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Abstract 
We address the problem of finding collateral information 
pertinent to a live television broadcast in real time.  The 
solution starts with a text transcript of the broadcast gen-
erated by an automatic speech recognition system.  
Speaker independent speech recognition technology, even 
when tailored for a broadcast scenario, generally pro-
duces transcripts with relatively low accuracy.  Given this 
limitation, we have developed algorithms that can deter-
mine the essence of the broadcast from these transcripts.  
Specifically, we extract named entities, topics, and sen-
tence types from the transcript and use them to automati-
cally generate both structured and unstructured search 
queries.  A novel distance-ranking algorithm is used to 
select relevant information from the search results.  The 
whole process is performed on-line and the query results 
(i.e., the collateral information) are added to the broad-
cast stream.   
 
 
1. Introduction 
 

The emergence of the World Wide Web as an informa-
tion and entertainment media is generating exciting 
changes in the more traditional media of broadcast televi-
sion.  In particular, broadcasters have begun to link these 
two media together to create a much richer television 
viewing experience.  The first phase of this linkage is 
rather loose; television programs routinely display URLs 
that point to web sites related to the program.  The next 
phase of linkage, however, will be much tighter as set top 
boxes and TV tuner computer cards become more preva-
lent.  Such devices will allow broadcasters to send Web 
content with the television broadcast and display the au-
dio/video program in an integrated fashion with the Web 
content. 

This tighter integration presents a number of chal-
lenges, with one of the more difficult challenges being 
how to identify the information that should be broadcast 
with the television program.  Currently, program produc-
ers manually identify the information to broadcast.  This 
process may be supported by software that aids in sched-
uling the data broadcast, or software that automatically 

accesses databases to obtain, for example, stock quotes.  
Nevertheless, the overall information seeking and selec-
tion process is manual. 

This approach has several disadvantages.  First, it is 
slow and expensive. Second, there is no way to tie addi-
tional information into a live broadcast, where the time at 
which a particular topic is discussed is not known before-
hand. Currently, if a significant event (e.g., an airplane 
crash) occurs during a broadcast of the daily news, the 
producers have a difficult time just reporting the event, 
and in general have no time to find background informa-
tion. Third, with the advent of set top boxes, users may 
want to customize the information displayed on their TV.  
One person may want to see only sports related informa-
tion, while another may want to be able to choose news 
related to a specific geographic location. 

To address these problems we have developed a sys-
tem called WASABI (Watson Automatic Stream Analysis 
for Broadcast Information).  WASABI takes speech audio 
as input, converts the audio stream into text using a 
speech recognition system, applies a variety of analyzers 
to the text stream to identify information elements, auto-
matically generates queries from these information ele-
ments, and extracts data from the search results that is 
relevant to the current program.  The data is multiplexed 
into the broadcast signal and transmitted along with the 
original audio/video program.  The system is fully auto-
matic and operates on-line, allowing broadcasters to add 
relevant collateral information to live programming in 
real time. 

In the remainder of this paper we discuss related work, 
describe the overall methodology and architecture, pro-
vide a more detailed analysis of the different parts of the 
system, and conclude with pointers to future work.  

 
2. Related work 
 

The problem we are trying to solve here is most 
closely related to the work on Topic Detection and Track-
ing (TDT)[1].  In TDT, the goal is to analyze news broad-
casts (text articles or text transcripts generated automati-
cally from audio and video) and identify previously un-
seen news events, or topics.  Topics are then tracked by 
identifying subsequent news stories covering the same 
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event.  This is accomplished using a variety of off-line 
text processing, language modeling, and machine learning 
algorithms.  TDT differs from our work in two ways.  
First, our system must operate in real time in order to an-
notate a live broadcast with collateral information, while 
the typical TDT system operates off-line.  Second, our 
system goes beyond topic detection to include automatic 
query formulation and collateral information discovery. 

The techniques we use to accomplish this task are 
drawn largely from traditional information retrieval [8] 
and text analysis techniques [6].  Again, we have ex-
tended these techniques to support on-line processing of 
streaming text data.  These distinctions will become clear 
in the remainder of this paper. 

We should also mention that a number of commercial 
systems exist that support the manual addition of data to a 
broadcast signal (see, for example, Wave Systems Corpo-
ration and SkyStream Networks).  These systems allow 
program producers to select, format, and schedule the 
delivery of data with the broadcast.  The key difference 
with our work is that these systems require manual identi-
fication of collateral data, while our system is fully auto-
matic. 

 
3. Background 
 

The goal of this work is to find collateral information 
in real time based on the words spoken during a news 
broadcast (or any other spoken discourse). There are sev-
eral challenges in this arena. Although voice recognition 
has improved tremendously over the last few years, it 
cannot be expected that a voice recognition system will 
deliver a perfect transcript. Transcript quality is by far the 
best when the voice recognition system is trained with the 
voice of the speaker and the recording is made in a quiet 
environment with appropriate microphones. Unfortu-
nately, in a broadcast setting (and many other similar set-
tings) such optimal circumstances are not available. Here, 
there are many speakers, some recording from a studio, 
others from the field. Furthermore, background noise and 
sub-optimal microphones contribute to the deterioration 
of the transcript quality.  

The quality of the transcript has tremendous implica-
tions on the methods that can be applied to analyze it. The 
effectiveness of traditional text analysis tools decreases as 
the quality of the transcript decreases. Some of the issues 
that arise include lack of punctuation, lack of grammatical 
structure, and mis-recognized words (wrong words added 
as well as correct words missing). Sentences are “con-
structed” from the continuous stream of spoken words by 
setting a pause threshold between words. This and the 
erroneous recognition of words lead to sentences that are 
grammatically incorrect. Hence, methods that rely on ana-
lyzing the structure of a sentence are bound to give worse 

results. Erroneous word recognition has a detrimental 
effect on word statistics, such that relying on these statis-
tics may lead to unintended or unexpected results. Adding 
to these difficulties is the need to process the text in real-
time.  

Even when reading a poor transcript, however, a per-
son can usually describe the essence of the discourse. Our 
goal is to be able to capture this “gist”. Once captured, it 
constitutes metadata for the discourse, which can be 
stored with the discourse and provide value in its own 
right.  Processing this metadata is at the core of our meth-
odology. 

Using the automatically created metadata we show a 
novel method to perform concept searches that produce 
the desired collateral information. A new ranking algo-
rithm is described which sorts the results of the concept 
searches, and could also prove to be quite appropriate in 
traditional text searches. 

 
4. Architecture 
 

Given the goal of finding collateral information for a 
live broadcast in real time, each part of the system must 
perform as close to real time as possible. To facilitate 
development of real time components, the components are 
isolated from each other by a modular architecture with 
clearly defined interfaces. This approach has a further 
benefit that over time more modules can be developed 
and integrated seamlessly into the system. Figure 1 gives 
an overview of the architecture.  

The input to the Real Time Feature Extractor is a live 
television broadcast. A module in the extractor can de-
termine a particular feature in real time from a 
video/audio signal. In particular, the Speech module tran-
scribes the audio signal into English and the CCText 
module extracts the closed caption text from the video 

Figure 1. Architecture overview 
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stream. Both these modules currently operate in real time. 
The other two modules shown in the architecture are ex-
pected to work in real time shortly. The OCR (Optical 
Character Recognition) module deciphers the text over-
laid on a frame. The Face module determines the number 
of faces and sizes present in any given frame.  

Currently the Feature Extractor produces ASCII Text, 
both in the form of transcribed text and closed caption 
text (CCText) if it is available. Such text is time stamped 
and can be stored in conjunction with the source. 

 The next component of the system is the Event Ana-
lyzer subsystem, which represents the most important and 
innovative part of the system. Each analyzer has a task to 
perform based on the ASCII text.  The output of one ana-
lyzer (an event) can be the input to another analyzer. The 
output of an analyzer is again an ASCII string, which is 
time stamped (start and end time).  

Currently we have several analyzers. The simplest ana-
lyzer is the SentenceSegmenter. It takes the raw tran-
script, determines sentence boundaries and reformats the 
string for display.  The NamedEntitiesRecognizer identi-
fies named entities like the names of people, places, or-
ganizations and companies, and other types of terms, like 
financial terms, legal terms, or educational terms, to name 
a few.   

The TopicAnalyzer determines which topic from a 
taxonomy of topics is being discussed. A number of ana-
lyzers look for specific types of sentences, including 
questions, demands, and requests, and return the sentence 
and its type (e.g., it’s a question). The CalendarAnalyzer 
determines the time and date if it is mentioned and trans-
lates it into a standard format. 

Although each analyzer will be described in more de-
tail in subsequent sections, there are some common fea-
tures that we would like to discuss here. Each analyzer 
performs its task in real time and adheres to a predefined 
interface. The real-time aspect made it necessary to invent 
new algorithms for some of the tasks. Another challenge 
is that the tasks use word sequences that are (in general) 
grammatically incorrect as input. Another issue to con-
sider is that spoken words during a news broadcast or a 
meeting have quite different characteristics than, for in-
stance, written text. There are many “filler” sentences or 
phrases that are not pertinent to the primary conversation 
thrown in between the primary topic discussed. 

The output events from the analyzers are stored on a 
linked list data structure, called the Knowledge Chain. 
Briefly, all events are assembled on a timeline, with a 
start-event token and an end-event token. The precedence 
of events that start at the same time is immaterial. The 
events themselves can then be stored in a database or a 
program can create a XML document based on the events 
for any time segment desired. 

Once the Knowledge Chain has been created, the next 
step is to find the collateral information that will be 

broadcast with the program. This is done by automatically 
generating queries based on the events recorded in the 
KnowledgeChain. Profiles (either personal or application 
specific) could be used to guide the query generation. The 
results from these queries are then assembled, ranked and 
sent to the multiplexer, which inserts the results into the 
broadcast stream. 

 
4.1. Speech transcript 

 
Our system uses the IBM’s ViaVoice [7] product to 

transcribe the audio signal into ASCII text. A special 
acoustic model was developed by IBM to handle broad-
cast news. This model is speaker independent and com-
pensates for the background noise inherent in a broadcast 
news program. This custom acoustic model is combined 
with the standard business language model included with 
the product. The accuracy varies with speaker and re-
cording conditions, but the transcribed text conveys the 
general gist of the broadcast.  

The following example is taken from a transcript of an 
evening news broadcast.  The original text is: 

 
This is World News Tonight with Peter 
Jennings.  Good evening.  We begin tonight 
with the Presidential campaign. The Republi-
can Party got its ducks in a row today.  Senator 
John McCain who almost derailed the best fi-
nanced campaign in history a few months ago, 
that of George W. Bush, took his medicine to-
day and said I do.  Here is ABC's Aaron Brown. 
John McCain arrived for the meeting exactly 
two months after he gave up his campaign 
against Governor Bush and after the 90 minute 
private meeting Governor Bush got exactly 
what he wanted.  I look forward to enthusiasti-
cally campaigning for Governor Bush.  Not 
good enough for reporters who wanted to hear 
the e word I endorse Governor Bush. 
 
The transcript generated by IBM’s ViaVoice is: 
 
Is World News Tonight with Peter Jennings the 
the the we begin tonight with the presidential 
campaign of Republican Party got its ducks in a 
row today. Senator John McCain who almost 
beat Ray killed the best finance campaign in his-
tory few months ago.That of George W. Bush. 
Took his medicine today and said I do. Is ABC's 
Aaron Brock. McCain wrought with the make 
that the two months after he gave up its cam-
paign the next governor of boys. The 90 minute 
private meeting. Which got exactly what he 
bought it. Fourth to use yesterday became the 
main. That and wish. Not good enough for re-
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porters. Who wanted to hear the eve workers dis-
covered bullish and bearish data to push ahead. 
 
It is straightforward to add words or phrases into the 

vocabulary of ViaVoice using the product version, and 
therefore advisable to add current names or phrases into 
the system. Examples of words to add include names of 
politicians (both domestic and international) or phenom-
ena (e.g., La Nina), which a standard business language 
vocabulary would not contain. If, for instance, the name 
McCain was not added, the system would pick a name 
that sounds similar to this politician’s name.  However, 
the gist of a reported story would change if a crucial name 
was not recognized.  Such vocabulary can be built up with 
time. 

Currently, several other components for speech recog-
nition are being developed, including speaker and gender 
identification and the filtering of music. As these compo-
nents become available, they will be incorporated into the 
system, improving the quality of the results produced by 
the analyzers. 

 
4.2. CC-text 

 
We use one of several products available that can ex-

tract closed caption text from a video signal. Again, each 
sentence becomes an event that is inserted into the 
Knowledge Chain. Clearly, the accuracy is quite high in 
this case and one could opt to use only CCText for subse-
quent analysis. However, CCText may not be available in 
all broadcast programs and CCText does not contain any 
capitalization, which is quite useful for some analyzers.  
Moreover, the speech recognition system will provide 
other information (like speaker identification) in the near 
future, knowledge that cannot be deduced from CCText 
alone.  

 
4.3. Analyzers 

 
To date we have developed several analyzers that all 

adhere to the same interface and produce their respective 
output events in real-time.  The most basic analyzer is the 
SentenceSegmenter. It takes the raw transcript and out-
puts formatted sentences. Sentence boundaries are de-
duced based on the length of the pause between words. 
Formatting consists of adding appropriate capitalization 
and punctuation. Each recognized sentence is inserted into 
the Knowledge Chain. We are currently exploring the use 
of speaker identification and gender identification to im-
prove the accuracy of sentence boundary recognition.  We 
are also considering techniques that can improve gram-
matical correctness.  The more accurate and grammati-
cally correct the sentences are, the better other down-
stream analyzers will perform. 

The output of the SentenceSegmenter is input to the  
other analyzers described in this section, including the 
NamedEntitiesRecognizer or the TopicRecognizer.  Each 
of these analyzers adds its output to the KnowledgeChain, 
which is described in the next section. 

An important analyzer is the NamedEntitiesRecog-
nizer, which discovers named entities such as names of 
people, places, organizations, and companies, and other 
specific terms belonging to a particular subject, such as 
financial, banking, or educational terms. The algorithms 
used are derived from the ones used in IBM’s Intelligent 
Miner for Text product [6].  In particular, they have been 
modified to perform in real-time. To identify a named 
entity, the capitalized words are looked up in several dic-
tionaries that list proper names, places, organizations, etc.  
If a word is a first name, and the subsequent word is capi-
talized, the analyzer puts them together to form a com-
plete name. The analyzer continues to examine subse-
quent capitalized words to form the longest possible 
name. There are additional algorithms to recognize mid-
dle initials and titles. No disambiguation is done, as in 
general there is not enough information to do that (e.g., 
Tijuana can be a place or a person). It will be shown in 
subsequent sections that an erroneous classification of a 
named entity (person or place for example) may not affect 
the final outcome, which is to find appropriate collateral 
information. 

If a capitalized word is found in a dictionary with a 
specific type declaration (place or financial term, for ex-
ample) it is classified as such. Capitalized words for 
which there is no type declaration are put in the miscella-
neous category, as it is believed that capitalized words 
convey in general more information than verbs or adjec-
tives. There are various algorithms for each type of term. 
For instance, suppose the name of a town or city is dis-
covered, then the subsequent state word should be treated 
as a clarification of where the city is and not as an event 
in its own right.  

For example: Peter Jennings, Senator John McCain, 
Ray, Aaron Brock, George W. Bush are recognized as 
Names in our example 

The TopicAnalyzer determines which topic is being 
discussed. It assumes that a taxonomy was specified 
ahead of time. Here we use the KitKat rule-based system 
developed by IBM [5], which can be trained with a set of 
documents and has a user interface to specify rules manu-
ally. Clearly, any given sentence could describe more than 
one topic. A confidence value is associated with each 
recognized topic, which describes how sure the system is 
that a particular topic applies. Here the taxonomy is 
adapted from the Dow Jones set of publications aug-
mented by us to fit the broadcast news scenario. The ad-
vantage of using their taxonomy is that any background 
data drawn from Dow Jones sources is already classified 
according to the taxonomy, which aids in producing and 
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processing results from automatically generated queries. 
Here the output of the SentenceSegmenter is used as input 
for the TopicRecognizer. However, it is also possible to 
string several sentences together to form an input. We 
plan to evaluate how varying the size of the input to the 
TopicRecognizer changes the performance of this ana-
lyzer. In particular we will evaluate the influence of using 
“paragraphs” (i.e., several sequential sentences) or over-
lapping paragraphs. However, the extreme run-time re-
quirement of this application restricts the length of the 
input.  

The StructureAnalyzer is a new type of analyzer, al-
though it is based on some ideas developed in the Ques-
tion-Answering system built by Prager et al. [9] [10]. The 
idea is that certain sentence structures suggest an action 
that is different from performing a search based solely on 
the words in the sentence. For example, the question, 
“Who discovered Penicillin?” suggests that the person is 
interested in a name and not in a sentence containing the 
words of the question (which could be paraphrased in the 
text). Similarly, the request, “Please show me the full text 
of the State of the Union Address” requires the system to 
find a piece of text. The StructureAnalyzer identifies and 
labels the structure of each sentence. For instance the 
QuestionRecognizer is a type of StructureAnalyzer. In its 
simplest form it checks whether a sentence starts with a 
“question-word” like who, when and how to name a few 
examples. Having identified a sentence as a question, it 
replaces parts of it with Question-Answering Tokens [9] 
[10]. This transformed sentence becomes now a query 
against a corpus that has been indexed taking Question-
Answering Tokens into account. Such a search returns 
answers in its hitlist, which becomes the desired collateral 
information.  

For example: The announcer says: Where did George 
W. Bush and John McCain meet today? It was at the 
place where they had their last controversy. Based on the 
first sentence, the system creates a query “$place George 
W. Bush John McCain meet today” and return with 
“Manchester, New Hampshire”. 

Another analyzer further assists in the previous exam-
ple. The DateAnalyzer identifies absolute dates as well as 
indirect date references (like “today”) and calculates an 
absolute date in a standard format. It is always important 
to establish a reference date, which is simple in a live 
broadcast setting or in analyzing meetings. Dates are quite 
important in finding appropriate collateral information – 
referring to the previous example, George W. Bush and 
John McCain had several meetings. The DataAnalyzer is 
rule-based using the same system as the TopicAnalyzer. 

The rule-based system is applied to find other types of 
structures, such as requests “Please show the agenda" or 
to perform a task. “Next slide please”. The discovered 
events are added to the KnowledgeChain.  

 

4.4. Knowledge chain 
 

In the previous section we discussed several analyzers. 
Each one of them creates as output an event, e.g., a rec-
ognized sentence, topic, name, etc. The idea is that for 
each discovered event we create an Object, called a 
KnowledgeBead, which contains the following informa-
tion: type of event, start time, end time, description of 
event, an assigned unique id and an optional object. The 
description of an event could be an object in itself with its 
own access methods, a simple ASCII text, or in future 
systems that discover multimedia events; it could be an 
image or a video clip. Additional pertinent information 
can also be included, like the confidence value of a dis-
covered topic. Each KnowledgeBead has a corresponding 
MirrorKnowledgeBead that acts as an end tag for the 
event in the KnowledgeChain. Each Knowledge Bead is 
inserted into the KnowledgeChain at its start time. The 
Mirror Knowledge Bead is inserted at the end time. The 
precedence of KnowledgeBeads with same start times is 
immaterial, as is the precedence of the Mirror Knowl-
edgeBeads with same end times. At any given point in 
time, examining the KnowledgeChain gives a description 
of the broadcast. The KnowledgeChain has a set of meth-
ods associated with it to help its manipulation. Here are a 
few suggestions for such methods:  

 
1. Insert a KnowledgeBead at time t 
2. Delete a KnowledgeBead at time t 
3. Find the Mirror to a KnowledgeBead 
4. Find all the KnowledgeBeads between a Knowl-
edgeBead and its Mirror 
5. Find all the KnowledgeBeads starting at time t 
6. Find all the KnowledgeBeads ending at time t 
7.  

Furthermore, there are access methods for the Knowl-
edgeBeads themselves: 

 
1. Get start time 
2. Get end time 
3. Get type 
4. Get description 

 
The description can be a structure appropriate for the 

type of KnowledgeBead. 
Figure 2 depicts a KnowledgeChain. For simplicity we 

omit the MirrorKnowledgeBeads for the Named Entities 
in this example.  Note that the KnowledgeBeads are not 
necessarily inserted in a time-sequential manner. How-
ever, the KnowledgeChain gives a time-sorted synopsis of 
the broadcast. 

 
 



 

 6

Politics \PoliticsBush McCain today Time  
Figure 2. KnowledgeChain 

 
4.5. Automatic Query Generation 

 
Once the events extracted by the analyzers are assem-

bled on a time line in the KnowledgeChain, the next step 
is to automatically generate queries that will find collat-
eral information.  The first issue we must address is when 
to issue a query.  A simple approach would be to pose a 
query whenever an event occurs.  We believe that sending 
queries at the discovery of every event would both create 
a performance problem and generate a lot of irrelevant 
information.  For instance, a query based solely on a name 
would typically return too many hits to send over the 
broadcast signal, and moreover, no meaningful ranking 
could be applied to determine the most relevant hits. 

We suggest instead that queries be posed whenever a 
topic is detected. At this point all of the Knowledge Beads 
between the start of the topic and the end of the topic are 
assembled into a Query Object, representing the basis for 
query formulation 

Once a Query Object has been created, the next step is 
to look at the identified sentence structure.  If the struc-
ture is such that the query should be handled by a specific 
action subsystem, the query is sent to that subsystem for 
processing. For instance, the query might request the in-
vocation of a specific program. A request to show a per-
son’s presentation for today’s meeting requires the fol-
lowing steps: 

 
1. Open the program capable of showing a presentation 
2. Find the KnowledgeBeads specifying the name and 
date of the desired presentation 
3. Query the database to find the actual presentation 

 
We assume that there are rules in place describing how 

presentations are stored, but again these rules can be in-
corporated into the rule-based system handling requests. 

If the identified structure of the Query Object does not 
direct the query to a specific action subsystem, then proc-
essing can proceed in one of two ways, both of which are 
currently under investigation.  In the first approach, the 
query is processed with the following steps: 

 
1. Identify the topic of the Query Object 
2. Search for named entities constrained by the topic 
3. Perform a free-text search constrained by the topic 
 

We assume that the background data has been catego-
rized using the same taxonomy as that used by the Topic-
Analyzer. For any given data item, the assigned topic is 
stored as metadata in a database. Hence the first step is a 

database query to identify items with matching topics and 
constrain the scope of the next two searches. If the initial 
topic search should return an empty set, the query is re-
peated with the parent node in the topic taxonomy.  

The second query (named entity search) is only applied 
to data items found by the first query. Named entities can 
be augmented with variants of the name and then used to 
search databases specific to the type of named entity.  The 
results from these searches should be high quality data 
items that can immediately be added to the collateral in-
formation set.  

The third query is sent to a free text search engine, 
again constrained to the set of items found in the first 
step. The input to the free text search engine is the tran-
script, with stop words removed and lemmatization ap-
plied. The free text search engine typically returns a 
ranked list of items and the top ranked items are selected 
as collateral information for the broadcast.  Note that al-
though this process is described as a sequence of three 
steps, for better performance the entire procedure can be 
accomplished with a single “multi-search” query [4]. 

This first approach is appealing because it is straight-
forward.  Unfortunately, it naively relies on the rank 
scores returned by the text search engine to select collat-
eral information, potentially resulting in the inclusion of 
irrelevant data.  The second approach to query formula-
tion addresses this problem with a more sophisticated data 
ranking and selection procedure.  We explain this proce-
dure with an example.   

Imagine that the news broadcast just mentioned that 
Putin, Jaspin, and Clinton attended a summit meeting in 
Berlin. From the topic taxonomy we know that a summit 
meeting is a type of political meeting, which in turn is a 
type of meeting. Figure 3 shows a part of this taxonomy, 
where each node is a topic, the taxonomy is hierarchical 
with more general topics at the root and more specific 
topics at the leaves, and the letters inside the nodes indi-

Meeting

Party

Social 
Meeting

Political 
Meeting

Business 
Meeting

Funeral Gathering Government 
Meeting Summit

Federal State

A

B C

B

Figure 3. Part of a topic taxonomy 
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cate how topics have been assigned to three particular 
documents in the background data collection (documents 
A, B, and C).  It might be interesting to find out what 
other meetings (maybe within a particular time frame) 
these three world leaders also attended. 

To find documents about such meetings, the system 
first executes a free text search using all of the terms in 
the Query Object.  The top n documents returned by the 
free text search are then scored by the system using the 
following formula:  

iiii PERS ++=  
where 

iS is the score of document i  

iR is the rank number of document i — the top 
scoring document returned by the free text 
search has rank 0, the next best scoring docu-
ment has rank 1, etc. 

iE is the number of named entities in the Query 
Object that do not appear in document i  

iP is the taxonomy path score of document i , de-
scribed below 

 
The taxonomy path score of a document is calculated 

by locating the document’s topic in the taxonomy tree and 
traversing the shortest path from that topic to the topic 
assigned to the Query Object.  For each edge traversed 
upward (i.e., from child to parent), 1 is added to the path 
score, and for each edge traversed downward (i.e., from 
parent to child), 2 is added to the path score.  In Figure 3, 
the Query Object topic is “Summit”.  The path score for 
document A (assigned to topic “Summit”) is 0, the path 
score for document B (assigned to topics “Political Meet-
ing” and “Funeral”) is 2, and the path score for document 
C (assigned to topic “Gathering”) is 6.  Note that although 
document B is assigned to two topics in the taxonomy, we 
calculate the path score using the topic closest to the 
Query Object topic.  This path scoring scheme favors 
documents whose topic is the same as or a sub-topic of 
the Query Object topic, and penalizes documents whose 
topic is a super topic of the Query Object topic or in a 
different branch of the topic taxonomy. 

This document scoring formula produces scores such 
that better documents will have lower scores.  It factors in 
the scores returned by the free text search engine, exploits 
the fact that named entities tend to be more precise query 
terms, and uses the query topic and the topics assigned to 
the documents to further refine the search.  If the formula 
assigns the same score to two or more documents, the 
documents may be further ordered by considering the 
frequency of occurrence of the named entities in the 
documents. 

 
 

4.6. Background data preparation 
 
The quality of the collateral data found by the system 

depends directly on the databases available to the system 
for searching. In our implementation data obtained from 
Dow Jones is used, which includes sources such as the 
New York Times, Wall Street Journal, and Newswires. 
Our other sources include the World Wide Web and Lotus 
Notes databases. These sources where chosen both for 
their appropriateness and availability to us.  However, 
what is more noteworthy is how the data is viewed and 
prepared for the search. It is crucial to remember that the 
whole process from transcription to analysis, query prepa-
ration, search and data assembly has to be done in real 
time. Currently, searches against the World Wide Web are 
quite slow and are not appropriate for this application. 
Therefore we choose to store all the data on a local data-
base with all the associated metadata and create a single 
index for all the data. However, additional specialized 
indices could be available for subsystems like the Ques-
tion Answering system. 

The Dow Jones data contains embedded metatags 
drawn from their taxonomy.  Our data preprocessor parses 
the data and stores the metatags in the database to be used 
for fast queries. For instance, the data contains geographi-
cal information, which is ordered in relevance to the arti-
cle. We store all this information in a specially designed 
database system based on DB2.  Suppose a relevant arti-
cle for a broadcast segment is found.  Not only can we 
show the article but also the other areas affected.  A good 
example is trade and company information, which span 
sometimes several countries.  General concept queries 
about “what events happened in a certain country” can be 
easily answered and rank ordered by the rank ordering in 
the geographical data.  

 
4.7. Profiles 

 
Throughout this paper we have described choices an 

application of our system can make.  It starts with which 
analyzers should be used.  The SentenceSegmenter is es-
sential to deal with the transcript, but the rest of the ana-
lyzers, the dictionaries used, the rules governing the top-
ics, and the subsystems processing structured requests are 
application specific.  Our system is flexible and one 
should be able to “mix and match” the various compo-
nents.  However, even for a given application, a user may 
have specific preferences – seeing (or not seeing) bio-
graphical or geographical information, the type of source 
one is interested in, and the date range, to mention a few 
examples.  The rule-based system used throughout can 
easily accommodate profiles that are expressed in terms 
of rules and can be incrementally added to the system.  
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5. Evaluation 
 
There are a number of performance questions related 

to the system described here, ranging from the speed and 
effectiveness of individual analyzers, to the overall use-
fulness of the system measured by end-user satisfaction.  
We have a number of evaluations planned to address 
these questions.  System usefulness and end-user satisfac-
tion are best measured by a carefully designed user study.  
We plan to conduct at least one summative evaluation, 
which will involve users interacting with our prototype in 
a controlled fashion.  The performance of the system will 
be measured via observation of the users and survey feed-
back from the users. 

Evaluating the individual analyzers is somewhat more 
straightforward.  Techniques from traditional information 
retrieval and natural language processing evaluation may 
be used, including standard precision and recall measures 
for named entity recognition and text search effectiveness.   

Performing any of these evaluations is dependent on 
building a working prototype of the system, which we 
have done.  The WASABI system was built on a Win-
dows platform with a Java Client front-end.  Figure 4 
shows a screenshot of the working prototype.  To date, we 
have evaluated the effectiveness of the named entity rec-
ognizer.   

For our experiments we used the world news by a na-
tional television network. We digitized the taped broad-
cast and transcribed it manually.  We first listened to the 
tape to determine the number and type of named entities 
present.  There were 67 distinct named entities in a half 
hour broadcast (excluding the commercials). They were 
divided into four classes: people, places, financial terms, 
and miscellaneous other terms. Half of the named entities 
were people and 23% were places.  Roughly 20% of the 
people were names of reporters in the field or people in-
terviewed in the field, names one cannot expect a speech 
recognition system to recognize. Furthermore, these 
names are generally not relevant to the type of searches 
our system performs, where the goal is to find more in-
formation about an event.  As such, we concluded that 
only 55 of the named entities mentioned were relevant for 
the system. 

In the transcript generated by our IBM ViaVoice rec-
ognition engine, 34 relevant named entities were detected, 
a 62% recognition rate, which is much higher than the 
recognition rate for the entire document.  WASABI rec-
ognized 98% of the named entities in the transcript. WA-
SABI typed the named entities correctly 97% of the time, 
the errors coming from inherent ambiguities in the names, 
for instance Tijuana being both a name and a place.  To 
correctly type such words a more extensive analysis of the 
context has to be performed which cannot be done in a 
real-time system. 

 

 
 

Figure 4. WASABI screen shot 
 
In spite of being a real-time system, WASABI can in-

fer that different references of a name could all point to 
the same person, for instance “George W Bush”, “Gover-
nor Bush” and “Gov. Bush”.  Timing information and 
topic shifts are used to identify these equivalences.  In a 
Data Broadcast application it is quite important to deter-
mine equivalent named entities and avoid sending out the 
same collateral information more than once over the lim-
ited bandwidth broadcast channel. 

 
6. Conclusions 

 
The addition of arbitrary data to broadcast television 

presents exciting possibilities for creating a whole new 
television viewing experience.  This opportunity, how-
ever, also presents a number of challenges.  In this paper 
we have addressed the problem of how to automatically 
determine what data to send along with the audio/video 
program.  Our solution is based on WASABI, a system 
for analyzing spoken discourse and automatically finding 
collateral information.   

The challenge is to carry out this process in real time 
using a text transcript generated by an automatic speech 
recognition system. Traditional information retrieval 
methods are not always applicable due to the type of dis-
course and the grammatical mistakes in the transcript. We 
have developed new algorithms to address these issues. 
We are currently in the process of developing a rigorous 
evaluation methodology to compare our algorithms 
against more standard information retrieval methods.  
Furthermore, due to the real-time processing constraints, 
many other text analysis tools are not applicable. In future 
research, we plan to explore the same problem without the 
real time constraints to discover whether more sophisti-
cated text analysis tools can improve the quality of the 
retrieved material. 
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