
RC 21770 (97933) (05/05/2000)
Computer Science/Mathematics

IBM Research Report

Dynamic Dependencies

in Application Service Management

Alexander Keller, Gautam Kar

IBM Research Division

T.J. Watson Research Center

Yorktown Heights, New York

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publi-
cation. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright
to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and
speci�c requests. After outside publication, requests should be �lled only by reprints or legally obtained copies of the arti-
cle (e.g., payment of royalties). Some reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.
Copies may be requested from IBM T.J. Watson Research Center, 16-220, P.O. Box 218, Yorktown Heights, NY 10598 or
send email to reports@us.ibm.com.

IBM
Research Division

Almaden � Austin � Beijing � Delhi � Haifa � T.J. Watson � Tokyo � Zurich



This page intentionally left blank.



Dynamic Dependencies in Application Service Management

Alexander Keller, Gautam Kar
IBM Research Division, T. J. Watson Research Center

P.O. Box 704, Yorktown Heights, NY, USA
E-Mail: falexkjgkarg@us.ibm.com

Abstract

This paper addresses the role of dependency analysis
in distributed management. It introduces the concept of
dependency lifetime that traces the flow of dependency
information from the design to installation to runtime
stages of a service. Two categories of models, func-
tional and structural, are used to represent this infor-
mation as it flows from the design to the runtime stages.
The paper describes how the dependency information
at each of these stages can be retrieved and evaluated
by management applications and presents an architec-
ture to integrate these with existing network manage-
ment platforms.

Keywords:Dependency Analysis, Application Service
Management, Root cause Analysis, Impact Analysis,
Problem Determination

1 Introduction

The identification of dependencies becomes increas-
ingly important in today’s networked environments be-
cause applications and services rely on a variety of sup-
porting services that might be outsourced to a service
provider. Failures occurring in lower service layers af-
fect the quality of service of end-to-end services that
are offered to customers. However, service dependen-
cies are not made explicit in today’s systems, thus mak-
ing the task of problem determination particularly dif-
ficult. Solving this problem requires the determination
and computation of dependencies between services and
applications. One, therefore, has to deal with questions
such as: what are the important characteristics of de-
pendencies? In other words, when a managed entity X,
such as a service or resource, depends on another man-
aged entity Y (X is then termeddependentand Yan-
tecedent), what are the properties of such a dependency
that need to be recorded? How can we classify depen-
dencies such that they can be used more efficiently to
do root cause or impact analysis in fault management?

The notion of dependencies can be applied at various

levels of granularity: For example, threads within a run-
ning application may be dependent on each other’s op-
erational output; a stored procedure within a database
management system may be dependent on a lock ad-
ministrator, etc. This paper does not consider such situ-
ations because there is a big difference between applica-
tion management(focusing on application behavior ob-
servable from “outside”) and applicationdebugging(fo-
cusing on the internal behavior of an application). We
consider only dependencies of the former type, i.e., that
exist between different managed objects or components
and, hence, are visible from outside an application.

The paper is structured as follows: Section 2 analy-
ses the requirements on application dependency mod-
els by focusing on two typical service provider scenar-
ios. It also gives an overview on related work in this
area and identifies the deficiencies of existing standards
and specifications. Section 3 classifies dependencies ac-
cording to criteria that we have identified during our
research. The methodology for determining and com-
puting dependencies and our resulting architecture are
presented in sections 4 and 5. Section 6 concludes the
paper and presents issues for further research.

2 Requirements Analysis

Our first scenario deals withmanaging outsourced ser-
vices, typically offered byInternetor Application Ser-
vice Providers (ASP/ISP). As depicted in figure 1, out-
sourcing services implies layered service provider hier-
archies. At every layer, a service is accessed through a
Service Access Point (SAP). A SAP delimits the bound-
ary between the different organizational domains and is
the place whereService Level Agreements (SLAs)[5]
are defined and observed. Usually, this is done at every
layer by monitoring a set of specific parameters that are
exposed by the provider. Dependencies between the dif-
ferent services are made explicit at the domain bound-
aries (in terms of SLAs) and can therefore be regarded
as inter-domain dependencies.

The second scenario deals with the regular maintenance
tasks that cannot be done “on the fly” and therefore



Watson IT Services

AT&T Global Network

IBM Global Services

IBM T.J. Watson Research

ATM-Service

System/Appl. Services

IP-Service

IP Provider

End User

E-Mail
DNS

WWW

ServiceRole

Service Provider

Network Provider

DependencyExample

Provider
Customer

Provider

Provider

Customer

Customer

Chain

Figure 1: Dependencies in outsourced Services

affect services and their customers: Email servers get
updated with a new release of their operating system,
network devices are exchanged or upgraded with a new
firmware version etc. In all cases, it is crucial for the
network and server administrators to determinein ad-
vancehow many and, more specifically, which services
and users are affected by the maintenance. This is
also known asAvailability Management. This sce-
nario allows us to identify another type of dependen-
cies, namely dependencies that occur between different
systems (“inter-system”).

Both scenarios allow us to derive the following require-
ments and characteristics of dependency information:

1. Dependencies betweendifferentservices are layered;
furthermore, their dependency graph is directed and
acyclic: The latter statement also reflects the au-
thors’ experience with IP-based networked services
(such as DNS, NFS, DFS, NIS etc.) but there might
be cases where mutual dependencies might occur in
some systems: A “pathological” example for such a
mutual dependency is a DNS server that mounts the
filesystem in which its DNS configuration is stored
via NFS from a remote system. It is the authors’ be-
lief that while such a configuration is technically pos-
sible, it reflects flaws in the system design because
this leads to an unstable system whose bootstrap-
ping might be non-deterministic and thus should be
avoided. A dependency-checking application that
discovers cyclic dependencies should issue a warn-
ing to an administrator.

2. Every dependency is visible at a customer/provider
domain boundary and made explicit by means of
SLAs; it follows that the number of observable de-
pendencies is finite.

3. Dependency models must allow a top-down traversal
of dependency chains.

4. Dependencies between different systems (“inter-
system”) are perceived as dependencies between the
client and server parts of thesame service. It is not
possible that a client for service A issues requests to
a server which provides a different service B.

5. suitable dependency models must (in addition to the
top-down navigation allow a bottom-up traversal of
dependency chains.

6. the number of dependencies between many involved
systems can be computed but may become very
large. From an engineering viewpoint, it is often
undesirable - and sometimes impossible - to store a
complete,instantiateddependency model at a sin-
gle place. Traditional mechanisms used in network
management platforms such as keeping an instan-
tiated network map in the platform database there-
fore cannot be applied to dependencies due to the
number and the dynamics of the involved dependen-
cies. These two facts make it prohibitive to follow
a “network-management-like” approach for the de-
ployment of application, service and middleware de-
pendency models. Instead, we propose to distribute
the storage and computation of dependencies across
the systems involved in the management process.

As an engineering response to the last item, section 5
presents an approach to tackle this problem. It is is built
on the definition of two different kinds of dependency
models:

A Functional Model that defines generic service
(database service, name service, web application ser-
vice etc.) dependencies and establishes the principal
constraints to which the second model is bound.

A Structural Model containing the detailed descrip-
tions of software components that realize the services
(DB2 UDB 5.2, BIND 6.5, WebSphere Advanced Edi-
tion 3.0 etc.). It provides details w.r.t. the installed soft-
ware and extends the amount of information provided
by the Functional Model.

2.1 Related Work

The OpenGroupDistributed Software Administration
(XDSA)specification [6] addresses the mechanisms for
software distribution/deployment/installation by defin-
ing several commands (swinstall, swlist, swmodify etc.)
and a software definition file format with many at-
tributes. The latter identifies three kinds of relation-
ships: prerequisite, exrequisite, corequisite. It should
be noted that XDSA does not deal withinstantiatedap-
plications and services and therefore does not represent
means of determining the dependencies between com-
ponents at runtime.

In the Common Information Model (CIM)[2], depen-
dencies (being ususally perceived as a specific kind of
association) are modeled as classes, thus allowing in-
heritance. The following dependencies are specified
in the different CIM schemas: TheCore Schemade-
fines dependency types in terms of abstract classes that

2



deal with dependencies between SAPs, services, prod-
ucts and provide a generic means for associating context
with them. TheType of Dependency attribute de-
scribes for a given service that its antecedent “must
have completed”, “must be started” or “must not be
started” in order for a service to function. This is related
to the notion of prerequisites, corequisites and exreq-
uisites in XDSA. TheSystem Schemarefines the root
classCIM Dependency in order to deal with job des-
tinations, host systems and file systems. TheApplica-
tion Schemadefines two dependency types that describe
an association between a service and an SAP and their
implementations, respectively. Finally, theDistributed
Application Performance Schemarelates the definition,
the metrics and the logical element that is instantiated
to a “unit of work”. All schemas have in common that
their dependencies are derived from a single base class
CIM Dependency being defined in the Core Schema;
the inheritance hierarchy is therefore flat.

It is fair to say that while each specification addresses
the dependency problem in general, none of these spec-
ifications allows the determination of dependenciesat
runtime: In XDSA and CIM, the dependencies are well
specified for the installation phase of a software prod-
uct. However, these models provide no support as soon
as an application gets instantiated, i.e., moves from the
“installed” state to the “running” state. The main rea-
son for the absence of satisfactory application manage-
ment solutions is that comprehensive application man-
agement demands a large amount of management in-
formation, thus posing an additional development ef-
fort on the application developers [4, 3]. A good exam-
ple for this is theApplication Management Specifica-
tion (AMS)[1] that provides an open standard for defin-
ing the management information needed for distributed
applications. While AMS identifies a set of manage-
ment information common to different kinds of appli-
cations and the means of specifying it using application
description files, the application developer needs to pro-
vide the appropriate instrumentation.

3 Classification of Dependencies

Since dependencies come in different flavors and have
varied characteristics, dealing with them in a systematic
way can be facilitated by classifying them into groups
with similar properties. Our approach consists in defin-
ing a coordinate system based on the following key
characteristics of a dependency.

Space/Locality/Domain– how “far” is the antecedent
from the dependent (i.e., sharing memory space, shar-
ing the same node, sharing the same subnet, being lo-
cated within the same domain etc.). This can also be re-
ferred to as “inter-domain” vs. “intra-domain” or “intra-

system” vs. “inter-system” dependency.

Component Type– what the antecedent component ac-
tually is, i.e., a piece of hardware, an end system, a
software package, a service, or a logical entity (a file
system, a queue, a session). This distinction is impor-
tant because different types of components tend to be-
have differently and to fail differently. One could ar-
gue thatComponent Type and Activity (see below)
do not relate immediately to the computation of depen-
dencies since they deal only with the component itself.
However, our experience has shown that such informa-
tion has to be recorded in order to facilitate problem
determination and troubleshooting. It is therefore im-
portant to take the Type and Activity of a component
into account, since software and hardware fail in differ-
ent ways and require different approaches to correct the
problem. This information is also valuable for configu-
ration management.

Component Activity – whether the antecedent is “ac-
tive” (such as a piece of hardware or software) and can
be directly/explicitly queried, or “passive” (such as a
file) which by itself cannot be queried or instrumented.
Since only active components are likely to offer man-
agement instrumentation, this distinction is important
for performance and fault management because an ac-
tive component can be instrumented and thus queried
directly. On the other hand, a passive component itself
cannot be instrumented and must always have an “inter-
mediary” acting on its behalf.

Dependency Strength– how strongly the dependent
component depends on the antecedent resource. While
it may seem not very useful to consider dependencies
other than mandatory, it turns out that strength is a good
metric to deal with intermittent (temporary) dependen-
cies.

Dependency Formalization– what degree of formal-
ization this dependency has and, thus, to which de-
gree it can be determined automatically. For exam-
ple, a dependency may be directly available from sys-
tem information repositories such as ODM (AIX) or
RPM (Linux) in machine-readable format (high degree
of formalization); or a dependency may exist only in
the notebook of a system administrator (very low de-
gree of formalization). This dimension is important be-
cause it serves as a metric that helps to evaluate how
expensive and/or difficult it is to acquire, identify, rep-
resent and track this dependency during the lifetime of
the component. Another example for formal dependen-
cies is found in the well-known configuration files of
applications or networked services: The client part of
the Domain Name System (“Resolver”) is configured
in the file/etc/resolv.conf; this file contains not only the
domain name of the client system but also information
regarding the DNS servers and domains that are being

3



queried (and their order). It is therefore possible to com-
pute the runtime dependencies of the Name Service.
Detailed configuration parameters of a WWW server
are found in thehttpd.conf, access.confandsrm.conf
files and allow to forecast the runtime behavior of a web
server.

Dependency Criticality – how should this depen-
dency be satisfied, in terms of availability of the re-
source/service this component depends on.Depen-
dency Criticalitycan take the following values:prereq-
uisite, corequisite, or exrequisite. It is important to note
that, as the dependency moves along thetimeaxis, the
meaning and the semantics of these values change:

� prerequisites– components and services neededbe-
fore this component can be used:

– installation time: the components or resources
must be installed before this component can be in-
stalled;

– runtime: the services must runand complete
(without encountering an error) before this com-
ponent/service can start. A typical example for
this is the need to obtain a valid software license
from a license server before a word processor can
be started.

� corequisites– components and services neededin
parallel with this component:

– installation time: a service must be installed/confi-
gured in conjunction with another service.

– runtime: the service must be running when this
component/service runs.

� exrequisites– components and services thatmust
not be present:

– installation time: in order for this component to be
installed, services mentioned asexrequisitesmust
not be installed;

– runtime: in order for this service to run, those listed
asexrequisitesmust not run.

Apart from these characteristics, it is important to con-
sider two additional aspects that determine the behavior
of dependencies but do not fit into the multidimensional
representation:

Time: Dependencies may and usually do change from
one point in the component’s lifetime to another. Some
may disappear – such as the need for disk space to in-
stall the component is gone once the installation is com-
plete. Some may change – for example, the need for
temporary disk space may not be gone but eventually
decrease from the installation to the running phase of
an application. And some dependencies may come up

passive

active

inter-domain

intra-package

space/locality/domain

intra-domain

inter-system

intra-system

component activitycomponent type

none

exrequisite

optional
mandatory

software

hardware
logical entitydependency

strength

dependency
formalization

highlow

dependency criticality

corequisite

prerequisite

Figure 2: Multidimensional Space of Dependencies

that were not there before – such as the need for remote
components which matters when the application runs,
but should not and does not prevent the installation from
succeeding. For example, IBM WebSphere may depend
on the availability of a certain amount of disk space at
installation time — however this dependency may dis-
appear as the application lifecycle moves beyond instal-
lation. Another example – dependency upon DNS – ap-
pears only after the installation is complete and possibly
past the configuration stage.

Dependency Lifecycle: It is useful to distinguish be-
tweenfunctionalandstructuraldependencies. Usually,
as a dependency moves along thetimeaxis, it isinstan-
tiated further, accumulating details and evolving from
functional to structural. Afunctionaldependency is an
association between two entities, typically captured first
at design time, which says that one component requires
some services from another. Astructural dependency
contains more detailed description and is typically cap-
tured first at deployment or installation time.

One also has to differentiate between dependencies
crossing the local host boundary, and those that relate
to components within one host. Thus, another space-
related classification of dependencies deals with the re-
spective layers of the components related by the depen-
dency in question. The dependent component may be
on the same layer (usuallyinter-system) – for exam-
ple, a database client application depends on a database
server. If the antecedent component is located at a lower
layer, we speak ofintra-systemdependencies, e.g., a
Web browser depends on the TCP service.

It is important to know how a given dependency can be
obtained for the following reasons:

� to evaluate the cost of obtaining it vs. the benefit it
offers;

� to evaluate the accuracy of the information obtained.

4



Dependency information can be provided with the com-
ponent, or it can be computed. The best source of such
information is the component developer, as he knows
firsthand what services his product requires, or can of-
fer. Examples of how dependencies can be obtained are:

� the application explicitly lists its dependencies;

� the information is acquired from the environment
(e.g., system repository, configuration and installa-
tion files, etc.).

Dependencies can be provided by the application de-
veloper and be either delivered as part of the docu-
mentation, or included in a component package file
(in a machine-readable format, suitable for immedi-
ate acquisition and use by management applications).
Tivoli AMS is an example of such a system. The
cost of obtaining such dependencies is relatively low,
and their accuracy is high. However, this is today a
rather unusual case as the majority of applications is not
“management-enabled”. Thus, our approach is based
on the second alternative: The sources of our depen-
dency information are system-wide repositories of soft-
ware package dependencies, maintained by the operat-
ing system. This information is complemented by eval-
uating the content of configuration files and by observ-
ing the signals raised by the operating system. The addi-
tional advantage is that the dependencies of a particular
software w.r.t. the environment can be determined.

4 Dependency Analysis

The analysis in the previous section has pointed out
that a major requirement for the automated management
of distributed application services is to have a record
of their dependencies on lower layer services and re-
sources.

Considering the fact that a majority of application ser-
vices run on UNIX and Windows NT-based systems,
it is worth analyzing the degree to which informa-
tion regarding applications and services is already con-
tained in the operating systems. The underlying idea
is as follows: if it is possible to obtain a reasonable
amount of information from these sources, the need
for application-specific instrumentation can be greatly
reduced. Our approach recognizes the fact that sys-
tem administrators successfully deploy applications and
services without having access to detailed, application-
specific management instrumentation.

WindowsNT/95/98 systems and UNIX implementa-
tions such as IBM AIX and Linux have built-in reposi-
tories that keep track of the installed software packages,
filesets and their versions. AIXObject Data Manager
(ODM), WindowsRegistry, and LinuxRed Hat Package

Manager (RPM)are examples for these system-wide
configuration repositories. In this paper, we will con-
centrate on ODM. However, we have verified the ap-
plicability of our approach to the other repositories as
well.

Usually, repositories serve as the basis for software in-
stallation tools such asInstallShield(for Windows sys-
tems) or the AIXSystems Management Interface Tool
(SMIT). Moreover, they can be regarded as knowledge
bases that contain important information with respect to
the compatibility of services and applications. The fact
that a specific software package must already be present
on a system so that another package can be installed
successfully, implies that the service implemented by
the latter package depends on the service implemented
by the former. In other words, if a specific software
package has other software packages listed as instal-
lation prerequisites, we can infer that this dependency
relationship is also valid for their instantiated counter-
parts, i.e., services and applications.

A simple example will serve to illustrate this: if the sys-
tem repository indicates that a specific Web server has
a distinct TCP/IP implementation as a prerequisite, this
essentially means that:

1. A functional, i.e., generic and implementation-
independent relationship model for the service cat-
egories “WWW” and “TCP/IP” can be established.
The model describes services in terms of the func-
tionality they provide and on which other services
they depend. The fact that the WWW service
depends (among others) on the availability of the
TCP/IP service implies that a functional depen-
dency relationship between the services ”WWW”
and ”TCP/IP” is defined (by means of the description
in the prerequisites list) and enforced by the installa-
tion routine.

2. Structural , i.e., specific and implementation-
dependent management information is available. An
appropriate algorithm for automated problem deter-
mination for a malfunctioning WWW service would
have to check whether the operational states of a spe-
cific web server and of its underlying TCP/IP stack
are ”up”. This is possible because the dependency
relationships of the majority of networked services
are explicitly listed in the system repository.

Discovering and enumerating the dependency relation-
ships that applications have on lower layer services in
a networked environment is a difficult problem. It has
both a static and dynamic aspect, that is, dependencies
identified at application install time and those discov-
ered at runtime. The functional dependency model can
be used to describe static dependencies between appli-
cation and service categories. The structural part cap-

5



tures dynamic information related to concrete service
implementations.

We will now take a look at how configuration in-
formation for software packages is represented in
ODM. The following entry for the successfully
(state = 5 ) installed TCP/IP client component1

(bos.net.tcp.server ) – being part of the oper-
ation system networking software (bos.net ) of IBM
AIX – indicates that this package (version4.2.1.0 )
replaces and renames the previously installed package
bosnet.tcpip.obj version4.1.0.0 .

lpp_name = "bos.net.tcp.server"
update = 0
name = "bos.net"
state = 5
ver = 4
rel = 2
mod = 1
fix = no
ptf = ""
sceded_by = ""
prereq = "*prereq bos.rte 4.2.0.0,

*prereq bos.net.tcp.client 4.1.0.0"
description = "TCP/IP Server"
supersedes = "bosnet.tcpip.obj 4.1.0.0"

Additional information for applied fixes/patches and
their descriptions is also found in this template. One
particularly important part of this data structure is the
entry ”prereq ” (prerequisites) because it mandates
which other software packages must already be present
in the system so that this component can be success-
fully installed. In the following sections, we will de-
scribe how we make use of this information for our pur-
poses. Since every software package installed on AIX
is required to list its properties in this machine-readable
format, we can therefore assume that the dependencies
cover a comprehensive set of software packages.

Our analysis has shown that system repositories such
as ODM represent a rich source of application service
management information, not only regarding the con-
figuration of installed applications but also for deter-
mining dependency relationships between applications
and services. Note that this large amount of information
can be obtainedwithout anyspecific instrumentation of
the components. The only requirement is that the ap-
plication components be described using aservice de-
scription template that has been developed by us and
whose content can be provided to a large degree by to-
day’s system information repositories.

5 Dependency Architecture

In this section we will briefly illustrate the role of de-
pendencies in the management of services in a typical

1The term “LPP” in the template stands for “licensed program
product” and denotes a service component.

Application
Service Agents

Resource
Broker

Service Management Stations

Resource List

Service Dependencies

Query for relevant
MLMs

Register Service Agent
with MLMs

Status Events

Application Analysis
Process

Application Dependency Analysis

Application
Analysis 

Data

Event Services

Discovery
Services

Topology
Services

Communication Services

Network Management Platform API

Resource
Directory

MLMs

Firewall

DNS

WWW

Filtered Events

Figure 3: Components of the Architecture

ISP environment. Our overall architecture is depicted
in figure 3: Off-the-shelf network management plat-
forms and Mid-level Managers (MLM) provide the ba-
sis of this architecture and offer services such as event
reception and forwarding, resource discovery functions
or topology services. We assume that through offline
analysis – based on the methodolgy and approach pre-
sented in section 4 – a database of static dependencies
in constructed. This collected data describes, for each
end-to-end application service, the dependecies it has
on lower level application and network layer services
and components.

The application service agentis the focal point for
managing an individual service offering. From an im-
plementation viewpoint, it is like an application operat-
ing on top of a network management platform. If, for
instance, a service provider has three different service
offerings (DNS, web-based content hosting and shared
firewall) our design yields three service management
agents, each responsible for one offering. The agent re-
ceives event notifications from the MLMs through the
platform API and updates the view of the service that it
maintains. This view can best be represented by a multi-
level resource tree, where the elements in one level are
dependent on the availability and status of elements at
the next lower level. One way to use the service view
is to represent it graphically on one of the service man-
agement stations where a service manager can observe
the status of the service and do typical drill down oper-
ations for troubleshooting.

The functional dependencies yield a generic service
model while the structural part provides detailed infor-
mation on the involved components. While the func-
tional model is stored at the MLMs and the manage-
ment platform, the service management agent main-
tains a structural view for every individual customer.
This leads to a high degree of distribution and is the
main reason for the scalability of our approach; thus, an
outage in any resource can be rapidly correlated with
complaints received from that customer. During ini-
tialization, a service agent obtains the configuration file

6



generated at the application dependency analysis phase,
which is used to establish the functional model.

TheResource Brokerserves as the main access to the
Resource Directory. The two entities which use the Re-
source Broker are the Application Service Agent and
the Mid-level Manager. As part of its initialization pro-
cedure, the Application Service Agent sends its list of
resources contained within its service view. The Re-
source Broker searches the Resource Directory and as-
sociates with this list a set of MLMs that are responsi-
ble for monitoring the resources. It then communicates
with the relevant MLMs in order to register the service
agents with the MLMs. The MLMs use this registration
lists to direct events pertaining to the resources under
their monitoring control.

The main function of theResource Directory is to
maintain a list of all resources that are monitored by
a particular MLM. It responds to queries from the re-
source broker and provides persistent storage of the
records.

We will now describe the information flow that takes
place in order to produce status views of application ser-
vice offerings.

An Application Service Agent in charge of a particu-
lar application service sends a request to the Resource
Broker in order to determine the status of the resources
the service depends on. It provides the Resource Bro-
ker with a list containing the resource identifiers of all
the resources this service requires. This dependency list
is generated during the application dependency analysis
phase.

The Resource Broker queries the directory using the
above resource list and obtains a list of all MLMs that
are responsible for monitoring the set of resources in
this list. Upon obtaining the above list of MLMs, the
Resource Broker contacts each of the MLMs by send-
ing the Application Service Agent ID and the associ-
ated resource list, i.e., the set of resources for which the
particular MLM is responsible. At this point, when an
resource related event is generated, each MLM moni-
toring the resource, knows where, i.e., to which Appli-
cation Service Agent the events should be forwarded.

For efficiency reasons, events from the MLMs are fil-
tered by the event services of the management platform.
Depending on the agent IDs attached to the events, the
platform forwards them to the responsible Application
Service Agent, which, in turn, uses the information in
the event to update the status information in the service
view.

One of the advantages of the approach presented above
is that it allows for incremental, low cost, staged de-
ployment. Most ISPs start by offering simple connec-
tivity services and then evolve into application service

providers. Typically, they start by deploying standard,
platform-based, network operations and management
systems. Using our approach, these systems can be aug-
mented incrementally to use dependency information
for the management of services, thus allowing ISPs to
preserve and leverage their investments in the initially
deployed operational systems.

6 Conclusion and Outlook

A key requirement for application service management,
highlighted in this paper, is the identification, compu-
tation and representation of dependency information.
Since dependencies come in different flavors and have
varied characteristics, dealing with them in a systematic
way can be facilitated by classifying them into groups
with similar properties. We have developed such a clas-
sification which helps to identify the various aspects of
dependencies. The approach for identifying and com-
puting dependencies presented in this paper is prag-
matic and based on a static dependency analysis that
yields information on entities within a system (Intra-
system) and between peer entities of a service (Inter-
system). Finally, we have provided a description of the
components of our Application Service Management
Architecture and the information flows.

The identification of dependencies is a prerequisite for
the deployment of troubleshooting services that capture
fault management knowledge contained in fault docu-
mentation systems. The authors are currently engaged
in further research in modeling and implementing man-
agement services for optimizing the traversal of depen-
dency structures.

References
[1] Application Management Specification. Version 2.0,

Tivoli Systems, November 1997.

[2] Common Information Model (CIM) Version 2.2. Specifi-
cation, Distributed Management Task Force, June 1999.

[3] M. Katchabaw, S. Howard, H. Lutfiyya, and A. Marshall.
Making Distributed Applications Manageable through In-
strumentation.The Journal of Systems and Software, (45),
1999.

[4] A. Schade, P. Trommler, and M. Kaiserswerth. Object In-
strumentation for Distributed Applications Management.
In Proceedings of the IFIP/IEEE International Confer-
ence on Distributed Platforms (ICDP’96), Dresden, Ger-
many. IFIP, Chapman and Hall, 1996.

[5] D. Verma. Supporting Service Level Agreements on IP
Networks. Macmillan Technical Publishing, 1999.

[6] Systems Management: Distributed Software Administra-
tion. CAE Specification C701, The Open Group, January
1998.

7


