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Abstract

The nightmare of Trusted Third Party (T3P) based

protocol users is compromise of the T3P. Because

the compromised T3P can read and modify any user

information, the entire user group becomes vulner-

able to secret revelation and user impersonation.

Kerberos, one of the most widely used network au-

thentication protocols, is no exception. When the

Kerberos Key Distribution Center (KDC) is com-

promised, all the user keys are exposed, thus re-

vealing all the encrypted data and allowing an ad-

versary to impersonate any user. If an adversary

has physical access to the KDC host, or can obtain

administrator rights, KDC compromise is possible,

and catastrophic. To solve this problem, and to

demonstrate the capabilities of secure hardware, we

have integrated the IBM 4758 secure coprocessor

into Kerberos V5 KDC. As a result of the integra-

tion, our implemented KDC preserves security even

if the KDC host has been compromised.

1 Introduction

Over the past decades, numerous security protocols

have been developed and have been quite successful

at improving computer system security, providing

safe handling of critical information. However, there

still remains one large security dread; you really

do not know what your computer is doing.

Indeed, with current commodity computer technol-

ogy, it is quite diÆcult to have con�dence in sys-

tem integrity1 because (1) physical security tends

to be overlooked in commodity hardware, (2) soft-

ware bugs inevitably introduce security threats, and

�This project has been carried out in the IBM T. J. Wat-

son Research Center, P.O. Box 704, Yorktown Heights, New

York 10598, in the summer of 1999.
1System integrity is intact when \no unauthorized modi-

�cation has been made." [10]

(3) new systems introduce new problems. Most of

the security software available today ignores these

diÆculties, and simply asserts system integrity. The

reasoning behind this assertion is that physical at-

tacks are more diÆcult to execute than software at-

tacks.

However, this assumption can no longer be consid-

ered reasonable as the value of information stored

in computers increases. For example, the CIC Se-

curity Working Group reported the theft of a medi-

cal server that contained highly private information,

such as social security numbers and medical histo-

ries of many donors at a university hospital. Consid-

ering the private nature of the stolen information,

the damage the incident caused was extremely seri-

ous [19].

The time is right to begin addressing the awed as-

sumption that physical attack is unlikely and that

system integrity is intact [32]. One approach is to

employ secure hardware with the following consid-

erations in mind. First, such hardware should be

physically tamper resistant. Second, to minimize

software aws, it should be simple and throughly

tested. Secure hardware is now being mass pro-

duced and is becoming more widely available (e.g.,

[21, 8, 43]), so it can now be more readily integrated

with existing computer infrastructures. In this ef-

fort, we secure one of the most critical component in

current computer systems: the trusted third party

in Kerberos, namely, the Kerberos Key Distribution

Center (KDC).

We integrated the IBM 4758 secure coprocessor into

the Kerberos KDC, which has resulted in the imple-

mented KDC preserving critical secrets even when

compromised. This paper presents the motivation,

design, security consideration, implementation, and

performance evaluation of the project.

We use the term \card" to refer to the 4758, and

\host" to refer to the workstation to which the 4758



is attached.

1.1 Fundamental Security Problems

Physical Security

Many researchers have identi�ed the problem of

physical security of distributed computer systems

[20, 49, 37]. Unlike mainframe computers of the

past, in isolated computer centers, today's com-

puter environment consists of physically distributed

personal computers and workstations, connected

by networks. Such an environment is diÆcult to

protect because computers are geographically dis-

tributed, making it more diÆcult to control physical

access. Further, PCs and workstations have weaker

physical protection than mainframes in that phys-

ical access to computational and storage devices is

typically possible by simply opening the cover of

the computer. For example, a hard disk drive can

be easily removed from a personal computer. Once

it is removed, an adversary can mount it on his own

computer to access it, or can make a copy and an-

alyze it o�-line. Some PCs and workstations have

locks, but these tend to be of low quality and easily

defeated [13].

Bootstrap Process

Arbaugh et al. have pointed out that without a

secure bootstrap process, the integrity of operating

system kernels cannot be trusted because malicious

code (e.g., Trojan horse) can be injected in the boot-

strap process [1]. For example, typical PCs can be

booted from oppy disks, thus allowing arbitrary

operating system kernels to run, even malicious ones

or ones with Trojan horses. Some of them allow the

administrator to set a BIOS password, preventing

booting unless the password is entered. However,

an adversary can reset the password by resetting

the BIOS [13].

Software Flaws

Bugs and design aws in software, which are un-

avoidable, can be exploited. For example, bu�er

overow in an administrator privileged (root) pro-

cess can allow an adversary to run arbitrary code

with administrator privileges. Vulnerable soft-

ware ranges from operating systems to applications.

Some examples are as follows:

� operating systems (e.g., erroneous permission

of DLL cache on Windows NT 4.0 [11])

� basic system programs (e.g., bu�er overow in

df, eject, login, etc., in IRIX [4])

� daemons (e.g., bu�er overow in wu-ftpd [7],

bu�er overow in IIS web server [6, 38] and

bugs in sample �les in IIS [48])

� applications (e.g., bu�er overow in sendmail

[5])

� network protocols (e.g., aws in ICMP Router

Discovery Protocol allowing man-in-the-middle

attack [39])

� security software (e.g., poor encryption of shell-

lock [35] and Password Appraiser sending Win-

dows passwords in the clear on the Internet

[34])

Such vulnerabilities can be quite serious. For in-

stance, they may yield administrative rights to an

adversary, crash the computer system, or leak crit-

ical information.

The computer security community deals with such

aws by publishing countermeasures as soon as vul-

nerabilities are found. However, searching for vul-

nerabilities is an endless chore, as it is impossible to

be con�dent that the software is bug-free. In addi-

tion, computer systems are developing quite rapidly,

and new systems tend to bring new problems.

For example, the new functionality of Java [18]

enabled client side programming on the Internet.

At the same time however, a design aw in Java

caused a mismatch between the language and the

bytecode, leaving the Java Virtual Machine open

to attacks [29], and implementation bugs made In-

ternet browsers vulnerable [9]. In many ways, the

new technology itself enabled new kind of attacks

[46, 28].

It is dangerous to assume the integrity of an operat-

ing system's kernel and software, as most software

does. This is problematic especially for security crit-

ical software, such as trusted third parties.

1.2 Trusted Third Party

Several trusted third party (T3P) based security

protocols are in use today. T3P is a central author-

ity in a network that de�nes and enforces security

policies for the other members of the network. A



certi�cate authority (CA) is a T3P in a public key

based protocol that uses certi�cates for authoriza-

tion. A key distribution center (KDC) is a T3P in

a secret key based protocol that stores secret keys

of the members. The natural match between a T3P

based model and real-world security management

lends T3P based protocols con�gurability and scal-

ability, making them widely accepted.

The T3P is a critical point of attack on a network.

The damage caused by a T3P compromise is ex-

tremely serious. In particular, it is catastrophic to

have the KDC compromised, as the keys of all the

members can be obtained by an adversary. With all

the member keys in hand, the adversary can decrypt

all the secrets encrypted with the keys, and can im-

personate any member. To recover from KDC com-

promise, all keys must be revoked and regenerated,

a�ecting every member. Compared with KDC, CA

has better characteristics when compromised be-

cause CA stores public keys, but not private keys.

However, CA compromise is still quite damaging,

as an adversary can impersonate anyone by crafting

bogus certi�cates.

Therefore, to keep systems secure, T3Ps must have

the highest security. However, as described in

the previous section, fundamental security problems

pose a signi�cant challenge to obtaining high levels

of security with current computer systems.

1.3 IBM 4758 Secure Coprocessor

We address the problem stated above by bringing a

secure coprocessor into the mix. A secure coproces-

sor is a \computational device that can be trusted

to execute its software correctly, despite physical at-

tack" [41].

We employ the IBM 4758 secure coprocessor be-

cause of its superior security and programmability.

The 4758 is a PCI card with a tamper-resistant and

tamper-responding secure coprocessor.

IBM 4758 Security

The 4758 is physically protected with layers of epoxy

and metal so that it does not leak information out

of the barrier, has electromagnetic shielding, and

cannot be accessed without the card detecting it.

The card detects opening attempts, penetration at-

tempts, temperature attacks, and radiation attacks.

This has three types of storage: RAM, battery-

backed up RAM (BBRAM), and ash memory. On

detecting an attack, the card responds by resetting

all the data in RAM and BBRAM, thus prevent-

ing an adversary from obtaining any information.

RAM is 4 MB of volatile memory. BBRAM is 8.5

kilobytes of non-volatile secure memory. Flash is 1

MB of non-volatile memory.2

Validated with the FIPS 140-1 Level 4 standards,

this coprocessor is one of the most trustworthy and

secure coprocessors [42].

IBM 4758 Programmability

In addition to its security, the 4758 has very good

programmability. Applications that run in the card

are written in C, and can be debugged with a run-

time debugger [12].

It has a very fast cryptographic accelerator (20

MB/s bulk DES and 20 signatures/s of RSA 3 with

1024 bit modulus), which allows for eÆcient imple-

mentation of security protocols. [41, 21].

It is natural to use the most secure hardware for

the most critical component. To demonstrate the

potential of secure hardware integration in T3P pro-

tocols, and to counter one of the fundamental secu-

rity limitations of Kerberos, we integrated the 4758

into Kerberos V5 KDC.

1.4 Paper Composition

This paper presents the secure coprocessor integra-

tion with Kerberos KDC project. The next section

provides the motivation behind the project by refer-

ring to related work. Section 3 describes the design

of the integrated protocols. The security of our de-

sign is discussed in Section 4. Section 5 presents the

prototype implementation. Performance evaluation

of the prototype is presented in Section 6. Discus-

sion and future work are in Section 7.

In this document, it is assumed that readers have

some knowledge of the mechanisms of Kerberos.

Readers who are not familiar with them are advised

to consult available literature [3, 44, 27, 25, 26].

2Parameters such as storage size and cryptographic per-

formance are reported for the 4758 Model 1. The 4758 Model

2 has improved size and performance [21].
350 MB/sec DES and 200 signatures/s RSA on 4758

Model 2



2 Related Work

This section reviews the work most closely related to

our research. Section 2.1 introduces Kerberos. Sec-

tion 2.2 describes approaches taken by researchers

to address goals similar to ours, and the relation-

ship between their approaches and ours. Section

2.3 discusses secure hardware integration with the

Kerberos client.

2.1 Kerberos

Kerberos [44, 27, 26] is a very widely used authen-

tication protocol. It is a secret key, T3P proto-

col based on the Needham-Schroeder protocol [36].

Kerberos KDC o�ers two services, Authentication

Service (AS), and Ticket Granting Service (TGS).

AS authenticates members (principals), while TGS

establishes a session key between two principals. For

example, Alice needs to run AS with the Kerberos

KDC to prove she is Alice, and needs to run TGS

with the Kerberos KDC to obtain a ticket, which is

later sent to Bob to establish a session key between

them. Every principal in the protocol, i.e., users,

services 4, and computers, is assigned a secret key,

which is shared between the principal and the KDC.

Kerberos is used in universities to protect their com-

puter network environments. CMU, Cornell, MIT,

Stanford, the University of Michigan, and many

more embrace it. It is also part of the products of

many corporations such as Transarc, Cisco, Qual-

comm, IBM, and Microsoft, whose Windows 2000

employs it as a fundamental network authentica-

tion method. Many network applications are mod-

i�ed to work with Kerberos, including login, ftp,

telnet, PAM, ssh, AFS, and DFS. Its security has

been thoroughly analyzed [2, 27], and it scales quite

well. For example, three replicated Kerberos servers

at the University of Michigan serve 180,000 users.

It is also quite portable. Both the clients and the

servers run on almost any UNIX or Windows sys-

tems. We believe that Kerberos will continue to be

an important security system.

A huge security issue for Kerberos is the com-

mon problem of KDCs, that is, it yields all

the keys when compromised [2, 32]. MIT

Kerberos V5-1.0.6 stores a master key, which

encrypts the other keys, in cleartext in a

�le (/usr/local/var/krb5kdc/.k5.DOMAINNAME).

Keys of the principals, i.e., the user keys and the

4Examples of services are login service and ftp service.

service keys, are encrypted with the master key and

are stored on hard disks. Therefore, if an adversary

has administrative rights for the KDC's computer

or physical access to its disks, all the keys can be

stolen.

2.2 Public Key Based Authentication
Systems

Several public key authentication systems have been

designed and implemented [47, 40, 45] that are com-

patible with or related to Kerberos. Many of these

systems are similar to ours in the sense that they

try to protect the trusted third party. The logic

to support them is that public key based authenti-

cation systems fail more gracefully than secret key

based systems when T3P is compromised. Indeed,

CA does not store private keys, thus maintaining

forward secrecy and preventing an adversary from

getting immediate impersonation ability. However,

these systems amplify the value of our work because

of the following:

� Even in public key systems, the trusted third

party (CA) is the most critical point of attack.

By obtaining the CA's private key, an adver-

sary can modify certi�cates, issue bogus certi�-

cates, and modify certi�cate revocation lists, to

impersonate members. Therefore, it is vital to

protect the CA with secure hardware.

� Because of both the computational overhead

of public key cryptography and the necessity

for key revocation, we have concerns over how

public key based authentication systems scale.

In contrast, we know the secret key based sys-

tem scales quite well. We believe that secret

key based Kerberos will be in service for a long

time.

Therefore, we believe that public key augmentation

to Kerberos complements our work.

2.3 Smartcard Integration with Ker-
beros Client

Smartcard integration with the Kerberos client en-

hances security of Kerberos by taking advantage of

secure hardware in the form of smartcard [24, 33,

15, 31, 22]. This work (smartcard/Kerberos client)

and our work (secure coprocessor/Kerberos server)

complement each other.



3 Design

As described in Section 1.1, we prefer not to trust

the host computer on which the Kerberos KDC

runs. Thus, we designed our protocol to survive

a host \hijack". One way of achieving this is to

implement an entire KDC in the 4758, but we did

not take this approach, as this will limit the perfor-

mance and scalability of KDC. Instead, we decided

to split a KDC between the host and the 4758, fol-

lowing these design policies.

� keys never leave the 4758 in clear

� all cryptographic operations are executed in the

4758

More concretely, the master key is stored in the

battery-backed up RAM in the 4758 and never

leaves. Because of storage limitations, user keys are

stored in the host and encrypted with the master

key. The 4758 has BBRAM of 8.5 kilobytes and 1

megabytes of ash memory, allowing it to securely

store many DES keys. However, storage in the host

is more abundant than storage in the 4758, and a

Kerberos realm, for example, at a university, may

require a huge number of keys, so we decided to

store them in the host.

When user keys are used, for example, to encrypt

a ticket, they are downloaded from the host to the

4758, decrypted there with the master key, used,

and then deleted from its memory. Session keys are

also generated in the 4758, augmented into tickets,

and encrypted in the 4758 before being shipped to

clients.

3.1 process as req

Figure 1 shows how the authentication request

(AS REQ) is handled in Kerberos V5. The keys

(the user keys of Alice and Bob, the krbtgt key,

and the master key) are used in the host. The mas-

ter key is not shown in the �gure, but is used to

decrypt the other keys. If the host is compromised,

all the keys are revealed.

To solve this problem, we designed the protocol with

the 4758 in Figure 2. Note that all the encryption

and decryption is done in the 4758, and no key is in

the host in the clear. This protects the keys from

an adversary who compromises the host.

The 4758 generates the ticket and the reply only if

requests are consistent, namely, the following con-

ditions are met:

� Key of Alice is used in preauthentication

� Alice is the client name in the ticket

� Bob is the server name in the ticket

� Key of Bob is used to encrypt the ticket

� Bob is the server name in the reply

� Key of Alice is used to encrypt the reply

Otherwise, it rejects the requests. As a result, the

adversary cannot fool the 4758 to generate tickets

and replies for her advantage.

3.2 process tgs req

Figures 3 and 4 show ticket granting service request

(TGS REQ) handling both with and without the

4758.

In the protocol using the 4758, all the encryption

is done in the 4758, and no key is in the host in

the clear. Consistency checks similar to the ones in

process as req take place.

4 Security Analysis

In this section, we discuss the security of the design

presented in Section 3.

4.1 Model

We start with constructing a model of our system.

The model consists of the following participants:

Alice (A) A Kerberos principal who uses the au-

thentication and ticket granting service pro-

vided by KDC. Alice's workstation is assumed

to be trustworthy. This allows us to combine

Alice and her workstation into one object.

Bob (B) A Kerberos principal with which Al-

ice wants to establish mutual authentication.

Bob's workstation is assumed to be trustwor-

thy.

KDC-host Software component of KDC that re-

sides on a host computer.



Alice KDC

Alice, Bob, nonce, padata

Alice, tkt, reply Kmaster,
Kalice,Kbob

Figure 1: original AS REQ processing in Kerberos V5
Alice The principal who wants to be authenticated.

Bob The principal with whom Alice wants to communicate.

(Bob is the \krbtgt" when AS REQ is used to obtain TGT.)

PAdata fcurrent timegKalice : Preauthentication data

to prove that Alice knows the right Kalice.

Kses Session key

Tkt fAlice, Bob, KsesgKbob : Ticket forwarded by Alice to Bob

to prove that Alice carried out authentication with the KDC.

If Bob is \krbtgt", the tkt is the TGT (fAlice, krbtgt, KsesgKkrbtgt)

Reply fBob, nonce, KsesgKalice : Alice decrypts it to get the session key.

The parties send additional information, such as message types, protocol version num-

ber, ags, and start/expiration/renew-until time. We omit them in this �gure because

they are treated the same with or without the 4758.

Alice KDC
host

Alice, Bob, nonce, padata

KDC
4758

nonce, padata,
{Alice, Kalice}Kmaster
{Bob, Kbob}Kmaster

tkt, 
{Kses, nonce, Bob}Kalice

Alice, tkt, 
{Kses, nonce, Bob}Kalice

Kmaster,
Kalice,Kbob

Figure 2: AS REQ processing in Kerberos V5 with the 4758

Security critical tasks, e.g., en(de)cryption and random key generation, are moved

from the host to the 4758. The host sends the 4758 the information needed for such

tasks, e.g., the nonce sent by Alice, and the encrypted keys of Alice and Bob. The

4758 generates a reply to Alice, and sends it back to the host.

The entries encrypted with the master key e.g., fAlice, KalicegKmaster, are gen-

erated and decrypted in the 4758. The KDC host stores them (encrypted) in the

Kerberos database and sends them to the 4758 when needed. The KDC host does not

know the master key.



Alice KDC

TGT, authenticator,
Bob, nonce

Alice, tkt, reply Kmaster,
Kalice,Kbob

Figure 3: original TGS REQ processing in Kerberos V5
Alice The principal who wants to be authenticated.

Bob The principal with whom Alice wants to communicate.

Bob is \krbtgt" when TGS REQ is used to obtain TGT.

PAdata Preauthentication data (TGT and Authenticator).

and knows the right Kses.

TGT fAlice, krbtgt, KsesgKkrbtgt : Ticket Granting Ticket,

which proves that Alice carried out authentication with KDC.

Authenticator fAlice, time, (subkey)gKses

K Key in TGT or subkey in authenticator

Kses Session key

Tkt fAlice, Bob, Kses'gK : New ticket for Alice and Bob.

Reply fBob, nonce, Kses'gK : Alice decrypts it to get the session key.

The parties send additional information, such as message types, protocol version num-

ber, ags, and start/expiration/renew-until time. We omit them in this �gure because

they are treated the same with or without the 4758.

Alice KDC
host

KDC
4758

TGT, authenticator, 
nonce,
{Alice, Kalice}Kmaster
{Bob, Kbob}Kmaster

Alice, tkt, 
{Kses, nonce, Bob}K

tkt, {Kses, nonce, B}K

TGT, authenticator, 
Bob, nonce

Kmaster,
Kalice,Kbob

Figure 4: TGS REQ processing in Kerberos V5 with the 4758

Security critical tasks, e.g., en(de)cryption and random key generation, are moved

from the host to the 4758. The host sends the 4758 the information needed for such

tasks, e.g., the nonce sent by Alice, the encrypted keys of Alice and Bob. The 4758

generates a reply to Alice, and sends it back to the host.

The entries encrypted with the master key, e.g., fAlice, KalicegKmaster, are gen-

erated and decrypted in the 4758. KDC host stores them (encrypted) in the Kerberos

database and sends them to the 4758 when needed. The KDC host does not know the

master key.



KDC-4758 Software component of KDC that re-

sides on a secure coprocessor.

Mallory (M) An adversary.

4.2 Threats

We make the following assumptions in our model.

Some of these assumptions are discussed in detail in

a related paper [22].

1. System administration is appropriately done.

As problems of system administration are out

of this paper's scope, administration is assumed

to be done appropriately, namely, (1) the mas-

ter key is stored in KDC-4758 and nowhere else,

and (2) keys of Alice and Bob are stored in

KDC-host encrypted with the master key. We

discuss more about administration in Section

7.3.

2. Client workstations are secure.

As problems of the security of client worksta-

tions are out of this paper's scope, client work-

stations are assumed to be secure, namely, (1)

a client workstation does not steal user's in-

formation, and (2) it does not alter or modify

messages a user sends.

3. Passwords of Alice and Bob are good.

The problem of dictionary attack against user

chosen passwords is out of this paper's scope;

passwords are assumed to be chosen carefully

so that the dictionary attack against them is

impossible.

4. DES is strong.

Our principal cipher is DES, which is as-

sumed impossible to compromise in reasonable

amount of time. This may not be a good as-

sumption any more in the age of fast DES

crackers [14], but Kerberos will eventually re-

place DES with triple-DES, thus eliminating

the brute force attack to DES.

5. Mallory can compromise KDC-host.

Mallory can read and modify any information

in KDC-host, and can make KDC-host do any-

thing she wants.

6. Mallory cannot compromise KDC-4758.

Mallory can neither read nor modify any in-

formation in KDC-4758. When she tries, 4758

deletes all the information in it. Mallory cannot

inuence the behavior of KDC-4758.

7. Mallory can read, modify, and alter messages

in the network connecting the participants.

8. Mallory can be a principal in the Kerberos

realm.

4.3 Attacks

4.3.1 Key Theft

Without 4758

Mallory can steal all keys by compromising KDC-

host. This is possible by Assumption 5.

With 4758

Mallory cannot steal any key. The master key is

in KDC-4758, and is not readable (Assumption 1,

6). All the other keys are in KDC-host, but are

encrypted by the master key, with DES, which is

unbreakable (Assumption 4).

4.3.2 User Impersonation

Without 4758

Mallory can impersonate any user by stealing or

guessing the user key.

With 4758

Mallory cannot impersonate any user. First, she

cannot steal a user key. Second, the other way of

impersonating a user (Alice) is to obtain a ticket

fAlice, Bob, KA;BgKB and the session key KA;B.

Mallory can obtain the ticket by sniÆng the network

(Assumption 7), but this is impossible as well. The

session key is generated in KDC-4758 and is always

encrypted by KA or KB when it is outside KDC-

4758. KA and KB are strong (Assumption 3), so the

session key cannot be obtained. These keys cannot

be stolen from client workstations (Assumption 2).

4.3.3 Ticket / Reply Forgery

Without 4758

Mallory can generate any ticket or reply by using

stolen keys.

With 4758



Mallory cannot generate a ticket or reply on her ad-

vantage. KDC-4758 generates them only after Alice

showes possession of her key through preauthenti-

cation, and consistency is checked as described in

Section 3.1.

5 Implementation

We implemented the AS and TGS protocols de-

scribed in Section 3 by modifying Kerberos V5-1.0.6

distributed by MIT. The host platform is Linux

2.0.36 (RedHat 5.2) on an IBM PC. The secure co-

processor is the IBM 4758 Model 1, with the Secure

Cryptographic Coprocessor toolkit version 1.33.

5.1 Outline

The implementation was carried out in the following

three steps.

� analysis of process as req() and

process tgs req(), which implement AS

and TGS to identify which portions of the

functions should be moved to the 4758

� implementation of the card side functions that

have functionality equivalent to the portions

identi�ed in the �rst step

� modi�cation of the host side program to make

calls to the implemented functions in the card

5.2 Step1: Functionality Analysis

There are six parts to be moved in AS: three calls

to key decryption and one each to preauthentica-

tion, ticket encryption, and reply encryption. Like-

wise, there are six parts in TGS: two calls to key

decryption and one each to ticket decryption, au-

thenticator decryption, ticket encryption, and reply

encryption.

As the performance evaluation in Section 6 shows,

the overhead of calling a function in the 4758 is

high. Therefore, to obtain high performance, the

six calls should be combined into one call. How-

ever, as cryptographic code and non-cryptographic

code are tightly coupled together in Kerberos, doing

so changes the order of execution and breaks mod-

ularity, thus signi�cantly complicating the host side

code. For this prototype, we decided to make six

calls in each AS and TGS, valuing simplicity and

manageability over performance. A detailed look at

the overhead in Section 6.2 explains our decision.

5.3 Step2: Card Side Functions

5.3.1 Authentication Service

Key Decryption

User keys are stored in the host and encrypted with

the master key. The card decrypts the keys before

using them. The host-side decrypt key() function

sends keys to the card, decrypts them and then

stores them in RAM for future use. The function

is called three times in AS: �rst for Alice's key for

preauthentication, second for Bob's key for ticket

encryption, and third for Alice's key for reply en-

cryption. 5

Preauthentication

Preauthentication is the step in which Alice proves

her identity to the KDC by proving knowledge of

her key. By default, preauthentication takes place

in the following three steps:

� Alice sends to the KDC a timestamp encrypted

with her key : ftimegKalice.

� The KDC decrypts ftimegKalice.

� The KDC veri�es that the request is really

generated by Alice by determining whether

the time value falls within clock skew allowed.

KDC goes on to the next step in AS if the an-

swer is yes. Otherwise, KDC rejects Alice.

Because this step requires the use of Alice's user

key, this function is moved to the card. The 4758

decrypts the timestamp and veri�es it. If the times-

tamp is invalid, following requests, e.g., ticket en-

cryption and reply encryption, are rejected.

Ticket Encryption

A ticket is a data structure sent from the KDC to Al-

ice to establish a session key. Roughly speaking, it is

5We can save one call by caching the key in preauthenti-

cation and using it in reply encryption. We did not try this

optimization for the prototype; performance is not yet our

goal.



fAlice, Bob, KsesgKbob. Part of the ticket is not

security critical, and is generated in the host. After-

ward, the ticket is sent to the card, �lled with the

session key generated in the card, encrypted with

Kbob, and sent to Alice. The card stores the ses-

sion key for future use because the reply will include

it as described in the next paragraph.

Reply Encryption

Similar to the ticket, the reply fBob, nonce,

KsesgKalice includes a public part, which is en-

coded in the host and is sent to the card. The ses-

sion key, generated in the ticket encryption function,

is inserted into the reply. The card then encrypts

the reply with Alice's key.

5.3.2 Ticket Granting Service

As in AS, six calls are made to the card in TGS:

two calls to key decryption, and one each to ticket

decryption, authenticator decryption, ticket encryp-

tion, and reply encryption. Some of the functions

are common in AS; we explain only the functions

that do not appear in AS.

Ticket Decryption

TGS decrypts the ticket granting ticket, or TGT

(fAlice, krbtgt, KsesgKkrbtgt), to obtain Alice's

name and the session key. Because it involves the

TGS key (Kkrbtgt), and the session key is in the

TGT, this step must be carried out in the card.

The card decrypts the TGT and returns it in the

clear to the host excluding the session key. The ses-

sion key must not leave the card, so it is stored in

RAM in the card. Later it is used in authenticator

decryption and reply encryption.

Authenticator Decryption

The authenticator fAlice, time, (subkey)gKses is

decrypted in the card. The timestamp is checked

in the card.

5.4 Step 3: Host Side Modi�cation with
Secure Hardware RPC

As with other secure hardware [23], the communi-

cation methods between the host and the 4758 are

primitive. For example, the only type provided is

an array of bytes. It is the developers' responsi-

bility to convert types such as int, short, char,

and more complicated data structures, into and out

of the string of bytes. It is a burden for developers

to deal with low-level programming, e.g., marshal-

ing and unmarshaling data structures, dealing with

endian problems, message bu�er handling, and error

handling.

To provide a better abstraction, we developed the

Secure Hardware Remote Procedure Call (SHRPC),

which parses the interface de�nition �le and gen-

erates C programs to handle the low-level com-

munication details. With SHRPC, procedure call

abstraction is provided to the host. As a conse-

quence, modi�cation in the host side is merely to

call SHRPC stub functions, e.g.., decrypt key(),

instead of equivalent but more elaborate functions

in the host.

Although interface de�nition language (IDL) should

follow some standards, such as rpcgen, we picked

our own simple IDL for rapid implementation. The

interface de�nition �le for the Kerberos / 4758 in-

tegration looks like this:

# Interface Declaration File

# for the Kerberos V5 / 4758 Project

# 8/6/1999, Naomaru Itoi

PROG: krb5_4758

FUNC: decrypt_key

IN:

int type

# type :

# 0: client key

# 1: server key

string enc_key

OUT:

int tick

...

-

6 Performance Evaluation

We evaluated the performance of the prototype in

the following environment: IBM Net�nity PC with

Intel 300 MHz Pentium; the IBM 4758 secure copro-

cessor model 1; the KDC and the Kerberos clients

running on the same computer to avoid network de-

lay.

Each measurement was carried out ten times and

an average is presented in tables. Variance was very

small.



6.1 Overall Result

This section describes the performance of AS. kinit

is the client program used to initiate the AS request.

The total time kinit spends with or without 4758

is shown. To exclude the time spent for password

typing, the password is hard coded in the kinit

program. kinit with the 4758 takes 34% more time

than kinit without it.

time (sec)

kinit without 4758 0.0611

kinit with 4758 0.0820

sclient is the client we used to initiate the TGS

request. sclient with the 4758 takes 33% more

time than sclient without it.

time (sec)

sclient without 4758 0.0719

sclient with 4758 0.0953

4758 integration introduces approximately 33% of

overhead in both cases. We look into the details in

the following sections.

6.2 Communication Overhead

In this section, we examine communication over-

head. We measure the total time spent for the six

cryptographic operations described in Section 5.2,

the time spent in the card, and derive the commu-

nication overhead. As shown in Figure 5, the total

time is the sum of the card time and the overhead.

Total Card Time Overhead

AS w/o 4758 0.00054 - -

AS w/ 4758 0.02535 0.00866 0.01669

TGS w/o 4758 0.00032 - -

TGS w/ 4758 0.02748 0.00866 0.01882

Communication overhead is approximately twice as

much as the card time in both AS and TGS. This is

an obvious bottleneck and there is an obvious opti-

mization. Theoretically, the number of calls can be

reduced from six in each AS and TGS to one in AS

and two in TGS. All operations can be done at once

in AS. In TGS, the TGT (ticket granting ticket)

must be decrypted to obtain the name of the client

before the KDC looks up its database. In contrast,

ticket encryption and reply encryption must happen

after the database lookup. Therefore, TGS requires

two calls. This optimization would reduce the card

time to 0.00278 seconds in AS and 0.00314 seconds

in TGS, thus reducing the overhead of using 4758

to 11% in AS and 15% in TGS.

6.3 Card Time Details

Although communication overhead was the bottle-

neck, it is also useful to study the details of the

time spent in the card. Breakdown of AS and TGS

is shown in the following table. For each function,

total time and time spent in main components are

presented.

AS

function contents time (sec)

decrypt key 24B DES decryption 0.000957

TOTAL 0.001109

kdc preauth 40B DES decryption 0.000997

CPGetTime 0.000023

TOTAL 0.001445

encrypt tk 168B DES encryption 0.001191

random number gen 0.000352

random number gen 0.000352

168B CRC 0.000041

TOTAL 0.002078

encode kdc 216B DES encryption 0.001270

random number gen 0.000352

216B CRC 0.000053

TOTAL 0.001809

TGS

function contents time (sec)

decrypt key 24B DES decryption 0.000957

TOTAL 0.001115

decrypt tk 168B DES decryption 0.001172

168B CRC 0.000041

TOTAL 0.001324

rd rec dec 120B DES decryption 0.001113

120B CRC 0.000031

TOTAL 0.001230

encrypt tk 168B DES encryption 0.001191

random number gen 0.000352

random number gen 0.000352

168B CRC 0.000041

TOTAL 0.002105

encode kdc 184B DES encryption 0.001211

random number gen 0.000352

184B CRC 0.000045

TOTAL 0.001773

DES operation takes the longest time. Considering

that the hardware implemented DES takes much

longer time than the software implemented CRC

even though the hardware itself is quite fast (20

MB/s 6), we believe the most of the DES opera-

650 MB/s on Model 2.
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Figure 5: total, card time, and overhead

tion time is spent in making a system call to DES

hardware and setting up a key schedule. For an ap-

plication that operates on such small data (100 -

200 bytes), which we believe many authentication

and authorization systems do, it is good to provide

(1) software implementation of crypto operations to

save system call overhead and (2) a decoupled API

for DES key scheduling separate from DES oper-

ation. (2) is helpful because some keys are used

repeatedly, e.g., a master key.

7 Discussion

7.1 Implementation Limitations

Due to time limitation, our implementation has the

following limitations.

User Name - Key Binding

In Sections 3 and 4, discussions were made assuming

a user name and the key of the user are encrypted

together. However, this is not the case in our pro-

totype because the key data structure in MIT Ker-

beros V5-1.* does not include the user name in it.

Preauthentication Failure

When preauthentication fails, either because it is

not encrypted with an appropriate key, or times-

tamps do not match, the 4758 should reject the fol-

lowing operations, namely, ticket encryption and re-

ply operations. This has not been implemented yet.

Consistency Check

Consistency check described in Section 3.1 has not

been implemented.

TGS Authenticator Check

Authenticator check described in Section 5.3.2 has

not been implemented yet. The 4758 simply de-

crypts and returns the authenticator.

7.2 Lessons Learned

Integration of secure hardware into a security pro-

tocol can be signi�cantly simpli�ed if the orig-

inal implementers of the protocol anticipate the

use of secure hardware. Complication of our

work comes from cryptographic operations and non-

cryptographic operations being tightly coupled in a

program, e.g., they coexist in one function. If they

are decoupled cleanly in an initial implementation,

the work of integration is merely to move the crypto

code to the secure hardware. Moreover, we believe

the separation is good for portability of the proto-

col, e.g., to switch from one encryption system to

another.

7.3 Future Work

Several steps must be taken before this project is

deployed.

Complete Implementation

Un�nished implementation, discussed in Section 7.1

should be completed to realize the claimed security.



Administration

We have not addressed problems associated with ad-

ministration: changing passwords, adding / remov-

ing principals, changing the the KDC's policy, etc.

The Kerberos Database (KDB) is the database in

which Kerberos stores its critical information, e.g.,

the keys and the principal attributes; it is accessed

by administrators through kadmind. Because the

data in the KDB are sensitive, the entries are en-

crypted with the master key. As a consequence, in

the 4758 integrated KDC, administration requests

must go through the 4758.

An adversary can attack a Kerberos/4758 system

by attacking the channel between the administra-

tor and the 4758. For example, one possible attack,

which could reduce the advantage of integrating the

4758 into Kerberos, is a Trojan horse in the admin-

istrator's terminal. If it can interrupt the operations

by the administrator, it can steal sensitive informa-

tion, e.g., user passwords. In fact, this secure I/O

problem is a general concern for any security sys-

tem, which requires the administrator be trustwor-

thy, and the administrator's terminal be secure.

We plan to address these concerns by carrying

out mutual authentication and establishing an en-

crypted connection between a system administrator

and the 4758 with Kerberos authentication, and us-

ing the connection to securely transfer requests by

the administrator to the 4758.

This will partially achieve our goals because the ad-

ministrator is authenticated via Kerberos, and com-

munication is encrypted. However, it is not possible

to provide a completely trusted terminal with cur-

rent commercial hardware, even with secure hard-

ware such as the 4758, because even if the proces-

sors and storage are trusted, the I/O devices may

not be. For example, a keyboard or a display in-

strumented with a hardware eavesdropper can steal

administrators' keystrokes. However, it is much eas-

ier to keep a terminal secure during administration

than to keep a Kerberos server secure in 24 hours a

day, seven days a week fashion. Therefore, we defer

solving this problem of secure I/O.

Performance Optimization

As described in Section 6.2, the six calls to the 4758

in AS and TGS should be combined into one and two

calls respectively to optimize the performance. The

drawback of this optimization is that it changes the

Kerberos code signi�cantly. In the Kerberos/Cartel

meeting in July of 1999, we sensed that such a radi-

cal change would pose a major challenge to Kerberos

developers with regard to maintaining the source

code. Therefore, we decided to �rst implement a

prototype to determine what the computer systems

community thinks about it before proceeding to the

deployment step.

Brute Force Attack to Master Key

If an adversary has access to messages passed be-

tween the host and the 4758, he or she can obtain

a plaintext-ciphertext pair. Some messages are en-

crypted with single DES and the master key. This

is problematic because given a plaintext-ciphertext

pair, DES key can be cracked by a brute force at-

tack in a week [14]. Kerberos distribution from MIT

supports triple DES, eliminating this threat.

Replay Attack

An adversary can use a replay attack to impersonate

Alice if he or she hijacks the host and has Alice's ob-

solete password. Here we describe a possible attack

and the countermeasure.

Our Kerberos/4758 protocol stores the master key

inside the 4758, which encrypts the other keys with

this master key and stores the ciphertext on the

host. An adversary (Mallory) cannot access these

plaintext keys even if she compromises the host be-

cause she does not know the master key, which never

leaves the 4758.

However, without additional measures, such a pro-

tocol su�ers from replay attacks if Mallory can learn

one of Alice's old passwords. The replay attack is

carried out as follows:

� Mallory obtains an old password of Alice, Pa.

� Because Mallory has complete access to the

host, she can obtain fAlice, KalicegKmaster.

� Alice, knowing that her password is stolen,

changes her password to Pa'. At this point,

the old password Pa and the corresponding key

Kalice are obsolete.

� Mallory types the obsolete password, Pa. Pa is

hashed to the key Kalice. The KDC hijacked

by Mallory sends fAlice, KalicegKmaster to the

4758. If the 4758 does not know Kalice is obso-

lete, it thinks Kalice is fresh, and sends a reply



encrypted by Kalice to the KDC/Mallory. Mal-

lory successfully decrypts the reply, thus imper-

sonating Alice.

To avoid this attack, we use key version numbering

and obsolete key caching. First, all the keys in the

Kerberos database have a key version number, N.

This key version number is di�erent from the key

version number used in the original Kerberos V5

protocol. An encrypted key entry contains this ver-

sion number, i.e., fAlice, Kalice, Ng. When Alice

changes her password, Alice's current key version

number is updated to N+1. The 4758 generates a

new key entry fAlice, Kalice', N+1g, sends the en-

try back to the host, and caches a pair fAlice, N+1g

in its internal memory.

The 4758 checks the cache whenever it receives a

key from the host. If the version numbers do not

match, then the key received is obsolete. To avoid

cache overow, once in a while (e.g., daily) the 4758

regenerates the new N and computes the new entries

for all the keys, and sends them back to the host.

The cache should not overow too quickly. If the

cache size is 1MB and each entry is 32 bytes, then

the maximum number of entries in the cache is 32K

entries | which we imagine exceeds the maximum

number of password changes in a day. (Further-

more, some preliminary tests indicate that the time

needed for cryptographic operations to regenerate

the cache is not excessive.)

8 Conclusion

This paper demonstrates the ability of secure hard-

ware to improve the security of current computer

environments. We can shrink the security bound-

ary of the trusted third party from a workstation to

a secure coprocessor, which is a smaller and more se-

cure component. The implemented Kerberos KDC

survives host compromise.

We plan to make the source code freely available.
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