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1. Introduction

Given a probability measure � on the space of invertible n � n complex

matrices satisfying a mild integrability condition, we have, by Oseledec's

Theorem, n random exponents r1 � r2 � : : : � rn � �1 such that for

almost every sequence : : : gk : : : g1 2 G Ln(C ) the limit lim
1
k log kgk : : : g1vk

exists for every v 2 C n n f0g and equals one of the ri, i = 1 : : : n, see

Gol'dsheid and Margulis [4] or Ruelle [8] or Oseledec [7]. The numbers

r1; : : : ; rn are called Lyapunov exponents. In our context we may call them

random Lyapunov exponents or even just random exponents. If the measure

is concentrated on a point A, these numbers lim 1
n log kA

nvk are log j�1j, : : : ,

log j�nj where �i(A) = �i, i = 1 : : : n, are the eigenvalues of A written with

multiplicity and j�1j � j�2j � : : : � j�nj:

The integrability condition for Oseledec's Theorem is

g 2 G Ln(C ) ! log+(kgk) is �� integrable
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where for a real valued function f , f+ = max[0; f ]: Here we will assume

more so that all our integrals are de�ned and �nite, namely:

(�) g 2 G Ln(C ) ! log+(kgk) and log+(kg�1k) are ��integrable:

We will prove:

Theorem 1. If � is a unitarily invariant measure on G Ln(C ) satisfying (�)

then, for k = 1; : : : ; n;Z
A2GLn (C )

kX
i=1

log j�i(A)jd�(A) �
kX
i=1

ri:

By unitary invariance we mean �(U(X)) = �(X) for all unitary transfor-

mations U 2 Un(C ) and all �-measurable X 2 G Ln(C ):

Corollary 2. Z
A2GLn (C )

nX
i=1

log+j�i(A)jd�(A) �
nX
i=1

ri
+:

Theorem 1 is not true for general measures on G Ln(C ) or G Ln(R) even

for n = 2. Consider

A1 =

 
1 0

1 1

!
; A2 =

 
1 1

0 1

!
;

and give probability 1=2 to each. Then the left hand integral is zero but as

is easily seen the right hand sum is positive. So, in this case the inequality

goes the other way. We do not know a characterization of measures which

make Theorem 1 valid. We would �nd such a characterization interesting.

The numbers
Pk

i=1 ri have a direct geometric interpretation. Let G n;k (C )

denote the Grassmannian manifold of k dimensional vector subspaces in C n ,

AjGn;k the restriction of A to the subspace Gn;k and � the natural unitarily

invariant probability measure on G n;k (C ).

Theorem 3. If � is a unitarily invariant probability measure on G Ln(C )

satisfying (�) then,

kX
i=1

ri =

Z
A2GLn (C )

Z
Gn;k2Gn;k (C )

log jDet (AjGn;k)jd�(Gn;k)d�(A):

We may then restate Theorem 1 in the form we prove it.

Theorem 4. If � is a unitarily invariant probability measure on G Ln(C )

satisfying (�) then, for k = 1; : : : ; nZ
A2GLn (C )

kX
i=1

log j�i(A)jd�(A) �

Z
A2GLn (C )

Z
Gn;k2Gn;k (C )

log jDet (AjGn;k)jd�(Gn;k)d�(A):
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There is a considerable literature on random Lyapunov exponents and

quite general criteria which guarantee that they are non-zero and even dis-

tinct. According to Bougerol and Lacroix in 1985 in [2] \The subject matter

initiated by Bellman was fully developed by Furstenberg, Guivarc'h, Kesten,

Le Page and Raugi." We refer to [2] for references prior to 1985 and to three

others: Gol'dsheid and Margulis [4], Guivarc'h and Raugi [5] and Ledrappier

[6].

Our interest in Theorem 1 and Theorem 4 was motivated by some ques-

tions in dynamical systems theory, see Burns, Pugh, Shub and Wilkinson

[3]. Theorem 1 for k = 1, the orthogonal group and G Ln(R) was raised

there.

We also get a version of Theorem 4 without the logarithms.

Theorem 5. Let � be a unitarily invariant probability measure on G Ln(C )

satisfying (�) and 1 � k � n. Then

Z
A2GLn (C )

kY
i=1

j�i(A)jd�(A) �

Z
A2GLn (C )

Z
Gn;k2Gn;k (C )

jDet (AjGn;k)jd�(Gn;k)d�(A):

There is a special case of Theorems 4 and 5 of that is good to keep in

mind. Our proof relies it.

Let A 2 G Ln(C ) and � be the Haar measure on Un(C ) (the unitary

subgroup of G Ln(C )) normalized to be a probability measure. In this case

Theorem 5 becomes:

Theorem 6. Let A 2 G Ln(C ). Then, for 1 � k � n,

Z
U2Un(C )

kX
i=1

log j�i(UA)jd�(U) �

Z
Gn;k2Gn;k (C )

log jDet (AjGn;k)jd�(Gn;k)

and Z
U2Un(C )

kY
i=1

j�i(UA)jd�(U) �

Z
Gn;k2Gn;k (C )

jDet (AjGn;k)jd�(Gn;k):

When k = 1, j�1(UA)j = �(UA) is the spectral radius of UA. The

Grassmannian manifold is identical to the complex projective space Pn�1(C ).

Integration on this manifold can be reduced to the unit sphere S2n�1 in R2n

so that

Corollary 7. Let A 2 G Ln(C ). ThenZ
U2Un(C )

log j�(UA)jd�(U) �

Z
x2S2n�1

log kAxkd�(x)
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and Z
U2Un(C )

j�(UA)jd�(U) �

Z
x2S2n�1

kAxkd�(x):

We expect a similar result for orthogonally invariant probability measures

on G Ln(R) but we have not proven it. Here we content ourselves with the

case n = 2.

Theorem 8. Let � be a probability measure on G L2 (R) satisfying

g 2 G L2 (R) ! log+(kgk) and log+(kg�1k) are ��integrable:

a. If � is a SO2 (R) invariant measure on G L
+
2 (R) then,Z

A2GL+2 (R)
log j�1(A)jd�(A) =

Z
A2GL+2 (R)

Z
x2S1

log kAxkdS1(x)d�(A):

b. If � is a SO2 (R) invariant measure on G L�2 (R), whose support is not con-

tained in RO 2 (R) i.e. in the set of scalar multiples of orthogonal matrices,

thenZ
A2GL�2 (R)

log j�1(A)jd�(A) >

Z
A2GL�2 (R)

Z
x2S1

log kAxkdS1(x)d�(A):

Here G L+2 (R) (resp. G L
�
2 (R)) is the set of invertible matrices with posi-

tive (resp. negative) determinant. Theorem 8 is proved in section 5.

2. A More General Theorem.

Theorem 4 is actually a special case of the much more general Theorem

11 below. Before we state Theorem 11 we need some preliminaries.

A ag F in C n is a sequence of vector subspaces of C n : F = (F1; F2; : : : ; Fn),

with Fi � Fi+1 and Dim Fi = i. The space of ags is called the ag man-

ifold and we denote it by Fn(C ). Now it is easy to see that Fn(C ) may be

represented by G Ln(C )=Rn(C ) or by Un(C )=T
n(C ), where Rn(C ) is the sub-

group of G Ln(C ) of upper triangular matrices and T
n(C ) is the subgroup of

G Ln(C ) consisting of diagonal matrices with complex numbers of modulus

1, so Tn(C ) = Un(C ) \ Rn(C ). Regarding Fn(C ) as Un(C )=T
n(C ) we see

that Fn(C ) has a natural Un(C )-invariant probability measure.

An invertible linear map A : C n ! C n naturally induces a map A] on

ags by

A](F1; F2; : : : ; Fn) = (AF1; AF2; : : : ; AFn):

The ag manifold and the action of a linear map A on Fn(C ) is closely

related to the QR algorithm, see Shub and Vasquez [9] for a discussion of

this. In particular if F is a �xed ag for A i.e. A]F = F , then A is upper



5

triangular in a basis corresponding to the ag F , with the eigenvalues of A

appearing on the diagonal in some order: �1(A;F ); : : : ; �n(A;F ):

Let

G = fA 2 G Ln(C ) : j�1(A)j > j�2(A)j > : : : > j�n(A)jg:

Then, there is a unique ag F such that A](F ) = F and such that �i(A;F ) =

�i(A) for i = 1; : : : ; n: We call this ag the QR ag of A and let QR : G !

Fn(C ) be the map which associates to A 2 G its QR ag. It follows from

Shub-Vasquez [9] and the discussion of �xed point manifolds below that QR

is a smooth mapping.

Now �x A 2 G Ln(C ), de�ne Un(C )A = fUA : U 2 Un(C )g and consider

G A = G \ (Un(C )A). Assume that G A 6= ;: If we restrict QR to G A then

QR : G A ! Fn(C ) is in fact a locally trivial �bration whose �bers are the

orbits of a Tn(C ) action we now describe.

Let D 2 T
n(C ) and U 2 Un(C ) and let QR(UA) = U1Rn(C ) where

U1 2 Un(C ). Let

�A : Tn(C ) � G A ! G A

be de�ned by �A(D;UA) = U1DU
�1
1 UA: In section 4 we establish

Proposition 1. 1) �A(D;UA) is well de�ned.

2) QR(�A(D;UA)) = QR(UA):

3) �A : Tn(C ) � G A ! G A is an action of Tn(C ) on G A whose orbits are

the �bers of QR : G A ! Fn(C ).

4) If D = Diag(d1; : : : ; dn) then �i(�A(D;UA)) = di�i(UA) and in partic-

ular j�ij is constant on the �bers of QR : G A ! Fn(C ) for i = 1; : : : ; n:

Let

VA = f(U;F ) 2 Un(C ) � Fn(C ) : (UA)]F = Fg:

We denote by �1 and �2 the restrictions to VA of the projections Un(C ) �

Fn(C ) ! Un(C ) and Un(C )�Fn(C ) ! Fn(C ). We de�ne an action of Tn(C )

on VA denoted 	A : Tn(C ) � VA ! VA by

	A(D)(U;U1T
n(C )) = (U1DU

�1
1 U;U1T

n(C )):

Proposition 2. 1) 	A is well de�ned and smooth.

2) The orbits of 	A are the �bers of �2 : VA ! Fn(C ):

We consider the manifold

V = f(A;F ) 2 G Ln(C ) � Fn(C ) : A]F = Fg

and the restrictions to V of the two projections G Ln(C )� Fn(C ) ! G Ln(C )

and G Ln(C ) � Fn(C ) ! Fn(C ) which we again denote by �1 and �2. By
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the Jordan Canonical Form Theorem the map �1 is surjective. Except on a

set of positive codimension, �1
�1(A) consists of n! points corresponding to

the permutations of the eigenspaces of A 2 G Ln(C ): The �bers of the map

�2 are more complicated.

For c 2 C n f0g we write cUn(C ) to mean fcU : U 2 Un(C )g:

De�nition 9. Let f : G Ln(C ) � Fn(C ) ! R be continuous.

1) f is Un(C ) or unitarily invariant if f(UA;F ) = f(A;F ) for all (A;F ) 2

G Ln(C ) � Fn(C ) and U 2 Un(C ), and if f jcUn(C ) � Fn(C ) is constant for

every c 2 C n f0g.

2) For B 2 G Ln(C ) let g(B) = max(B;F )2V f(B;F ). We say that f is Tn(C )

or torally invariant if g(�A(D;B)) = g(B) for all A 2 G , B 2 G A and

D 2 Tn(C ).

Examples of Un(C ) and T
n(C ) invariant functions are

1) For 1 � k � n let fk(A;F ) = jDet (AjFk)j where F = (F1; F2; : : : ; Fn) 2

Fn(C ).

2) log fk(A;F ) where fk(A;F ) is as in 1).

Remark 10. If A]F = F then jDet (AjFk)j =
Qk

i=1 j�i(A;F )j:

Given a continuous f : G Ln(C ) � Fn(C ) ! R, let g : G Ln(C ) ! R be

de�ned by g(B) = max(B;F )2V f(B;F ).

Theorem 11. Let f : G Ln(C ) � Fn(C ) ! R be continuous, unitarily and

torally invariant. Let � be a unitarily invariant probability measure on

G Ln(C ) satisfying (�). ThenZ
A2GLn (C )

g(A)d�(A) �

Z
A2GLn (C )

Z
F2Fn (C )

f(A;F )d�(F )d�(A):

It is now fairly simple to see how Theorem 11 implies Theorem 4. If

fk(A;F ) = log jDet (AjFk)j then, by Remark 10, g(A) =
Pk

i=1 log j�i(A)j

where j�1(A)j � j�2(A)j � : : : � j�n(A)j are the absolute values of the

eigenvalues of A. So the left hand integrals in Theorem 4 and 11 are the

same. To see that the right hand integrals are the same consider the nat-

ural �bration �k : Fn(C ) ! G n;k (C ) given by �k(F1; : : : ; Fn) = Fk: Then

jDet (Aj�kF )j = jDet (AjFk)j and it is easy to see thatZ
F2Fn (C )

log jDet (AjFk)jd�(F ) =

Z
Gn;k2Gn;k (C )

log jDet (AjGn;k)jd�(Gn;k):

We will say more about this in section 4. So we are done.

We now turn to the proof of Theorem 11 which follows from the consid-

eration of a special case.
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Let A 2 G Ln(C ). We put Haar measure � on Un(C ) normalized to be a

probability measure. Thus the next proposition is a special case of Theorem

11.

Proposition 3. Let f : G Ln(C ) � Fn(C ) ! R be continuous, unitarily and

torally invariant. Let

VA = f(U;F ) 2 Un(C ) � Fn(C ) : (UA)]F = Fg

and g(B) = max(B;F )2VA f(B;F ). ThenZ
U2Un(C )

g(UA)d�(U) �

Z
U2Un(C )

Z
F2Fn (C )

f(UA;F )d�(F )d�(U):

We now see that Proposition 3 implies Theorem 11. Disintegrate the mea-

sure � of Theorem 11 along the orbits of Un(C ) obtaining Un(C ) invariant

probability measures on each orbit. Identifying an orbit with Un(C ) we see

that these measures are left invariant on Un(C ) hence they are Haar mea-

sures. Now Proposition 3 applies orbit by orbit. Integrating the inequality

over the space of orbits proves Theorem 11.

Note that it is su�cient to prove Proposition 3 when A is not a constant

times a unitary matrix, for otherwise g(UA) and f(UA;F ) are both equal

to the constant in the de�nition of unitary invariance. Thus the integrals

are equal since they are equal to this constant. We will assume below that

A is not a constant times a unitary matrix i.e. A is not conformal.

Note that in Proposition 3 the right hand integral does not depend on

U since f is unitarily invariant. Thus it is not necessary to integrate over

Un(C ), the �rst integral is constant.

Now we restate Proposition 3 in its simpler form.

Proposition 4. Let f : Fn(C ) ! R be continuous and torally invariant,

suppose A is not unitary or a scalar times a unitary. Let

VA = f(U;F ) 2 Un(C ) � Fn(C ) : (UA)]F = Fg:

Let g(B) = max(B;F )2VA f(F ). ThenZ
U2Un(C )

g(U)d�(U) �

Z
F2Fn (C )

f(F )d�(F ):

Now we outline the proof of Proposition 4. We use the diagram

VA
�1

.
�2

&

Un(C ) Fn(C )
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to transfer the right hand integral over Fn(C ) to an integral over Un(C ).

First we identify a subset of Un(C ) over which we will integrate.

Let G 1 be the open subset of Un(C ) consisting of those U such that the

eigenvalues of UA are of distinct modulus. In this case we write them as

�i = �i(UA); 1 � i � n;

where j�1j > : : : > j�nj:

Proposition 5. G 1 is an open set of full measure in Un(C ), i.e. �(G 1) = 1:

Lemma 1. Let f : Fn(C ) ! R be continuous and torally invariant. Let

g(B) = max(B;F )2VA f(F ). ThenZ
F2Fn (C )

f(F )d�(F ) =

Z
U2G1

X
(U;F )2VA

f(F )
Y
j<i

����1� �i(UA;F )

�j(UA;F )

����
�2

d�(U) �

Z
U2G1

g(U)
X
�2�n

Y
j<i

����1� ��(i)

��(j)

����
�2

d�(U)

with �n the group of permutations over the set f1; 2; : : : ; ng.

Proposition 5 and Lemma 1 are proved in section 4. Proposition 3 and 4

follow from Proposition 5, Lemma 1 and from the next proposition.

Proposition 6.Z
U2G1

g(U)
X
�2�n

Y
j<i

����1� ��(i)

��(j)

����
�2

d�(U) =

Z
U2G1

g(U)d�(U):

We will prove Proposition 6 in Section 4 by decomposing the two integrals

along the �bers of the QR �bration on which g(U) is constant.

Proposition 7. The normal Jacobian of the QR �bration is
Q

j<i

���1� �i
�j

����2
where �i = �i(UA) are the eigenvalues of UA whith j�1j > : : : > j�nj: HenceZ

U2G1

g(U)
X
�2�n

Y
j<i

����1� ��(i)

��(j)

����
�2

d�(U) =

Z
F2Fn (C )

g(U)

Z
U2QR�1(F )

X
�2�n

Y
j<i

������
1�

��(i)
��(j)

1� �i
�j

������
�2

d�(QR�1(F ))(U)d�(F )

andZ
U2G1

g(U)d�(U) =

Z
F2Fn (C )

g(U)

Z
U2QR�1(F )

Y
j<i

����1� �i
�j

����
2

d�(QR�1(F ))(U)d�(F ):

Proposition 7 is proved in Section 4. Finally in Section 4 we prove
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Proposition 8.

Z
U2QR�1(F )

Y
j<i

����1� �i
�j

����
2

d�(QR�1(F ))(U) =

Z
U2QR�1(F )

X
�2�n

Y
j<i

������
1�

��(i)
��(j)

1� �i
�j

������
�2

d�(QR�1(F ))(U):

Now Proposition 7 and Proposition 8 prove Proposition 6 and we are done.

To summarize it remains to prove Theorem 3, Proposition 1, Proposition 2,

Proposition 5, Lemma 1, Proposition 7 and Proposition 8.

3. Manifolds of fixed points

The manifolds V and VA are manifolds of �xed points. In this section we

discuss integration formulas for manifolds of �xed points and prove Lemma

1 and Proposition 7. We begin by recalling the co-area formula.

3.1. The Co-area Formula. Let X and Y be real Riemannian manifolds.

We denote by dX and dY the associated volume forms. Suppose F : X !

Y is a smooth surjective map and suppose that the derivative DF (x) :

TxX ! Tf(x)Y is surjective for almost all x 2 X. The horizontal space

Hx of TxX is de�ned as the orthogonal complement to Ker DF (x). The

horizontal derivative of F at x is the restriction of DF (x) to Hx. The

normal Jacobian NJ(F (x)) is the absolute value of the determinant of the

horizontal derivative de�ned almost everywhere on X:

NJ(F (x)) = jDet (DF (x)jHx) j:

The map F de�nes a �bration of X with base Y and �bers F�1(y), y 2 Y.

Integration over X with respect to this �bration generalizes Fubini's formula:

Theorem 12. (Co-area Formula) Let F : X ! Y be a smooth map of

real Riemannian manifolds satisfying the preceeding surjectivity conditions.

Then, for any integrable f : X ! RZ
x2X

f(x)dX(x) =

Z
y2Y

Z
x2F�1(y)

f(x)

NJ(F (x))
dF�1(y)(x)dY(y):

Remark 13. In the co-area formula, dX and dY are the volume forms asso-

ciated with the Riemannian structures over X and Y, dF�1(y) is the volume

form on F�1(y) equipped with the induced metric.

Remark 14. The co-area formula also extends to complex Riemannian

manifolds. In that case the normal jacobian is equal to

NJ(F (x)) = jDet (DF (x)jHx) j
2:
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This follows immediately from the fact that if A : C n ! C
n is a complex

linear map and AR : R2n ! R
2n the real map it de�nes, then

jDet ARj = jDet Aj
2:

Remark 15. When DF (x) : TxX ! Tf(x)Y is onto, the normal Jacobian is

equal to

NJ(F (x)) = (Det DF (x)DF (x)�)1=2

so thatZ
x2X

f(x)dX(x) =

Z
y2Y

Z
x2F�1(y)

f(x)

(Det DF (x)DF (x)�)1=2
dF�1(y)(x)dY(y)

and in the complex case (see Remark 14)Z
x2X

f(x)dX(x) =

Z
y2Y

Z
x2F�1(y)

f(x)

Det DF (x)DF (x)�
dF�1(y)(x)dY(y):

Remark 16. The co-area formula also extends to the case of maps F :

X ! Y between algebraic varieties by considering the restriction of F to the

smooth part of X.

3.2. Manifolds of Fixed Points. Let F andM be compact Riemannian

manifolds and a smooth map � : F �M!M be given. Let

	 : F �M!M�M

be de�ned by 	(f;m) = (�(f;m);m): Suppose 	 is transversal to

� = f(m;m) : m 2Mg �M�M:

Then

V = 	�1(�) = f(f;m) 2 F �M : �(f;m) = mg

is a submanifold in F �M. We denote by �F and �M the restrictions to

V of the projections F �M ! F and F �M !M. By Sard's Theorem,

almost all f 2 F are regular values of �F : V ! F . For these f 2 F the

corresponding �xed pointsm 2M, i.e. (f;m) 2 V, are isolated inM. Since

M is compact these �xed points are �nite.

Theorem 17. Let Ft denote the set of f 2 F which are regular values of

�F . Let G :M! R be a continuous function. ThenZ
m2M

G(m)dM(m) =

Z
f2Ft

X
m2��1

F
(f)

G(m)
NJ(�M(f;m))

Vol ��1M(m)NJ(�F (f;m))
dF(f):

Remark 18. The integral is taken over the set Ft of regular values of �F .

We note that f 2 Ft if and only if for all m 2 M, such that (f;m) 2 V,

idTmM �DM�(f;m) is invertible.
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Proof. We apply the co-area formula to the functionG(m)NJ(�M(f;m))=Vol ��1M (m)

de�ned over V with respect to the projection �M. This givesZ
(f;m)2V

G(m)NJ(�M(f;m))

Vol��1M (m)
dV(f;m) =

Z
m2M

Z
(f;m)2��1

M
(m)

G(m)NJ(�M(f;m))

Vol��1M (m)NJ(�M(f;m))
d��1M (m)(f;m)dM(m) =

Z
m2M

G(m)dM(m):

We now apply the same formula to the same function with respect to the the

projection �F . We notice that the �ber ��1F (f) consists in a �nite number

of �xed points so that:Z
(f;m)2V

G(m)NJ(�M(f;m))

Vol��1M (m)
dV(f;m) =

Z
f2Ft

X
m2��1

F
(f)

G(m)
NJ(�M(f;m))

Vol ��1M(m)NJ(�F (f;m))
dF(f)

and we are done.

Now we compute the normal Jacobians in terms of the partial derivatives

of � : F�M!M: The Riemannian structure we put on V is the restriction

of the product structure on F �M.

Lemma 2. Let f 2 Ft and (f;m) 2 V: Then the tangent space of V at

(f;m) is

T(f;m)V = f( _f ; _m) 2 TfF�TmM : _m = (idTmM�DM�(f;m))�1DF�(f;m) _fg:

Proof. This is a consequence of Remark 18.

If we put together Lemma 2, Theorem 17, and Blum-Cucker-Shub-Smale

[1] Lemma 3, page 242, we have:

Theorem 19. Let G : M ! R be a continuous function. Then, for real

manifolds Z
m2M

G(m)dM(m) =

Z
f2Ft

X
m2��1

F
(f)

G(m)
jDet (DF�(f;m)DF�(f;m)�)j1=2

Vol��1M (m)jDet (idTmM �DM�(f;m))j
dF(f):

For complex manifolds this formula becomesZ
m2M

G(m)dM(m) =

Z
f2Ft

X
m2��1

F
(f)

G(m)
jDet (DF�(f;m)DF�(f;m)�)j

Vol��1M (m)jDet (idTmM �DM�(f;m))j2
dF(f):

Similarly we may also evaluate integrals de�ned on F using the �bration

over M. Suppose that S : Ft ! V is a smooth section of V de�ned on Ft
or on an open set of Ft i.e. �FS = idFt :
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Theorem 20. Let H : Ft ! R be an integrable function de�ned on Ft or

on an open set in Ft. Then, for real manifoldsZ
f2Ft

H(f)dF(f) =

Z
m2M

Z
(�MS)�1(m)

H(f)
jDet (idTmM �DM�(f;m))j

jDet (DF�(f;m)DF�(f;m)�)j1=2
dF(f)

and for complex manifolds Z
f2Ft

H(f)dF(f) =

Z
m2M

Z
(�MS)�1(m)

H(f)
jDet (idTmM �DM�(f;m))j2

jDet (DF�(f;m)DF�(f;m)�)j
dF(f):

4. Proofs of Theorem 3, Propositions 1, 2, 5, Lemma 1 and of

Propositions 7 and 8.

4.1. Proof of Theorem 3. If not explicitely stated this Theorem is inher-

ent in the works of Furstenberg, Guivarc'h, Raugi, Gol'dsheid, Margulis and

possibly other sources. See also Bougerol-Lacroix. We sketch a proof.

We consider two auxilliary spaces and maps:

1)
Q1

i=1 G Ln(C ) equipped with the product measure �̂, and � :
Q1

i=1 G Ln(C )  -

the one sided shift:

�(: : : gp : : : g1) = (: : : gp : : : g2):

2)
Q1

i=1 G Ln(C )�G n;k (C ) with the measure �̂�� and the map � :
Q1

i=1 G Ln(C )�

G n;k (C )  - de�ned by

�((: : : gp : : : g1); Gn;k) = (�(: : : gp : : : g2); g1(Gn;k)):

�̂ is invariant and ergodic for � and �̂� � is invariant for � (here we use the

unitary invariance of �). It follows from Birko�'s Ergodic Theorem and the

invariance of the measure �̂�� for the map � that lim 1
p log jDet (gp : : : g1jGn;k)j

exists a.e. in
Q1

i=1 G Ln(C )�G n;k (C ), and the integral of lim
1
p log jDet (gp : : : g1jGn;k)j

equals
R
A2GLn (C )

R
Gn;k2Gn;k (C )

log jDet (AjGn;k)jd�(Gn;k)d�(A): Now by Os-

eledec's theorem for almost all ĝ = (: : : gp : : : g1) the limit lim
1
p log jDet (gp : : : g1jGn;k)j

exists for almost all Gn;k and equals

kX
i=1

ri. So

kX
i=1

ri =

Z
A2GLn (C )

Z
Gn;k2Gn;k (C )

log jDet (AjGn;k)jd�(Gn;k)d�(A):



13

4.2. Proofs of Propositions 1 and 2. We now turn, in section 3, to the

case that F = Un(C ), M = Fn(C ), V = VA and �(U;F ) = (UA)](F ):

Lemma 3. Suppose (UA)](U1T
n(C )) = U1T

n(C ). Then, for any V 2

Un(C ) one has

(V A)](U1T
n(C )) = U1T

n(C )

if and only if there exists D 2 Tn(C ) such that U1DU
�1
1 U = V:

Proof. If (V A)](U1T
n(C )) = U1T

n(C ) then U1Rn(C ) = V AU1Rn(C ) =

V U�1UAU1Rn(C ) = V U�1U1Rn(C ). So U�11 UV �1U1Rn(C ) = Rn(C ) and

U�11 UV �1U1 is in Rn(C ) \ Un(C ) = Tn(C ): So there is a D 2 Tn(C ) with

UV �1 = U1DU
�1
1 and V = U1D

�1U�11 U:

On the other hand for,D 2 Tn(C ), U1DU
�1
1 UAU1Rn(C ) = U1DU

�1
1 U1Rn(C ) =

U1DRn(C ) = U1Rn(C ): So we are done.

Proof of Proposition 1. 1) If QR(UA) = U1Rn(C ) = U 01Rn(C ) then U 01 =

U1D
0 for some D0 2 Tn(C ). Thus U 01DU

0
1
�1UA = U1D

0DD0�1U�11 UA =

U1DU
�1
1 UA. From QR(UA) = U1Rn(C ) we get (UA)]U1Rn(C ) = U1Rn(C )

so that UA = U1RU
�1
1 for some R 2 Rn(C ). This gives �A(D;UA) =

U1DU
�1
1 UA = U1DU

�1
1 U1RU

�1
1 = U1DRU

�1
1 : Thus the eigenvalues of

�A(D;UA) have distinct modulus and �A is well de�ned.

2) Using UA = U1RU
�1
1 we get �A(D;UA)U1 = U1DU

�1
1 UAU1 = U1DR

so that

QR(�A(D;UA)) = QR(UA) = U1Rn(C ):

3) This assertion is exactly Lemma 3.

4) �i(�A(D;UA)) = di�i(UA) is proved in 1). and j�ij constant on the

�bers of QR described in 3) and we are done.

Proof of Proposition 2. Similar to the proof of Proposition 1. it also uses

Lemma 3.

4.3. Proof of Lemma 1. Lemma 3 has an immediate consequence:

Lemma 4. a) The volume of the �bers ��12 (F ), for F 2 Fn(C ), with �2 :

VA ! Fn(C ), is constant and equal to VolTn(C ):

b) The volume of the �bers QR�1(F ), for F 2 Fn(C ), is constant and equals

VolTn(C ):

Next we turn our attention to the term jDet DUn(C )�(U;F )DUn(C )�(U;F )
�j:

If we �x a ag F then DUn(C )�(U;F ) = DUn(C )�F (U) where �F (U) =

UU1T
n(C ) and U1 de�ned by A]F = U1T

n(C ): Next we prove that the

normal Jacobian of �F (U) is constant.
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Proposition 9. Let Un(C ) act on Un(C )=T
n(C ) by �F (U) = UU1T

n(C ).

Then the normal jacobian of �F (U) is independent of F , U1 and U and

equals VolTn(C ).

Proof. First consider the case U1 = In. Then �F (U) = UTn(C ) is the

projection from Un(C ) to Un(C )=T
n(C ). Before normalizing the Riemannian

metric on Un(C )=T
n(C ) to make the volume 1, the normal to the �ber is

mapped isometrically to the tangent space of Un(C )=T
n(C ). Now RU1 :

Un(C ) ! Un(C ) de�ned by RU1(U) = UU1 is an isometry of Un(C ) and the

�bers of �F are the reciprocal images by RU1 of the �bers of �In . So the

normal jacobians are constant. After normalization, the normal jacobians

must equal VolTn(C ) to make VolUn(C ) equal 1.

Corollary 21. jDet DUn(C )�(U;F )DUn(C )�(U;F )
�j = VolTn(C ) for any

F 2 Fn(C ) and U 2 Un(C ).

Proof. By Remark 15 jDet DUn(C )�(U;F )DUn(C )�(U;F )
�j is equal to the

normalized Jacobian of �F (U) and we apply Proposition 9.

Finally we have from Shub-Vasquez [9]

Proposition 10. jDet (id�DFn (C )�(U;F )j =
Q

j<i

���1� ��(i)
��(j)

��� where ��(i) =
�i(UA;F ) and j�1j > : : : > j�nj:

Making the substitutions in Theorem 19 given by Corollary 21 and Propo-

sition 10 we have

Theorem 22. Let f : Fn(C ) ! R be continuous. Then

Z
F2Fn(C )

f(F )d�(F ) =

Z
U2G1

X
(U;F )2��1

Un(C)

f(F )
Y
j<i

����1� ��(i)

��(i)

����
�2

d�(U):

This proves Lemma 1.

4.4. Proof of Proposition 7. Similarly substituting in Theorem 20 gives

Theorem 23. Let g : G 1 ! R be integrable. Then

Z
U2G1

g(U)d�(U) =

Z
F2Fn (C )

Z
(U;F )2��1

Fn(C)
(F )

g(U)
Y
j<i

����1� ��(i)

��(i)

����
2

d��1
Fn (C )

(F )(U)d�(F ):

This theorem proves Proposition 7.
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4.5. Proof of Proposition 8. Since the �bersQR�1(F ) for a given F 2 G 1

are isometric to Tn(C ) we have to prove the equality

Z
Tn(C )

Y
j<i

����1� �i
�j

����
2

d�(Tn(C )) =

Z
Tn(C )

X
�2�n

Y
j<i

������
1�

��(i)
��(j)

1� �i
�j

������
�2

d�(Tn(C )):

Let us denote the Van der Monde determinant

V (�1; : : : ; �n) =

���������

1 �1 : : : �n�11

1 �2 : : : �n�12

: : : : : : : : : : : :

1 �n : : : �n�1n

���������
=
Y
j<i

(�i � �i):

The �rst integral is equal toZ
Tn(C )

Y
j<i

����1� �i
�j

����
2

d�(Tn(C )) =

Z
Tn(C )

jV (�1; : : : ; �n)j
2Q

j<i j�j j
2

d�(Tn(C )):

The Van der Monde is equal to

V (�1; : : : ; �n) =
X
�2�n

�(�)�
�(1)�1
1 : : : ��(n)�1n :

Here the sum is taken for any permutation � in the symmetric group and

�(�) = �1 denotes is signature. The square of the absolute value of this Van

der Monde is

jV (�1; : : : ; �n)j
2 =

X
�;�2�n

�(�)�(�)�
�(1)�1
1

��
�(1)�1
1 : : : ��(n)�1n

���(n)�1n :

Now we integrate these products over a product of circles:Z
0<�k<2�

�
�(k)�1
k

��
�(k)�1
k d�k = j�kj

�(k)+�(k)�2

Z
0<�k<2�

exp(i�k(�(k)��(k)))d�k :

Since d�k is a probability measure, this last integral is equal to 1 when

�(k) = �(k) and 0 otherwise. For this reasonZ
Tn(C )

Y
j<i

����1� �i
�j

����
2

d�(Tn(C )) =
X
�2�n

j�1j
2�(1)�2 : : : j�nj

2�(n)�2Q
j<i j�j j

2
:

The second integral is equal to

Z
Tn(C )

X
�2�n

Y
j<i

������
1�

��(i)
��(j)

1� �i
�j

������
�2

d�(Tn(C )) =

Z
Tn(C )

X
�2�n

jV (�1; : : : ; �n)j
2

jV (��(1); : : : ; ��(n))j2

Y
j<i

������(j)�j

����
2

d�(Tn(C )) =
X
�2�n

Y
j<i

������(j)�j

����
2

:



16

The �rst and second integral are equal if and only if

X
�2�n

j�1j
2�(1)�2 : : : j�nj

2�(n)�2 =
X
�2�n

Y
j<i

j��(j)j
2

or, in other terms, if and only if

X
�2�n

j�1j
2�(1)�2 : : : j�nj

2�(n)�2 =
X
�2�n

j��(1)j
2(n�1)j��(2)j

2(n�2) : : : j��(n�1)j
2:

This last inequality is obvious.

4.6. Proof of Proposition 5. G 1 is clearly open and semi-algebraic in

Un(C ). For this reason, \full measure in Un(C )" is equivalent to \dense in

Un(C )". We shall prove now this last property.

Consider V1;A � Un(C )�Un(C ) de�ned by (U1; U2) 2 V1;A when (U�2U1AU2)i;j =

0 for i > j, that is the ag de�ned by U2 is �xed by (U1A)#. V1;A is a con-

nected smooth real algebraic manifold. It is a locally trivial bundle over VA
with �ber Tn(C ). Since the map (U1; U2)! U�2U1AU2 taking Un(C )�Un(C )

into G Ln(C ) is transversal to the upper triangular matrices, which can be

seen by varying U1 alone, it follows that V1;A is also a smooth variety. So

a polynomial which vanishes on an open set in V1;A vanishes identically. It

will su�ce to prove that the set of (U1; U2) 2 V1;A such that U1A has dis-

tinct eigenvalue modules is dense in V1;A . Now the eigenvalues of U1A are

the diagonal elements of U�2U1AU2. The set of (U1; U2) 2 V1;A where there

are equal modulus eigenvalues on the diagonal is given by the equations

(Pi;k) (U�2U1AU2)i;i(U
�
2U1AU2)i;i = (U�2U1AU2)k;k(U

�
2U1AU2)k;k:

So, if we show for each (i; k) that there are (U1; U2) such that the equality

fails, then the variety de�ned by Pi;k is nowhere dense and the �nite union

of nowhere dense sets is nowhere dense. Let A = V1DV2 be a singular

decomposition of A: V1 and V2 are in Un(C ) and D = Diag(d1; : : : ; dn) with

0 < d1 � : : : � dn. We know by the hypothesis that there are at least two

distinct di. This gives two unitary matrices U1 and U2 such that

U�2U1AU2 = Diag(d1; : : : ; dn)

with some pair (di1 ; di2) of di�erent moduli. By composing U2 with a per-

mutation matrix P , P �U�2U1AU2P permutes di1 , di2 to any two positions

we wish, so we are done.
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5. Proof of Theorem 8.

We may decompose the measure � along SO2(R) orbits. Then we are

reduced to comparing the integralsZ
SO2(R)

log j�1(R�A)jd�(�) =

Z
S1

log kA(�)kd�

for Det A > 0 andZ
SO2(R)

log j�1(R�A)jd�(�) >

Z
S1

log kA(�)kd�

for Det A < 0 unless A is a constant times a reection in which case equality

holds.

Without loss of generality we may assume that jDet Aj = 1 and hence

that �1(R�A)�2(R�A) = �1 for all � as Det A = �1: Now we consider

VA = f(R�; x) 2 SO2(R) � S
1 : (R�A)x = xg

and the two projections �SO2(R) : VA ! SO2(R) and �S1 : VA ! S1. ThenZ
S1

log kA(�)kd� =

Z
SO2(R)

log j�1(R�A)j

����1� �2(R�A)

�1(R�A)

����
�1

+log j�2(R�A)j

����1� �1(R�A)

�2(R�A)

����
�1

d�(�) =

Z
SO2(R)

log j�1(R�A)j

 ����1� �2(R�A)

�1(R�A)

����
�1

�

����1� �1(R�A)

�2(R�A)

����
�1
!
d�(�):

Now for �1�2 = 1����1� �2
�1

����
�1

�

����1� �1
�2

����
�1

=
1

1� �2
�1

�
1

�1
�2
� 1

= 1

while for �1�2 = �1����1� �2
�1

����
�1

�

����1� �1
�2

����
�1

=
1

1� �2
�1

�
1

1� �1
�2

=
�1 + �2
�1 � �2

< 1:

This proves Theorem 8 except for the possibility that Det A = �1 and

log kA(�)k is identically zero, i.e. A is a reection.
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