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From Dynamics to Computation and Back?

Michael Shub

Dedicated to Steve Smale on his seventieth birthday.

Felicitations

It is a pleasure for me to be celebrating Steve’s seventieth birthday. Twenty
years ago I sent him a note congratulating him on his fiftieth birthday and wishing
him another half century as productive as the first. Twenty years later I can say, so
far so good. Real computation and complexity and now learning theory are added
to the tremendous influence he has had on twentieth (now twenty first)century
mathematics. Steve is an impossible act for his students to follow and there is no
end in sight. Last week I was in Paris where I visited the Monet museum. Monet
was doing his best work at eighty-five. I expect that Steve will be doing the same.

The title of my talk echoes the title of the last Smalefest for Steve’s sixtieth
birthday ”From Topolology to Computation”. I met Steve in 1962. He had by this
time finished his immersion theorem-turning the sphere inside out, the generalized
Poincaré conjecture and the H-cobordism theorem. He had found a horseshoe
on the beaches of Rio and had begun his modern restructuring of the geometric
theory of dynamical systems, focusing on the global stable and unstable manifolds
and their intersections. The period 1958 to 1962 had been incredibly creative
for Steve. The number of Steve’s remarkable accomplishments still boggles my
imagination. And they are not of a whole, one following from the other, but rather
disparate independent inventions. By 1962 Steve had already left finite dimensional
differential topology. So I missed this wonderful part of his career. But luckily for
the subject and for me he had not left dynamical systems. So that is where my
story begins. My work in dynamics has been tremendously influenced by Steve.
Now after years of collaboration with Steve, Felipe and Lenore on computation, I
find that some of the techniques that Steve and I used in our sequence of papers
on Bezout’s theorem and complexity may be useful again back in dynamics.
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What I am reporting on today is joint work with Keith Burns, Charles Pugh,
Amie Wilkinson, and Jean-Pierre Dedieu see [BuPuShWi],[DeSh]. Much of what
I am saying is taken from these two papers without specific attribution.The material
may be found in much expanded form in these two references.

1. Introduction

In his 1967 survey paper on dynamical systems [Sm2] Steve asked for stable
properties which hold for most dynamical systems and which in some sense de-
scribe the orbit structure of the system. The concepts under study at the time
were structural stability and Ω stability, which roughly require that at least on
the most dynamically interesting sets the orbit structure of the dynamical system
be locally constant under perturbation of the system up to continuous change of
coordinates. By work beginning with Steve’s work on the horseshoe, Anosov’s [An]
structural stability theorem and Steve’s Ω stability theorem [Sm2], uniform hyper-
bolicity of the dynamics is known to imply Ω or structural stability. A remarkable
feature of these new results, which set them apart from previous work on structural
stability by Andronov-Pontryagin and Peixoto, is the complexity of the dynamics
encompassed. The horseshoe, strange attractors and globally hyperbolic dynamics
are chaotic. They exhibit exponentially sensitive dependence on initial conditions.
Thus, while in some sense the future history of a particular orbit may be too diffi-
cult to predict, the ensemble of orbits in these stable systems is topologically rigid
in its behaviour.

One of the major achievements of the uniformly hyperbolic theory of dynamical
systems is the work of Anosov, Sinai, Ruelle and Bowen on the ergodic theory
of uniformly hyperbolic systems. Anosov proved that smooth volume preserving
globally hyperbolic systems are ergodic. Sinai, Ruelle and Bowen extended this
work to specifically constructed invariant measures for general uniformly hyperbolic
systems now called SRB measures. The ergodicity of these measures asserts that
although particular histories are difficult to compute the statistics of these histories,
the probability that a point is in a given region at a given time, is captured by the
measure.

Steve’s program is however not accomplished, since structurally stable, Ω stable
and uniformly hyperbolic systems are not dense in the space of dynamical sysytems
[Sm1, AbSm]. Much of the work in dynamical systems in recent years has been
an attempt to extend the results of the uniformly hyperbolic theory to more general
systems. One theme is to relax the notion of uniform hyperbolicity to non-uniform
or partial hyperbolicity and then to conclude the existence of measures sharing
ergodic properties of the SRB measures. The Proceedings of the Seattle AMS
Summer Symposium on Smooth Ergodic Theory will surely contain much along
these lines. In particular, you can find the survey of recent progress on ergodicity
of partially hyperbolic systems [BuPuShWi] included there. There is much more
available concerning the quadratic family, Henon and Lorenz attractors and more,
but I will not try to reference that work here. It is my feeling that much of the work
proving the presence of non-uniform hyperbolicity or non-zero Lyapunov exponents
(which is the same) is too particular to low dimensions to be able to apply in general.

This paper reports on a result in the theory of random matrices which is an
analogue in linear algebra of a mechanism we may hope to use to find non-zero
Lyapunov exponents for general dynamical systems.
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2. Rich Families

In rich enough families individual members may inherit family properties.

This sentence which a truism in ordinary language sometimes also applies in
mathematics. The first theorem I learned from Steve in his 1962 course on infinite
dimensional topology, the Abraham transversality theorem is an example. Let us
recall that a smooth map F : M → N between differentiable manifolds is transversal
to the submanifold W of N if TF (x)(TxM) contains a vector space complement to
TF (x)W in TF (x)N for every x ∈ M such that F (x) ∈ W .

We give a simple finite dimensional version of the Abraham transversality the-
orem which is valid in infinite dimensions [AbRo]. Let P be a finite dimensional
smooth manifold which we will think of as a space of parameters for a space of
maps . Suppose Φ : P × M → N is a smooth map. For p ∈ P let Φp = Φ(p,−)
which is a smooth mapping from M to N . Suppose that Φ transversal to W . Then
V = Φ−1(W ) is a smooth submanifold of P×M. Let Π1 : V → P be the projection
of P ×M onto the first factor restricted to V. The following proposition is then an
exercise in counting dimensions of vector spaces.

Proposition 2.1. With Φ,M ,P, N ,W and V as above and p ∈ P;
Φp is transversal to W on M if and only if p is a regular value of Π1.

Now by Sard’s Theorem it follows that almost every p ∈ P is a regular value
of Π1. So we have proven a version of Abraham’s theorem.

Theorem 2.2. If Φ : P ×M → N is a smooth map transversal to W then Φp

is transversal to W for almost every p ∈ P.

Thus almost every member of the family Φp inherits the transversality property
from the transversality of the whole family. The richness of the family is expressed
by the transversality of the mapping Φ.

Here is another, more dynamical, example of our truism in ergodic theory
[PugSh1].

Theorem 2.3. If Φ : Rn ×X → X is an ergodic action of Rn on a probability
space X then for almost every r ∈ Rn, Φr : X → X is ergodic.

The ergodicity of the family is inherited by almost all elements. Further ex-
amples of our truism in ergodic theory are provided by the Mautner phenomenon
[Mo],[BreMo]. Both Theorem 2.3 and the Mautner phenomenon are proven via
representation theory. The richness in the family comes from the Lie group struc-
ture and the ergodicity of the group.

We would like to have a notion of richness of a family of dynamical systems and
Lyapunov exponent of the family so as to be able to conclude that most or at least
many of the elements of the family have some non-zero exponents when the family
does. For the notion of Lyapunov exponent of the family we shall use the exponents
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of random products of elements of the family with respect to a probability measure
on the space of systems.

We begin in the next section with linear maps where we use as a notion of rich-
ness the unitary invariance of the probability distribution on the space of matrices.

3. Unitarily invariant measures on GLn(C)

Let Li be a sequence of linear maps mapping finite dimensional normed vector
spaces Vi to Vi+1 for i ∈ N. Let v ∈ V0\{0}. If the limit lim 1

k log ‖Lk−1 . . . L0(v)‖
exists it is called a Lyapunov exponent of the sequence. It is easy to see that if two
vectors have the same exponent then so does every vector in the space spanned by
them. It follows that there are at most dim(V0) exponents. We denote them λj

where j ≤ k ≤ dim(V0). We order the λi so that λi ≥ λi+1 Thus it makes sense to
talk about the Lyapunov exponents of a diffeomorphism f of a compact manifold
M at a point m ∈ M , λj(f,m) by choosing the sequence Li equal to Tf(f i(m)).

Given a probability measure µ on GLn(C) the space of invertible n×n complex
matrices we may form infinite sequences of elements chosen at random from µ
by taking the product measure on GLn(C)N. Thus we may also talk about the
Lyapunov exponents of sequences or almost all sequences in GLn(C)N.

Oseledec’s Theorem applies in our two contexts.
For diffeomorphisms f Oseldec’s theorem says that for any f invariant measure

ν, for ν almost all m ∈ M , f has dim(M) Lyapunov exponents at m, λj(f,m) for
1 ≤ j ≤ dim(M).

For measures µ on GLn(C) satisfying a mild integrability condition, we have n
Lyapunov exponents r1 ≥ r2 ≥ . . . ≥ rn ≥ −∞ such that for almost every sequence
. . . gk . . . g1 ∈ GLn(C) the limit lim 1

k log ‖gk . . . g1v‖ exists for every v ∈ Cn\{0} and
equals one of the ri, i = 1 . . . n, see Gol’dsheid and Margulis [GoMa] or Ruelle [Ru]
or Oseledec [Os]. We may call the numbers r1, . . . , rn random Lyapunov exponents
or even just random exponents. If the measure is concentrated on a point A, these
numbers lim 1

n log ‖Anv‖ are log |λ1|, . . . , log |λn| where λi(A) = λi, i = 1 . . . n, are
the eigenvalues of A written with multiplicity and |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

The integrability condition for Oseledec’s Theorem is

g ∈ GLn(C) → log+(‖g‖) is µ− integrable

where for a real valued function f , f+ = max[0, f ]. Here we will assume more so
that all our integrals are defined and finite, namely:

(∗) g ∈ GLn(C) → log+(‖g‖) and log+(‖g−1‖) are µ−integrable.

In [DeSh]we prove:

Theorem 3.1. If µ is a unitarily invariant measure on GLn(C) satisfying (∗)
then, for k = 1, . . . , n,∫

A∈GLn(C)

k∑
i=1

log |λi(A)|dµ(A) ≥
k∑

i=1

ri.

By unitary invariance we mean µ(U(X)) = µ(X) for all unitary transformations
U ∈ Un(C) and all µ-measurable X ∈ GLn(C).

Thus non-zero Lyapunov exponents for the family i.e. the random exponents
implies that at least some of the individual linear maps have non-zero exponents i.e
eigenvalues. The notion of richness here is unitary invariance of the measure. For
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complex matrices we have achieved part of our goal. Later we will suggest a way
in which these results may be extended to dynamical systems.

Corollary 3.2.∫
A∈GLn(C)

n∑
i=1

log+|λi(A)|dµ(A) ≥
n∑

i=1

ri
+.

Theorem 3.1 is not true for general measures on GLn(C) or GLn(R) even for
n = 2. Consider

A1 =
(

1 0
1 1

)
, A2 =

(
1 1
0 1

)
,

and give probability 1/2 to each. The left hand integral is zero but as is easily seen
the right hand sum is positive. So, in this case the inequality goes the other way.
We do not know a characterization of measures which make Theorem 3.1 valid.

In order to prove 3.1 we first identify the the right hand summation in terms
of an integral. Let Gn,k(C) denote the Grassmannian manifold of k dimensional
vector subspaces in Cn. If A ∈ GLn(C) and Gn,k ∈ Gn,k(C), A|Gn,k the restriction
of A to the subspace Gn,k. Let ν be the natural unitarily invariant probability
measure on Gn,k(C). The next theorem is a fairly standard fact.

Theorem 3.3. If µ is a unitarily invariant probability measure on GLn(C)
satisfying (∗) then,

k∑
i=1

ri =
∫

A∈GLn(C)

∫
Gn,k∈Gn,k(C)

log |det(A|Gn,k)|dν(Gn,k)dµ(A).

We may then restate Theorem 3.1.

Theorem 3.4. If µ is a unitarily invariant probability measure on GLn(C)
satisfying (∗) then, for k = 1, . . . , n∫

A∈GLn(C)

k∑
i=1

log |λi(A)|dµ(A) ≥
∫

A∈GLn(C)

∫
Gn,k∈Gn,k(C)

log |det(A|Gn,k)|dν(Gn,k)dµ(A).

Theorems 3.4 reduces to a special case.
Let A ∈ GLn(C) and µ be the Haar measure on Un(C) (the unitary subgroup

of GLn(C)) normalized to be a probability measure. In this case Theorem 3.4
becomes:

Theorem 3.5. Let A ∈ GLn(C). Then, for 1 ≤ k ≤ n,∫
U∈Un(C)

k∑
i=1

log |λi(UA)|dµ(U) ≥
∫

Gn,k∈Gn,k(C)

log |det(A|Gn,k)|dν(Gn,k)

We expect similar results for orthogonally invariant probability measures on
GLn(R) but we have not proven it except in dimension 2.

Theorem 3.6. Let µ be a probability measure on GL2(R) satisfying

g ∈ GL2(R) → log+(‖g‖) and log+(‖g−1‖) are µ−integrable.

a. If µ is a SO2(R) invariant measure on GL+
2 (R) then,∫

A∈GL+
2 (R)

log |λ1(A)|dµ(A) =
∫

A∈GL+
2 (R)

∫
x∈S1

log ‖Ax‖dS1(x)dµ(A).
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b. If µ is a SO2(R) invariant measure on GL−2 (R), whose support is not contained
in RO2(R) i.e. in the set of scalar multiples of orthogonal matrices, then∫

A∈GL−2 (R)

log |λ1(A)|dµ(A) >

∫
A∈GL−2 (R)

∫
x∈S1

log ‖Ax‖dS1(x)dµ(A).

Here GL+
2 (R) (resp. GL−2 (R)) is the set of invertible matrices with positive

(resp. negative) determinant.

4. Proofs and the Complexity of Bezout’s Theorem

In our series of papers on complexity and Bezout’s theorem, Steve and I con-
centrated on the manifold of solutions V = {(P, z) ∈ P(H(D)) × P(Cn)|P (z) = 0}
and the two projections

V
Π1
↙

Π2
↘

P(H(D)) P(Cn)

in order to transfer integrals over P(H(D)) to integrals over P(Cn). See [BlCuShSm]
Here (D) = (d1, · · · , dn−1) and H(D) is the vector space of homogeneous poly-

nomials systems P = (P1, . . . , Pn−1) where each Pi is a homogeneous polynomial of
degree di in n complex variables. For a vector space V , P(V ) denotes the projective
space of V .

Our proof of 3.5 relies heavily on this technique, but with respect to a manifold
of fixed points.

A flag F in Cn is a sequence of vector subspaces of Cn: F = (F1, F2, . . . , Fn),
with Fi ⊂ Fi+1 and dim Fi = i. The space of flags is called the flag manifold and
we denote it by Fn(C). An invertible linear map A : Cn → Cn naturally induces a
map A] on flags by

A](F1, F2, . . . , Fn) = (AF1, AF2, . . . , AFn).

The flag manifold and the action of a linear map A on Fn(C) is closely related
to the QR algorithm, see [ShVa] for a discussion of this. In particular if F is a
fixed flag for A i.e. A]F = F , then A is upper triangular in a basis corresponding
to the flag F , with the eigenvalues of A appearing on the diagonal in some order:
λ1(A,F ), . . . , λn(A,F ).

Let

VA = {(U,F ) ∈ Un(C)× Fn(C) : (UA)]F = F}.

We denote by Π1 and Π2 the restrictions to VA of the projections Un(C)×Fn(C) →
Un(C) and Un(C)× Fn(C) → Fn(C). VA is a manifold of fixed points. We use the
diagram

VA
Π1
↙

Π2
↘

Un(C) Fn(C)

in order to transfer the right hand integral in 3.5 over Fn(C) to an integral over
Un(C).
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5. A dynamical systems analogue

Is there a notion of richness for a family P of diffeomorphisms of a compact
manifold M which would allow us to conclude that at least some members of the
family have non-zero exponents?

We introduce now a notion of richness of P which might, in some situations, be
sufficient to deduce properties of the exponents of elements of P from those of the
random exponents. This notion was suggested to us by some preliminary numerical
experiments and by the results in the setting of random matrix products in section
3.

We focus on the problem for M = Sn, the n-sphere. Let µ be Lebesgue measure
on Sn normalized to be a probability measure, and let m be Liouville measure on
T1(Sn), the unit tangent bundle of Sn, similarly normalized to be a probability
measure. The orthogonal group O(n + 1) acts by isometries on the n-sphere and
so induces an action on the space of µ-preserving diffeomorphisms by

f 7→ O ◦ f, for O ∈ O(n + 1).

Let ν be a probability measure supported on P ⊂ Diffr
µ(Sn). We say that ν is

orthogonally invariant if ν is preserved by every element of O(n + 1) under the
action described above.

For example, let

Fn(C) = O(n + 1)f = {O ◦ f | O ∈ O(n + 1)},

for a fixed f ∈ Diffr
µ(Sn) Defining ν by transporting Haar measure on O(n + 1) to

P, we obtain an orthogonally-invariant measure. Because O(n+1) acts transitively
on T1(Sn), a random product of elements of P will pick up the behavior of f in
almost all tangent directions — the family is reasonably rich in that sense.

Let ν be an orthogonally invariant measure on P. The largest random Lya-
punov exponent for P, which we will denote by R(ν), can be expressed as an
integral:

R(ν) =
∫

R(ν, x) dµ =
∫
Diffr

µ(Sn)

∫
T1(Sn)

ln ‖Df(x)v‖ dm dν.

We define the mean largest Lyapunov exponent to be

Λ(ν) =
∫
Diffr

µ(Sn)

∫
Sn

λ1(f, x) dµ dν

where λ1(f, x) is the largest Lyapunov exponent of f at x.

Question 5.1. Is there a positive constant C(n) — perhaps 1 — depending
on n alone such that Λ(ν) ≥ C(n)R(ν)?

If the answer to Question 5.1 were affirmative, then a positive measure set of
elements of P would have areas of positive exponents, (assuming a mild nonde-
generacy condition on ν). We add here that this type of question has been asked
before and has been the subject of a lot of research. What is new is the notion of
richness which allows us to express the relation between exponents as an inequality
of integrals.

The question is already interesting for S2. Express S2 as the sphere of radius
1/2 centered at (1/2, 0) in R × C, so that the coordinates (r, z) ∈ S2 satisfy the
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equation
|r − 1/2|2 + |z|2 = 1/4.

In these coordinates define a twist map fε : S2 → S2, for ε > 0, by

fε(r, z) = (r, exp(2πirε)z).

Let P be the orbit O(3)f and let ν be the push forward of Haar measure on O(3).
A very small and inconclusive numerical experiment seemed to indicate that for
ε close to 0 the inequality may hold with C(n) = 1. It seemed the constant may
decrease as the twist increases speed.

Michel Herman thinks Question 5.1 has a negative answer, precisely for the
twist map example fε, for ε very small due to references cited in section 6 of
[BuPuShWi]. Perhaps more and better experiments would shed some light on
the question. Whether or not Herman is correct, it would be interesting to know if
other lower bound estimates are available with an appropriate concept of richness
of the family.

References

[AbRo] Abraham, R. and J. Robbin, Transversal Mappings and Flows, W. A. Benjamin, Inc.,
New York-Amsterdam 1967.

[AbSm] Abraham, R. and S. Smale, Nongenericity of Ω-stability, 1970 Global Analysis (Proc.
Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968) pp. 5–8 Amer. Math. Soc.,
Providence,R.I.

[An] Anosov, D. V., Geodesic flows on closed Riemannian manifolds of negative curvature,

Proc. Steklov. Inst. Math. 90 (1967).
[BlCuShSm] Blum L., F. Cucker, M. Shub, S. Smale Complexity and Real Computation, Springer,

1998.

[BreMo] Brezin, J. and C. Moore, Flows on homogeneous spaces: a new look. Amer. J. Math.
103 (1981), 571–613.

[BuPuShWi] Burns K., C. Pugh, M. Shub and A. Wilkinson, Recent Results about Stable Er-
godicity, to appear in: Proceedings on Symposia in Pure Mathematics, the Seattle

Conference of Smooth Ergodic Theory, AMS.

[DeSh] Dedieu, J.P. and M. Shub, On random and mean exponents for unitarily invariant
probability measures on GL(n, C), preprint.

[GoMa] Gol’shied I. Ya. and G. A. Margulis, Lyapunov Indices of a Product of Random

Matrices, Russian Math. Surveys 44:5 (1989), pp. 11-71.
[Mo] Moore, C.C. Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966),

154–178.

[Os] Oseledec, V. I., A Multiplicative Ergodic Theorem. Lyapunov Characteristic Numbers
for Dynamical Systems, Trans. Moscow Math. Soc., 19, (1968), pp. 197-231.

[PugSh1] Pugh, C. and M. Shub, Ergodic elements of ergodic actions, Compositio Math. Vol.

23 (1971), 115–121.
[Ru] Ruelle, D., Ergodic Theory of Differentiable Dynamical Systems, Publications
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