
RC 21838 (98287) 22 September 2000 Computer Science

IBM Research Report

Speech Transcript Analysis for Automatic Search

Anni R. Coden, Eric W. Brown
IBM T. J. Watson Research Center

Hawthorne, NY 10532

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Speech Transcript Analysis for Automatic Search

Anni R. Coden, Eric W. Brown

IBM T.J. Watson Research Center
Hawthorne, NY 10532

anni@us.ibm.com, ewb@us.ibm.com

Abstract
We address the problem of finding collateral information
pertinent to a live television broadcast in real time. The
solution starts with a text transcript of the broadcast gen-
erated by an automatic speech recognition system.
Speaker independent speech recognition technology, even
when tailored for a broadcast scenario, generally pro-
duces transcripts with relatively low accuracy. Given this
limitation, we have developed algorithms that can deter-
mine the essence of the broadcast from these transcripts.
Specifically, we extract named entities, topics, and sen-
tence types from the transcript and use them to automati-
cally generate both structured and unstructured search
queries. A novel distance-ranking algorithm is used to
select relevant information from the search results. The
whole process is performed on-line and the query results
(i.e., the collateral information) are added to the broad-
cast stream.

1. Introduction

The emergence of the World Wide Web as an informa-
tion and entertainment media is generating exciting
changes in the more traditional media of broadcast televi-
sion. In particular, broadcasters have begun to link these
two media together to create a much richer television
viewing experience. The first phase of this linkage is
rather loose; television programs routinely display URLs
that point to web sites related to the program. The next
phase of linkage, however, will be much tighter as set top
boxes and TV tuner computer cards become more preva-
lent. Such devices will allow broadcasters to send Web
content with the television broadcast and display the au-
dio/video program in an integrated fashion with the Web
content.

This tighter integration presents a number of chal-
lenges, with one of the more difficult challenges being
how to identify the information that should be broadcast
with the television program. Currently, program produc-
ers manually identify the information to broadcast. This
process may be supported by software that aids in sched-
uling the data broadcast, or software that automatically

accesses databases to obtain, for example, stock quotes.
Nevertheless, the overall information seeking and selec-
tion process is manual.

This approach has several disadvantages. First, it is
slow and expensive. Second, there is no way to tie addi-
tional information into a live broadcast, where the time at
which a particular topic is discussed is not known before-
hand. Currently, if a significant event (e.g., an airplane
crash) occurs during a broadcast of the daily news, the
producers have a difficult time just reporting the event,
and in general have no time to find background informa-
tion. Third, with the advent of set top boxes, users may
want to customize the information displayed on their TV.
One person may want to see only sports related informa-
tion, while another may want to be able to choose news
related to a specific geographic location.

To address these problems we have developed a sys-
tem called WASABI (Watson Automatic Stream Analysis
for Broadcast Information). WASABI takes speech audio
as input, converts the audio stream into text using a
speech recognition system, applies a variety of analyzers
to the text stream to identify information elements, auto-
matically generates queries from these information ele-
ments, and extracts data from the search results that is
relevant to the current program. The data is multiplexed
into the broadcast signal and transmitted along with the
original audio/video program. The system is fully auto-
matic and operates on-line, allowing broadcasters to add
relevant collateral information to live programming in
real time.

In the remainder of this paper we discuss related work,
describe the overall methodology and architecture, pro-
vide a more detailed analysis of the different parts of the
system, and conclude with pointers to future work.

2. Related work

The problem we are trying to solve here is most
closely related to the work on Topic Detection and Track-
ing (TDT)[1]. In TDT, the goal is to analyze news broad-
casts (text articles or text transcripts generated automati-
cally from audio and video) and identify previously un-
seen news events, or topics. Topics are then tracked by
identifying subsequent news stories covering the same

 2

event. This is accomplished using a variety of off-line
text processing, language modeling, and machine learning
algorithms. TDT differs from our work in two ways.
First, our system must operate in real time in order to an-
notate a live broadcast with collateral information, while
the typical TDT system operates off-line. Second, our
system goes beyond topic detection to include automatic
query formulation and collateral information discovery.

The techniques we use to accomplish this task are
drawn largely from traditional information retrieval [8]
and text analysis techniques [6]. Again, we have ex-
tended these techniques to support on-line processing of
streaming text data. These distinctions will become clear
in the remainder of this paper.

We should also mention that a number of commercial
systems exist that support the manual addition of data to a
broadcast signal (see, for example, Wave Systems Corpo-
ration and SkyStream Networks). These systems allow
program producers to select, format, and schedule the
delivery of data with the broadcast. The key difference
with our work is that these systems require manual identi-
fication of collateral data, while our system is fully auto-
matic.

3. Background

The goal of this work is to find collateral information
in real time based on the words spoken during a news
broadcast (or any other spoken discourse). There are sev-
eral challenges in this arena. Although voice recognition
has improved tremendously over the last few years, it
cannot be expected that a voice recognition system will
deliver a perfect transcript. Transcript quality is by far the
best when the voice recognition system is trained with the
voice of the speaker and the recording is made in a quiet
environment with appropriate microphones. Unfortu-
nately, in a broadcast setting (and many other similar set-
tings) such optimal circumstances are not available. Here,
there are many speakers, some recording from a studio,
others from the field. Furthermore, background noise and
sub-optimal microphones contribute to the deterioration
of the transcript quality.

The quality of the transcript has tremendous implica-
tions on the methods that can be applied to analyze it. The
effectiveness of traditional text analysis tools decreases as
the quality of the transcript decreases. Some of the issues
that arise include lack of punctuation, lack of grammatical
structure, and mis-recognized words (wrong words added
as well as correct words missing). Sentences are “con-
structed” from the continuous stream of spoken words by
setting a pause threshold between words. This and the
erroneous recognition of words lead to sentences that are
grammatically incorrect. Hence, methods that rely on ana-
lyzing the structure of a sentence are bound to give worse

results. Erroneous word recognition has a detrimental
effect on word statistics, such that relying on these statis-
tics may lead to unintended or unexpected results. Adding
to these difficulties is the need to process the text in real-
time.

Even when reading a poor transcript, however, a per-
son can usually describe the essence of the discourse. Our
goal is to be able to capture this “gist”. Once captured, it
constitutes metadata for the discourse, which can be
stored with the discourse and provide value in its own
right. Processing this metadata is at the core of our meth-
odology.

Using the automatically created metadata we show a
novel method to perform concept searches that produce
the desired collateral information. A new ranking algo-
rithm is described which sorts the results of the concept
searches, and could also prove to be quite appropriate in
traditional text searches.

4. Architecture

Given the goal of finding collateral information for a
live broadcast in real time, each part of the system must
perform as close to real time as possible. To facilitate
development of real time components, the components are
isolated from each other by a modular architecture with
clearly defined interfaces. This approach has a further
benefit that over time more modules can be developed
and integrated seamlessly into the system. Figure 1 gives
an overview of the architecture.

The input to the Real Time Feature Extractor is a live
television broadcast. A module in the extractor can de-
termine a particular feature in real time from a
video/audio signal. In particular, the Speech module tran-
scribes the audio signal into English and the CCText
module extracts the closed caption text from the video

Figure 1. Architecture overview

 3

stream. Both these modules currently operate in real time.
The other two modules shown in the architecture are ex-
pected to work in real time shortly. The OCR (Optical
Character Recognition) module deciphers the text over-
laid on a frame. The Face module determines the number
of faces and sizes present in any given frame.

Currently the Feature Extractor produces ASCII Text,
both in the form of transcribed text and closed caption
text (CCText) if it is available. Such text is time stamped
and can be stored in conjunction with the source.

 The next component of the system is the Event Ana-
lyzer subsystem, which represents the most important and
innovative part of the system. Each analyzer has a task to
perform based on the ASCII text. The output of one ana-
lyzer (an event) can be the input to another analyzer. The
output of an analyzer is again an ASCII string, which is
time stamped (start and end time).

Currently we have several analyzers. The simplest ana-
lyzer is the SentenceSegmenter. It takes the raw tran-
script, determines sentence boundaries and reformats the
string for display. The NamedEntitiesRecognizer identi-
fies named entities like the names of people, places, or-
ganizations and companies, and other types of terms, like
financial terms, legal terms, or educational terms, to name
a few.

The TopicAnalyzer determines which topic from a
taxonomy of topics is being discussed. A number of ana-
lyzers look for specific types of sentences, including
questions, demands, and requests, and return the sentence
and its type (e.g., it’s a question). The CalendarAnalyzer
determines the time and date if it is mentioned and trans-
lates it into a standard format.

Although each analyzer will be described in more de-
tail in subsequent sections, there are some common fea-
tures that we would like to discuss here. Each analyzer
performs its task in real time and adheres to a predefined
interface. The real-time aspect made it necessary to invent
new algorithms for some of the tasks. Another challenge
is that the tasks use word sequences that are (in general)
grammatically incorrect as input. Another issue to con-
sider is that spoken words during a news broadcast or a
meeting have quite different characteristics than, for in-
stance, written text. There are many “filler” sentences or
phrases that are not pertinent to the primary conversation
thrown in between the primary topic discussed.

The output events from the analyzers are stored on a
linked list data structure, called the Knowledge Chain.
Briefly, all events are assembled on a timeline, with a
start-event token and an end-event token. The precedence
of events that start at the same time is immaterial. The
events themselves can then be stored in a database or a
program can create a XML document based on the events
for any time segment desired.

Once the Knowledge Chain has been created, the next
step is to find the collateral information that will be

broadcast with the program. This is done by automatically
generating queries based on the events recorded in the
KnowledgeChain. Profiles (either personal or application
specific) could be used to guide the query generation. The
results from these queries are then assembled, ranked and
sent to the multiplexer, which inserts the results into the
broadcast stream.

4.1. Speech transcript

Our system uses the IBM’s ViaVoice [7] product to

transcribe the audio signal into ASCII text. A special
acoustic model was developed by IBM to handle broad-
cast news. This model is speaker independent and com-
pensates for the background noise inherent in a broadcast
news program. This custom acoustic model is combined
with the standard business language model included with
the product. The accuracy varies with speaker and re-
cording conditions, but the transcribed text conveys the
general gist of the broadcast.

The following example is taken from a transcript of an
evening news broadcast. The original text is:

This is World News Tonight with Peter
Jennings. Good evening. We begin tonight
with the Presidential campaign. The Republi-
can Party got its ducks in a row today. Senator
John McCain who almost derailed the best fi-
nanced campaign in history a few months ago,
that of George W. Bush, took his medicine to-
day and said I do. Here is ABC's Aaron Brown.
John McCain arrived for the meeting exactly
two months after he gave up his campaign
against Governor Bush and after the 90 minute
private meeting Governor Bush got exactly
what he wanted. I look forward to enthusiasti-
cally campaigning for Governor Bush. Not
good enough for reporters who wanted to hear
the e word I endorse Governor Bush.

The transcript generated by IBM’s ViaVoice is:

Is World News Tonight with Peter Jennings the
the the we begin tonight with the presidential
campaign of Republican Party got its ducks in a
row today. Senator John McCain who almost
beat Ray killed the best finance campaign in his-
tory few months ago.That of George W. Bush.
Took his medicine today and said I do. Is ABC's
Aaron Brock. McCain wrought with the make
that the two months after he gave up its cam-
paign the next governor of boys. The 90 minute
private meeting. Which got exactly what he
bought it. Fourth to use yesterday became the
main. That and wish. Not good enough for re-

 4

porters. Who wanted to hear the eve workers dis-
covered bullish and bearish data to push ahead.

It is straightforward to add words or phrases into the

vocabulary of ViaVoice using the product version, and
therefore advisable to add current names or phrases into
the system. Examples of words to add include names of
politicians (both domestic and international) or phenom-
ena (e.g., La Nina), which a standard business language
vocabulary would not contain. If, for instance, the name
McCain was not added, the system would pick a name
that sounds similar to this politician’s name. However,
the gist of a reported story would change if a crucial name
was not recognized. Such vocabulary can be built up with
time.

Currently, several other components for speech recog-
nition are being developed, including speaker and gender
identification and the filtering of music. As these compo-
nents become available, they will be incorporated into the
system, improving the quality of the results produced by
the analyzers.

4.2. CC-text

We use one of several products available that can ex-

tract closed caption text from a video signal. Again, each
sentence becomes an event that is inserted into the
Knowledge Chain. Clearly, the accuracy is quite high in
this case and one could opt to use only CCText for subse-
quent analysis. However, CCText may not be available in
all broadcast programs and CCText does not contain any
capitalization, which is quite useful for some analyzers.
Moreover, the speech recognition system will provide
other information (like speaker identification) in the near
future, knowledge that cannot be deduced from CCText
alone.

4.3. Analyzers

To date we have developed several analyzers that all

adhere to the same interface and produce their respective
output events in real-time. The most basic analyzer is the
SentenceSegmenter. It takes the raw transcript and out-
puts formatted sentences. Sentence boundaries are de-
duced based on the length of the pause between words.
Formatting consists of adding appropriate capitalization
and punctuation. Each recognized sentence is inserted into
the Knowledge Chain. We are currently exploring the use
of speaker identification and gender identification to im-
prove the accuracy of sentence boundary recognition. We
are also considering techniques that can improve gram-
matical correctness. The more accurate and grammati-
cally correct the sentences are, the better other down-
stream analyzers will perform.

The output of the SentenceSegmenter is input to the
other analyzers described in this section, including the
NamedEntitiesRecognizer or the TopicRecognizer. Each
of these analyzers adds its output to the KnowledgeChain,
which is described in the next section.

An important analyzer is the NamedEntitiesRecog-
nizer, which discovers named entities such as names of
people, places, organizations, and companies, and other
specific terms belonging to a particular subject, such as
financial, banking, or educational terms. The algorithms
used are derived from the ones used in IBM’s Intelligent
Miner for Text product [6]. In particular, they have been
modified to perform in real-time. To identify a named
entity, the capitalized words are looked up in several dic-
tionaries that list proper names, places, organizations, etc.
If a word is a first name, and the subsequent word is capi-
talized, the analyzer puts them together to form a com-
plete name. The analyzer continues to examine subse-
quent capitalized words to form the longest possible
name. There are additional algorithms to recognize mid-
dle initials and titles. No disambiguation is done, as in
general there is not enough information to do that (e.g.,
Tijuana can be a place or a person). It will be shown in
subsequent sections that an erroneous classification of a
named entity (person or place for example) may not affect
the final outcome, which is to find appropriate collateral
information.

If a capitalized word is found in a dictionary with a
specific type declaration (place or financial term, for ex-
ample) it is classified as such. Capitalized words for
which there is no type declaration are put in the miscella-
neous category, as it is believed that capitalized words
convey in general more information than verbs or adjec-
tives. There are various algorithms for each type of term.
For instance, suppose the name of a town or city is dis-
covered, then the subsequent state word should be treated
as a clarification of where the city is and not as an event
in its own right.

For example: Peter Jennings, Senator John McCain,
Ray, Aaron Brock, George W. Bush are recognized as
Names in our example

The TopicAnalyzer determines which topic is being
discussed. It assumes that a taxonomy was specified
ahead of time. Here we use the KitKat rule-based system
developed by IBM [5], which can be trained with a set of
documents and has a user interface to specify rules manu-
ally. Clearly, any given sentence could describe more than
one topic. A confidence value is associated with each
recognized topic, which describes how sure the system is
that a particular topic applies. Here the taxonomy is
adapted from the Dow Jones set of publications aug-
mented by us to fit the broadcast news scenario. The ad-
vantage of using their taxonomy is that any background
data drawn from Dow Jones sources is already classified
according to the taxonomy, which aids in producing and

 5

processing results from automatically generated queries.
Here the output of the SentenceSegmenter is used as input
for the TopicRecognizer. However, it is also possible to
string several sentences together to form an input. We
plan to evaluate how varying the size of the input to the
TopicRecognizer changes the performance of this ana-
lyzer. In particular we will evaluate the influence of using
“paragraphs” (i.e., several sequential sentences) or over-
lapping paragraphs. However, the extreme run-time re-
quirement of this application restricts the length of the
input.

The StructureAnalyzer is a new type of analyzer, al-
though it is based on some ideas developed in the Ques-
tion-Answering system built by Prager et al. [9] [10]. The
idea is that certain sentence structures suggest an action
that is different from performing a search based solely on
the words in the sentence. For example, the question,
“Who discovered Penicillin?” suggests that the person is
interested in a name and not in a sentence containing the
words of the question (which could be paraphrased in the
text). Similarly, the request, “Please show me the full text
of the State of the Union Address” requires the system to
find a piece of text. The StructureAnalyzer identifies and
labels the structure of each sentence. For instance the
QuestionRecognizer is a type of StructureAnalyzer. In its
simplest form it checks whether a sentence starts with a
“question-word” like who, when and how to name a few
examples. Having identified a sentence as a question, it
replaces parts of it with Question-Answering Tokens [9]
[10]. This transformed sentence becomes now a query
against a corpus that has been indexed taking Question-
Answering Tokens into account. Such a search returns
answers in its hitlist, which becomes the desired collateral
information.

For example: The announcer says: Where did George
W. Bush and John McCain meet today? It was at the
place where they had their last controversy. Based on the
first sentence, the system creates a query “$place George
W. Bush John McCain meet today” and return with
“Manchester, New Hampshire”.

Another analyzer further assists in the previous exam-
ple. The DateAnalyzer identifies absolute dates as well as
indirect date references (like “today”) and calculates an
absolute date in a standard format. It is always important
to establish a reference date, which is simple in a live
broadcast setting or in analyzing meetings. Dates are quite
important in finding appropriate collateral information –
referring to the previous example, George W. Bush and
John McCain had several meetings. The DataAnalyzer is
rule-based using the same system as the TopicAnalyzer.

The rule-based system is applied to find other types of
structures, such as requests “Please show the agenda" or
to perform a task. “Next slide please”. The discovered
events are added to the KnowledgeChain.

4.4. Knowledge chain

In the previous section we discussed several analyzers.
Each one of them creates as output an event, e.g., a rec-
ognized sentence, topic, name, etc. The idea is that for
each discovered event we create an Object, called a
KnowledgeBead, which contains the following informa-
tion: type of event, start time, end time, description of
event, an assigned unique id and an optional object. The
description of an event could be an object in itself with its
own access methods, a simple ASCII text, or in future
systems that discover multimedia events; it could be an
image or a video clip. Additional pertinent information
can also be included, like the confidence value of a dis-
covered topic. Each KnowledgeBead has a corresponding
MirrorKnowledgeBead that acts as an end tag for the
event in the KnowledgeChain. Each Knowledge Bead is
inserted into the KnowledgeChain at its start time. The
Mirror Knowledge Bead is inserted at the end time. The
precedence of KnowledgeBeads with same start times is
immaterial, as is the precedence of the Mirror Knowl-
edgeBeads with same end times. At any given point in
time, examining the KnowledgeChain gives a description
of the broadcast. The KnowledgeChain has a set of meth-
ods associated with it to help its manipulation. Here are a
few suggestions for such methods:

1. Insert a KnowledgeBead at time t
2. Delete a KnowledgeBead at time t
3. Find the Mirror to a KnowledgeBead
4. Find all the KnowledgeBeads between a Knowl-
edgeBead and its Mirror
5. Find all the KnowledgeBeads starting at time t
6. Find all the KnowledgeBeads ending at time t
7.

Furthermore, there are access methods for the Knowl-
edgeBeads themselves:

1. Get start time
2. Get end time
3. Get type
4. Get description

The description can be a structure appropriate for the

type of KnowledgeBead.
Figure 2 depicts a KnowledgeChain. For simplicity we

omit the MirrorKnowledgeBeads for the Named Entities
in this example. Note that the KnowledgeBeads are not
necessarily inserted in a time-sequential manner. How-
ever, the KnowledgeChain gives a time-sorted synopsis of
the broadcast.

 6

Politics \PoliticsBush McCain today Time
Figure 2. KnowledgeChain

4.5. Automatic Query Generation

Once the events extracted by the analyzers are assem-

bled on a time line in the KnowledgeChain, the next step
is to automatically generate queries that will find collat-
eral information. The first issue we must address is when
to issue a query. A simple approach would be to pose a
query whenever an event occurs. We believe that sending
queries at the discovery of every event would both create
a performance problem and generate a lot of irrelevant
information. For instance, a query based solely on a name
would typically return too many hits to send over the
broadcast signal, and moreover, no meaningful ranking
could be applied to determine the most relevant hits.

We suggest instead that queries be posed whenever a
topic is detected. At this point all of the Knowledge Beads
between the start of the topic and the end of the topic are
assembled into a Query Object, representing the basis for
query formulation

Once a Query Object has been created, the next step is
to look at the identified sentence structure. If the struc-
ture is such that the query should be handled by a specific
action subsystem, the query is sent to that subsystem for
processing. For instance, the query might request the in-
vocation of a specific program. A request to show a per-
son’s presentation for today’s meeting requires the fol-
lowing steps:

1. Open the program capable of showing a presentation
2. Find the KnowledgeBeads specifying the name and
date of the desired presentation
3. Query the database to find the actual presentation

We assume that there are rules in place describing how

presentations are stored, but again these rules can be in-
corporated into the rule-based system handling requests.

If the identified structure of the Query Object does not
direct the query to a specific action subsystem, then proc-
essing can proceed in one of two ways, both of which are
currently under investigation. In the first approach, the
query is processed with the following steps:

1. Identify the topic of the Query Object
2. Search for named entities constrained by the topic
3. Perform a free-text search constrained by the topic

We assume that the background data has been catego-
rized using the same taxonomy as that used by the Topic-
Analyzer. For any given data item, the assigned topic is
stored as metadata in a database. Hence the first step is a

database query to identify items with matching topics and
constrain the scope of the next two searches. If the initial
topic search should return an empty set, the query is re-
peated with the parent node in the topic taxonomy.

The second query (named entity search) is only applied
to data items found by the first query. Named entities can
be augmented with variants of the name and then used to
search databases specific to the type of named entity. The
results from these searches should be high quality data
items that can immediately be added to the collateral in-
formation set.

The third query is sent to a free text search engine,
again constrained to the set of items found in the first
step. The input to the free text search engine is the tran-
script, with stop words removed and lemmatization ap-
plied. The free text search engine typically returns a
ranked list of items and the top ranked items are selected
as collateral information for the broadcast. Note that al-
though this process is described as a sequence of three
steps, for better performance the entire procedure can be
accomplished with a single “multi-search” query [4].

This first approach is appealing because it is straight-
forward. Unfortunately, it naively relies on the rank
scores returned by the text search engine to select collat-
eral information, potentially resulting in the inclusion of
irrelevant data. The second approach to query formula-
tion addresses this problem with a more sophisticated data
ranking and selection procedure. We explain this proce-
dure with an example.

Imagine that the news broadcast just mentioned that
Putin, Jaspin, and Clinton attended a summit meeting in
Berlin. From the topic taxonomy we know that a summit
meeting is a type of political meeting, which in turn is a
type of meeting. Figure 3 shows a part of this taxonomy,
where each node is a topic, the taxonomy is hierarchical
with more general topics at the root and more specific
topics at the leaves, and the letters inside the nodes indi-

Meeting

Party

Social
Meeting

Political
Meeting

Business
Meeting

Funeral Gathering Government
Meeting Summit

Federal State

A

B C

B

Figure 3. Part of a topic taxonomy

 7

cate how topics have been assigned to three particular
documents in the background data collection (documents
A, B, and C). It might be interesting to find out what
other meetings (maybe within a particular time frame)
these three world leaders also attended.

To find documents about such meetings, the system
first executes a free text search using all of the terms in
the Query Object. The top n documents returned by the
free text search are then scored by the system using the
following formula:

iiii PERS ++=
where

iS is the score of document i

iR is the rank number of document i — the top
scoring document returned by the free text
search has rank 0, the next best scoring docu-
ment has rank 1, etc.

iE is the number of named entities in the Query
Object that do not appear in document i

iP is the taxonomy path score of document i , de-
scribed below

The taxonomy path score of a document is calculated

by locating the document’s topic in the taxonomy tree and
traversing the shortest path from that topic to the topic
assigned to the Query Object. For each edge traversed
upward (i.e., from child to parent), 1 is added to the path
score, and for each edge traversed downward (i.e., from
parent to child), 2 is added to the path score. In Figure 3,
the Query Object topic is “Summit”. The path score for
document A (assigned to topic “Summit”) is 0, the path
score for document B (assigned to topics “Political Meet-
ing” and “Funeral”) is 2, and the path score for document
C (assigned to topic “Gathering”) is 6. Note that although
document B is assigned to two topics in the taxonomy, we
calculate the path score using the topic closest to the
Query Object topic. This path scoring scheme favors
documents whose topic is the same as or a sub-topic of
the Query Object topic, and penalizes documents whose
topic is a super topic of the Query Object topic or in a
different branch of the topic taxonomy.

This document scoring formula produces scores such
that better documents will have lower scores. It factors in
the scores returned by the free text search engine, exploits
the fact that named entities tend to be more precise query
terms, and uses the query topic and the topics assigned to
the documents to further refine the search. If the formula
assigns the same score to two or more documents, the
documents may be further ordered by considering the
frequency of occurrence of the named entities in the
documents.

4.6. Background data preparation

The quality of the collateral data found by the system

depends directly on the databases available to the system
for searching. In our implementation data obtained from
Dow Jones is used, which includes sources such as the
New York Times, Wall Street Journal, and Newswires.
Our other sources include the World Wide Web and Lotus
Notes databases. These sources where chosen both for
their appropriateness and availability to us. However,
what is more noteworthy is how the data is viewed and
prepared for the search. It is crucial to remember that the
whole process from transcription to analysis, query prepa-
ration, search and data assembly has to be done in real
time. Currently, searches against the World Wide Web are
quite slow and are not appropriate for this application.
Therefore we choose to store all the data on a local data-
base with all the associated metadata and create a single
index for all the data. However, additional specialized
indices could be available for subsystems like the Ques-
tion Answering system.

The Dow Jones data contains embedded metatags
drawn from their taxonomy. Our data preprocessor parses
the data and stores the metatags in the database to be used
for fast queries. For instance, the data contains geographi-
cal information, which is ordered in relevance to the arti-
cle. We store all this information in a specially designed
database system based on DB2. Suppose a relevant arti-
cle for a broadcast segment is found. Not only can we
show the article but also the other areas affected. A good
example is trade and company information, which span
sometimes several countries. General concept queries
about “what events happened in a certain country” can be
easily answered and rank ordered by the rank ordering in
the geographical data.

4.7. Profiles

Throughout this paper we have described choices an

application of our system can make. It starts with which
analyzers should be used. The SentenceSegmenter is es-
sential to deal with the transcript, but the rest of the ana-
lyzers, the dictionaries used, the rules governing the top-
ics, and the subsystems processing structured requests are
application specific. Our system is flexible and one
should be able to “mix and match” the various compo-
nents. However, even for a given application, a user may
have specific preferences – seeing (or not seeing) bio-
graphical or geographical information, the type of source
one is interested in, and the date range, to mention a few
examples. The rule-based system used throughout can
easily accommodate profiles that are expressed in terms
of rules and can be incrementally added to the system.

 8

5. Evaluation

There are a number of performance questions related

to the system described here, ranging from the speed and
effectiveness of individual analyzers, to the overall use-
fulness of the system measured by end-user satisfaction.
We have a number of evaluations planned to address
these questions. System usefulness and end-user satisfac-
tion are best measured by a carefully designed user study.
We plan to conduct at least one summative evaluation,
which will involve users interacting with our prototype in
a controlled fashion. The performance of the system will
be measured via observation of the users and survey feed-
back from the users.

Evaluating the individual analyzers is somewhat more
straightforward. Techniques from traditional information
retrieval and natural language processing evaluation may
be used, including standard precision and recall measures
for named entity recognition and text search effectiveness.

Performing any of these evaluations is dependent on
building a working prototype of the system, which we
have done. The WASABI system was built on a Win-
dows platform with a Java Client front-end. Figure 4
shows a screenshot of the working prototype. To date, we
have evaluated the effectiveness of the named entity rec-
ognizer.

For our experiments we used the world news by a na-
tional television network. We digitized the taped broad-
cast and transcribed it manually. We first listened to the
tape to determine the number and type of named entities
present. There were 67 distinct named entities in a half
hour broadcast (excluding the commercials). They were
divided into four classes: people, places, financial terms,
and miscellaneous other terms. Half of the named entities
were people and 23% were places. Roughly 20% of the
people were names of reporters in the field or people in-
terviewed in the field, names one cannot expect a speech
recognition system to recognize. Furthermore, these
names are generally not relevant to the type of searches
our system performs, where the goal is to find more in-
formation about an event. As such, we concluded that
only 55 of the named entities mentioned were relevant for
the system.

In the transcript generated by our IBM ViaVoice rec-
ognition engine, 34 relevant named entities were detected,
a 62% recognition rate, which is much higher than the
recognition rate for the entire document. WASABI rec-
ognized 98% of the named entities in the transcript. WA-
SABI typed the named entities correctly 97% of the time,
the errors coming from inherent ambiguities in the names,
for instance Tijuana being both a name and a place. To
correctly type such words a more extensive analysis of the
context has to be performed which cannot be done in a
real-time system.

Figure 4. WASABI screen shot

In spite of being a real-time system, WASABI can in-

fer that different references of a name could all point to
the same person, for instance “George W Bush”, “Gover-
nor Bush” and “Gov. Bush”. Timing information and
topic shifts are used to identify these equivalences. In a
Data Broadcast application it is quite important to deter-
mine equivalent named entities and avoid sending out the
same collateral information more than once over the lim-
ited bandwidth broadcast channel.

6. Conclusions

The addition of arbitrary data to broadcast television

presents exciting possibilities for creating a whole new
television viewing experience. This opportunity, how-
ever, also presents a number of challenges. In this paper
we have addressed the problem of how to automatically
determine what data to send along with the audio/video
program. Our solution is based on WASABI, a system
for analyzing spoken discourse and automatically finding
collateral information.

The challenge is to carry out this process in real time
using a text transcript generated by an automatic speech
recognition system. Traditional information retrieval
methods are not always applicable due to the type of dis-
course and the grammatical mistakes in the transcript. We
have developed new algorithms to address these issues.
We are currently in the process of developing a rigorous
evaluation methodology to compare our algorithms
against more standard information retrieval methods.
Furthermore, due to the real-time processing constraints,
many other text analysis tools are not applicable. In future
research, we plan to explore the same problem without the
real time constraints to discover whether more sophisti-
cated text analysis tools can improve the quality of the
retrieved material.

 9

7. Acknowledgments

We would like to thank Robert Mack, Alan Marwick, and
the anonymous referees for their suggestions on ways to
improve this paper. We would also like to acknowledge
James Janniello and his team for their collaboration on
this project.

8. References

[1] J. Allan, J. Carbonell, G. Doddington, J. Yamron, and
Y. Yang, "Topic Detection and Tracking Pilot Study: Fi-
nal Report". Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop, pp. 194-218.

[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Infor-
mation Retrieval, ACM Press: New York, 1999.

[3] E.W. Brown and H.A. Chong. The Guru System in
TREC-6. Proceedings of TREC6, Gaithersburg, MD,
1998.

[4] A. Coden, J. Breretton and Michael Schwartz, “Sys-
tem and Method for Performing Complex Heterogeneous
DataBase Queries using a Single Expression”, Patent Ap-
plication filed 1998

[5] IBM Mail Analyzer, v. 6.2. 1999

[6] IBM Intelligent Miner for Text, “www-
4.ibm.com/software/data/iminer/fortext/”

[7] IBM ViaVoice Millennium Pro. 2000

[8] C.D. Manning and H.Schutze, “Foundations of
Statistical Natural Language Processing”, MIT Press,
1999
[9] John Prager, Eric Brown, Anni Coden and D. Radev
“Question-Answering by Predictive Annotation”, Pro-
ceedings of SIGIR 2000 (to appear)

[10] J.M. Prager, E.W. Brown, A.R. Coden and D.
Radev. “The Use of Predictive Annotation for Question-
Answering in TREC8”, Proceedings of TREC8, Gaithers-
burg, MD, 2000.

[11] Yael Ravin and Claudia Leacock, “Polysemy. Theo-
retical and Computational Approaches”, Oxford Univer-
sity Press, 2000

[12] Yael Ravin, Nina Wacholder and Misook Choi. “Dis-
ambiguation of Names in Text”, Proceedings of the Fifth
Conference on Applied Natural Language Processing, pp.
202-208, Washington D.C., March 1997.

[13] Yael Ravin, Nina Wacholder and Roy Byrd. “Re-
trieving Information from Full Text Using Linguistic
Knowledge”, Proceedings of the Fifteenth National
Online Meeting, pp. 441-447, New York, May 1994.

	Abstract

