RC 21864 (98290) 22 September 2000 Computer Science

|BM Research Report

A Perturbation-Free Replay Platform for
Cross-Optimized Multithreaded Applications

Bowen Alpern, Jong-Deok Choi, Ton Ngo, Manu Sridharan*, John Vlissides
IBM Research Division
Thomas J. Watson Research Center
P. O. Box 704
Y orktown Heights, NY 10598

* Dept. of Electrical Engineering and Computer Science
Massachusetts I nstitute of Technology
Cambridge, MA 02139

== =— Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOT I CE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research

Center , P. O. Box 218, Y orktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Perturbation-Free Replay Platform for
Cross-Optimized Multithreaded Applications

Bowen Alpern*
alpern@watson.ibm.com

Manu Sridhar an*
msridhar@mit.edu

ABSTRACT

Java applications, in particular server applications,
are often multithreaded. Their execution can be
non-deterministic, making them difficult to under-
stand and debug. This paper presents a platform
for analyzing interleaved program execution, com-
prising the Jalapefio JVM, the replay capabilities
of DejaVu, and the perturbation-free reflection af-
forded by remote reflection. A debugger demon-
strates the power and novel characteristics of the
platform.

DejaVu supports understanding and debugging
multithreaded Java applications through determin-
istic replay of non-deterministic execution. De-
jaVu replays the execution of the entire Jalapefio
JVM, including its thread and garbage collector
subsystems. The debugger must not alter the ex-
ecution behavior of the JVM during replay, which
is especially challenging on this platform because
all components—from the Jalapefio JVM to De-
jaVu and the debugger—are written in Java. The
keys are symmetric instrumentation in DejaVu and
remote reflection which exposes the state of an ap-
plication perturbing it.

*Address: IBM T.J. Watson Research Center, P.O. Box
704, Yorktown Heights, NY 10598.

tCorresponding author.

!Dept. of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, Cambridge,
MA 02139.

Jong-Deok Choi*?
jdchoi @watson.ibm.com

Ton Ngo*

ton@us.ibm.com

John Vlissides!

vlis@us.ibm.com

Keywords
Java, program development tool, concurrent pro-
gramming, program replay, debugging, reflection

1 INTRODUCTION

Tools for accurately repeating non-deterministic
computation are important for debugging and tun-
ing server applications. On a uniprocessor, con-
struction of execution replay tools is considerably
eased if a clear distinction is maintained between
the application and the underlying runtime system
that supports its execution. This paper considers
building such tools for an environment where the
line between application and runtime has been sig-
nificantly blurred.

Cross-optimization refers to an environment in
which an application and its runtime system are
analyzed and optimized together. Just as interpro-
cedural analysis yields benefits beyond what can
be achieved with purely local optimizations, “co-
analysis” and “co-optimization” of the application
and runtime environment can improve overall per-
formance.

Jalapefio [2] is a Java virtual machine (JVM)
for high-performance servers that employs cross-
optimization. Written in Java, Jalapefio brings
the benefits of cross-optimization to server de-
sign and implementation. Jalapefio uses a dy-
namic compilation-only strategy that further en-
hances the effectiveness of cross-optimization.

Large scale multithreading in server applications
makes their executions highly non-deterministic.
Debugging such programs is particularly difficult
since it’s hard to fix something that doesn’t even
fail reliably. It is therefore useful to have a tool

that is able to reproduce an errant behavior when it
has been observed. This paper describes DejaVu
(deterministic Java replay utility) for Jalapefio,
a tool that deterministically replays uniprocessor?
Jalapefio executions of multithreaded Java applica-
tions.

A replay tool will typically require instrumenting
application (and possibly runtime) code. If, as is
usually the case, there is a performance penalty for
such instrumentation, then the code will normally
be executed with the instrumentation turned off. A
replay tool strives to be both accurate, in that the
replayed code exhibits exactly the same behavior
as the instrumented code, and precise, in that the
instrumented code exhibits behavior that is close
to that of the uninstrumented code. (Note that the
accuracy requirement is absolute while precision
is a matter of degree.)

Cross-optimization is a boon to achieving pre-
cision, since it allows instrumentation code, ap-
plication, and runtime code to be integrated and
optimized together. However, cross-optimization
makes accuracy more difficult.

DejaVu achieves accuracy by dividing the oper-
ations of an application and its runtime into de-
terministic operations (such as instruction execu-
tions), which necessarily produce the same result
on replay, and non-deterministic operations (such
as environmental queries), which do not. In record
mode, DejaVu ignores deterministic operations
while recording the results of non-deterministic
operations. In replay mode, it again ignores deter-
ministic operations while systematically replacing
non-deterministic operations with the retrieval of
their prerecorded results.

It is fairly easy to isolate non-deterministic oper-
ations (on a uniprocessor) if the application and
runtime are distinct: application code is determin-

'Replay of multiprocessor executions is a considerably
harder problem that we hope to be able to address in the fu-
ture. Nonetheless, it should be apparent that even a unipro-
cessor replay engine (as described here) will be useful in un-
derstanding and debugging multithreaded programs primar-
ily intended to run on multiprocessors.

istic, and all runtime services may be treated as
non-deterministic, although there may be a pre-
cision penalty for treating deterministic services
as though they were non-deterministic.) With
cross-optimization, identifying and isolating non-
deterministic runtime services is more challeng-
ing.

The archetypical Java runtime service — auto-
matic memory management, both object alloca-
tion and garbage collection — is completely de-
terministic in Jalapefio. However, its implementa-
tion has implications for DejaVu. To avoid mem-
ory leaks associated with conservative garbage
collection and to allow copying garbage collec-
tion, all of Jalapefio’s garbage collectors are type-
accurate. This means that every reference to a
live object must be identified during garbage col-
lection. ldentifying such references in the frames
of a thread’s activation stack is particularly prob-
lematic. Jalapefio reference maps specify these lo-
cations for predefined safe-points in the compiled
code for a method.? At garbage-collection time,
Jalapefio guarantees that every method executing
on every mutator thread is stopped at one of these
safe-points.

To make good on this guarantee, Jalapefio con-
tains its own thread package that performs quasi-
preemptive thread switching only when the current
running thread is at a predetermined yield point (in
method prologues and on loop backedges). Yield
points are a subset of safe-points. To achieve some
measure of fairness among Java threads, they are
preempted at the first yield point after a periodic
timer interrupt. These timer interrupts are note-
worthy source of non-determinism in Jalapefio.
Capturing the effect of such asynchronous inter-
rupts would be a challenge to any replay tool.
The multithreading facilities of Jalapefio were de-
signed to be highly efficient, modular, and inde-
pendently tunable. This design aided greatly in im-
plementing DejaVu, as Jalapefio’s thread packages

2Jalapefio does not interpret Java bytecodes. Rather, one
of three Jalapefio compilers translates these bytecodes to ma-
chine code. Currently, DejaVu uses Jalapefio’s baselinecom-
piler.

were fairly easy to understand and modify.

One of the challenges of integrating DejaVu’s in-
strumentation into the application (and runtime)
is that this instrumentation behaves differently in
record and replay mode. In record mode, the in-
strumentation writes information; in replay mode,
it reads it. Like Jalapefio, this instrumentation is
written in Java. Consider what would happen if
the replay instrumentation triggered a class load
that didn’t happen (or happened at a later point)
during record. DejaVu employs symmetry to pre-
vent different behaviors of DejaVu between record
and replay from precluding accurate replay. Any
side effects of DejaVu that might affect the execu-
tion behavior of Jalapefio and the application are
faithfully generated during both record and replay.

The requirements of symmetry also place a burden
on tools based on DejaVu. Consider, for instance,
a DejaVu-based debugger: one would like to be
able to interrupt a replay, inspect the state of the
Jalapefio heap, and resume the replay. Java’s re-
flection facility provides an effective mechanism
for inspecting the heap. However, if this facility is
invoked in Jalapefio in replay mode, the symme-
try between record and replay is broken and replay
cannot be resumed. Since these side-effects of de-
bugging cannot be incorporated into the record and
replay mechanism to achieve symmetry, tools built
with DejaVu must run in a separate JVM from the
one running the application to avoid perturbing the
replayed application.

To retain the advantage of reflection, the JVM run-
ning the tool (the tool JVM) employs a technique
called remote reflection [8], which enables reflec-
tion to operate across the separate address spaces
between the two JVM’s. The tool JVM interprets
the same reflection methods of the JVM running
the application (the application JVM), but it uses
the application JVM’s data by intercepting the re-
flection bytecode and by transparently mapping
the objects’ data between the address spaces.® This

81t is possible for such a tool to allow a user to intention-
ally alter the state of the application, but this would irrevoca-
bly break the symmetry between record and replay. Replay

allows a debugger running on the tool JVM to
query program state by invoking the JVM’s inter-
nal reflection methods without affecting the state
of the application JVM.

By combining symmetric instrumentation and re-
mote reflection, DejaVu for Jalapefio serves as a
perturbation-free replay platform that enables a
family of replay-based development tools for un-
derstanding and performance tuning, as well as for
debugging, cross-optimized multithreaded appli-
cations. The next section presents DejaVu’s replay
strategy in detail. Section 3 explains remote re-
flection and its application to DejaVu. Section 4
describes DejaVu’s GUI interface. Section 5 con-
siders related work and section 6 concludes.

2 DETERMINISTIC REPLAY
This section describes how DejaVu for Jalapefio
deterministically replays an execution behavior.

Background

On a uniprocessor system, execution behavior of
an application can be uniquely defined by (1) the
sequence of execution events, and (2) the program
state after each execution event. Therefore, two
execution behaviors of an application are identical
if (1) their execution sequences are identical, and
(2) the program states after any two corresponding
events are identical. In Java, an (execution) event
can be defined as an execution of a Java bytecode
by an interpreter or an execution of a set of ma-
chine instructions generated from a bytecode by a
compiler. Note that because a bytecode can be exe-
cuted more that once, it may correspond to several
events.

For a multithreaded application, events can be ex-
ecuted by different threads. A thread switch is the
transition in the event sequence from an event ex-
ecuted by one thread to an event executed by an-
other thread. The timing of a thread switch can af-
fect the order of events after the thread switch and
hence can affect the program state after an event.

The example in Figure 1 (A and B) illustrates how

could still be resumed, but no guarantee could be made as to
its accuracy.

x=0,y=0
T1 T2 T1 T2

:1;
y=1 VY

X=y*2
y=x*2
1y=x*2;

X=y*2
y=y*2
printy;

T1, T2: threads

y=y*2
printy;

777777 = : thread switch

x=0,y=0
T1 T2 T1 T2
y = Date(); y = Date();
if (y <15) if (y <15)
olwait(); ¥_ y=y*2
rinty;
~] y =X + 100, printy
B ol.notify(); y =x + 100;
printy; (
C D

Figure 1: Non-Deterministic Execution Examples.

two different executions of the same program with
the same initial state can still result in different
behaviors due to the timing of thread switching.
The “print y” of Figure 1-A will print 8, while the
“print y” of Figure 1-B will print 0.

The program state after an event can itself affect
when a thread switch occurs by affecting the ex-
ecution path following the event. Consider now
Figure 1-C and Figure 1-D, in which “Date()” re-
turns today’s date from the system wall-clock. In
the example, different program states immediately
after “y = Date()” made different branches taken
after “if (y < 15)”: the “true” branch was taken
in Figure 1-C, and the “false” branch was taken
in Figure 1-D. The “true” branch in Figure 1-C
resulted in a thread switch from T1 to T2 due to
“ol.wait()” inside the branch, while the “false”
branch in Figure 1-D did not result in an imme-
diate thread switch.

We can ensure two executions of a multithreaded
application are identical by ensuring identical
thread switches and identical program states af-
ter corresponding events. We first describe the
technique to ensure identical program states after
corresponding events, assuming identical thread
switches. We then describe the technique to en-
sure identical thread switches, assuming identical
program states after corresponding events. Com-

bining these two techniques ensures identical exe-
cution behaviors of different executions.

Ensuring Identical Program State

An event is deterministic if the same in-state pro-
duces the same out-state, where in-state and out-
state are the program states immediately before
and after the event, respectively. All the events in
Figure 1-A and Figure 1-B are deterministic. If all
the events are deterministic, execution behaviors
remain identical as long as thread switches occur
the same way, assuming initial program states are
identical.

Some events are inherently non-deterministic: the
same in-state can produce different out-states. An
example non-deterministic event is reading the
value of a wall clock during execution, like the
“Date()” function in Figure 1-C and Figure 1-D.
Another example is reading a key stroke or mouse
movements. DejaVu handles a non-deterministic
event by capturing the (change in the) out-state
during one execution and regenerating the same
out-state during another execution.

Ensuring Identical Thread Switches

In Jalapefio, three factors affect thread switches:
(1) synchronization events; (2) timed events such
as sl eep and timed wai t ; and (3) preemptive
thread switches based on timer interrupts. Thread
switches due to synchronization events are deter-

ministic, while thread switches due to the other
two are non-deterministic.

Replaying Deterministic Thread Switches

A thread switch occurs when a synchronization
event blocks the execution of the current thread. A
wai t event or an unsuccessful nmoni t or ent er
event corresponds to this case. Synchroniza-
tion events can also make a blocked thread ready
to execute. Events corresponding to this case
are moni torexit,notify,notifyAll,and
i nt errupt events.

A thread switch occurred when thread “T1” in Fig-
ure 1-C executed “0l.wait()”. This thread switch is
deterministic in that there will always be a thread
switch at that event. The key issue for the replay
in this case is how to ensure thread “T2” becomes
the next active thread in the presence of multiple
ready threads.

An unsuccessful noni t or ent er eventalso gen-
erates a thread switch (in Jalapefio) since the cur-
rent thread is blocked until it can successfully enter
the monitor: e.g., a synchronized method or block
in Java. Whether a noni t or ent er event is suc-
cessful or not depends on the program state, in-
cluding the lock state of each thread, and is gener-
ally a non-deterministic event. Cross-optimization
of Jalapefio and its application, however, benefits
DejaVu in this regard, although it also presents
some problems (to be discussed later).

When DejaVu replays an application up to a syn-
chronization operation (say noni t or ent er), it
replays the program state of Jalapefio as well, in-
cluding its thread package, which maintains the
lock state of each thread and lock variable plus the
dispatch queue of threads. Therefore the synchro-
nization operation will succeed or fail during re-
play mode depending on whether it succeeded or
failed during record mode. If it fails, moreover, the
next thread to be dispatched during replay mode
(as determined by the thread package) will be the
same thread dispatched during record mode. This
is because the data structure used by the thread
package in selecting the next active thread will also
be exactly reproduced by DejaVu.

Similarly, a not i fy operation, as in Figure 1-C,
performed on an object during replay mode will
succeed or fail if it succeeded or failed during
record mode.* If it succeeded during record mode,
it will succeed during replay mode and awake the
same thread among potentially multiple threads
waiting on the same object.

Cross-optimization simplifies the implementation
of this behavior in that no additional informa-
tion need be captured or restored during replay to
accommodate programmer-specified synchroniza-
tion events.

Replaying Non-Deterministic Timed Events

The thread package’s state includes a list of threads
ready to execute (the ready threads) and a list of
threads blocked due to synchronization operations
(the blocked threads). Under DejaVu, blocked
threads normally become ready threads as a result
of operations from other threads that wake up the
blocked threads, such as noti fy, notifyAll,
and noni t or exi t. Two exceptions are sl eep
and timed wai t operations. A sleeping thread
wakes up after a period specified in an argument to
the sl eep operation. Awai t operation can spec-
ify a period after which a thread should wake up
unilaterally (hence the term “timed wai t). These
timer-dependent operations must be handled spe-
cially.

Timer expiration depends on the wall-clock value
and is non-deterministic with respect to applica-
tion state. Consequently, readying a thread for
execution based on wall-clock time affects sub-
sequent threading behavior non-deterministically.
To ensure deterministic threading behavior during
replay, timer expiration is based on equivalent pro-
gram state, not wall-clock values alone. DejaVu
achieves this by reproducing the wall-clock values
during replay mode.

To handle sl eep and timed wai t , Jalapefio reads
the wall clock periodically. The values read are
non-deterministic, but their reproduction is deter-

4A not i fy operation on an object “succeeds” if there
exists a thread waiting on the same object.

ministic under DejaVu. Therefore events that de-
pend on wall-clock values, such as sl eep and
timed wai t s, will execute deterministically. Re-
producing wall-clock values is a special case of re-
playing non-deterministic events, described above.

Replaying Preemptive Thread Switches

A non-deterministic thread switch occurs in
Jalapefio as a result of preemption, based on a
wall-clock timer interrupt. Since the number of
instructions executed in a fixed wall-clock inter-
val can vary, a non-deterministic number of in-
structions will be executed within each preemptive
thread switch interval.

Cross-optimization simplifies things here too,
since DejaVu replays Jalapefio’s thread package.
Ensuring identical preemptive thread switches re-
quires identifying the events after which a pre-
emptive thread switch occurred during record, and
enforcing thread switches after the corresponding
events during replay. The key issue here is how
to identify the corresponding events in record and
replay.

Wall-clock time is not a reliable basis for events,
because a thread’s execution speed can vary due
to external factors such as caching and paging.
Instruction addresses are also insufficient, as the
same instruction can be executed many times dur-
ing an execution through loops and recursion. A
straightforward counting of instructions executed
by each thread will work, but the overhead is pro-
hibitive.

Following the approach of Instant Replay [7] De-
jaVu uniquely identifies an event during execution
using a software PC, whichisa < NBB, PC >
tuple. N BB is the number of back branches ex-
ecuted since the start of execution, and PC is the
instruction address. Counting the number of back
branches can distinguish multiple executions of
the same instruction due to loops and method in-
vocations alike.

Jalapefio ensures that a non-deterministic thread
switch occurs only at predetermined yield points
— back-branch targets or method prologues in

the program. Yield points obviate PC, making
N B B sufficient for uniquely identifying each non-
deterministic thread switch. This simplifies the
instrumentation for capturing non-deterministic
thread switches, demonstrating another synergy
in cross-optimizing Jalapefio and DejaVu. More-
over, NBB need only record the incremental
number of back branches since the previous non-
deterministic thread switch, thus requiring fewer
bits. (A single 32-bit register can accommo-
date roughly four billion instructions between non-
deterministic thread switches.)

The following code is executed at every yield
point during DejaVu record. “nbb” is initially set
to “0”. “nbb” plays the role of a logical clock
used in measuring the (logical) time interval be-
tween two preemptive thread switches. The role
of “l i ved ock” will be described in more detail
in the following section.

/1 during DejaVu record
/1 at every yield point
if (livedock) {
/1 only when the clock is running
lived ock = fal se;
/1 pause the clock
nbb++;
if (preEnptiveHardwareBitSet) {
/1 preenption required
/1l by system cl ock
recordThreadSwi t ch(nbb) ;
nbb = 0; // reset the counter
t hreadSwi t chBi t Set = true;
/] set the software switch bit
}
lived ock = true;
/1 resume the clock

}

if (threadSwitchBitSet) ({
threadSwi tchBit Set = fal se;
per f or mrhr eadSwi t ch() ;

}

The following code is executed at every
yield point during DejaVu replay. “nbb” is
initially set to the first “nbb” value during
record. Note that, unlike the record phase above,

“pr eEnpt i veHar dwar eBi t Set ” is ignored
during replay.

/1 during DejaVu repl ay
/1 at every yield point
if (lived ock) {
/1 only when the clock is running
lived ock = fal se;
/1 pause the clock
nbb- - ;
if (nbb == 0) {
/1 preenption perforned
/! during record
nbb = repl ayThreadSwi tch();
/1 initialize the counter
/1 for the next thread switch
t hreadSwi t chBi t Set = true;
/1 set the software switch bit

}

lived ock = true;
/'l resunme the cl ock

}

if (threadSwitchBitSet) {
threadSwi tchBit Set = fal se;
per f or mrhr eadSwi t ch() ;

}

Symmetric Instrumentation

Accurate replay precludes replaying DejaVu itself,
which behaves differently by definition: it records
in record mode and replays in replay mode. Ide-
ally, DejaVu’s execution behavior must not affect
Jalapefio—it must be transparent to Jalapefio—
except that, unbeknownst to Jalapefio, its execu-
tion too is being replayed.

Cross-optimizing DejaVu, Jalapefio, and the appli-
cation, however, makes transparency almost im-
possible to achieve, because side effects of De-
jaVu can affect both Jalapefio and the application.
For example, any class that DejaVu loads affects
Jalapefio, since a class loaded by DejaVu will not
be loaded again for Jalapefio. Hence class load-
ing on DejaVu’s part can change Jalapefio’s exe-
cution behavior and potentially that of the applica-
tion. Class loading can also affect the garbage col-
lector, because loading usually involves allocating
new heap objects.

Where transparency cannot be achieved, DejaVu
employs symmetry between record mode and re-
play mode: actions of DejaVu that might affect the
JVM (or DejaVu itself) are performed identically
during both record and replay. Such actions in-
clude:

e object allocation,
e class loading and method compilation,
e stack overflow, and

e updating the logical clock.

Symmetry in Object Allocation

To maintain symmetry in object allocation, which
can affect the garbage collector, DejaVu allocates
and uses (at a given point in the execution) the
same heap objects for both record and replay
modes. For example, it uses the same buffer to
store captured information in record mode and to
store captured information read from disk in replay
mode. DejaVu pre-allocates the buffer indepen-
dent of mode during its initialization. Additional
heap objects are created as needed at a given exe-
cution point in both record and replay modes.

Symmetry in Loading and Compilation

DejaVu maintains symmetry in class loading and
method compilation by pre-loading all the classes
of DejaVu, whether needed only for record or re-
play, during its initialization before the applica-
tion starts. DejaVu also pre-compiles the meth-
ods in the pre-loaded DejaVu classes during ini-
tialization. Furthermore, DejaVu pre-loads classes
needed for file 1/0 (to store captured information
during record and to read it back during replay).
The 1/0 methods DejaVu invokes are input meth-
ods during record, and output methods during re-
play. To maintain symmetry in loading the classes
and compiling methods for 1/O, DejaVu writes into
a temporary file (i.e., invokes output methods) and
then immediately reads from that file (i.e., invokes
input methods) as part of DejaVu initialization dur-
ing both record and replay. This forces both input
methods and output methods to be compiled dur-
ing both record and replay.

Symmetry in Stack Overflow

Jalapefio allocates runtime activation stacks in
heap objects (arrays), creating a new one when the
current stack overflows. Should that be necessary,
DejaVu maintains symmetry by ensuring that an
overflow occurs at exactly the same point in the
execution during both modes, whether in Jalapefio
or in the application.

DejaVu’s own instrumentation in Jalapefio invokes
different DejaVu methods in record and replay
modes, since the modes do different things. The
result can be unequal runtime activation-stack in-
crements at corresponding invocations of a De-
jaVu method. Furthermore, runtime activation-
stack increments can vary due to differing runtime
activation-stack depths. These can result in differ-
ent behaviors in runtime-stack overflow. DejaVu
addresses this problem by eagerly growing the run-
time activation stack just before calling a DejaVu
method when available stack space falls below a
heuristically determined value.

Symmetry in Updating the Logical Clock
DejaVu’s logical clock keeps track of the number
of yield points executed by a thread. Since the in-
strumentation for record and replay perform differ-
ent tasks, one might entail more yield points than
the other. To keep the logical clocks in synch, none
of the yield points encountered while executing in-
strumentation code is counted in the logical clock.
(This is the purpose of the “liveClock” flag in the
above code.)

Java Nativelnterface

The Java Native Interface (JNI) allows for a Java
application to interact with native code. Execu-
tion behavior of a Java application can be affected
by native code in two ways: through return values
or callbacks. Callbacks can be made only through
pre-defined JNI functions. DejaVu captures return
values from a native call and callback parameters
during record, and regenerates them at the corre-
sponding execution points during replay. This ap-
proach is sufficient since Jalapefio’s implementa-
tion of JNI does not allow native code to obtain
direct pointers into the Java heap.

3 REMOTE REFLECTION

The first goal for a debugger integrated with De-
jaVu is to preserve the execution of the application
being replayed. The execution must not be per-
turbed by the usual action of the debugger such
as stopping and continuing, querying objects and
program states, setting breakpoints, etc.

Jalapefio’s Java-based implementation adds a sec-
ond goal for the debugger. Jalapefio uses reflection
extensively for all objects so that the many system
components can be integrated seamlessly and ef-
fectively. As a result, there is a strong motivation
for the debugger to exploit the same reflection in-
terface in querying and controlling the JVM and
the applications instead of using a different ad hoc
interface.

These two goals yield many advantages but they
lead to a conflict in the implementation. First, to
use reflection, the debugger must be an integral
component of the system — in other words, the de-
bugger must execute in-process — but maintaining
the deterministic execution of the entire system be-
comes problematic. For example, suppose the ap-
plication has stopped at a breakpoint and the user
wants to display stack trace. The JVM must then
execute the debugger and its reflective methods to
compute the desired information. This action it-
self changes the state of the JVM because thread
scheduling occurs, classes may be loaded, garbage
collection may take place, etc. As a result, it may
no longer be possible to resume the deterministic
execution when the application continues.

On the other hand, keeping the application JVM
unperturbed during replay requires an out-of-
process debugger — that is, a debugger that runs
on an independent JVM. But that will put the ap-
plication’s reflection out of the debugger’s reach.
Although the debugger can load the classes and
execute the reflection methods, the desired data re-
sides in the application JVM rather than the tool
JVM.

At a higher level, the general problem is that with
reflection, the data and the code describing it are
tightly coupled. In other words, the code must be

executed in the same address space to obtain infor-
mation about the data.

Remote reflection solves this problem by decou-
pling the data and its reflection code, thus allow-
ing a program in one JVM to execute a reflection
method that operates directly on an object residing
in another JVM. In the case of DejaVu, the debug-
ger can execute out-of-process to avoid perturbing
the application, yet it can take full advantage of
Jalapefio’s reflection interface.

Transparent remote access

Remote Reflection allows remote data to be ac-
cessed transparently in the Java programming
model. The key to remote reflection is an object
in the local (tool) JVM called the Remote Object,
which serves as a proxy for the real object in the
remote (application) JVM.

To set up the association between the two JVM’s,
the user (i.e., the debugger) specifies a list of re-
flection methods that are said to be mapped: when
they are executed in the tool JVM, they return a re-
mote object that represents the actual object in the
remote JVM. Typically, these are access methods
that return the internal components of an object.

Once a remote object is obtained from a mapped
method, all values or objects derived from it will
also originate from the remote JVM. The standard
reflection method can be invoked on the remote
object in the same way as a normal object. Aside
from the list of mapped methods, a remote object
is indistinguishable from a normal object in the lo-
cal JVM from the program’s perspective.

The uniform treatment of local and remote objects
gives the advantage of transparency. Because a re-
mote object is logically identical to a local object, a
program uses the same reflection interface whether
it executes in-process or out-of-process. As a re-
sult, the maintenance of both the reflection inter-
face and programs using it is greatly simplified.

A second advantage is that no effort is required
in the remote JVM, since remote reflection relies
on the underlying operating system to access the
remote JVM address space. This guarantees that

the remote JVM is not perturbed by any action of
the debugger, unless the user specifically wants to
modify the state of the remote JVM.

Consider a simple example in Figure 2. In this
case, the debugger is executing in the local JVM
that supports remote reflection. The application
(with its runtime) being replayed is the remote
JVM.

To compute the line number, the lineNum-
berOf() method of Debugger invokes the
VM _Dictionary.getMethods() method to obtain a
table of VM _Method’s. Then it selects the desired
element and invokes its virtual getLineNumberAt()
method. This reflection method then consults the
object’s internal array to return a line number. To
execute this code with remote reflection, we spec-
ify that the VM_Dictionary.getMethods() method
is to be mapped to an array of VM_Method’s in
the remote space. Therefore, when it is executed,
it returns the initial remote object representing the
actual array. Next the candidate variable accesses
the remote array and gets a second remote object.
The getLineNumberAt() reflection method is then
invoked on the remote object. Since the lineTable
array is an instance field of the remote object, it
is also a remote object. When this third remote
array is accessed, the array element is obtained
from the remote JVM. The net result is that the
reflection method has transparently described an
object across two JVM’s.

Implementation

A standard Java interpreter is extended to imple-
ment remote reflection. The extension includes
managing the remote object and extending the
bytecodes to operate on the remote object. Remote
reflection also requires operating system support
for access across processes. This functionality is
typically provided by the system debugging inter-
face, which in the Jalapefio implementation is the
Unix ptrace facility. Our implementation is sim-
plified by the fact that the debugger only makes
queries and does not modify the state of the appli-
cation JVM (except in response to a user request
to change a value); we need not create new objects

class Debugger {
public int lineNumberOf(int methodNumber, int offset) {

VM_Method[] mTable =VM_Dictionary.getMethods();
VM_Method candidate = mTable[methodNumber];

int lineNumber = candidate.getLineNumberAt(offset);
return lineNumber;

class VM_Method {
private int[] lineTable;

public int getLineNumberAt(int offset) {
if (offset > lineTable.length)
return O;
return lineTable[offset];
}
}

myClass.getName()
\

Java Class
(reflection)

|

method
bytecode

method Remote
bytecode Object >/

Object >/~ _ S -
I~ ~ < compiled
Jalapeno S~
compiled
. method

Debugger T~

Java Interpreter with
Remote Reflection

JDK

Figure 2: A Java method making reflective queries
across JVM’s. Debugger.lineNumberOf() invokes
VM _Dictionary.getMethods() to obtain a table of
VM _Method’s, then the reflection method getLi-
neNumberAt() is then invoked on the remote ob-
ject. The final result lineTable[offset] is obtained
from the remote JVM.

in the remote space.

Remote Obj ect

To implement the remote object, it was sufficient
to include the type of the object and its real ad-
dress. Remote objects originate from a mapped
method or another remote object. In the first case,
the address is provided to the interpreter from the
process of building the Jalapefio boot image [2].
For the latter case, the address is computed based
on the field offset from the address of the remote
object.

For a DejaVu tool to access native methods (on the
tool JVM), the JNI implementation (again, on the
tool JVM) will have to be extended to handle re-
mote objects. However for our debugger, it proved
sufficient to clone the remote objects and the re-

10

|| control, ||

Jalapeno
binary data

Figure 3: Implementation for Jalapefio: (1) a Java
interpreter is extended to support remote reflec-
tion, and this in turn runs on top of the Sun JVM,;
(2) Jalapefio loads and runs the reflection methods
as compiled code; (3) the debugger loads and runs
the reflection methods as bytecode; (4) remote ob-
jects are associated with the actual objects in the
Jalapefio space.

mote arrays of primitives. (Note that this is a sepa-
rate issue from being able to replay native calls in
the application JVM.)

Bytecode extensions

Since the initial remote object is obtained via a
mapped method, the bytecode invokestatic or in-
vokevirtual to invoke a method are extended as fol-
lows. The target class and method are checked
against the mapping list. Those to be mapped
are intercepted so that the actual invocation is not
made. Instead, if the return type is an object, a re-
mote object is created containing the type and the
address of the corresponding object in the remote
JVM. If the return type is a primitive, the actual
value is fetched from the remote JVM.

In addition, all bytecodes that operate on a refer-
ence need to be extended to handle remote objects
appropriately — for Java, this includes 23 byte-

codes. If the result of the bytecode is a primitive
value, the interpreter computes the actual address,
makes the system call to obtain the value from the
remote address space, and pushes the value onto
the local Java stack. If the result is an object, the
interpreter computes the address of the field hold-
ing the reference, makes the system call to obtain
the field value and pushes onto the Java stack a
new remote object with the appropriate type.

4 GRAPHICAL USER INTERFACE

We have built a Java Swing GUI for the debugger
to facilitate its use. The classes which provide the
core debugger functionality must be run through
the tool JVM to handle their use of remote reflec-
tion. However, a Swing GUI would suffer signif-
icantly in performance if its classes were also in-
terpreted. Furthermore, the researchers working
on Jalaperfio typically execute the virtual machine
through remote login from a Windows box since
both the application JVM (Jalapefio) and the tool
JVM run on AIX. However, there is a nontrivial
performance penalty for running a GUI on a re-
mote machine (AIX) and displaying it on another
(Windows). Therefore, our GUI is designed to
be able to run on yet a third JVM and communi-
cate with the debugger JVM through TCP. (In this
approach small packets of data, rather than large
graphical images, are transmitted between the two
machines so bandwidth is not as much of an issue).
Our design allows developers to run the debugger
remotely while running the GUI on their local ma-
chine, allowing for satisfactory performance and
easy integration.

The GUI provides all the functionality found in
the command-line debugger along with some ad-
ditional features typically seen in graphical debug-
gers. A view of the Java source and machine in-
structions for the currently executing method fa-
cilitates setting breakpoints and stepping through
the user program. The user can inspect the state
of objects and the static fields of classes through
a tree-based class viewer. The GUI also provides
views of current breakpoints and the call stack
linked to the corresponding Java source code. A
thread viewer allows the developer to easily track

11

the state of all running threads, aiding greatly in
finding subtle bugs in multithreaded applications.

5 RELATED WORK

Repeated execution is a widely accepted technique
for debugging and understanding deterministic se-
quential applications. Repeated execution, how-
ever, fails to reproduce the same execution behav-
ior for non-deterministic applications. Replaying a
non-deterministic application requires generating
enough traces to reproduce the same execution be-
havior.

Many previous approaches for replay [7, 11, 9]
capture the interactions among processes — i.e.,
critical events — and generate traces for them. A
major drawback of such approaches is the over-
head in time and, particularly, in space in capturing
critical events and in generating traces.

To reduce the trace size, Instant Replay [7] as-
sumes that applications access shared objects
through a correct, coarse-grained operation called
CREW (Concurrent-Read-Exclusive-Write), and
generates traces only for these coarse operations.
Obviously, this approach will not work for appli-
cations that do not use the CREW discipline; but
it also fails when critical events within CREW are
non-deterministic.

Russinovich and Cogswell’s approach [10] is simi-
lar to ours in that it captures thread switches (rather
than all critical events) on a uniprocessor. They
modified the Mach operating system so that it noti-
fies the replay system of each thread switch. Since
they do not replay the (operating system’s) thread
package itself, their replay mechanism must in-
struct the thread package what thread to sched-
ule at each thread switch. This entails maintain-
ing a mapping between the thread executing dur-
ing record and during replay. This is a significant
execution cost that DejaVu does not incur because
it replays the entire Jalapefio thread package.

Holloman and Mauney’s approach [5, 4] is similar
to (and has the same drawbacks as) Russinovich
and Cogswell’s except for the mechanism to cap-
ture the process scheduling information. Their ap-

proach uses exception handlers instrumented into
the application code that capture all the excep-
tions, including the ones for process scheduling,
sent from the UNIX operating system to the appli-
cation process.

Earlier incarnations of DejaVu [3, 6] developed
for SUN’s JDK running on WIN32 also generate
traces only for thread switches.® These approaches
suffer the same drawbacks as that of Russinovich
and Cogswell.

Remote reflection integrates two common debug-
ger features: out-of-process and reflection. Typical
debuggers such as dbx or gdb are out-of-process,
but they rely on some fixed data format conven-
tion instead of reflection to interpret the data. The
Sun JDK debugger [1] and the more recent Java
Platform Debugger Architecture are also out-of-
process and are based on reflection; however, there
are several important differences from remote re-
flection. First, the Sun JDK approach is intended
for user applications because it requires the vir-
tual machine to be fully functional. The reflection
interface requires a debugging thread running in-
ternally in the virtual machine that is dedicated to
responding to queries from the out-of-process de-
bugger. In comparison, remote reflection requires
no effort on the target JVM. Second, the Sun JDK
debugger uses a reflection interface that is different
and separate from the internal reflection interface.
Although this allows the debugging reflection in-
terface to be implemented in native code to min-
imize perturbing the JVM, it requires implement-
ing and maintaining two reflection interfaces with
similar functionalities. In contrast, with remote re-
flection the same reflection interface can be used
internally or externally.

6 CONCLUSIONS

In this paper, we addressed the problem of building
a perturbation-free runtime tool, such as a debug-
ger, for heavily mutithreaded non-deterministic
Java server applications cross-optimized with the

SLogging data for non-reproducible events such as read-
ing the wall clock need be done independently of thread
switch information in all replay schemes.

12

Java Virtual Machine (JVM). We showed how
Jalapefio’s design for general extensibility and
modularity allows for efficient instrumentation for
the application and also for the Jalapefio runtime
system.

Cross-optimization of the runtime system and the
application can improve the overall performance
of the application and the runtime system. Cross-
optimization also allows for precise instrumenta-
tion for a runtime tool such as DejaVu. Cross-
optimization, however, introduces new challenges
to program replay due to the side effects of the re-
play tool that can affect the runtime and the ap-
plication. We showed how DejaVu employs sym-
metry in side effects and remote reflection to solve
these challenges.

REFERENCES

[1] Java Development Kit 1.1. Technical report, Sun Mi-
crosystems.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F.
Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano,
J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srini-
vasan, and J. Whaley. The Jalapefio virtual machine.
IBM Systems Journal, 39(1), 2000.

J.-D. Choi and H. Srinivasan. Deterministic replay of
java multithreaded applications. In Proceedings of the
ACM SIGMETRICS Symposium on Parallel and Dis-
tributed Tools, pages 48-59, August 1998.

E. D. Holloman. Design and implementation of a re-
play debugger for parallel programs on unix-based sys-
tems. Master’s Thesis, Computer Science Department,
North Carolina State University, June 1989.

[3]

[4]

[5] E.D.Hollomanand J. Mauney. Reproducing multipro-
cess executions on a uniprocessor. Unpublished paper,

August 1989.

R. Konuru, H. Srinivasan, and J.-D. Choi. Determinis-
tic replay of distributed java applications. In Proceed-
ings of the 14th IEEE International Paralld & Dis
tributed Processing Symposium, pages 219-228, May
2000.

[6]

[7] T.J. Leblanc and J. M. Mellor-Crummy. Debugging
parallel programs with instant replay. |EEE Transac-

tionson Computers, C-36(4):471-481, April 1987.

[8] T.Ngoand J. Barton. Debugging by remote reflection.

Proc. of EURO-PAR 2000, August 2000.

[9]

[10]

[11]

D. Z. Pan and M. A. Linton. Supporting reverse ex-
ecution of parallel programs. Proceedings of SG-
PLAN/SIGOPS Workshop on, pages 124-129, May
1988.

M. Russinovich and B. Cogswell. Replay for con-
current non-deterministic shared-memory applications.
Proceedings of ACM SIGPLAN Conference on Pro-
gramming Languages and Implementation (PLDI),
pages 258-266, May 1996.

K. C. Tai, R. H. Carver, and E. E. Obaid. Debug-
ging concurrent ada programs by deterministic exe-
cution. |EEE Transactions on Software Engineering,
17(1):45-63, January 1991.

13

