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Abstract

The SPEC CPU benchmarks are frequently used in computer architecture research. The newly released SPEC’2000

benchmarks consist of fourteen floating point and twelve integer applications.

In this paper we present measurements of number of cache misses for all the applications for a variety of cache

configurations. Prior studies have shown that SPEC benchmarks do not put much stress on the memory system. Our

simulation results demonstrate that SPEC’2000 places only modest pressure on the first level caches confirming the

results of similar experiments.

1 Introduction

SPEC CPU benchmarks have long been used to gauge the performance of uniprocessor systems as well as micro-

architectural enhancements. The newly released SPEC’2000 benchmark suite replaced the previous release, SPEC’95.

Many studies [1, 3, 4]showed that only a few applications place more than modest stress on the memory system.

The purpose of this study is to examine the memory behavior of the SPEC’2000 benchmark suite and determine how

it compares to earlier releases of SPEC benchmarks.

Table 1 and Table 2 [2] briefly summarize the SPEC’2000 CFP2000 floating point and CINT2000 integer bench-

marks respectively. Memory footprint size for each application is also provided [5].

The rest of the paper is organized as follows. In section 2, a description of prior similar studies can be found.

Section 3 details the SPEC’2000 profile information we gathered. Simulation methodology and benchmark descrip-

tions can be found in Section 4. Section 5 presents the results for this study, and our conclusions are summarized in

section 6.
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Program Language Resident Description
Size in MB

wupwise F77 176 Physics / Quantum chromodynamics
swim F77 191 Shallow water modeling
mgrid F77 56 Multi-grid solver: 3-D potential field
applu F77 181 Parabolic / Elliptic partial differential equations
galgel F90 63 Computational fluid dynamics
art C 3.7 Image recognition / Neural networks
equake C 49 Seismic wave propagation simulation
facerec F90 16 Image processing: Face recognition
ammp C 26 Computational chemistry
lucas F90 142 Number theory / Primality testing
fma3d F90 103 Finite-element crash simulation
sixtrack F77 26 High energy nuclear physics accelerator design
apsi F77 191 Meteorology: Pollutant distibution

Table 1: Benchmark descriptions and resident memory size for CFP2000 programs.

Program Language Resident Description
Size in MB

gzip C 181 Compression
vpr C 50 FPGA circuit placement and routing
gcc C 155 C progaramming language compiler
mcf C 190 Combinatorial optimization
crafty C 2.1 Game playing: Chess
parser C 37 Word processing
eon C++ 0.7 Computer visualization
perlbmk C 146 PERL programming language
gap C 193 Group theory, interpreter
vortex C 72 Object-oriented database
bzip2 C 185 Compression
twolf C 1.9 Place and route simulator

Table 2: Benchmark descriptions and resident memory size for CINT2000 programs.
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2 Related Work

Similar studies have been performed on earlier versions of the SPEC benchmark suite. It is customary to test memory

hierarchy designs and optimizations targeting the memory subsystem on the SPEC benchmark suite. Therefore,

many similar studies have been performed on earlier versions of these benchmarks.

Pnevmatikatos and Hill [7] looked at a subset of the SPEC’89 integer benchmarks in the context of a RISC pro-

cessor. They inspected the available cache locality in these applications. Gee et al. [3] studied the SPEC’89 bench-

mark suite as well, reporting cache miss ratios. Later on, they extended this study for the SPEC’92 benchmarks [4].

They concluded that SPEC benchmarks may not represent actual performance of a time-shared, multi-programming

system with operating system interference. This is due to each SPEC benchmark running as the single active user

process until completion. Lebeck and Wood [6] used their CPROF cache profiling tool to analyze the cache bot-

tlenecks on the SPEC’92 benchmark suite. CPROF provides cache hot-spot information at the source line and data

structure level. This information is then used by the programmer to modify the code to improve the program’s

locality.

Charney and Puzak [1] repeated this study for the SPEC’95 benchmarks. They reported results in misses per

instruction (MPI) for several reasons. MPI is a direct indication of the amount of memory bandwidth that must be

supported for each instruction. Moreover, given the average memory cycles per cache miss, it is straightforward

computing the memory component of the cycles per instruction. MPI is the metric we chose to report in this study.

Besides cache analysis, Charney and Puzak studied the prefetching behavior of SPEC’95 as well.

Sherwood and Calder [9] looked at the cache behavior of SPEC’95 programs over their course of execution,

analyzing the interaction between cache performance, IPC, branch prediction, value prediction, address prediction

and reorder buffer occupancy. They found out that the large scale behavior of programs is cyclic in nature and

pointed out where to simulate to achieve representative results.

Recently, Thornock and Flanagan [10] analyzed the SPEC’2000 integer benchmarks using the BACH trace

collection mechanism. BACH is a hardware hardware monitor that enables the acquisition of trace data. They

gathered traces for the first 100 million integer references and ran them through their cache simulators. Along with

looking at only the integer benchmarks, they analyzed only a single input for multi-input programs.

3 Profile Information

During the simulations, we skipped the initialization part of each benchmark. In order to determine the fast forward-

ing amount, we profiled the applications, gathering statistics such as execution frequency, number of instruction

and data cache misses as well as TLB misses caused by each basic block. Moreover, we recorded the number of
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instructions committed until that basic block is seen for the first time.

The instruction and data caches used for this profile were 4K direct-mapped with 32 byte lines. We used a 2-way,

256 entry TLB. The page size was set to 4K.

Table 3 and Table 4 show the simulation results for the CFP2000 and CINT2000 benchmark suites respectively.

The tables present the cumulative percentage of instructions executed, instruction and data cache misses, along with

data TLB misses for the most frequently executed 10 basic blocks.

Data cache and TLB misses exhibit a uniform behavior for most applications. The number of misses is directly

proportional to the relative size of most frequently executed basic blocks. There are only a few instruction cache

misses however, suggesting good temporal locality–at least during the execution of these basic blocks.

It is interesting to note that an application running on different inputs may exhibit significantly different behavior.

Some applications, such as gzip, have randomly generated inputs which exhibit significantly different behavior, e.g.

extremely high miss rates, when compared to the reference inputs. Another example, vpr, is a placement and routing

tool which has two inputs, one for routing and one for placement. Simulation results of these two inputs show that

they exercise different parts of the application.

We then analyzed the basic block information to determine a window of 500 million contiguous instructions that

would be similar to the full run in execution behavior. In order to make sure a representative window was selected,

we verified that the number of cache misses generated by the shorter run closely matched those of the full run.

We also tried to preserve the relative amount of time spent in the most frequently executed basic blocks. Once we

determined that window, the fast forwarding amount is chosen as the number of instructions preceding the first basic

block of the window. These results are shown in tables 5 and 6 .

4 Methodology

The simulator used in this study is an in-house IBM tool, Aria. Aria is an execution driven simulator, similar in

nature to ATOM, written for the IBM PowerPC architecture.

The SPEC’2000 applications were compiled on a processor using the IBM C and C++ compilers under AIX

4.3 operating system using full compiler optimization (-O2 -qarch=rs64c). Tables 5 and 6show the number of

instructions simulated and the number of instructions fast forwarded before gathering statistics.

Each application was run on all the reference inputs provided. Results for the different inputs are presented with

the input an concatenated to the application name.

In order to increase the simulation speed, we utilized trace stripping [8]. With trace stripping, we filtered the

reference stream with the help of four 4K direct mapped caches. These caches had different line sizes: 32, 64, 128
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Program % Inst % I-Miss % D-Miss % DTLB-Miss

wupwise 38.45 0 86.46 93.40
swim 98.88 0.26 99.66 99.48
mgrid 82.13 1.35 91.90 58.18
applu 26.33 0 0.27 0
galgel 49.75 0.12 64.49 56.67
art 49.17 0 45.87 68.67
equake 54.18 0 67.58 58.91
facerec 36.03 0 31.31 7.36
ammp 22.05 0.01 49.62 37.06
lucas 69.98 0.01 35.03 14.57
fma3d 19.41 0.03 11.83 4.44
sixtrack 88.02 0.20 60.67 2.31
apsi 24.38 6.69 13.70 0

Table 3: Floating point benchmark profile information for the most frequently executed 10 basic blocks.

Program % Inst % I-Miss % D-Miss % DTLB-Miss

gzip-graphic 20.80 2.54 33.61 0.38
gzip-log 42.96 3.15 68.98 45.78
gzip-program 70.60 2.10 74.79 47.97
gzip-random 25.14 2.87 19.83 0.16
gzip-source 57.18 2.73 71.03 47.12
vpr-place 14.98 0 22.70 12.07
vpr-route 41.08 0 41.20 42.57
gcc-166 72.56 0 70.36 1.96
gcc-200 36.50 0 30.90 0.97
gcc-expr 49.95 0.01 49.81 0.54
gcc-integrate 62.79 0.01 61.50 0.89
gcc-scilab 40.42 0 39.42 1.45
mcf 53.08 0 62.93 26.80
crafty 12.25 4.46 3.71 0.28
parser 30.62 38.28 21.29 2.14
eon-cook 18.63 4.36 14.48 0.73
eon-kajiya 19.33 4.58 19.04 9.55
eon-rushmeier 20.20 5.88 18.26 15.61
perlbmk-2 20.03 4.08 13.01 24.04
perlbmk-850 38.89 3.74 0.18 10.99
perlbmk-b 23.41 4.24 31.32 3.81
gap 20.89 7.32 27.32 8.68
vortex1 38.64 1.73 33.60 24.55
vortex2 27.20 3.50 33.55 21.65
vortex3 38.33 1.73 33.59 24.31
bzip2-graphic 35.88 0.01 4.22 0.11
bzip2-program 30.85 0.02 3.29 0.07
bzip2-source 16.49 0.01 23.48 5.32
twolf 16.79 2.70 1.05 0

Table 4: Integer benchmark profile information for the most frequently executed 10 basic blocks.
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Program # inst # skipped
in millions in millions

wupwise 500 2500
swim 500 250
mgrid 500 5
applu 500 500
galgel 500 1250
art 500 2900
equake 500 3400
facerec 500 600
ammp 500 2000
lucas 500 2000
fma3d 500 3000
sixtrack 500 1500
apsi 500 30

Table 5: Number of instructions executed and amount of instructions skipped for each CFP2000 program during
simulations.

Program # inst # skipped
in millions in millions

gzip 500 40
vpr-place 500 190
vpr-route 500 1150
gcc 500 1000
mcf 500 4000
crafty 500 10
parser 500 250
eon 500 3
perlbmk 500 500
gap 500 65
vortex 500 0.5
bzip2 500 200
twolf 500 400

Table 6: Number of instructions executed and amount of instructions skipped for each CINT2000 program during
simulations.
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Figure 1: Simulation methodology.
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and 256 bytes. Only the misses from these four caches were relayed to the larger simulated caches. The cache hits

to these small caches are guaranteed to be cache hits in the larger caches. The smaller direct mapped cache acts as

the MRU set of the larger n-way associative cache. By eliminating the hits which form a considerable chunk of the

reference stream, we were able to speed up the simulation process significantly. Since not all references access the

simulated caches, accurate miss rate numbers can not be obtained. Instead, misses-per-instruction data is provided.

Since certain PowerPC instructions access multiple cache blocks, they can cause multiple misses. Therefore, it

is necessary to parse a multi-block memory reference into multiple single-block accesses. This is shown in Figure

1.

5 Cache Behavior of SPEC’2000

This section presents the main results of this paper. Instruction, data and unified cache behaviors are examined under

varying cache parameters.

The different cache parameters that we looked at are:

� Capacity: 4K, 8K, 32K, 64K, 128K, 256K

� Associativity: 1-way, 2-way, 4-way, 8-way

� Line size: 32 bytes, 64 bytes, 128 bytes, 256 bytes

� Type: Instruction, Data, Unified

5.1 Instruction Cache

In this section, we examine the instruction cache behavior of the SPEC’2000 benchmarks while varying cache

capacity, associativity, and line size.

5.1.1 Varying Capacity

For the floating point benchmarks, in order to achieve fewer than one miss per 1000 instructions, a 32K direct-

mapped cache with 32B lines seems to be sufficient. For the CINT2000 instruction references, a 64K 4-way cache

with 32 byte lines brings the average number of misses per 1000 instructions to under one. For a 32K direct-mapped

cache, the integer benchmarks have on average 9.81 misses per 1000 instructions.

Figures 2 and 3 show the results for several direct-mapped caches with 32 byte lines. The y-axis represents the

number of misses per 1000 instructions. Each curve corresponds to a cache capacity ranging from 4K to 256K. The
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Figure 2: Varying instruction cache capacity for floating point programs . All caches are direct-mapped and have 32
byte lines. The results are sorted with respect to number of misses generated by a 4K cache.
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Figure 3: Varying instruction cache capacity for integer programs . All caches are direct-mapped and have 32 byte
lines. The results are sorted with respect to number of misses generated by a 4K cache.
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first set of applications on the x-axis is the floating point benchmarks while the second set consists of the integer

benchmarks. Similar charts are used throughout the paper to present simulation results. Each set is sorted with

respect to the number of misses generated by the 4K cache.

As one would expect, floating point applications have fewer instruction cache misses than integer benchmarks.

With the inherent looping behavior of these applications most have fewer than 1 miss per 1000 instructions with a

16K direct-mapped cache. Only apsi and fma3d have higher miss numbers with this cache(about 10 misses per 1000

instructions). When we look at a 32K 4-way cache with 32B lines, these two applications go below the one miss per

1000 instructions mark as well.

When we analyze the integer benchmarks, perl, crafty, vortex, eon, and gcc are worth a closer look. A 128K

4-way or a 256K 2-way cache with 32 byte lines is required to reduce the number of misses per 1000 instructions to

below one for these applications. For a 4K direct-mapped cache, perl, crafty, vortex and eon, approximately one out

of every ten instruction references is a miss.

5.1.2 Varying Associativity

The simulation results for several 32K caches with 32 byte lines are presented in Figures 4 and 5. The different

curves represent a particular associativity ranging between one(direct-mapped) and eight.

Floating point applications have less than one (0.84) miss per 1000 instructions with a 32K direct-mapped cache.

For the integer benchmarks on the other hand, on average, every 18.6 out of 1000 instructions cause a cache miss.

Floating point benchmarks exhibit three distinct behaviors when associativity is changed: 1) Applications like

art, lucas2, applu, equake remain fairly insensitive to associativity. 2) Applications such as apsi, fma3d, sixtrack

and mgrid show significant reductions in miss numbers as each time associativity is increased. 3) ammp, facerec,

wupwise, galgel have fewer misses when the associativity is increased from one to two. From then on, the miss

numbers do not show any noticeable change.

The integer benchmarks mostly benefit from increased associativity. On average the number of misses per 1000

instructions are 18.6, 11.6, 7.95 and 4.3 respectively for a 1-way, 2-way, 4-way and 8-way set associative 32K cache.

Vortex shows little benefit when an 8-way set associative cache is used instead of a 4-way cache. For perl every

added degree of associativity helps as indicated by the fall in miss numbers. The different behaviors exhibited by

the same application on different inputs can be seen for vpr. With a 32K direct-mapped cache with 32 byte lines,

when doing placement, there are 6.7 misses per 1000 instructions, whereas while doing routing there are practically

no misses (0.0006).
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Figure 4: Varying instruction cache associativity for floating point programs . All caches are 32K and have 32 byte
lines. The results are sorted with respect to number of misses generated by a direct-mapped cache.
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Figure 5: Varying instruction cache associativity for integer programs . All caches are 32K and have 32 byte lines.
The results are sorted with respect to number of misses generated by a direct-mapped cache.

11



ap
si

fm
a3

d

am
m

p

fa
ce

re
c

w
u

p
w

is
e

si
xt

ra
ck

g
al

g
el

m
g

ri
d

sw
im

eq
u

ak
e

ap
p

lu

lu
ca

s2 ar
t

0

1

2

3

4

5

6

7

M
is

se
s 

pe
r 

10
00

 in
st

ru
ct

io
ns

32B 64B 128B 256B

Figure 6: Varying direct-mapped instruction cache line size for floating point programs . All caches are 32K and
direct-mapped. The results are sorted with respect to number of misses generated by the cache with 32 byte lines.
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Figure 7: Varying direct-mapped instruction cache line size for integer programs . All caches are 32K and direct-
mapped. The results are sorted with respect to number of misses generated by the cache with 32 byte lines.
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Figure 8: Varying 4-way instruction cache line size for floating point programs . All caches are 32K and 4-way set
associative. The results are sorted with respect to number of misses generated by the cache with 32 byte lines.
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Figure 9: Varying 4-way instruction cache line size for integer programs . All caches are 32K and 4-way set
associative. The results are sorted with respect to number of misses generated by the cache 32 byte lines.
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5.1.3 Varying Line Size

Instructions exhibit good spatial locality and this is reflected in Figure 6 and Figure 7. Each curve represents the line

size of a 32K direct-mapped cache. As the line size is increased from 32 bytes to 256 bytes, most applications show

reduction in miss numbers.

Unlike associativity, we see some examples where miss numbers increase with the increased line sizes for a fixed

capacity. This is an expected behavior caused by the reduction in the number of congruence classes. This is more

visible in Figures 8 and 9 which show the effects of varying the line size for a 32K 4-way set associative cache.

For floating point applications, on average, when the line size is increased from 32 bytes to 64 bytes and from

64 bytes to 128 bytes, the number of misses are reduced by 15% each time. When 256 byte blocks are used instead

of 128 byte blocks, the miss numbers go down by 8%.

Integer benchmarks benefit from increased block size more significantly when compared to floating point bench-

marks for instruction references. Integer programs tend to exhibit less looping behavior than floating point programs,

therefore there is less temporal locality, making spatial locality more dominant in instruction cache behavior. When

the block size is increased from 32 bytes to 256 bytes , the number of misses per 1000 instructions go down by

almost 50% on average. When we analyze individual block size increments, we see that most of this comes from the

jump to 64 bytes from 32 bytes. This change results in 26% reduction in the miss numbers. The changes from 64

bytes to 128 bytes and from 128 bytes to 256 bytes each result in a 16% decrease in the average miss numbers.

5.2 Data Cache

This section is an analysis of data cache miss numbers, similar to that of the previous section on instruction caches.

Again, we report results for the SPEC’2000 benchmarks while varying cache capacity, associativity, and line size.

5.2.1 Varying Capacity

Figures 10 and 11 respectively show the results for several direct-mapped and 4-way set associative caches with 32

byte lines. Each curve corresponds to a cache capacity ranging from 4K to 256K. Each set of benchmarks is listed

in descending order of misses generated by a 4K cache.

For the floating point benchmarks, the average number of misses per 1000 instructions for a 32K direct-mapped

cache with 32B lines is 52.2 whereas a 4-way cache with same capacity and block size generates 45.75 misses per

1000 instructions. With a 32K direct-mapped cache, the integer benchmarks have on average 27.9 misses per 1000

instructions. When the same cache is 4-way set associative, it averages about a miss every 50 instructions. Clearly,

the floating point benchmarks stress the data cache more than integer benchmarks.

14



ga
lg

el
sw

im ar
t

m
gr

id
eq

ua
ke

ap
si

si
xt

ra
ck

fa
ce

re
c

am
m

p
ap

pl
u

lu
ca

s2
fm

a3
d

w
up

w
is

e

m
cf

gc
c-

16
6

gc
c-

itg
r

cr
af

ty
pe

rl-
2

pe
rl-

95
7

gz
ip

-r
nd

pe
rl-

70
4

pe
rl-

85
0

pe
rl-

53
5

pe
rl-

b
tw

ol
f

gc
c-

sc
i

eo
n-

kj
ya

vp
r-

rt
e

vo
rt

ex
3

gc
c-

20
0

vo
rt

ex
1

vo
rt

ex
2

eo
n-

co
ok

eo
n-

rs
m

r
gz

ip
-g

r
gz

ip
-p

rg
vp

r-
pl

c
gz

ip
-s

rc
gc

c-
ex

pr
pa

rs
er

gz
ip

-lo
g

bz
ip

-s
rc

bz
ip

-p
rg

bz
ip

-g
r

ga
p

0

25

50

75

100

125

150
M

is
se

s 
pe

r 
10

00
 in

st
ru

ct
io

ns

4K

8K

16K

32K

64K

128K

256K

Figure 10: Varying direct-mapped data cache capacity. All caches have 32 byte lines. The results are sorted with
respect to misses generated by the 4K cache.
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Figure 11: Varying 4-way data cache capacity. All caches have 32 byte lines. The results are sorted with respect to
misses generated by the 4K cache.
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Among the floating point benchmarks, galgel, swim and art have the most misses - more than a miss every ten

instructions, for both direct-mapped and 4-way set associative caches with 32 byte lines and up to 64K in capacity.

Even with a 256K 4-way cache, swim misses 94 times in every 1000 instructions. This is caused by the very large

working set of this application which is close to 200 MBytes. Increasing the capacity from 4K to 256K results in a

33% reduction in misses for a 4-way cache. Most of this improvement is gained when the cache is increased from

4K to 8K with 11% reduction in average number if misses. The next significant jump occurs when the cache size is

increased to 128K from 64K with a 9% reduction.

mcf, gcc and perl are the forerunners among integer benchmarks in causing data cache misses. As the cache size

is increased from 4K to 256K, the number of misses generated by perl drop below four for every 1000 instruction.

mcf has more than a miss per ten instructions even at 256K. gcc exhibits highly input-dependent behavior. For

example, when running on input “166.i”, it has close to 94 misses per 1000 instructions for a 256K 4-way cache. For

the same cache, the number of misses per 1000 instructions are 2.15 when running on “expr.i” Another interesting

behavior exhibited by gcc is congruence class starvation[1]. As seen in the figures, for “166.i”, gcc has fewer misses

with a direct mapped 256K cache than a 4-way 256K cache. Increased associativity for a fixed capacity causes the

number of congruence classes to hold data to go down and hence hurts temporal locality. Increasing the cache

capacity seems to be more effective for integer benchmarks as the number of misses decreases by more than 71%

when the cache size increases from 4K to 256K for a 4-way cache.

5.2.2 Varying Associativity

Figure 12 shows miss results for a 32K data cache with 32 byte lines, when associativity is varied from one to eight.

The results suggest that for 32K cache, increasing the associativity from 1-way to 2-ways results in a reduction

in the number of misses( 11% for floating point and 25% for integer benchmarks). The graph also shows the

diminishing returns as increasing the number of ways further on does not provide any significant gains for a fixed

cache size.

For some integer applications such as crafty, utilizing a 2-way cache instead of a direct-mapped one results in

significant advantages (78.5% reduction in number of misses). For applications with large miss rates, e.g. mcf and

gcc, the increased associativity is of little benefit.

Similarly, mgrid, facerec and fma3d are among the floating point benchmarks that benefit from added associa-

tivity. Applications including swim, art, lucas2 and wupwise remain insensitive to associativity for a 32K cache.

16



sw
im

ga
lg

el ar
t

ap
si

m
gr

id
fa

ce
re

c
eq

ua
ke

lu
ca

s2
ap

pl
u

am
m

p
si

xt
ra

ck
fm

a3
d

w
up

w
is

e

m
cf

gc
c-

16
6

gc
c-

itg
r

gc
c-

sc
i

gc
c-

20
0

tw
ol

f
gz

ip
-r

nd
cr

af
ty

pe
rl-

b
gz

ip
-g

r
pe

rl-
2

vp
r-

pl
c

gz
ip

-p
rg

gz
ip

-s
rc

vp
r-

rt
e

gz
ip

-lo
g

bz
ip

-s
rc

bz
ip

-p
rg

bz
ip

-g
r

pe
rl-

53
5

gc
c-

ex
pr

pe
rl-

85
0

pe
rl-

95
7

pe
rl-

70
4

pa
rs

er
vo

rt
ex

3
vo

rt
ex

1
eo

n-
kj

ya
vo

rt
ex

2
eo

n-
rs

m
r

eo
n-

co
ok

ga
p

0

25

50

75

100

125

150

M
is

se
s 

pe
r 

10
00

 in
st

ru
ct

io
ns

1-w 2-w 4-w 8-w

Figure 12: Varying data cache associativity. All caches are 32K with 32 byte lines. The results are sorted with
respect to misses generated by the direct-mapped cache.
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Figure 13: Varying data cache line size. All caches are 32K and direct-mapped. The results are sorted with respect
to misses generated by the cache with 32 byte lines.

5.2.3 Varying Line Size

Figure 13 presents the data cache miss results for a 32K direct-mapped cache with different line sizes. As with

instruction caches, larger cache blocks help the applications with good spatial locality.

The trade-offs in the choice of a line size is that a large line implies a smaller number lines for a fixed capacity,

shrinking the temporal window and sacrificing temporal locality. Two other factors that must be considered in

selecting a line size is that a large line size results in a longer miss penalty but the directory managing the cache is

smaller.

The integer benchmarks average 27.8 misses per 1000 instructions for 32 and 256 byte lines. The best line

size for the integer benchmarks is 64 bytes with one miss out of every 40 instructions on average. The floating point

benchmarks have 52.2 misses per 1000 instructions with 32 byte blocks. When the line size is increased to 256 bytes,

this number goes down to 28.7. The minimum number of misses for the floating point benchmarks is achieved with

128 byte lines with 28.3 misses.

This graph shows a diverse range of behavior:

� Most of the integer benchmarks have higher number of misses with larger cache blocks. galgel, apsi and
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Figure 14: 16K 4-way split instruction and data caches vs. a 32K 4-way unified cache. All caches have 32 byte
blocks. The results are sorted with respect to misses generated by split caches.

sixtrack are the floating point benchmarks that are hurt by the larger line sizes.

� fma3d, wupwise, bzip remain relatively unchanged.

� Most floating point applications benefit from larger cache lines. Also, mcf, twolf and gcc from the integer

programs have fewer misses with increased block size.

5.3 Split vs. Unified Caches

In this section, we examine using split and unified caches and compare their respective miss rates.

The results are presented in Figure 14. It shows the number of misses per 1000 instructions for split 16K 4-

way instruction and data caches and a 32K 4-way unified cache. All caches have 32 byte blocks. Along with the

individual miss numbers for the split caches, we report the sum of these two numbers as a basis for our comparisons

with the unified cache.

For some of the applications the unified cache results in fewer aggregate misses. Perl, vortex, crafty, gcc and eon

are among these. For crafty, perl and vortex the number of misses are reduced by approximately 11%. As they incur

19



ar
t

sw
im

ga
lg

el
ap

si
lu

ca
s2

eq
ua

ke
ap

pl
u

m
gr

id
fa

ce
re

c
am

m
p

si
xt

ra
ck

w
up

w
is

e
fm

a3
d

m
cf

gc
c-

16
6

gc
c-

sc
i

gc
c-

itg
r

gc
c-

20
0

tw
ol

f
vp

r-
pl

c
vp

r-
rt

e
bz

ip
-p

rg
bz

ip
-s

rc
bz

ip
-g

r
pa

rs
er

gc
c-

ex
pr

pe
rl-

2
ga

p
vo

rt
ex

3
vo

rt
ex

2
pe

rl-
b

gz
ip

-lo
g

pe
rl-

95
7

pe
rl-

53
5

vo
rt

ex
1

pe
rl-

70
4

pe
rl-

85
0

gz
ip

-s
rc

gz
ip

-p
rg

gz
ip

-g
r

gz
ip

-r
nd

cr
af

ty
eo

n-
co

ok
eo

n-
rs

m
r

eo
n-

kj
ya

0

20

40

60

80

100

120

M
is

se
s 

pe
r 

10
00

 in
st

ru
ct

io
ns

Figure 15: 256K 4-way unified second-level cache.

relatively few number of data misses, these gains are mainly from having more room to store the large instruction

working set for these applications.

Several applications have a higher miss rate with a unified cache. Twolf is one of these. Some programs like gcc

and vpr behave differently based on the input. When gcc is running on “166.i” and when vpr is doing placement,

they incur more misses with a unified cache. For twolf, the performance degradation is quite significant, 10%. This

is likely to be caused by thrashing between the relatively large instruction and data working sets.

5.4 Second Level Cache

This section focuses on the L2 miss behavior.

Figure 15 shows the number of L2 misses for a 256K 4-way unified instruction and data L2 cache with 32 byte

lines. The first level split instruction and data caches are 32K, 2-way set associative and the cache blocks are 32

bytes. Floating point applications miss in the L2 cache 38.15 times every 1000 instructions. For integer programs,

this number stands at 12.15. An interesting point is the average miss rate, floating point applications L2 references

miss in the cache 80% of the time. The L2 miss rate is 27.2% for integer programs.

With around 100 misses per 1000 instructions, art and swim put the most pressure on the L2 cache among the
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floating point programs. If we consider the fact that these two applications generate more than one data miss every

10 instructions even with a 256K data cache, they come out as the most aggressive of the floating point benchmarks

in terms of stressing the memory system.

On the integer side, mcf and gcc (especially when running on “166.i”) are worth mentioning. As a matter of fact,

together these two programs generate more L2 misses per 1000 instructions then all the other integer benchmarks

combined.

6 Summary

The ever-widening processor memory gap motivates a plethora of research projects on cache memories. Most of

these techniques are tested on the SPEC suite of benchmarks to evaluate their merit.

Researchers [1, 3, 4] observed that miss rates are generally very low–especially for instruction references. More-

over, they have stressed the lack of operating system activity in SPEC benchmark simulations, concluding it does

not represent the behavior of a multi-programmed, time-sharing system.

This study confirms that only a few applications place more than modest demands on the memory system. When

we look at varying different cache parameters, increasing cache capacity provides the most significant gains. In

general, instruction caches benefit from increased line size and associativity. Data cache behavior however is more

diversified. Increasing the degree of associativity and line size result in improvements for some cases while it

degrades performance for others.
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