


Minimizing Inter-file Transfers in Architectures with
Separate Address Registers

Mayan Moudgill’
IBM T.J. Watson Research Center

P.O. Box 218 Yorktown Heights, NY 10598
mayan@watson.ibm.com

ABSTRACT
In this paper, we consider instruction selection in architec-
tures where the general-purpose register file is replaced by
separate address and integer register files, each feeding a
separate execution unit. In these architectures, load and
store operations use address registers to compute the Iocae
tion being accessed. Further, values in address registers can
be manipulated in only a limited number of ways. In gen-
eral, a value may need to be transferred from an address
register to an integer register, operated on by the integer
unit, and then transferred back. In this paper, we describe
an optimal polynomial time algorithm to pastition opera-
tions between address and integer units that minimizes the
number of inter-file transfers.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors-code pn-
eration, compilers, optimization; CO [Computer Systems
Organization]: Genem-Instruction set design

General Terms
Algorithms, Languages, Performance

Keywords
hlin cut, Max flow

1. INTRODUCTION
Most processors have distinct tied-point and floating-point
units, and use distinct register files to hold fixed-point and
floating-point values. This has several benefits:

. It allows for a more compact encoding; or, alterna
tively, it allows for more registers for the same number

*The work was done while the authors were working at T.J.
Watson Research Center.

Ayal Zaks
IBM Research center in Haifa
Matam, Haifa 30195, Israel

zaks@il.ibm.com

of bits. The floating point instructions use the float-
ing point registers (fpr), and the tixed point instruc-
tions use the fixed point registers, also called general-
purpose registers (gpr). Thus, with 5 bits per register,
an instruction can address a total of 64 different reg-
isters (32 gppr + 32 fp~).

l It reduces the number of ports. The floating point reg-
isters are connected to the floating unit, while the gen-
eral purpose registers are connected to the fixed point
unit. Thus, an architecture that can issue a floating
point and a fixed point instruction every cycle needs
only 3 ports (2 read + I write) per register file, instead
of having one 6 ported register file.

The drawback of having distinct register files is that when a
Boating point value needs to be operated on by a tied point
instruction, the floating point value has to be transferred
from an fpr to a gpv, and vice-versa. In some processors,
such transfers are not supported directly, and must be im-
plemented by storing the value and loading it from memory.
Fortunately, this does not happen very often.

It may be possible to split the general purpose register file
further, into an address register file and an integer regis-
ter file. The address register file will be used to compute
addresses when accessing memory. Thus, memory access
instructions such as~ a load with displacement instruction
would use an address register for the base value, while other
fixed point instructions such as multiply would use the in-
teger registers. We further assume that, other than explicit
inter-file transfers, a,, instructions use and set either only
address registers or only integer registers.

Splitting the general purpose register file into address and
integer register files would have similar benefits as having a
floating point register file. It reduces the number of ports
and allows for a simpler implementation that reduces both
power and area. At OUI design point [4], having two register
files of 16 registers and 3 ports (each) instead of one 32
register file with 6 ports saves 10% power and reduces the
area by 50% [I].

Unfortunately, it is expected that the number of transfers
between the address and integer files will occur more of-
ten than between general-purpose and floating-point register
files. Generating addresses may require copying an address

1














