrumentation for the management systems themselves is a yet
unresolved problem although the need for such a solution becomes apparent. Furhermore, management
systems are a characteristic example of distributed applications: Developing a methodology for man-
aging management systems helps also to understand which information and services are needed for the
administration and control of distributed applications — an important and particularly complex field of
investigation which is only starting to get attention.

The paper presents a novel approach to this problem by defining a management object model and
appropriate instrumentation for management systems. It can be regarded as a step towards integrated
enterprise management and is based on the Common Information Model (CIM) and the viewpoint lan-
guages and concepts of RM-ODP; their generic management models for distributed applications are then
refined to handle the specifics of management systems. A CORBA/Java-based prototype implementation
for managing management systems illustrates the applicability of our concepts.

Keywords: Application Management, Enterprise Management, Management Models, ODP, CIM, CORBA

1 Introduction and Motivation

The question “what are the characteristics of distributed applications from a management point of view?”
is a current research topic [40, 7, 4]. Compared to other management areas, there is still a lack of common
understanding how the static and dynamic aspects of distributed applications can be captured: Within other
areas, there are models like the OSI Reference Model or the IP architectural concepts. Based on these and
on many years of experience, there is a common understanding about what makes up a router, switch or
other networking devices from a management point of view.

In order to describe these characteristics, we first need a framework for describing management objects
representing (distributed) applications and their relationships. This framework must allow us to describe
relevant aspects of any distributed application in a way that is suitable for all functional areas of manage-
ment (Fault, Configuration, Accounting, Performance, Security — FCAPS). For example, it has to allow the
specification of relevant aspects that arise e.g., from software management and distribution on the one hand

Role Service Management Software Management
Architecture

E & E L
End User WWW Browser £ B "Java/WWW"

/

stem/Appl. Service
eeeeeeeeeeeeeee > s <=

Service Provider Tivoli TME10 CORBA
IP Provider HP OpenView NNM Internet
Network Provider IBM TMN Products OSI/TMN

Figure 1: Service provider hierarchies require cooperation of management systems

and from the need to monitor the status of processes, their ability to communicate etc. and initiate corrective
actions (in case of faults) on the other hand.

Integrated management solutions based on standardized management architectures aim to support the
network and service providers’ efforts in maintaining a high degree of quality and availability of their ser-
vices while decreasing the cost of running the information technology infrastructure. Although providers
can choose their management solution from a large number of implementations, the increasing complexity
and heterogeneity of distributed systems still represents a major challenge for the Operation, Administra-
tion, Maintenance and Provisioning (OAM&P) of large-scale public and corporate networks.

From a management point of view, the situation has become more complicated due to the implications
of telecom deregulation: Nowadays, an enterprise is not only free to choose between numerous IT service
providers and network carriers but also needs to verify the QoS of the subscribed services. In addition, the
role of the Internet Protocol (IP) as “lingua franca” for worldwide data communication and the layering of its
standardized services and protocols (e.g., EMail (SMTP), Domain Name Service (DNS), World Wide Web
(HTTP)) present opportunities of outsourcing IT activities for cost savings. This leads to layered service
provider hierarchies as depicted in the left part of Figure 1 where a service provider is at the same time the
customer of another provider: The provisioning of end-user services such as electronic mail, WWW and
DNS therefore depends on the availability of the IP service which, in turn, requires e.g., an ATM service.
The problem domain dealing with the fulfillment 8ervice-level Agreements (SUAB] between service
providers and their users is currently a subject of ongoing research (see e.g., [6]).

In this paper, we will concentrate on the right part of Figure 1, i.e., the questioMamagement Sys-
temsof service providers and customers can cooperate effectively. Today, itis very likely that these systems
cannot interoperate seamlessly because different service providers usually deploy management systems that
differ not only by their vendor (IBM/Tivoli, HP, CA), but also by the underlying management framework
(OSI/TMN, Internet, CORBA, Java/WWW, proprietary). Furthermore, when these systems were initially
purchased, there was often no need to exchange management information with peer management systems
operated by another authority. This situation has changed considerably: End users now want to check the
quality of their subscribed services by retrieving data with WWW browsers from SNMP-based manage-
ment systems, and SNMP-based management systems that initially controlled the local area networks of an
enterprise need to exchange management information with TMN-compliant management systems survey-
ing long-haul telephony links. As management systems are the point of control for services and networks,
management policies have to be enforced and surveyed by them. All this makes management systems
crucial for successful enterprise management. It is therefore not only necessary to (re-)configure manage-

ment systems at runtime but also to control whether they are working properly. This paper presents an
CIM/RM-ODP/CORBA-based approach to tackle this problem.

The above discussion shows that three questions must be answered to ensure the successful deployment
of management systems in an open service market:

1. How can we achievinteroperability between management systems, i.e., which mechanisms are
needed so that they can exchange information with each other, even if they are based upon different
managementarchitectures? The integration of managementarchitectures, i.e., establishing a so-called
“Umbrella Management” is currently a large field of investigation [13]; section 3.1 gives an overview
on promising approaches.

2. What managementinformation is needed for managing management systems? What are the manage-
ment requirements and how does an appropriate model of management systems look like? Section
3.2 focuses on the aspects of management informatterchange.

3. Which specific services are needed for managing management systems? How does an architecture
for the Interworking between management services in a distributed object-oriented environment
look like? Section 3.3 examines these issues.

Some questions relating to the design of a Management Information Base (MIB) for management sys-
tems are: How is the management model structured? Can we take object classes specified by standardized
models as base Managed Object Classes (MOCs) for our model? In section 2, we elaborate on the specific
characteristics of management systems and derive their requirements. We will then present in section 3
current methods and promising approaches for dealing with the overall problem of managing distributed
applications in heterogeneous environments. This allows us to identify the main issues that must be taken
into account when building management models for distributed applications and services. During our work,
the notion of “application lifecycle” has turned out to be particularly useful for capturing the different
phases of distributed applications. We describe these aspects in section 4 by means of an example, namely
a management system that has been the target of our work. The identification of four aspects gives us the
opportunity to evaluate several standardization initiatives with respect to their coverage of the different ap-
plication phases. Section 5 focuses on the principles that guided us in designing our management model and
how we made use of RM-ODP and CIM concepts. We also describe the application of the Unified Modeling
Language (UML) and the impact of CASE technology on the design of the object model. In addition, we
provide an overview of our implementation and how general-purpose distributed object technologies such
as CORBA and Java were used for the prototype. Section 6 concludes the paper and presents issues for
further research.

2 Requirements Analysis

This section analyses the properties of management systems and the requirements regarding the necessary
management information and management services, respectively. It provides the conceptual background
and helps to identify important features needed for the definition of the object model for management
systems, described in section 5.

2.1 Characteristics of Management Systems

The way how management systems are deployed today is by establishing well-defined, central points of
control, termednanagement platformsee [11] and [5]). As outlined in previous studies [44], platforms

tend to become bottlenecks in large networks and a solution to this problem is to distribute their function-
ality (e.g., topology functions, event filtering mechanisms, logging facilities) in order to reduce the load

on the central management system. The standard solution to address this issue is by introducing subordi-
nate management systems acting in the roMidfLevel Managers (MLMs) ; they are located close to the
managed resources and execute management functions on behalf of other management systems. Their main

purpose is to condense raw data stemming from the resources into meaningful management information that
can then be used by another management system. This may also include the caching of frequently accessed
information such as topology data of the underlying systems. These properties obviously reduce the amount
of overall traffic that is sent through the network for management purposes. MLMs are an effective mech-
anism for structuring networks into domains and are used for establishing management hierarchies. An
extension of this concept is to delegate (and withdraw) management functionality to MLMs at runtime [12].
This delegation may either be initiated by the MLM itself (pull model) or by another management system
(push model). The interworking between management systems of different service providers as described
in section 1 can be seen as a special case of interactions between different MLMs. Consequently, the above
mentioned principles apply also to independent management systems operated by different authorities.

Further complexity is introduced by the heterogeneity of the deployed management architec-
turesManagement Gatewaysare a convenient mechanism for achieving interoperability between hetero-
geneous management systems. They are located on the boundaries of different (architectural and organi-
zational) management domains and are perceived as Mid-Level Managers by other management systems.
As management gateways are aware of the architectural specifics of the underlying resources, it therefore
makes sense to provide them with the same management functionality as MLMs. Such an enhanced man-
agement gateway could e.g., condense several SNMP-traps into one CORBA-event instead of translating
every trap into one event and leaving the filtering of these events to the management system one level above
in the service provider hierarchy. This implies that providers need an instrumentation for these systems in
order to present a unified view on their management data to customers; the amount of accessible information
is usually specified in a service contract.

Although some existing management frameworks provide mechanisms of inter-manager-
communication (OSI/TMN: x reference point, SNMP: inform-pdu), it is currently not clear what an
appropriate management model for controlling management systems should look like and what actions
may be initiated by a management system on behalf of another one. We will now first describe what kind
of management information ought to be present in an object model for managing management systems and
will then move on to the required management services, i.e., the functionality that management systems
may provide for interacting with peers. The identification of management information and management
functionality was based on a use case analysis applied to typical management scenarios. For the sake of
brevity, we can only describe a small part of the amount of management instrumentation identified in our
analysis. The complete set is described in [27].

2.2 Management Information

As with any other kind of managed resource, generic configuration management information (manufacturer,
product name and version, installation date, etc.) and properties relevant for fault management (support con-
tact, time since last restart and its usage, operational and administrative states) are relevant for managing
management systems. If a management system supports delegation, information about the supported script-
ing languages or the version of the execution engines should be available. From the inventory perspective,

it is also necessary to provide an overview of the installed components, their versions and their states (e.qg.,
the installed system modules, the database and the management applications, the type of available delegated
management functionality) and the corresponding process names.

The gathering of licensing data relevant for accounting management such as the kind of product license
(nodelocked, domain-bound, floating), the maximum and the actual amount of management system users
is necessary because many commercial management system products are equipped with license servers. A
high amount of rejected requests due to an insufficient number of licenses indicates the need to acquire
additional licenses. This may either concern the number of concurrent users of the management system or
the number of managed nodes. Appropriate counters need to be provided.

Security is a major concern in distributed environments where several management systems are acting
as peers: there is a need to provide information about the management domains a management system
is involved in and the agents, MLMs and management gateways it is responsible for. If a management
system is able to configure another one, every involved system needs to maintain on the one hand view-

related access control mechanisms for protecting itself against unauthorized access and, on the other hand,
information about its own capability set, i.e., what kind of interactions with peer management systems are
permitted.

Performance-related information includes parameters for configuring MLM caching properties such
as the cache size or the maximum aging time for the cached data. Counters for the time a management
system takes for serving a request and the number of requests per (user-configurable) interval may indicate
performance bottlenecks requiring additional MLMs.

Additional information needed to control management gateways encompasses the architectures the man-
agement gateway translates, the names and versions of the management information models and protocols
supported. Of equal importance are counters for (successful, erroneous) translated protocol data units and
information related to the mapping of managed object references.

2.3 Management Services

This section will sketch a subset of the overall management functionality that is needed for management
systems in order to interwork properly.

Configuration management services provide the ease of introducing new management systems into
distributed environments by dynamically assigning them configuration profiles covering domain affiliation
and polling intervals. A management system therefore needs to provide functionality for downloading
initial configuration profiles to other management systems. If delegation is supported, the usual operations
that apply to delegated management functionality (start, stop, suspend, resume etc.) should be present.

Of major importance for fault management are basic operations such as verifying whether all the com-
ponents of a management system are running and services for (re-)starting or stopping either the complete
management system or selected components should be available. Checking the consistency of the manage-
ment system database and the execution of maintenance (e.g., backup and restore) and error detection tasks
need also to be done at regular intervals that may require scheduling mechanisms. In case of errors, the event
and error logs maintained by a management system provide a rich source of information for determining
the probable cause of failures; consequently, facilities for browsing and searching these logs according to
different criteria should be available.

The configuration of event forwarding mechanisms, the initiation of management operations on peer
management systems and the registration of a management system for specific events require security ser-
vices to ensure that no security policy is violated.

Services related to performance and accounting management include the generation of reports on re-
sources administered by a specific management system (statistics, system parameters filtered according to
different criteria such as throughput, delay, load and usage) and should therefore be made available to net-
work administrators. In addition, parameters such as the ratio of application messages to network packets,
the percentage an I/O device is busy, the queueing delay while a process is ready and waiting for CPU are
useful to derive performance metrics for a (management) system. Note that the usability of these parameters
depends to a high degree from the policies defined by the organization that deploys the management system:
The selected systems, the probing intervals for the aforementioned metrics and the way these metrics are
combined reflect the policies of an enterprise. It is therefore necessary to pirmliddually configurable
management functionalitp create meaningful information from available management data. Section 3.3
elaborates on this aspect.

3 State of the Art in Distributed Application Management

Early research in application management has focused primarily on solutions based on the OSI management
architecture [15]; the emerging Common Object Request Broker Architecture with its CORBAservices al-
lowed the exploitation of mainstream object-oriented technologies for systems and application management
[37, 36]. However, the considerable delays in the adoption of appropriate CORBAservices postponed the
availability of CORBA-based management [26]. Meanwhile, vendors have developed their own, propri-
etary infrastructures to satisfy the rapidly increasing demand for the end-to-end management of enterprise

Organizational Management
Evaluation Criteria Policies Conditions Requirements

Y Y YV Y

Top-Down

Goal-oriented View

Technology-oriented

View
o < Object Request Broker > N
2 ¥ ’ I v
= Agent Agent 1 + Telco Switch
g Router Ethernet-Switch @ ' /N E?
3 N
Internet (SNMP) CORBA OSI/TMN

Figure 2: Umbrella Management as a basis for Enterprise Management

applications and services [17]. All these approaches have in common that they assume a homogeneous
management infrastructure; however, this is usually not the case, as the previous sections have pointed out.
This section describes the prerequisite steps and the essential building blocks for distributed application
management.

3.1 Achieving Interoperability: Umbrella Management

A major objective ofEnterprise Managementconsists in presenting a unified, all-encompassing view on
networks, systems, services and applications. It is oriented towards the providers’ goals and gives them
the ability to control any kind of managed resource according to their management requirements, policies
and organizational conditions. Enterprise Management follows a top-down approach and should therefore
not be constrained by technical intricacies. On the other hand, the amount of management frameworks
providers have to deal with is already determined by the nature of the managed resources: LAN com-
ponents usually have SNMP agents while telecommunication components are managed according to the
OSI/TMN framework; distributed applications and services might provide a CORBA-based management
instrumentationUmbrella Managementhas to cope with the heterogeneity of Management and focuses
on the technology-related aspects of cooperation between entities involved in the management process.
Its objective is to abstract from the heterogeneity of the underlying management architectures by defining
means of interoperability. It is therefore fundamental for integrated Enterprise Management (see Figure 2).

There are basically three Umbrella Management strategies for achieving interoperability between sys-
tems located in different architectural domains (see also [24]):

The first approach consists in the integration at the resource level, i.e., the managed systems support
more than one management protocol; they are equippedMittiarchitectural Agents ; [31] is the first
paper describing such an implementation. However, this approach is usually difficult to pursue for the
following reasons: Often, agents are used to perform monitoring of simple network devices such as hubs
or bridges. They are usually built into the firmware of the device and should thus have a small footprint;

the implications are that these agents can neither be enhanced to support another management protocol nor
should they introduce additional overhead.

An alternative is to place the burden of integrating the different architectures on the management sys-
tem. Such Multiarchitectural Manager supports a set of management protocols, which are implemented
onto the platforms’ communication stack. Thus, conversions between different management protocols are
not necessary. The transformation of the management information descriptions is often handled by tools
bundled with a management system, like MIB compilers, and therefore need not be handled by the de-
veloper. In addition, the service APIs of management systems can easily be accessed, thus yielding the
opportunity of reusing the large amount of platform services, such as event filtering, topology, threshold
monitoring or resource discovery (see also section 5.3). On the other hand, these APIs are specific to a
concrete management system product: the portability of interoperability solutions based on this integration
paradigm is often restricted. An example of a multiarchitectural manager isNBtMiew(SNMP-based
manager) with th&letView TMN Support Facilitifor OSI/TMN).

The third solution is theManagement Gatewayapproach. It is then possible to manage services,
systems and networks in different management architectures from a single point of control, as demon-
strated in [32] and [39]. Standardized mappings between the OSI, Internet and CORBA information and
commpnication models have been developed byJtiat Inter-Domain Working Group (JIDM[R1] and
academic institutions [34]; commercial implementations are emerging [14]. Our experiences with build-
ing management gateways [28] have shown that they represent powerful instruments for bridging the gaps
between different management architectures because neither the managing nor the managed systems need
to be modified. This is a crucial feature for the interworking between service providers as described in
section 1. However, it has to be recognized that gateways are very complex systems and — due to their
high relevance for enterprise management — need to be managed as well; in section 5, we describe why we
consider management gateways as a special case of management systems and show what their management
instrumentation may look like.

3.2 Ensuring the Interchange of Management Information Models

The very first attempts addressing the issue of distributed application management have been carried out
by the Internet Engineering Task Force. However, the Application M&ppIMib [23] andsysAppIMib

[30]) of the Internet management architecture are mainly focused towards a specific operating system and
the issues with the object-based information model compromise their usability: While the System Appli-
cation MIB reflects basically static application information and the status of the associated processes, a
large amount of information contained in the Application MIB deals with the issue of indexing the tables
containing the effective management information according to different criteria.

The main motivation for our approach is as follows: As stated in section 1, management is heteroge-
neous: several new frameworks have emerged during the last few years, some of them emphasizing on the
information aspect (such as CIM), others on the communication infrastructure (such as CORBA and the
Java Management Extensions (JMX)). Our goal is therefore not to invent an additional architecture but,
instead, to combine standardized frameworks: we make use of existing management information models
(CIM and RM-ODP), use a widely deployed notation (UML), and implement our work on top of a Java
Object Request Broker. This leads to a combination of proven technologies and allows us to build a unified
framework covering the analysis, design and implementation stages of our work.

Another fundamental assumption is that we consider management itself as a distributed application;
the consequence that the distributed application “management” itself needs to be managed has already
been motivated in section 1. Another implication is that we can apply already defined and standardized
models for (general-purpose) distributed applications to the management of management systems. We will
show in section 5 how we used the RM-ODP to obtain generic management object classes for application
management; we will use these as base classes for building the inheritance hierarchy of our object model
for management systems.

Object
Template (from ODP Viewpoints)
(from ODP Viewpoints) N
&pid
name
%create()
Sdelete()
ComputationalObjectTemplate ComputationalObject :| BindingObject
O
|
ComputationallnterfaceTemplate

&pbehaviourSpecification ‘ ‘

environmentContractSpecification ClientObject +Consumer +Producer | serverObject
|
1 |
*|
Flow |~ 1 Interaction
O—
Streaminterf
ace
C Signal
ignalinterfa
ce
Operation
O
Operationint
erface
Announcement Interrogation

Figure 3: Object classes specified in the RM-ODP Computational Viewpoint

3.2.1 Reference Model of Open Distributed Processing (RM-ODP)

In earlier work [29], we have identified the RM-ODP [19] as particularly suitable because it provides the
necessary terms and notions to cover the different aspects of distributed applications, particularly at the
runtime stage. It has therefore been taken as the basis for deriving our generic application management
instrumentation.

Analyzing the ODP concepts from a management point of view reveals th@btihgutationabnd the
Engineering Languagare of highest relevance for our purposes because their concepts define a consider-
able part of the resources that have to be managed. In contrast, concepts fiafortihation Language
cover the semantics of information processing and are only of secondary concern for (technical) manage-
ment. Since integrated management should abstract from the technical realization of the managed resources
as far as possible, this also holds for feehnology Languagd-urthermore, the lack of applicability also
applies to concepts from thenterprise Languageéhowever, it has to be reconsidered if advanced manage-
ment concepts such as policy-based management are deployed.

Concepts of theomputational language allow the functional decomposition of an ODP system into
objects interacting at interfaces. Therefore, MOCs based on themopegation signal or binding are
important for describing the relationships between managed objects. No other management architecture

+0

anguonEy2adS o210 WO

uoneoyadsalit+

ouns. ysz.zenmissmm

o

T

[y e—
uns - s21os*

oV
EESTE owensiss

[PUTRISNIT WO

PRI WD

=
-l

FETer

Buss

0
R WD oot
%555%15/
T
f—
o 0
ol wars N oo+

warsisianduor W0

[

)

+0
womwtoRaIgeL WD

ARG WD

HonaugwIET

aouanbasuony wio

waoduodeeser—
oS IO

e ey

[P ——

fre—

wouszEAoT IO

T

)

wapuadags

Figure 4: CIM Application Schema (without association classes)

provides similar concepts although they are definitely needed in order to capture the dynamic relationships
between distributed applications. The object classes defined in the computational viewpoint are depicted in
figure 3.

An engineering specification defines the mechanisms and functions required to support distributed
interactions between objects in an ODP system. Concepts of the engineering languagele.cppsule
cluster, channektc. or, respectively, the MOCs derived from them, support the monitoring of processes, the
connections between them etc., i.e., dynamic or runtime aspects of application management. An example
for this is the concept of capsule as defined in [20]: “A configuration of engineering objects forming a
single unit for the purpose of encapsulation of processing and storage”; this definition maps to the notion
of a process running under the control of an operating system.

3.2.2 Common Information Model (CIM)

The DMTFCommon Information Model (CIMP] follows an object-oriented approach and defines man-
aged resources as object classes with properties and methods that can be further refined by means of strict
inheritance. In order to circumvent multiple inheritance, CIM makes extensive use of various types of ag-
gregations and relationships: These relationships are modeled as association classesre Behema
defines basic terms as abstract classes such as service access point, service, product, system, logical device
etc., and provides a means for associating context (setting, configuration) with them. It is mandatory that
any CIM resource implements at least the core and one of common schemas [8}ysSteém Schenigone
of the various common schemas and refines the root classes of the core schema in order to deal with jobs,
hosts, operating systems, processes, threads and file systerfgplitation Schemas another example
for a common schema, refines the core schema w.r.t. distributed applications: It defines units of deployment
(software element), units of component management (software feature) and allows the grouping of features
in a business system (application system). It is depicted in figure 4. In addition, various checks (OSVer-
sion, VersionCompatibility etc.) and actions (Reboot, ModifySetting) are defined. Finaljshébuted
Application Performance Schema (DAIR)ates the definition, the metrics and the logical element that is
instantiated to a so-called “unit of work”. In total, the amount of managed object classes being defined in
CIM comes close to 250. It is therefore fair to say that even if CIM is still evolving, it represents a solid
basis for integrated management. The exchange of management information between managed resources,
management systems and management applications is done by encoding the CIM object descriptions in
XML and transferring them over HTTP. However, the immaturity of current XML, DTD and XSL develop-
ment tools does not allow us to make use of the recently specified CIM/XML mapping: Currently, we use
CIM entirely for modeling purposes.

CIM uses theUnified Modeling Language (UMLX2] as notation for specifying the various schemas,
thus leveraging existing general-purpose development and software engineering tools. It is possible to
transform the MOCs — derived from the core and common schemas — into widely used programming and
description languages (OMG IDL, C++, Java, XML). For our modeling, we have used a UML-compliant
CASE tool [35] that meets these requirements.

3.3 Interworking between Management Services
3.3.1 Traditional (two-tier) Management

This model defines two entities involved in the management process: the manager processes all the manage-
mentinformation according to the needs of a customer, and the (dumb) agent estptdessnanagement
information, i.e., raw data (counters, gauges, hames etc.) captured from a resource. Note that the term state-
less does not imply that the resource state is not contained within the management information (the state
of a given resource and its part is obviously not only readable but also modifiable through the instrumen-
tation, e.g., by means of a reboot operation): Instead, stateless management information means that there
are neither implicit nor explicit temporal relationships between different items of management data; i.e.,
there is no notion of historyin general, an agent is unable to compare the values of a specific attribute over

10

different time periods in order to determine whether a given attribute changes it$. vélassical” SNMP
resource agents therefore do not calculate averages or medians because this would require them

1. to have a notion of history (meaning that they must store management data of previous time periods),
and,

2. to accept, check and store a given time interval defined by the manager in order to compute data such
as “invalid packets per second during the last hour”. Note that a counter “invalid packets per second”
alone does not make much sense because it is unglgain seconds should be actually considered
for the analysis.

Both items would violate the principle of stateless management information.

Obviously, administrators are primarily interested in information related to time: It is not particularly
useful to know the current value of the counter “received IP packets”; the benefit of this counter becomes
only apparent if it is correlated with time and/or other resource attributes. The fact that, e.g., the average
load of the incoming packets during the last 3 hours was always above a given threshold is an important
indication that the resource capacity is either insufficient or the network topology unbalanced.

This kind of information, derived from the data provided by the agent, highly depends from a notion of
time and history and is termesateful management information the IETF Remote Network Monitoring
(RMON) MIB is the first example of a MIB that computes stateful management information and is not
bound to specific resources. Stateful management information can be regacdstbasized management
information according to the goals of the management system operasothe observation intervals are
not known in advance (some administrators may choose intervals of 5 minutes, others are only interested
in daily statistics), this information is generally not computed by the agent but needs to be processed on
the manager side. It is usually done by traffic/usage analyzers being part of management platforms. This
approach has been frequently criticized; the main argument (among others) against it is that doing all the
processing on the side of the managing system generates an enormous load if several thousands of agents
are involved. RMON probes and mid-level managers help to reduce this load but cannot eliminate this
problem.

3.3.2 Management Middleware: Introducing three-tier Management

A pragmatic way to obtain stateful management information (tailored to the specific requirements of a given
customer) while maintaining the scalability of the overall management system is to separate the necessary
functionality from the manager and distribute it across the network: Distributed object architectures such
as CORBA and (Enterprise) JavaBeans allow the implementatioardfgurablemanagement services in

a way that they can be replicated and migrated according to a specific network and application topology.
This is particularly important if the management of distributed applications is being considered because
their number is usually at least two orders of magnitude higher than the number of network and system
resources. It is fair to say that 3-tier Management splits the functionality of a “traditional” Manager in two
parts: user interaction and management middleware.

Appropriately parameterized management services thus allow to generate stateful management infor-
mation from stateless resource management data “on the fly”, i.e., without having the need to store data
persistently for a longer interval than really needed. Figure 5 depicts such a three-tier management archi-
tecture. The Gartner Group defines Middleware as the “glue between clients and servers” [10]; we define
Management Middleware asthe services between managers and agents that help to make management
more scaleable by bringing the (pre-)processing of management information closer to the resdurces.
combines and enhances the management data exposed by the agents to meaningful management informa-
tion and presents it to the manager. In addition to answering queries issued by the manager, the middleware
can be configured by the manager in order to reflect the managers’ policies.

1while this statement is appropriate for SNMP-based Management, the OSI/TMN-Management provides an “Attribute Value
Change” notification. However, it is unclear whether the OSI/TMN-compliant management platforms deployed in large environments
make use of this feature because it tends to increase the number of notifications.

11

Tier 3: Tier 2: Tier 1:
stateless stateful policy-based
Management Data Management Information Management Knowledge

S

Services o D*(E
-, \. —————— o

|oEleTm
EI=
>0

Resource Services
MIBs

Agent Management Manager User/Customer
Middleware

Figure 5: Management Information available at the Interfaces of a 3-tier Management Architecture

However, it should be noted that today’s management platforms (such as NetView and Enterprise Con-

sole) put both tier 1 and tier 2 in a single system because the management middleware (topology manager,
status monitor, object database) is bound to (and unseparable from) the core product. Implementing these
systems on a distributed object-based infrastructure yields the benefit of distributing the management mid-

dleware “over the network”, thus separating tier 1 and tier 2.

There are basically three different types of services that are part of the Management Middleware:

1. generic management functionality common to a wide range of managed resources. Typical examples

for these are the services defined by @G Telecom Domain Task For¢Botification, Logging,
Topology etc.) and the OSI/TMISystems Management Functigpslicy, log control, event man-
agement, management knowledge, event filtering and forwarding of selected information, storage of
resource data for caching purposes etc.). A recent approach to defining generic management services
in a CORBA environment is the work of the TeleManagement Fofyplication Component Team
(ACT)[41]; an exhaustive list of management requirements is provided in [2].

. Appropriately modularized problem management knowledge captured from experts; the management
services can therefore be regarded as “canned knowledge”. Examples are: checking the state of
services on which an application depends; verifying whether a filesystem is mounted if a webserver
continuously encounters errors while trying to access related documents etc.

. services that are now implicitly part of management systems (see above): These can be tailored
towards the needs of a specific provider so that the resulting stateful data can be compared to the in-
dividual policies of the provider. Typical examples are: The ratio of application messages to network
packets during the last hour, the average percentage of busy 1/0 devices on a given server farm, the
average queue length of the print spooling system at 11 am; [47] provides some more parameters that
require parametrization because different customers have different needs.

4 Aspects relating to the Lifecycle of Management Systems

In order to structure the requirements of management systems and gateways it is helpful to characterize
them according to the different aspects how they are perceived. Figure 6 depicts the four different aspects
that we have identified during our research:

12

Structural Aspect

Functional Aspect

C
@ Software Components [—]

o D
Services
Files) CD
7 [e
= rocesses
O oo : Threads <:> <:>
@

Bindings
Open Files <:>

‘w;mmu—‘ — | <:> O <:>

@

Installation Paths

100dsy [euoneltadQ

Packages ndency| iships

DNS NIS

[Operating System Services]

System Aspect

Figure 6: Aspects of Management systems

e The functional aspectdescribes a management system as an installable software package (e.g.,

NetView for Al¥, which consists of several components providing distinct services. TheS&bX

tem Management Interface Tool (SMiJiyes the following list of the NetView component8Base
SystemDatabaseDeveloper Supplemer®nline Documentatioptc. These components can be fur-

ther refined to reflect the actual services they provide, such as configuration manager, performance
monitor, topology module, event handler, status monitor, user interface, communication component,
MIB browser. The functional aspect addresses the quetirat does the application do and which
services does it offer?1t should be noted that these services are not only provided to end users but
to other (eventually remote) services as well.

If a management system is regarded as an executable program system, the focus |stsuztuital

aspect It is perceived as a set of files, which contain either the services or configuration files, help
functions or management data related to the administered resources. Relevant management informa-
tion are Packages, Files, Installation Paths etc. Software distribution and installation tools make use
of this information. The structural aspect deals with the questid¢hich components have to be
installed?”

When the management system is instantiabpeational aspec}, it is perceived by a set of commu-
nicating (UNIX-) processesoytopmd, netmon, pmd, nvsgchly a list of open files and established
client/server bindings. The purpose of the operational aspect is to answer the guésdianvell
does the system run and perform?”

The system aspectecognizes the fact that a management system cannot be regarded as an isolated
entity, but is dependent from operating system functions (such as disk and swap space) and networked
services such as ICMP, DNS, NIS and NFS. The latter is important because the NetView database

13

might reside on a remote host, thus a failure of the remote host implies a failure of the manage-
ment system. The questidihich underlying services are required and what are the dependency
relationships?”is the purpose of this aspect.

While the first three items basically reflect the main stages of the software lifecycle (design, installation,
runtime), the system aspect does not fit into this categorization. However, it is important to address this is-
sue because today, the runtime status of an application has to be determined by invoking operating system
routines due to lack of proper instrumentaion. In addition, vital application dependency information is usu-
ally kept and maintained by the operating system in system configuration repositories (and not necessarily
by the application itself); it can be retrieved from the repository by means of operating system calls. The
methodology for achieving this and a detailed example are described in [25].

4.1 Relationships of management systems to the System and Network Infrastruc-
ture

Management systems usually run on general-purpose operating systems like UNIX or WindowsNT and are
therefore sensitive to errors that occur in the underlying operation system and the communication infras-
tructure provided by networked services (e.g., Ermmain Name System (DN$)e Network File System
(NFS)and theNetwork Information System (N)S3nd protocols. Consequently, commercial management
system implementations dedicate a high degree of their management instrumentation to the monitoring of
the underlying system. While this may be necessary, in our opinion it is not the primary concern of a MIB
for management systems to control not only the management system itself but also the underlying environ-
ment. Thus, we restrict ourselves to the instrumentation of the management system itself and consider the
instrumentation of operating systems (CPU usage count, user quota, disk and paging space etc.), networks
(latency, timeout errors, network buffer size, packet and frame errors) and underlying networked services
such as DNS, NFS and NIS as out of scope for this paper. Nevertheless, we have designed object models
and implemented the corresponding agents for UNIX systems and networked services. Readers interested in
these agents are referred to [33]. The development of these agents has been done according to the approach
described in section 5, too. On the other hand, operating system repositories such as Glej¢8iMData
Manager (ODM)[16] provide a vast amount of static management information pertaining to management
systems such as the names and versions of the software modules, their installation paths, their prerequisites
and dependencies. As these tools are accessible through APIs we were able to retrieve this management
information.

Note that although these aspects are defined in the context of management systems, they also apply
to any other kind of distributed application. Management systems and gateways can be regarded are a
characteristic example of highly distributed applications.

4.2 Related Work

Several models and standards exist which are relevant for application management; they provide a wealth
of management information. These are:

e The lEEE 1387.P0OSIX Software Administration Standdtd] focuses on management information
for software distribution and installation. The aspect addressed by this specificatiostizuttieral
one.

e The Distributed Software Administration (XDSA&pecification from the Open Group [45] extends
IEEE 1387.2 and therefore also deals with #teictural aspect. More specifically, it is targeted
towards software distribution/deployment/installation, defines several commands (swinstall, swilist,
swmodify etc.) and a software definition file format with several attributes. However, XDSA does not
deal withinstantiatedapplications and services; therefore it does not have any means of representing
them at runtime.

14

e The ISOReference Model of Open Distributed Procesgitf] defines terms and notions for describ-
ing distributed applications and their components. It can be used fapdetional and system
aspects (see also section 3.2.1).

e The Tivoli Application Management Specification (AM$) is particularly helpful for thesystem
andstructural aspects.

e TheApplication Response Measurement (ARM) [gPhand its recent extensions [22] focuses on the
performance management part of tiperational aspect.

e The CIM [9] System and Application Schemas address primarily the following asstaistural
andsystem

It can be seen that none of the above specifications is able to cover all the four aspects of distributed
applications. We have chosen to combine two of them (RM-ODP and CIM, see below) to establish an
application management model that is able to deal with all the aspects.

Today’s applications almost never provide management instrumentation; the management information
can be partly obtained from various (proprietary) APls but, often enough, this information is only accessible
for read-only purposes. Thus, in the best case, one can build a rudimentary monitoraggecific
application; active management does not happen yet.

These problems stem from the fact that it is yet unclear what the generic properties of applications are,
i.e., a subset of management information common to all kinds of distributed applications. On the other
hand, CIM and RM-ODP specify the components and properties of distributed applications in a generic
way and therefore provide guidelines on

1. the structure of a broad range of distributed applications, and,

2. what can be reasonably assumed regarding the minimum set of management information any dis-
tributed application may have.

Our idea therefore consists in applying standardized architectural models for (general-purpose) dis-
tributed applications to theanagemenf distributed applications. We will show in the following section
how we used concepts from RM-ODP to obtain generic management object classes for application man-
agement; we will use these (together with the CIM schemas) as base classes for building the inheritance
hierarchy of our object model.

5 An Object Model for Managing Management Systems

Seamless interworking between different management systems requires that the management information
and the appropriate management services identified in the previous section are defined in a way that they
can be accessed by peer management systems. Consequently, this section will focus on establishing an
object model (i.e., a MIB) for management systems. In section 5.1, we show how we achieved a unified
representation of management information common to all different kinds of entities involved in the man-
agement process. We then describe in section 5.2 how this management information can be refined w.r.t.
the needs of specific management systems and how this process is eased by CASE tools. Section 5.3 gives
some insights into our prototype implementation.

5.1 Defining the Base Classes of the Inheritance Hierarchy

Until recently, the inheritance hierarchies of object-oriented management frameworks were usually shallow
and the degree of reuse was limited because the predominant part of relevant management information has
often been specified in resource-specific classes. Consequently, the base classes contained only a restricted
amount of information. On the other hand, one must recognize that — in general — different distributed
applications share a lot of common properties: e.g., they are delivered as packages that consist of modules

15

implementing a service, which is instantiated as a process. What we need is a framework that allows us to
describe the relevant aspects of any kind of distributed application (in our case: management systems) in a
way that it is suitable for management purposes.

The overview of CIM in section 3.2.2 has shown that this architecture differs fundamentally from ex-
isting approaches: CIM makes a serious attempt to leverage the power of common off-the-shelf object-
oriented technology to define semantically rich object models suitable for today’s complex distributed sys-
tems. However, the relationships between the different CIM schemas are not easily visible because many
classes defined in a schema have relationships with classes defined in other schemas. Inheritance relation-
ships spanning up to five class levels and the excessive use of association classes (the ComputerSystem
class of the system schema alone is associated with eight other classes) introduce a considerable amount of
complexity and make the graphical layout of the diagrams alone a challenge. The use of a new notation, the
Managed Object Format (MOF), as an intermediary representation for management data exacerbates this
problem. On the other hand, a developer is able to take advantage of CASE technology, thus making the
task of deriving new, specific managed object classes from the existing CIM schemas relatively easy.

On the other hand, CIM currently misses object classes that capture the runtime behaviour of applica-
tions: entities such as bindings, queues, requests or signals are not yet present although the CIM Applica-
tion Management Working Group has started to define appropriate runtime extensions for the application
schema.

The ODP computational language helps to fill this gap because it defines various kinds of interactions
between clients and servers (see figure 3 in section 3); its structuring rules specify useful constraints that
help to clarify the semantics of the involved objects (“a computational object offering a stream interface
generates flows that have producer causality in the interface’s signature [...]” [20]).

The ODP engineering language, in contrast, does not add much value to CIM: there is a considerable
overlap between the RM-ODP engineering viewpoint and the CIM system schema because both decompose
applications in entities visible from a systems management perspective (e.g., threads, processes, operating
systems, nodes). It is fair to say that the classes of the CIM system schema are a superset of the ODP
engineering language concepts, thus making the latter obsolete for our specific purposes. In addition to
ODP, CIM defines a large amount of class properties and methods that cover a large degree of system
administration tasks.

Our solution therefore consists in following a “best-of-breed” approach by combining the ODP compu-
tational language with the CIM core, system, and application schemas. Together, they form the base classes
of our object model for management systems and gateways. Thus, many required attributes and methods
are already defined at the top of the inheritance hierarchy: Important characteristics relevant to software
packages are present; in addition, instrumentation for installing and updating them is specified. Descrip-
tions of services and their technical realization (as processes) are available. Services and applications can
be started, stopped, suspended and resumed; dynamic bindings and various kinds of interaction can be rep-
resented. This covers a large amount of MIB-instrumentation that is usually defined only on lower, i.e.,
resource-specific levels (e.g., every SNMP group or table cont&dnseandDescription attributes).
Consequently, we can then guarantee a minimum amount of instrumentation commonly applicable to all
kinds of distributed applications.

5.2 Representation of MOCs for Managing Management Systems

As mentioned before, the different CIM schemas and the model of the ODP computational viewpoint form
the base classes for our management information and services (described in sections 2.2 and 2.3) become
attributes and methods of these enhanced base MOCs. Some of these abstract base MOCs are depicted
on the higher levels of figure 7 and reflect the characteristics of distributed applications specifically w.r.t.
configuration and fault management.

The upper left part of the figure contains the classes derived from the ODP computational language;
they help to model bindings and interactions between clients and servers. The upper middle part depicts a
(small) section of the CIM application schema while the upper right part contains some classes from the
CIM system schema. As described in section 5.1, the base MOCs do not contain application specifics. In

16

CiM_Componentcs

CIM_Dependency

ClientObject

CIM_systemCofnponent

ManagedSystem

[] Wanagementramenork
|

sting
ime - Sting

CIM_ProcessExecutable

Polingt
Cachesize
Oelegation

‘SourceManagementF tmework

Figure 7: CIM— and RM-ODP-based object model of management systems (extract)

order to support the management of management systems and gateways, they have to be refined to more
application-specific MOCs: The lower part of the figure depicts some of the classes that we have defined
and which serve as the basis of our implementation.

For the sake of clarity, the following kinds of management information have been omitted from the fig-
ure: Object classes for the maintenance and control of event and alarm logs, instrumentation for traces and
definitions of value constraints like thresholds. The definitions of the attributes (data types, default value,
hints whether they are read-only, CIM qualifiers) and method signatures (arguments, return type) have also
been suppressed. In addition, the representation uses multiple inheritance while our initial model avoids
multiple inheritance by making use of association classes. However, these tend to impair the readability
of the model. Furthermore, the “realizes” associations of “ManagingSystem” and “ManagedSystem” to
“Package” and a couple of other self-explaining associations habe been left out in order to increase read-
ability.

It can be seen that MOCs for “ManagingSystem” and “ManagedSystem” are derived from the ODP

17

computational language classes “client” and “server”, respectively; this is due to the fact that management
systems usually act in a client and managed systems act in a server role. The model also reflects the fact
that MLMs are dual role entities and consequently inherit properties and operations from both of the above
MOCs. Management gateways are — as described in section 2.1 — a special case of MLMs that additionally
perform transformation activities. These transformations are determined by two issues: The first ties a Man-
agement Gateway to source and target information models (associations “SourceManagementFramework”
and “TargetManagementFramework” with “ManagementFramework”); the second allows “Management-
Gateway” to inherit its protocol translation capabilities from “GenericGateway”.

5.3 Prototype Implementation

For demonstration purposes, we have instrumented a commercial network management plBffbrm (
NetView for AIXwith TMN Support Facility and a CMIP/SNMP Management Gateway developed by

us [28] with CORBA-based management agents implemented in Java. The left part of Figure 8 depicts
a CORBA/Java-based management environment: CORBA agents (here: for DNS and WWW servers and
AIX SMIT) are remotely administered by means of a CORBA-enabled WWW browser. CORBAservices
such as Events, Notification, Topology, Managed Sets and Policy (see e.g. [46]) could provide the required
management functionality in a location-independent way. However, only a minor part of these important
management services have been implemented by now. Fortunately, current management platforms (right
part of Figure 8) contain components that have a very similar functionality to the CORBAservices men-
tioned above. We therefore decided to expose the main platform components (Event Dispatcher, Topology
Manager, State and Performance Monitors) to CORBA and use therteagoarary replacemetior cur-

rently specified, but not yet available CORBAservices. We have encapsulated the APIs of the Management
System with IDL wrappers (dark grey shaded arcs with black dots in Figure 8), which gives us the op-
portunity of reusing a large part of the Management System functionality (e.g., event filtering, topology).
By doing so, we create a conceptually integrated management information base on the platform where
management-related information is collected and evaluated independent of the originating base architec-
ture. This multiarchitectural manager is able to access managed objects in OSI/TMN, SNMP and CORBA
environments.

s Zf[8]]| CORBA-enabled
””” P | www Browser Manager GUI

Object Request Broker
’

2\
A4

Multiarchitectural Manager

I
: ' ¢
3 { Managed Sets Events J TTTTTo = Event Dispatcher ‘ ‘ State Monitor ‘ ‘ MIB Browser ‘
— I
o, |
§} Voo - Topology Manager H Performance Monitor ‘ P
g; 11
El i Communication Component ‘ ‘ Information Component
o\ L jProtocojI Modulejs 1
ol i
El [Policy Topology J o CMIP
! i
| * [
! { : T cmip_| Mgmt-
Object Request Broker SNMP | Gateway)
ry 7y MF
’ ¢ N |
1 Agent Agent Te ICo
@ r - 7 Switch
) Router Ethernet Switch @
N
CORBA Internet (SNMP) OSI/TMN

Figure 8: CORBA-based instrumentation of management systems and gateways

18

In addition, the IDL wrappers also provide the management instrumentation of the management sys-
tem and the management gateway via CORBA. Furthermore, the representation of AIX SMIT as CORBA
objects gives us access to the systems management information described in section 4.1. Together, they
represent the managed objects identified in the previous sections. We are then able to manage both the
management system and the management gateway via CORBA.

As we wanted to manage these systems from a web-based interface, we implemented the management
application prototype as Java applets and used a commercial Javav@ifBoker for Java VisiBroker
is also part of thédNetscape Communicatareb browser; we therefore expected that the application would
load within less than a second due to its modular design and the small size of the resulting Java classes
(less than 10 kbyte per class). Unfortunately, Netscape Communicator contains only an earlier version of
the Java-ORB. Consequently, the Java classes for the ORB itself and its bundled CORBAservices (in total:
a Java archive of 2.5 MB code size) always have to be loaded once per session into the browwséorfirst
any applet can be started.

On the other hand, the access to IBM NetView is only possible through C Application Programming
Interfaces. We therefore built wrappers based on the Java Native Interface around the APIs in order to

2l ibmhegeringi

o
§11ed

WYHdm i nlsroup

administer

exports imports | ==

NetYiew

B
requires requires

Floating License
rovides

=9

licsery,hm

_|

Figure 9: The management system'’s relationships, as seen from a management platform console

19

access them from Java. JNI has been developed for that purpose, thus enabling programs running under the
control of the Java Virtual Machine to access other programs or libraries that have been written in C. The
reason for choosing Java instead of C++ stems from the fact that we intend to copy parts of the management
instrumentation between different management systems at runtime.

Figure 9 shows a screendump of the prototype implementation as it can be seen from the GUI of the
management console: The management system being administered (“NetView”) mounts a directory from
another workstation (left part of the figure); is involved in peer relationships with two workstations and a
CMIP/SNMP gateway, and has AlX 4.2 as prerequisite. In addition, it requires a floating license that is
provided by the license server (bottom of the figure). The different colours of the icons provide information
regarding the status of the managed obijects; in addition, the logical links between the different icons are
able to indicate their status by being coloured appropriately.

6 Conclusions and Areas of further Research

In this paper, a CORBA-based implementation of a prototype for managing management systems and gate-
ways is presented. The conceptual modeling work is based on CIM and RM-ODP. The need for managing
management systems arises because management systems of different authorities have to seamlessly in-
teroperate with each other, even if they are based upon different management architectures; thus, we have
analyzed and evaluated three mechanisms for achieving interoperability. On the other hand, management
systems are also very complex; it is thus essential to provide appropriate management information and
services. Our aim was to define such an open, common set of management information that should be
applicable to a wide range of management systems and management gateways. We have developed man-
agement models for these entities by analyzing what kinds of management information and services are
needed to enable an integrated management of these systems.

Key to our approach is the perception of management as a distributed application that itself needs to
be managed. We are then able to apply standardized frameworks for distributed applications (such as
CIM and RM-ODP) for the definition of generic MOCs that already contain a large set of management
instrumentation at the top of the inheritance hierarchy. This management model is then refined into more
specific object classes that reflect the structure and functionality of management platforms available on the
marketplace. On the other hand, we can infer that a systematic and structured solution for the problem of
managing management systems contributes also to solving the problem of application management. We
have implemented the object model described in this paper for instrumenting the network management
platform NetView for AlXby Java/CORBA-based management agents so that it can be managed from a
web-based interface. Apart from determining dependency relationships between instantiated components,
almost the complete set of required management information can be provided by this management system.
However, this information is scattered across different sources such as platform APIs, configuration files and
configuration tools of the underlying operating system. A large part of our implementation work consisted
in encapsulating all this information under a single type of interface.

We have experienced that the association of “ease of use” with the term “web-based management” may
apply to the actual system user, but definitely not for the developer: Several hundred object classes tied to-
gether by various kinds of associations require a deep knowledge of object-oriented design methodologies
such as UML. “Wallpaper-size” diagrams for every CIM schema containing exhaustive inheritance hierar-
chies underline the fact that CIM inhibits a considerable degree of complexity. Despite the large amount of
classes, CIM doesn'’t provide yet concepts comparable to the RM-ODP computational language; therefore,
we had to add the appropriate object classes from RM-ODP to our CIM-based model in order to obtain the
desired functionality. However, it is expected that the work of the DMTF Application Management Group
on CIM runtime extensions will make such substitutions obsolete.

20

References

(1]
(2]

(3]
(4]

(5]
(6]

(7]
(8]
(9]
[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

Application Management Specification. Version 2.0, Tivoli Systems, November 1997.

Application Component Team. Generic Requirements for Telecommunications Management Building Blocks.
Part 1 of the Technology Integration Map, GB909 (Part 1) v. 2.04 draft, TeleManagement Forum, June 2000.

Application Response Management. Version 2.0, Tivoli Systems, November 1997.

M. Bauer, R. Bunt, et al. Services Supporting Management of Distributed Applications and SdBAd&s/stems
Journal 36(4):508 — 526, 1997.

L. Bennett. Multiprotocol Network Management: A Practical Guide to NetView for A Graw-Hill, 1996.

P. Bhoj, S. Singhal, and S. Chutani. SLA Management in Federated Environments. In Sloman et al. [38], pages
293-308.

P. Brusil, J. Hellerstein, and H. Lutfiyya. Applications Management — Current Practices, Research Results, and
Future DirectionsJournal of Network and Systems Managem6(®):361 — 366, September 1998.

W. Bumpus, J.W. Sweitzer, P. Thompson, A.R. Westerinen, and R.C. Williadesamon Information Model:
Implementing the Object Model for Enterprise ManageménWiley & Sons, 2000.

Common Information Model (CIM) Version 2.2. Specification, Distributed Management Task Force, June 1999.
Middleware: The Glue for Modern Application&artner Advisory, Strategic Analysis Repaltily 1999.

I. G. Ghetie.Network and Systems Management: Platform Analysis and Evaludtiawer Academic Publish-
ers, 1997.

German Goldszmidt and Yechiam Yemini. Delegated agents for network managdBER.Communications
Magazine 36(3):66—70, March 1998.

H.-G. Hegering, S. Abeck, and B. Neumalntegrated Management of Networked Systems — Concepts, Archi-
tectures and their Operational ApplicatioiMorgan Kaufmann Publishers, 1999.

L. Lawrence Ho. Interoperable Distributed Managem@atirnal of Network and Systems Managemé(t): 137
— 140, March 1999.

J. Hong, M. Katchabaw, A. Bauer, and H. Lutfiyya. Distributed Applications Management Using the OSI Man-
agement Framework. Technical report, TR-448, University of Western Ontario, Department of Computer Science,
January 1995.

IBM Corporation.AlX Version 4.3 General Programming Concepts: Writing and Debug ging Progr@ateber
1997. Chapter 17: Object Data Manager (ODM).

IBM Corporation, International Technical Support Organization, Research Triangle Park, NC 27709E2195.
signing Tivoli Solutions for End-to-End Systems and Service Managetherdg 1999. Order Number: SG24-
5104-00.

IEEE Standard for Information Technology - Portable Operating System Interface (POSIX) - System Admin-
istration - Part 2: Software Administration. IEEE Standard 1387.2, The Institute of Electrical and Electronics
Engineers, 1995.

Open Distributed Processing — Reference Model. IS 10746, International Organization for Standardization and
International Electrotechnical Committee, 1995.

Open Distributed Processing — Reference Model — Part 3: Architecture. 1S 10746-3, International Organization
for Standardization and International Electrotechnical Committee, 1995.

Inter-Domain Management: Specification Translation. Preliminary Specification P509, The Open Group, March
1997.

M. W. Johnson and S. SmeaBeyond ARM 2.0 - API Extensions that enable pervasive Service Level Instrumen-
tation. Computer Measurement Working Group, December 1998.

C. Kalbfleisch, C. Krupczak, R. Presuhn, and J. Saperia. Application Management MIB. RFC 2564, IETF, May
1999.

Pramod Kalyanasundaram and Adarshpal Sethi. Interoperability Issues in Heterogeneous Network Management.
Journal of Network and Systems Managem2(®):169 — 193, June 1994.

21

[25] G. Kar, A. Keller, and S.B. Calo. Managing Application Services over Service Provider Networks: Architecture
and Dependency Analysis. In Douglas Zuckerman, edtarceedings of the 7th IEEE/IFIP Network Operations
and Management Symposiupages 61-75. IEEE Press, April 2000.

[26] M. Katchabaw, S. Howard, H. Lutfiyya, and A. Marshall. Making Distributed Applications Manageable through
InstrumentationThe Journal of Systems and Softwd#b), 1999.

[27] A. Keller. CORBA-basiertes Enterprise Management: Interoperatiliind Managementinstrumentierung
verteilter kooperativer Managementsysteme in heterogener UmgeBliythesis, Technische UniveetitVitin-
chen, October 1998in(Germar).

[28] A. Keller. Tool-based Implementation of a Q-Adapter Function for the seamless Integration of SNMP-managed
Devices in TMN. InProceedings of the IEEE/IFIP Network Operations and Management Symposium (NOMS
98), pages 400-411, New Orleans, USA, February 1998. IEEE Press.

[29] A.Keller and B. Neumair. Using ODP as a Framework for CORBA-based Distributed Applications Management.
In J. Rolia, J. Slonim, and J. Botsford, editoPspceedings of the Joint International Conference on Open Dis-
tributed Processing (ICODP) and Distributed Platforms (ICDPages 110-121, Toronto, Canada, May 1997.
Chapman & Hall.

[30] C. Krupczak and J. Saperia. Definitions of System-Level Managed Objects for Applications . RFC 2287, IETF,
February 1998.

[31] S. Mazumdar, S. Brady, and D. Levine. Design of Protocol Independent Management Agent to Support SNMP
and CMIP Queries. liProceedings of the 3rd IFIP/IEEE International Symposium on Integrated Network Man-
agementNorth-Holland, April 1993.

[32] Subrata Mazumdar. Inter-Domain Management between CORBA and SNMRodeedings of the IFIP/IEEE
International Workshop on Distributed Systems: Operations & Managerhéwuila, Italy, October 1996.

[33] T. Muller. CORBA-basiertes Management von UNIX-Workstations mit Hilfe von ODP-Konzepten. Master’s
thesis, Technische UniveraitMinchen, February 1998in(German).

[34] G. Pavlou. A Novel Approach for Mapping the OSI-SM/TMN Model to ODP/OMG CORBA. In Sloman et al.
[38], pages 67-82.

[35] Rational Software CorporatiofiRational Rose 98i: Using Rational Ro$eebruary 1998.

[36] A.Schade and P. Trommler. A CORBA-based Model for Distributed Applications Manageme@nbckedings of
the IFIP/IEEE Seventh International Workshop on Distributed Systems: Operations & Management (DSOM’96),
L'Aquila, Italy. IEEE, October 1996.

[37] A. Schade, P. Trommler, and M. Kaiserswerth. Object Instrumentation for Distributed Applications Manage-
ment. InProceedings of the IFIP/IEEE International Conference on Distributed Platforms (ICDP’96), Dresden,
Germany IFIP, Chapman and Hall, February 1996.

[38] Morris Sloman, Subrata Mazumdar, and Emil Lupu, editoPsoceedings of the 6th IFIP/IEEE International
Symposium on Integrated Network ManagemBoston, MA, USA, May 1999. IEEE Publishing.

[39] Nader Soukouti and Ulf Hollberg. Joint Inter-Domain Management: CORBA, CMIP and SNMP. In A. A. Lazar
and R. Saracco, editorByoceedings of the 5th International IFIP/IEEE Symposium on Integrated Management
(IM), pages 153-164, San Diego, USA, May 1997.

[40] R. Sturm and W. Bumpug-oundations of Application Managemeidt Wiley & Sons, 1998.

[41] Application Component Team. Requirements for Management of ORB-based Telecommunications Management
Building Blocks. ACT Working Document ACT 01-99, TeleManagement Forum, April 1999.

[42] OMG Unified Modeling Language Specification. Version 1.3 ad/99-06-08, Object Management Group, June
1999.

[43] D.Verma.Supporting Service Level Agreements on IP Netwdvecmillan Technical Publishing, 1999.
[44] Chris Wellens and Karl Auerbach. Towards Useful ManagemEme. Simple Timeg(3):1-6, July 1996.

[45] Systems Management: Distributed Software Administration. CAE Specification C701, The Open Group, January
1998.

[46] Systems Management: Common Management Facilities Volume 1. Preliminary Specification P421, X/Open Ltd.,
June 1995.

[47] UNIX and NT Performance Management: A Discussion of the Primary Issteskee Group Report, Manage-
ment Strategies8(9), May 1998.

22

