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Abstract

We map induced supply and demand environments to equivalent general equilibrium

economies. This general equilibrium structure facilitates reinterpretation of bargaining mod-

els and market experiments, typically formulated as partial equilibrium environments, in the

framework of implementation in general equilibrium economies. We reinterpret results of and

relationships among several bargaining models and market experiments to illustrate advan-

tages of the delineation between environment, institution, and behavior that our formulation

provides. This leads to a clearer understanding of those environments in which various forms

of boundedly rational behavior will achieve e�cient outcomes under several alternative ex-

change mechanisms.
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1 Introduction

Assigned unit values and costs is a standard technique for analysis of a wide range of models

of pricing and bargaining, including adverse selection (such as Akerlo� [1970]), bargaining

(Rubinstein [1982]), and auctions (e.g., Wilson [1985] and Rusticini, Satterthwaite, and

Williams [1993]). Induced supply and demand is a powerful tool used to establish preferences

in experimental markets. Smith [1982] provides a thorough description of the theory and

techniques of induced supply and demand. Through use of this tool, the vast literature

on experimental markets has empirically established the performance properties of di�erent

market institutions under a variety of economic environments and information structures.1

The robustness with which the double auction generates competitive and e�cient outcomes

under incomplete information is striking. However, these important results have only been

on the periphery of the extensive literature on informationally decentralized systems and

implementation in general equilibrium economies.

There are several possible reasons why little e�ort has been made in the informational

decentralization literature to build models that rationalize data from market experiments

or that incorporate laboratory institutions. One is that induced supply and demand ex-

periments are usually viewed as tests of partial equilibrium theory. Another likely reason

is a reluctance to build models that interpret induced supply and demand as economic

primitives rather than as behavioral rules derived from primitives such as endowments,

preferences, and technologies. We construct a map from induced supply and demand envi-

ronments to general equilibrium production economies to demonstrate that neither of these

reasons is compelling. This general equilibrium perspective clari�es the roles of market

institution, economic environment (i.e., preferences, endowments, and technologies), and

individual behavior in induced supply and demand experiments. In addition, this per-

spective permits application (and empirical evaluation) of the extensive body of theory on

decentralized resource allocation processes in private good economies to induced supply and

demand experiments.

1For extensive surveys of the literature and results on these issues, see Plott [1982] and Smith [1982].



GENERAL EQUILIBRIUM STRUCTURE OF BARGAINING 2

As a demonstration of these applications, we develop an analytic underpinning for the

results by Gode and Sunder [1993] (henceforth GS) on attainment of e�cient outcomes in

double auctions. Through this underpinning we establish a larger class of environments in

which the GS result holds, and (perhaps more importantly) we identify conditions under

which their result does not hold. The focus of GS is to assess e�ciency of double auc-

tion (DA) markets when buyers and sellers exhibit limited rationality. They address this

question by simulating DA experiments in which computerized buyers and sellers randomly

propose terms of trade. GS refer to these computerized economic agents as zero-intelligence

(ZI) traders. In their most noteworthy set of simulations, buyers with induced demand

schedules make random bids below their unit valuations and sellers with induced supply

schedules randomly make o�ers above their marginal costs. In the induced supply and de-

mand environments that GS examine, ZI behavior results in high allocative e�ciency when

the exchange mechanism employed is the double auction. With our general equilibrium

interpretation of these environments, we show that in the GS model, a buyer randomly pro-

poses trades in the upper contour set of her utility function and current commodity holding.

Similarly, a seller only proposes trades that result in increased pro�ts.

Under this interpretation, the result of the GS model is strikingly similar to an analytic

result obtained by Hurwicz, Radner, and Reiter [1975] (henceforth HRR). The main result of

HRR is that individual rationality2 leads to Pareto optimality for a wide class of exchange

and production economies in an institution called the \B-process" (for bid process). We

then assess whether the GS results for the DA institution are as robust across economic

environments as the HRR results. First, we identify three crucial di�erences between the

mechanisms of the GS and HRR models: namely the GS model prohibits retrading, only

permits contracts that satisfy a single-unit quantity restriction, and only facilitates bilateral

exchange. We demonstrate that with these di�erences there are a variety of settings under

which high e�ciencies will not be attained by ZI traders in the double auctions adopted by

GS, while high e�ciency is guaranteed by HRR. One of these problematic settings is when

2Our operating de�nition of individual rationality, following Luce and Rai�a [1957], pp. 192-3, is that

no agent attempts to take part in a trade that fails to increase, or at least leave constant, his own utility.
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there are non-convexities in preferences or technologies.

We then consider the non-convexity issue in more detail in our second application by

examining experiments by Van Boening andWilcox [1996], which study behavior in a DA for

environments with avoidable costs. In this second example we demonstrate that economies

of scale (non-convexities) in production combined with the bilateral trading requirement

of the DA institution can prevent ZI traders from achieving Pareto optimal allocations.

Also, we use the HRR framework to suggest trading institution improvements that increase

e�ciency. It is our hope that the introduction of our map of the induced cost and value

environments to general equilibrium economies and these demonstrations of its applicability

spur more interaction between the experimental markets literature and theoretical work on

implementation in private good economies.

2 Induced supply and demand as GE environments

In this section, we describe induced cost and value environments and then present the con-

struction of a map from these environments to general equilibrium production economies.

We begin with a demonstration that the induced supply schedule is a marginal cost curve de-

rived from cost minimization of a well-de�ned production function. Following this we show

that the induced demand schedule characterizes the solution to the constrained maximiza-

tion of a particular quasi-linear utility function. To complete the description of the general

equilibrium environment, we describe endowments for this economy which are consistent

with sellers' supply schedules and buyers' demand schedules. We follow our description

with an example of a map from an induced cost and value environment to a GE economy

that integrates these elements.

2.1 Induced cost and valuation environments

Consider an environment that consists of a set I of sellers and a set J of buyers. Each seller's

supply curve is given by his marginal cost schedule. The marginal cost schedule for seller

i 2 I is represented by the �nite vector ci = (c1i ; c
2
i ; c

3
i ; : : : ; c

mi

i ). Notice that seller i has
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�nite selling capacity and only sells integer quantities, so that the marginal cost of any unit

beyondmi is in�nite. Element c
k
i is interpreted as the marginal cost incurred by seller i when

he produces his kth unit. Assume that seller i makes k0 transactions at prices p1i ; p
2
i ; : : : ; p

k0

i .

The amount of currency received from the sale of these units is ri(k
0) =

Pk0

�=1 p
�
i ; the

currency received from the sale of 0 units is ri(0) = 0. For k0 2 f1; 2; : : : ; mig, the total

cost of selling k0 units is ci(k
0) =
Pk0

�=1 c
�
i ; the cost of producing 0 units is ci(0) = 0. Sellers'

payo�s are determined as the di�erence between the revenue received from sales of units

and the cost of producing these units, i.e.,

�s; i(k
0) =
Pk0

�=1 p
�
i �
Pk0

�=1 c
�
i =
Pk0

�=1 (p
�
i � c �i )

and �s; i(0) = 0.

Each buyer j 2 J has a vector of positive valuations vj = (v1j ; v
2
j ; : : : ; v

nj
j ) for units of

the commodity Y , where v1j � v2j � v3j � � � � � v
nj
j > 0. Assume that buyer j makes l0

transactions at prices p1j ; p
2
j ; : : : ; p

l0

j . The value to buyer j of purchasing l0 units is vj(l
0) =

P l0

=1 v

j for l0 2 f1; 2; : : : ; njg. The value of purchasing l0 = 0 units is vj(0) = 0, and

the value of purchasing l0 > nj units is vj(l
0) =
P nj

=1 v

j . The amount of currency spent

to obtain these units is ej(l
0) =
P l0

=1 p

j for l0 2 f1; 2; 3; : : :g. The expenditure on l0 = 0

units is ej(0) = 0. Buyers' payo�s are determined as the di�erence between the sum of

the valuations for units purchased and the total expenditure on these units. Therefore, the

payo� buyer j receives from the purchase of l0 units is

�b; j(l
0) =
P l0

=1 v

j �
P l0

=1 p

j =
P l0

=1 (v

j � p


j )

for l0 2 f1; 2; 3; : : :g, and �b; j(0) = 0.

Example 1 Figure 1 shows a simple example of an induced supply and demand environ-

ment. In the example there is one seller and one buyer. The seller's vector of costs is

ci = (1; 2; 3; 4), and the buyer's values are vj = (4; 3; 2; 1). If there is a market with

N buyers and N sellers, each with the value or cost vector above, then in a competitive

equilibrium two units are traded per agent at a price p� in the range [2; 3].
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Figure 1: Supply and demand conditions for market of Example 1.

It is important to note that there are actually two goods in this economy: a currency

(X) and a commodity (Y ). This observation is the starting point for our construction of

production and utility functions, to which we now turn.

2.1.1 Relationship between induced supply and production functions

The induced supply curve for seller i (as in �gure 1, for example) is derived as the solution to

the seller's pro�t maximization problem for a production function fi which depends on the

cost vector ci. This production function describes the technology of seller i for transforming

units of X (the currency) into units of Y (the commodity). The production function fi,

which in Lemma 1 we show is dual to the cost vector ci, is identi�ed as follows. For

seller i with the cost vector ci = (c1i ; c
2
i ; c

3
i ; : : : ; c

mi

i ), recall that the total cost function is

ci(y) =
P y

�=1 c
�
i when output is y 2 f1; 2; 3 : : : ; mig, ci(0) = 0, and ci(y) =1 for y > mi.

De�ne the production function as

fi(x) � maxfk 2 Yi : ci(k) � xg; (1)
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Figure 2: Production function y = fi(x) for seller i.

where Yi � f0; 1; 2; 3; : : :g. Figure 2 shows the production function fi(x) dual to the cost

vector ci = (1; 2; 3; 4) from example 1. If, for example, x = 4:2, then fk 2 Yi : ci(k) �

4:2g = f0; 1; 2g, so fi(4:2) = 2. This construction can be carried out for any cost vector ci

with positive elements cki .

Lemma 1 If fi(x) is derived from ci(y) as in equation (1), then ci(y) is dual to fi(x).

Proof The proof is carried out in two steps. First, for the production function fi(x), de�ne

for every y 2 Yi, ~ci(y) = minfx 2 X : fi(x) � yg. By de�nition, ~ci(y) is the solution to the

cost minimization problem min x subject to fi(x) � y for every y 2 N . Hence, ~ci(y) is the

dual of fi(x). The proof is completed by showing that ~ci(y) = ci(y).

Suppose x 2 [ci(y); ci(y + 1)). Then fi(x) = y. So fx 2 X : fi(x) � yg = [ci(y); 1).

Since ~ci(y) = minfx 2 X : fi(x) � yg, we get ~ci(y) = ci(y).

As an example of this, consider the supply curve in �gure 1. The production function

fi(x) in �gure 2 is obtained from the marginal cost array ci (or supply function) in �gure 1.
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2.1.2 Relationship between induced demand and quasi-linear utility

In this subsection we show that induced demand functions are derived from constrained

maximization of quasi-linear utility functions. In these derivations, we assume that a buyer's

endowment is large enough so that her maximization problem has an interior solution.

Recall that buyer j 2 J has a positive vector of valuations v1j � v2j � v3j � � � � � v
nj
j > 0.

We assume that buyer j values any units after nj at zero. Let yj denote the number of units

of the commodity that buyer j holds once all contracts are executed. Also, let xj 2 X be the

quantity of currency that buyer j holds. De�ne the consumption space of buyer j as X�Y .

Recall that the total value of purchasing y units is vj(y) =
P y

=1 v

j for y 2 f1; 2 : : : ; njg,

vj(0) = 0, and vj(y) =
P nj

=1 v

j for y = fnj+1; nj+2; :::g. Finally, consider the following

utility function uj : X � Y ! R :

uj(x; y) = x+Mj + vj(y) (2)

where Mj is a constant. Notice that equation (2) is linear in the currency (X) and is

additively separable in the two commodities.

We show that constrained maximization of equation (2) generates the demand vector

vj . Figure 3 shows three indi�erence curves for the utility function uj(x; y) that generates

the demand vj = (4; 3; 2; 1) from the example in �gure 1. Notice that the indi�erence

curves uj(x; y) = 3 and uj(x; y) = 5 are horizontal translations of the indi�erence curve

uj(x; y) = 0, i.e., preferences are quasi-linear.

Lemma 2 Buyer j's demand for Y { derived from maximization of equation (2) for a

su�ciently large endowment { is characterized by vj .

Proof The vector vj of valuations is non-increasing. By Lemma 3 of the appendix, the

total valuation function vj(y) is (weakly) concave for y 2 Yj. Therefore the utility function

uj(x; y) = x+Mj+vj(y) is (weakly) quasi-concave. The theorem of the maximum therefore

implies that for any given price p of good Y , the set of values that maximize uj(�) is convex.

Let yj(p) be the demand of buyer j at price p, i.e., the solution to the maximization

problem for uj(x; y). We complete the proof of the lemma by showing that the demand
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Figure 3: Indi�erence curves ui(x; y) = 0, ui(x; y) = 3, and ui(x; y) = 5 for

buyer in example 1.

yj(p) has the same graph as the vector vj of values. If p = vkj , then yj(p) 2 fk � 1; kg. If

p 2 (vkj ; v
k+1
j ), then yj(p) = k, for a su�ciently large endowment.

Figure 3 shows an example of both these cases3 for a consumer with the endowment

(x0; y0) = (12; 0), the utility function dual to the vector of valuations vj = (4; 3; 2; 1)

and the constant Mj = �12. When the price is p = 2 (which is equal to v3j ) the set

of utility maximizing choices of the commodity (Y ) is yj(2) 2 f2; 3g. If p = 4

3
then

p 2 (2; 1) = (v3j ; v
4
j ), so the demand is yj(

4

3
) = 3. The budget sets generated by these two

prices are depicted in �gure 3, along with the utility maximizing choice sets associated with

these prices.

Our rationalization of the induced demand schedule as the solution to the constrained

maximization of a quasi-linear utility function is similar to the construction by Smith [1982,

3In this paper the commodity subspace Y is discrete. However, in the illustrations we show a continuous

extension in order to indicate which points result in equal utility levels.
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Figure 4: Smith's construction for example 1 and p = 2. Note the unbounded choice set.

p. 932]. Smith derives the induced demand curve by maximizing the utility function

uj(xj ; y) = xj + vj(yj)

subject to the budget constraint

xj + p yj � 0; where xj � 0 and yj � 0: (3)

The graphical depiction of the interpretation proposed by Smith is given in �gure 4. Notice

that the feasibility constraints in equation (3) do not bound buyer j's choice of xj. As a

result, the choice set for buyer j is not compact and this allows buyer j to make purchases

of good y at arbitrarily large prices. In contrast to Smith [1982], who takes the origin

as the endowment point, we de�ne �nite positive endowments of X for buyers and sellers

that are internally consistent with the manner in which economies are speci�ed in general

equilibrium models.
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2.2 Endowments

Speci�cation of initial endowments of X completes our map from induced supply and de-

mand environments to general equilibrium economies.4 Given the absence of income e�ects

in preferences, initial endowments ofX only need to be large enough to avoid corner solutions

that would invalidate our previous derivations of induced supply and demand. However,

since we have not speci�ed an institution that governs the reallocation process it is not clear

at what level of wealth such corner solutions occur. For example, in a call market (in which

there is single market price) a buyer only needs to have a currency endowment equal to

x0j = max p � D(p), where D(p) is the induced demand schedule. In contrast, in a posted

o�er institution in which a seller could potentially employ perfect price discrimination, the

currency endowment x0j =
Pnj

=1 v

j is required to guarantee that buyer j would be be able

to purchase each unit for which buyer j has a positive valuation.

Sellers may also have positive endowments ofX in addition to a technology for converting

units of X into units of Y . A seller's endowment of X is the minimum amount of X required

in addition to the amount received from the buyers that is necessary to ful�ll any contract

that is admissable in the adopted trading institution. For example, if the seller is restricted

from selling any unit of Y for less than its marginal cost, he may have an endowment of

zero units of X. On the other hand, if a seller is restricted only to sell units at a positive

price then he must have an endowment of X equal to the sum of the marginal costs for each

unit in order to be able to produce the units.5 Hence, a seller can sell a unit of Y at a loss

as long as he has a quantity of X large enough to cover the di�erence between the quantity

of X received from the sale of the unit and that necessary to produce the unit.

We make one �nal adjustment to our speci�cation that has no theoretical implications

but is relevant to experimental studies. To make our description consistent with the typical

4In these production economies we always consider the case where the endowment of Y is zero.
5Restrictions on seller behavior based upon inherently private endowment and cost information violates a

premise of informational decentralization (see Hurwicz, [1972]); however, one can easily view this enforcement

as an abstract feature of the institution that would correspond to real world phenomenon such as bonding

and letters of credit.
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implementation of an experiment, we adjust traders' utility and pro�t functions according

to the size of their endowments. Subjects' payments in these experiments are proportional

to their utility level at the �nal allocation. Hence the induced utility functions of the buyers

are adjusted so that payments are zero in the autarky outcome. For buyer j the constant

Mj is set equal to the negative of her endowment of X, and sellers i's pro�t is adjusted by

the negative of his endowment of X. Thus, the endowment has a utility of zero, and any

participant who does not trade away from their endowment receives a payo� of zero.

2.3 Production, utility, and equilibrium

The elements described in the previous subsections combined create a general equilibrium

environment that generates its dual partial equilibrium environment. In order to obtain

a graphical depiction of a general equilibrium environment that corresponds to the partial

equilibrium environment of �gure 1, we consider the case where a single consumer owns the

shares of the �rm. For this situation, the general equilibrium environment is depicted in

�gure 5. The �rm chooses its input level to maximize pro�t given the output price p = py.

The consumer then chooses consumption of Y to maximize utility.

Note that there is a range of output prices that are consistent with competitive equilib-

rium, just as there is a range of CE prices when the problem is represented as an induced

cost and value environment, as in example 1, which is depicted in �gure 1. The lower price

ratio in this CE price range (p =
py
px

= 2) results in a pro�t of � = 1 for the �rm. This is

easily seen as the producer surplus in �gure 1. In �gure 5, at the equilibrium price py
px

= 2,

the supporting price intersects the X axis at x = 13, so that the �rm can achieve a pro�t

of � = 1 by producing 2 units at a total cost of 3 and selling these units at p = 2. When

py
px

= 3, the supporting price in �gure 5 intersects the X axis at x = 15, so that the �rm

can achieve a pro�t of � = 3. In either case, since the consumer owns the �rm, the con-

sumer's utility level is u(x; y) = 4: in �gure 1 we see that this is the sum of producers' and

consumers' surplus.
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Figure 5: General equilibrium environment for example 1

3 Applications

The framework that we developed in Section 2 can be used to clarify aspects of several

models of bargaining, as well as their relationships to one another. As examples of this,

we examine two bargaining models, and one set of market experiments. In each of these

examples, we relate the work to the other two examples in light of the GE representation

discussed in the previous section.

The �rst application we discuss is the model by Gode and Sunder [1993] (GS) of \zero-

intelligence" (ZI) traders. This model shows that the bargaining behavior of these traders,

whose actions are random bids and o�ers in a double auction trading institution, leads to

e�cient outcomes. This is often considered surprising, since (according to GS) ZI agents

\do not maximize or seek pro�ts."6 There are three main conclusions that we draw from the

GE interpretation of the GS simulations. First, their agents exhibit individual rationality

(according to the de�nition of Luce and Rai�a [1957]) and as a result, they do in fact seek

6See GS [1993, p. 120]. Emphasis added.
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pro�ts. Secondly, we compare agent behavior and the market institution that GS employ

in their simulations to the results in Hurwicz, Radner, and Reiter [1975] (HRR) and show

that it is in fact this pro�t seeking behavior that produces e�cient outcomes in the GS

model. Finally, we examine performance of ZI agents in environments with non-convexities

and show that their result is not as general as the HRR result.

As background for development of the argument outlined in the previous paragraph, we

describe more completely the double auction bargaining institution that GS employ in their

simulations.

3.1 The DA institution and experimental commodities

The double auction is a decentralized trading institution in which buyers propose publicly

observable bids to purchase units of a commodity and similarly sellers propose publicly

observable o�ers. A contract occurs when either a seller accepts a buyer's bid or when a

buyer accepts a seller's o�er. Once time expires in the auction, each contract is executed

as follows: �rst, the buyer transfers payment to the seller, and then the seller produces

the unit and transfers it to the buyer. Then, after the execution of all contracts, buyers'

and sellers' payo�s are adjusted to reect the reallocation of resources. A buyer's payo� is

adjusted by the di�erence between the sum of her purchased units' valuations and her total

expenditure. Similarly, a seller's payo� is adjusted by the di�erence between the revenue

he receives and the total cost of producing all of the units he sells.

After the experiment, these payo�s (in experimental currency) are converted into the

national currency at a predetermined exchange rate. We assume that the utility for seller i

is an increasing function of this monetary payo�.

3.2 A General Equilibrium Perspective on the \ZI" Model

The DA market simulations in GS �t perfectly into the GE structure developed in Section 2.

GS report results of simulations with two primary treatment variables. We focus our at-

tention on the treatment in which high allocative e�ciency is observed : the treatment that
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they refer to as \budget constrained." In this treatment, each buyer has a positive valua-

tion for a single unit, and each seller has the capacity to produce a single unit with some

positive marginal cost. We de�ne endowments for each agent after we describe the institu-

tion employed in their simulations. The institution adopted is a double auction, described

above. At each moment in a market period each seller (and buyer) who has not already

sold (purchased) a unit submits a random ask (bid). If an ask is submitted that is less

than or equal to the highest bid, then the seller who submitted the ask sells a unit to the

corresponding buyer at a price that is equal to the buyer's bid. Since each seller has a �nite

marginal cost for only one unit, and each buyer has a positive valuation for a single unit,

this implies that once a buyer and seller become parties to a contract, neither participate

in any further bargaining or contracts for that period.

Buyers in the GS model are restricted to purchase at a price at or below their valuation.

Likewise, sellers are restricted in the GS model to sell at prices at or above their unit cost.

According to GS, \the market forbade traders to buy or sell at a loss because then they

would not have been able to settle their accounts." A natural interpretation of not settling

accounts is that buyers will not have the endowments to purchase at the agreed upon terms,

or sellers will not have the endowment and technology to complete an agreement. Viewed

within the framework that we described in Section 2.2 above, the constraint that GS impose

implies that each buyer has a currency endowment (commodity X) exactly equal to her unit

valuation. Similarly, each seller has no endowment of X, so that a seller can only produce a

unit if he receives revenue greater than or equal to his unit cost. Therefore, for each agent

the set of feasible trades7 is strictly contained within the set of individually rational trades.

This ambiguity allows one to interpret the behavioral rules in either of the following ways:

(1) each seller (buyer) submits random o�ers (bids) from their feasible sets of trades or;

(2) each seller randomly proposes trades that increase his pro�ts and each buyer proposes

only those trades that lie in her upper contour sets. We adopt the second interpretation

7 `Feasible' trade here means that a trade is feasible for both parties given their endowments and also

that the trade is permissible under the rules of the institution. For example it could be jointly feasible for a

buyer to purchase two units but this would not be permissible under the rules of the adopted institution.
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as it permits generalizations of the results of these simulations to other institutions and

environments.

We now have a complete description of a stochastic process and a microeconomic system

in which performance can be evaluated. The result of these simulations is that very high

allocative e�ciency is observed in all markets. E�ciency losses occur when there are trades

of extra-marginal units and the institution prevents buyers from reselling a unit to another

buyer with a higher valuation, or prevents a seller from sub-contracting the production of

a unit to a seller with a lower marginal cost.8 When this result was �rst introduced, it was

considered quite surprising. However, when viewed from the general equilibriumperspective,

the observed high allocative e�ciencies that result when agents randomly propose trades

in their upper contour sets are not new to the readers of the informationally decentralized

systems literature.

3.3 The ZI model and the B-process

The B-process is a simple non-tatonnement trading institution. In a discrete world, such

as the environment of a typical market experiment, random sequences of proposed trades

submitted from each agent result in a sequence of net trades. An element of the sequence of

net trades di�ers from the previous element if the corresponding realized proposals form a

compatible trade (i.e. for each commodity, the net sum of proposed trades across individuals

is zero). HRR show under weak conditions on preferences and technologies that if at every

iteration of the bargaining process, each individual only submits trade proposals from their

individually feasible and rational choice set, conditional on the current state of agreed net

exchanges, then the process converges to a Pareto optimal allocation in �nite time.

This result applies to a wide class of environments that includes (but is not limited to)

the one we described earlier, and that GS consider. Recall that we earlier demonstrated

that the GS \budget constrained" traders generate all proposed trades randomly from their

individually rational and feasible choice sets. The strong similarity between the HRR and

8 In a sequel to GS, Gode and Sunder [1996] present an analysis of how great these departures can be in

their simulations.
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the GS models generates optimism that the GS results are robust. For example, it would be

interesting to know whether ZI behavior in a single unit sequential double auction generates

Pareto optimal outcomes for any private good economy without externalities. Unfortunately

this is not the case: there are many environments for which ZI behavior does not generate

Pareto optimal outcomes in the DA. In fact, we have already seen that the prohibition

on retrading within the DA can lead to non-Pareto optimal outcomes even in standard

quasi-linear environments. Even if one wants to dismiss this scenario as unrealistic since

most markets allow one to act as a buyer and seller, there are still classes of environments

for which Pareto optimal outcomes are not guaranteed. These classes of environments can

be identi�ed by examining di�erences between the double auction adopted by GS and the

B-process.
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Figure 6: Edgeworth diagram with nonconvexity in preferences.
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In the double auctions GS consider, each contract is for a �xed quantity of one com-

modity, Y , while in the B-process contracts do not have this quantity restriction. This

quantity restriction can prevent convergence to a Pareto optimal allocation. An illustra-

tive example is presented in �gure 6. In this example we have a simple Edgeworth box

representation of an exchange economy in which agent A (the buyer of commodity Y ) has

the endowment (3:5; 1) and agent B has the endowment (2:5; 4). These endowments are

indicated by the square box in the diagram. The agents' indi�erence curves are presented

for the endowments: A's indi�erence curve is marked by �lled circles at its kinks and B's

indi�erence curve is marked by the empty circles at its kinks. Notice that A's indi�erence

curve is convex while B's has a nonconvexity. If A and B bargain through a successive single

unit double auction adopting \ZI" behavior we can depict their random bid supports on

the Edgeworth diagram. The set of bids for one unit of commodity Y that would increase

the utility of agent A are depicted by the set SA. The set of o�ers that would increase

the utility of agent B are represented by the set SB. (In the representation for consumer

B, we assume, as in the GS model, that there is an upper bound on the o�ers that are

made by a seller, although the seller would bene�t from o�ers above this upper bound.)

Since there is no overlap in these two supports no Pareto improving trade will be realized.

However, a Pareto improving trade would occur if B could sell two units of Y to A for a

price between py
px

= 11
8
and py

px
= 1. Nonconvexities are common economic phenomena: for

example, they are an inherent feature of the avoidable cost environments to which we now

turn our attention.

3.4 Avoidable Cost Environments and Institutions

Van Boening and Wilcox [1996] (VBW hereafter) report a set of experiments with an elegant

and innovative design which pairs an avoidable cost environment with a multiple unit double

auction institution. Avoidable costs di�er from �xed costs. A �xed cost is incurred whether

or not any output is produced. An avoidable cost is zero when output is zero; the cost is

incurred when there is any positive level of output. The most interesting cases of avoidable
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cost are when the avoidable cost is large and subsequent marginal costs are small. A simple

example is a commercial airline ight. The marginal cost of the �rst passenger is extremely

high and the marginal cost of successive passengers is very small relative to the cost of the

�rst passenger. However, the large marginal cost of the �rst passenger is clearly avoided if

no air passages are produced. The VBW experiments capture the spirit of this example by

adopting producers with heterogeneous avoidable costs and capacity constraints, and zero

marginal costs for each unit up to capacity.

These experiments provide one of the tougher \boundary tests" of the DA institution.

In their experiments, e�ciencies were signi�cantly below the typical full e�ciency observed

in DA market experiments. Furthermore, VBW note that for certain sets of parameters

ZI traders will only generate the autarky outcome. Next, we provide an example which

highlights the fact that it is not only non-convexity of the production technology but also

the restriction to bilateral exchange which prevents ZI traders from achieving Pareto e�cient

outcomes.

Consider an economy with two commodities (X and Y ), two sellers (agents 1 and 2), and

two buyers (agents 3 and 4). The sellers produce good Y using good X as the input. Both

sellers derive utility from their respective holdings of X. The �rst seller has an avoidable

cost of six, a production capacity of four, and zero marginal cost up to her capacity. The

second seller has an avoidable cost of three, a production capacity of two, and marginal cost

of zero up to his capacity. Each seller has the endowment (x0i ; y
0
i ) = (0; 0). Each buyer has

the utility function ui(x; y) = x+ 2y and the endowment (x0i ; y
0
i ) = (4; 0).

In this economy there are three sets of Pareto optimal allocations. In one set of Pareto

optimal allocations,
P4

i=1 yi = 0 (i.e., there is no production), x3 + x4 < 3 (i.e., the buyers'

combined currency aloocations is less than 3), and
P

4
i=1xi = 8. In the second set of Pareto

optimal allocations seller 2 produces two units of Y , y3+y4 = 2, x3+x4 < 3, and
P4

i=1 xi = 5.

In the �nal set of Pareto optimal allocations seller 1 produces four units of Y , y3 + y4 = 4,

and
P

4
i=1 xi = 2.

For this economy, the B-process converges to a Pareto optimal allocation that is in-
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dividually rational for every agent. Of course the only set of Pareto optimal allocations

that is individually rational for all agents given the endowment points is the one with a

total production of four units of Y . In contrast to the performance of the B-process in this

economy, ZI behavior in a single unit DA (where X is currency and Y is the commodity)

results in the autarky allocation since no trade of a single unit can simultaneously increase

both a seller's and buyer's utility.

As we demonstrated in the previous subsection, this result can occur with nonconvexities

because of the single unit quantity restriction of the DA. This begs the following question:

If we relax the single unit quantity restriction in the DA, will ZI behavior generate a Pareto

optimal allocation for this economy? As long as only bilateral trade is permitted, we would

have convergence to an allocation reached through a single trade of two units of Y between

seller 2 and either buyer for between three and four units of X. This allocation is pair-

wise optimal but not Pareto optimal since the buyers' �nal holdings of X exceeds three.9

Thus, the bilateral trade feature of the DA can prevent convergence to a Pareto e�cient

outcome. In view of these insights and those provided by HRR, we see that institutions

may be identi�ed or constructed so that e�cient outcomes are achieved in avoidable cost

environments that are robust to behavioral departures from full rationality. Clearly, it is

desirable to have institutions which eliminate quantity constrained contracts and facilitate

multilateral exchange.

4 Conclusions

The method of induced costs and values is a powerful and e�ective tool for conductingmarket

experiments and de�ning bargaining models. However, our general equilibrium description

is a potent tool for interpreting and understanding these bargaining models and market

experiments.

Broadly viewed, there are three signi�cant issues with models of bargaining and market

9For a detailed discussion on pairwise optimality and when it does imply Pareto optimality we refer the

reader to Feldman [1973].
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experiments addressed by the research we report. These issues fall under each of the three

elements of microeconomic systems, as de�ned in the decentralized mechanisms literature:

environment, behavior, and institution.

Interpretation of the role of environment is enhanced by our demonstration that a typical

induced supply and demand experiment is derived from a general equilibrium production

economy in which consumers have quasi-linear preferences and sellers have concave produc-

tion functions.10 This illuminates two important aspects of those models of bargaining and

market experiments that employ the induced cost and value framework. First, these mod-

els and experiments implicitly treat general equilibrium environments, so that economists

actually have more knowledge of the performance of microeconomic systems in general equi-

librium environments than we had recognized. For example, models such as Gjerstad and

Dickhaut [1998], Rustichini, Satterthwaite, and Williams [1994], and Wilson [1987] and ex-

periments such as those described by Plott [1982] and Smith [1982] which consider buyers

with unit values, and sellers with unit costs, can be viewed as tests of general equilibrium

exchange, albeit in the restrictive context of quasi-linear preferences. Yet once we recognize

that these bargaining models and experiments can actually be viewed as general equilibrium

environments, we also realize that most of the experimental tests of bargaining and almost

all of the bargaining literature treat the case of quasi-linear preferences, which exhibit no

income e�ects. As a consequence of this observation, we are left to wonder which of the

conclusions of these literatures will survive generalization to broader classes of general equi-

librium environments, such as those with income e�ects, and non-convexities. For example,

in an exchange economy with the gross substitutes property, Walrasian equilibrium is unique

and globally stable (see, for example, Arrow, Block, and Hurwicz [1959]), yet we have no

comparable result based on models in which prices form based on the interactions of the

agents in the economy, such as a bargaining model or a market experiment. A similar situ-

ation prevails in markets with multiple Walrasian equilibria (such as Gale [1963], Gjerstad

[1996], and Shapley and Shubik [1977]) and in markets with globally unstable Walrasian

10The production functions are only concave if their are no �xed costs and if marginal costs are increasing.

We can of course use the same construction if marginal costs are not monotonic.
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equilibria (as in Scarf [1960]).

Our construction clari�es aspects of agent behavior in bargaining models and market

experiments. Examples of this include the role of individual rationality in the bid and

o�er choices in the ZI model, and the problems that can arise in a bilateral matching

institution (such as the double auction) in economies with non-convexities. Viewed from

the perspective of utility functions, it is apparent that buyers in the ZI model choose from

their upper contour set. In the case of non-convexities, it is clear from examination of these

same upper contour sets that Pareto optimal points may be unreachable if each trade is

bilateral and needs to be utility improving. This last example is of particular interest, since

it illustrates that an alternative speci�cation of the institution may facilitate convergence

to a Pareto optimal outcome. Speci�cally, if exchange involves multilateral matching and

allows minimum quantities, then buyers and sellers may propose trades that permit them

to \step across" a non-convex portion of their utility or production set, such as the one

exhibited by consumer B in Figure 6.

We believe that our general equilibrium description provides a vital link that will fa-

cilitate dialog between those investigating behavior in market institutions via experimental

techniques and theoretical models of bargaining and those studying theoretical implementa-

tion in informationally decentralized institutions. Smith [1982] noted that these independent

research e�orts address similar problems from di�erent perspectives. Our new interpretation

of induced supply and demand should encourage experimentalists to discuss their results in

the context of well established theoretical models as well as new models of implementation

within informationally decentralized institutions. Also, the theorist can verify the behav-

ioral accuracy of their implementation models via controlled laboratory experiments and

can use existing experimental data to guide the design of future models and institutions.

These e�orts should increase widespread interests in these fundamental topics, generating

for the relevant parties, dare we say, gains from exchange.
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APPENDIX

Lemma 3 Let f(i) be a non-increasing function on N = f1; 2; : : : ; Ng. Let F (k) be the

partial sums of f(i), i.e. F (k) =
P k

i=1 f(i). Then F is a concave function on N .

Proof Let m + 1 2 N and m + n 2 N . For any k with m + 1 � k � m + n, the

average of f on m + 1; m + 2; : : : ; m + k is greater than or equal to the average of f on

m+ 1; m+ 2; : : : ; m+ n. That is,

1

k

m+kX

i=m+1

f(i) �
1

n

m+nX

i=m+1

f(i);

so
m+kX

i=m+1

f(i) �
k

n

m+nX

i=m+1

f(i):

From this it follows that

mX

i=1

f(i) +
m+kX

i=m+1

f(i) �
mX

i=1

f(i) +
k

n

m+nX

i=m+1

f(i)

m+kX

i=1

f(i) �
n� k

n

mX

i=1

f(i) +
k

n

m+nX

i=1

f(i)

F (m+ k) �
n� k

n
F (m) +

k

n
F (m+ n):

The last inequality shows that the function F is concave on N .


