
RC 21919 (98569) 28 December 2000 Mathematics

IBM Research Report

From Fluid Relaxations to Practical Algorithms for Job Shop
Scheduling: The Holding Cost Objetive

D. Bertsimas*, D. Gamarnik, J. Sethuraman**
IBM Research Division

IBM Thomas J. Watson Research Center
P. O. Box 218

Yorktown Heights, NY 10598 USA

*Sloan School of Management and Operations Research Center
MIT

E53-363
Cambridge, MA 02139

**Operations Research Center
MIT

Cambridge, MA 02139

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

From Fluid Relaxations to Practical Algorithms for Job Shop

Scheduling: the Holding Cost Objective

Dimitris Bertsimas � David Gamarnik y Jay Sethuraman z

December 1999

Abstract

We design an algorithm for the job shop scheduling problem with the objective of minimizing the

total holding cost by appropriately rounding an optimal solution to a
uid relaxation in which we

replace discrete jobs with the
ow of a continuous
uid. The algorithm solves the
uid relaxation

optimally and then aims to keep the schedule in the discrete network close to the schedule given by

the
uid relaxation. If the number of jobs from each type grow linearly with N , then the algorithm is

within an additive factor O(N) from the optimal (which scales as O(N2)), thus it is asymptotically

optimal in N . We report computational results based on benchmark instances chosen from the OR

library that suggest that the algorithm is a practical and attractive alternative for solving job shop

scheduling problems of even moderate multiplicity.

�Boeing Professor of Operations Research, Sloan School of Management and Operations Research Center, Massachusetts

Institute of Technology, E53-363, Cambridge, MA 02139. The research of the author was partially supported by NSF grant

DMI-9610486 and by the MIT-Singapore alliance.
yT.J. Watson Research Center, IBM, Yorktown Heights, NY 10598.
zOperations Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139.

1

1 Introduction

In this paper, we consider the job shop scheduling problem with the objective of minimizing holding

costs de�ned as follows. We have a set of I job types on J machines. Job type i consists of Ji stages

(also referred to as \tasks"), each of which must be completed on a particular machine. The pair (i; k)

represents the kth stage of the ith job, and has processing time pi;k. Suppose that we have ni jobs of

type i. We are given non-negative weights wi;k for type i jobs at stage k; our objective is to �nd a

schedule that minimizes Z 1

t=0

IX
i=1

JiX
k=1

wi;kni;k(t)dt;

where ni;k(t) is the number of type i jobs in stage k at time t. We note that our objective generalizes

several well-studied special cases, including minimizing weighted completion time of jobs (wi;k = wi).

In this paper we consider a
uid relaxation of the problem, in which we replace discrete jobs with

the
ow of a continuous
uid. The idea of creating a feasible schedule by rounding a solution to a
uid

relaxation for the job shop scheduling problem, but for the makespan objective, was �rst introduced

by Bertsimas and Gamarnik [4]. The algorithm by Bertsimas and Gamarnik [4] produces a schedule

with makespan Cmax + O(
p
Cmax), where Cmax is the lower bound provided by the
uid relaxation.

Bertsimas and Sethuraman [5] propose a more dynamic way to round the
uid relaxation that leads

to a schedule with makespan at most Cmax + (I + 2)PmaxJmax, where I is the number of distinct job

types, Jmax is the maximum number of stages of any job-type, and Pmax is the maximum processing

time over all tasks. In the present paper we extend the technique of Bertsimas and Sethuraman [5] to

accomodate the objective of minimizing holding costs.

The motivation for considering the
uid relaxation under the holding cost objective, comes from

optimal control of multiclass queueing networks, which are stochastic and dynamic generalizations

of job shops. In recent years there has been considerable progress in solving the
uid relaxation in

multiclass queueing networks. Focusing on objective functions that minimize holding costs, Avram,

Bertsimas, and Ricard [3] use the Pontryagin maximum principle and �nd an optimal solution to the

uid relaxation explicitly. However, the description of the optimal
uid solution, while insightful for the

original problem, involves the enumeration of an exponential number of cases. Luo and Bertsimas [14],

building upon the work of Pullan [18], use the theory of continuous linear programming to propose

a convergent numerical algorithm for the problem that is able to solve e�ciently problems involving

hundreds of machines and job types; we use this algorithm in solving the
uid relaxations throughout

this work.

2

Contributions.

1. We describe an e�cient algorithm, called the
uid synchronization algorithm under the holding

cost objective (FSA � HC) to round an optimal
uid solution such that the resulting schedule

is asymptotically optimal; the speci�c asymptotics we consider is a series of job shop problems

in which the number of type i jobs initially present is �iN , with �i constants and N ! 1. We

show that rounding an optimal
uid solution appropriately results in a schedule that incurs O(N)

extra cost compared to the optimal cost of the
uid job shop. We also show that the optimal

uid cost is O(N2), and the di�erence between the optimal
uid cost and the optimal cost of the

original problem is at most O(N). This implies that the scheduling algorithm we construct is

asymptotically optimal. Speci�cally, the relative error between the cost of the FSA�HC ZD(N)

and the cost of an optimal schedule ZJS(N) is

ZD(N)� ZJS(N)

ZJS(N)
� O

�
1

N

�
:

2. We report computational results on the performance of the FSA � HC to a subset of the 82

benchmark problems in the OR library (http://mscmga.ms.ic.ac.uk/info.html). These results

indicate that the FSA � HC is attractive from a practical perspective. First, it is simple to

implement and it is fast. Second, its performance on the benchmark problems shows that it leads

to very high quality solutions even for problems of moderate multiplicity. Given that especially

in a manufacturing environment, jobs do have multiplicity, the FSA�HC should be considered

a candidate for practical application.

Related work. The job shop scheduling problem with the makespan objective has been widely stud-

ied. For a review of this literature see Hall [9], Karger, Stein and Wein [13], Hall, Schulz, Shmoys and

Wein [10], Bertsimas and Sethuraman [5] and the references therein.

In contrast, the job shop scheduling problem with the weighted completion time objective has

received little attention in the discrete optimization literature. However,
uid relaxations with holding

cost objective have been studied extensively in the queueing literature. We provide a brief overview of

this literature, which will also serve to place our results in perspective.

Fluid relaxations have been the subject of intensive research during the last decade. An important

breakthrough was achieved by Dai [7] and Rybko and Stolyar [20] who established that stability of

multiclass queueing networks is implied by stability of their deterministic
uid counterparts. Motivated

3

by the success of these ideas in analyzing stability, there has been a growing literature in �nding

near-optimal scheduling policies using
uid relaxations; Papers that address this issue include the ones

by Avram, Bertsimas and Ricard [3], Atkins and Chen [2], Chen and Yao [6], Eng, Humphrey and

Meyn [8], Meyn [16, 17]. All of these papers formulate the
uid relaxation, �nd a
uid solution (optimal

or otherwise), and then heuristically interpret the
uid solution to derive a discrete policy; except

for Meyn [17], none of these papers presents any performance analysis of the derived discrete policy

(except in fairly restricted settings). Meyn [17] discusses a policy-iteration algorithm and demonstrates

its (quicker) convergence to optimality when initiated with an optimal
uid solution. Although this

establishes an intimate connection between the large-state behavior of a multiclass queueing network

and its
uid model, this property does not seem to be directly usable in designing a good policy.

Maglaras [15], building on the BIGSTEP approach of Harrison [11], proposed a class of policies based

on solving
uid relaxations repeatedly. For any policy in this class, the nominal length of a review

period is computed; based on the queue lengths at the beginning of each review period, the length

of the nominal review period, and the planned \safety-stocks" for each class, a
uid-type problem is

solved. A solution to this
uid-type problem is then used to derive a processing plan for that review

period. The next review of the system is conducted as soon as this processing plan is completed, which

could be di�erent from the next nominal review time instant because of the stochastic nature of the

processing times. This is an example of a \discrete-review" policy. Maglaras [15] proves the stability of

a fairly broad range of discrete-review policies, and establishes their
uid-scale asymptotic optimality.

An important distinction is that Maglaras considers a steady-state problem, but proves performance

guarantees of a transient nature. Our work, in contrast, considers a transient problem to begin with.

Thus, when restricted to transient problems, it may be possible to use results of Maglaras [15] to obtain

asymptotically optimal schedules. (The scheme presented in Maglaras [15] appears to use the fact that

e�ective arrival rates of each class is strictly positive, and so has to be modi�ed suitably to address

the job shop problem without arrivals). However, our approach has two distinct advantages: �rst, we

provide an explicit rate of convergence to optimality; and second, we solve the
uid relaxation once,

and do not resolve it at intermediate points in time.

An interesting recent development is the work of Queyranne and Sviridenko [19] in which they

consider approximation algorithms for shop scheduling problems with a minsum objective. Their main

result is the following: if there exists a polynomial-time algorithm for a class of multiprocessor job

shop problems that guarantees a makespan no larger than � times the trivial lower bound (the so-

called congestion-dilation bound), then they describe a polynomial-time algorithm for minimizing the

4

weighted completion time that is within a factor of 8� of the optimum. (In fact, their algorithm

works for a generalization in which release dates are also given.) Their algorithm involves use of

the approximation scheme for the makespan objective. Note that the polynomial-time approximation

schemes for the makespan objective do not satisfy always satisfy the hypothesis of their statement: the

work of Queyranne and Sviridenko [19] requires a makespan guarantee that is within a factor of � of

a lower bound, not the optimal makespan itself. In fact, recent results of Hoogeveen, Schuurman and

Woeginger [12] show that the job shop problem with the objective of minimizing weighted completion

time does not have a polynomial-time approximation scheme unless P = NP .

Structure of the paper. In x2, we formulate the problem and de�ne our notation. In x3, we
introduce the
uid relaxation. In x4, we describe an algorithm to discretize an optimal
uid solution

for the holding cost objective, and show that provides an asymptotically optimal schedule. In x5, we
present computational results on a variety of job shop instances from the OR library. x6 contains some
concluding remarks.

2 Problem Formulation and Notation

In the job shop scheduling problem there are J machines �1; �2; : : : ; �J which process I di�erent types of

jobs. Each job type is speci�ed by the sequence of machines to be processed on, and the processing time

on each machine. In particular, jobs of type i, i = 1; 2; : : : ; I are processed on machines �i1; �
i
2; : : : ; �

i
Ji

in that order, where 1 � Ji � Jmax. The time to process a type i job on machine �ik is denoted by pi;k.

Throughout, we assume that pi;k are integers. We put Pmax = maxi;k pi;k and �max = maxj j�jj.
The jobs of type i that have been processed on machines �i1; : : : ; �

i
k�1 but not on machine �ik , are

queued at machine �ik and are called \type i jobs in stage k" or \class (i; k)" jobs. We will also think

of each machine �j as a collection of all type and stage pairs that it processes. Namely, for each

j = 1; 2; : : : ; J

�j = f(i; k) : �j = �ik; 1 � i � I; 1 � k � Jg:

There are ni jobs for each type i initially present at their corresponding �rst stage. Let wi;k be

non-negative integer holding cost rates associated with (i; k) jobs. Let ni;k(t) be the number of (i; k)

jobs at machine �ik at time t. Our objective is to �nd a scheduling policy that minimizes

Z 1

t=0

IX
i=1

JiX
k=1

wi;kni;k(t)dt:

5

We impose the following restrictions on the schedule.

1. The schedule must be non-preemptive. That is, once a machine begins processing a stage of a job,

it must complete that stage before doing anything else.

2. Each machine may work on at most one task at any given time.

3. For k > 1, stage k of a job can begin only after the completion of its (k � 1)st stage.

As mentioned earlier, we consider a sequence of job-shop problems for which the number of initial

jobs of type i is �i � N . Speci�cally, the sequence of job-shop problems we consider is indexed by

N , which varies while all other quantities remain the same. In this paper, we construct a scheduling

algorithm which is asymptotically optimal, as we let N ! 1 and treat �i as constants independent of

N .

3 The Fluid Job Shop Scheduling Problem

3.1 Problem Formulation and Properties

In this section, we describe a continuous relaxation of the job-shop scheduling problem. In a
uid job-

shop, there are J machines �1; �2; : : : ; �J and I job types. Each job type is speci�ed by the sequence

of machines �ik ; k = 1; 2; : : :Ji it has to be processed on; the processing time of a type i job on machine

�ik is a positive real number pi;k. For convenience, we let �i;k = 1=pi;k; we can think of �i;k as the

rate at which machine �ik processes (i; k) jobs. We refer to type i jobs which have been processed on

machines �i1; �
i
2; : : : ; �

i
k�1 but not on machine �ik as jobs of class (i; k) or (i; k) jobs. We let xi;k(t) to

be the number of jobs of class (i; k) at time t. The number of type i jobs initially present, xi;1(0), is

also denoted by xi and can take arbitrary non-negative values; we assume that xi;k(0) = 0 for k > 1. In

contrast to the discrete problem, the number of (i; k) jobs at time t can assume arbitrary non-negative

real values; for that reason, we think of this as the
uid level of class (i; k) at time t. Let Ti;k(t) be the

total amount of time machine �ik works on class (i; k) jobs in the interval [0; t). We �rst present all of

the constraints.

xi;1(t) = xi � �i;1Ti;1(t); i = 1; 2; : : : ; I; t � 0; (1)

xi;k(t) = �i;k�1Ti;k�1(t)� �i;kTi;k(t); k = 2; : : : ; Ji; i = 1; 2; : : : ; I; t � 0; (2)

0 �
X

(i;k)2�j

(Ti;k(t2)� Ti;k(t1)) � t2 � t1; 8 t2 > t1; t1; t2 � 0; j = 1; 2; : : : ; J; (3)

xi;k(t) � 0; Ti;k(t) � 0: (4)

6

Constraints (1) and (2) capture the dynamics of the system. These equations merely state that the

uid level of class (i; k) at time t is the initial
uid level plus the amount of
uid that has arrived from

class (i; k � 1) by time t minus the amount of class (i; k)
uid that has been processed by machine �ik

by time t. Constraints (4) re
ect the fact that the
uid level of class (i; k) and the amount of time

allocated by machine �ik to class (i; k) are non-negative. Constraint (3) is the capacity constraint for

each machine|the total amount of time devoted to processing by machine j in an interval [t1; t2) cannot

exceed the length of the interval t2 � t1. Our objective function for the
uid job shop is

Z 1

0

IX
i=1

JiX
k=1

wi;kxi;k(t)dt:

The problem of whether a polynomial time algorithm exists for the
uid control problem is still

open. However, based on several structural properties for this class of problems (see Anderson and

Nash [1]), Luo & Bertsimas [14], based on earlier work by Pullan [18], propose provably convergent

discretization-based methods that are able to solve large scale instances in practice fast. The algorithm

of Luo & Bertsimas [14] is used in our computational study.

A key property of the
uid job shop problem that we shall make use of extensively is stated as

Proposition 1; its proof can be found in Anderson & Nash [1].

Proposition 1 There exists an optimal solution for the
uid job shop scheduling problem such that

x(t) is piecewise linear with a �nite number of pieces.

Note that by Proposition 1, there is always an optimal
uid solution such that Ti;k(t) is piecewise

linear, and has a �nite number of pieces. For this solution, we de�ne

ui;k(t) =
d Ti;k(t)

dt
: (5)

Since Ti;k(t) is piecewise linear, Eq. (5) does not determine ui;k(t) at the (�nitely many) breakpoints;

at each of these breakpoints, we set

ui;k(t) = ui;k(t
+):

Clearly, ui;k(t) can be interpreted as the instantaneous fraction of e�ort allocated to class (i; k) jobs

by machine �ik at time t. We shall �nd it convenient to work with ui;k(t) instead of Ti;k(t). Therefore,

Proposition 1 guarantees the existence of an optimal
uid solution with piecewise constant control. This

property enables us to use the machinery developed in Bertsimas and Sethuraman [5] for the makespan

objective repeatedly to obtain asymptotically optimal schedules.

7

3.2 A Lower Bound

Let ZF(N) denote the cost of an optimal
uid solution when the number of initial jobs of type i is

�i �N ; similarly, let ZJS(N) denote the cost of the optimal solution to the corresponding discrete job

shop problem.

We now establish a useful relationship between ZF(N) and ZJS(N). Ideally we would like to establish

that ZF(N) is a lower bound on the cost of an optimal job-shop schedule for the discrete network. While

we have been unable to establish this result in general, we can prove the following theorem.

Theorem 1 (a) ZF(N) = C N2.

(b) ZJS(N) � ZF(N)� O(N).

Proof:

(a) This follows immediately from the formulation of the
uid relaxation. More formally, suppose we

have a solution to the
uid relaxation for N = 1 (i.e., ni = �i). This solution consists of the \allocation"

variables T 1
i;k(t), with the corresponding \queue length" variables x1i;k(t). We can use these to �nd a

solution to the
uid relaxation when ni = �i �N as follows. We set

TN
i;k(N � t) = N T 1

i;k(t);

xNi;k(N � t) = N x1i;k(t):

(b) To prove this part, we \
uidize" the optimal solution to the job shop problem. Consider any feasible

schedule to the discrete job-shop problem. We can \convert" this schedule into a schedule for the
uid

network by processing the job \continuously." This is illustrated in Figure 1.

The feasibility of this schedule is immediate from the feasibility of the schedule for the discrete

network. The extra cost incurred is

IX
i=1

JiX
k=1

pi;k
(wi;k+1 � wi;k)

2
�iN:

For the special case in which all of the weights for a particular job-type are equal (i.e., wi;k is

independent of k), ZF is indeed a lower bound for ZJS . In the rest of this paper we drop the \N" and

use ZF and ZJS instead; we emphasize however that both ZF and ZJS depend on N .

8

6

-

6

-

6

-

-

6

Q
Q
Q
QQ

�
�
�
��

T

T

t

t

T

T

xi;k+1(t)

xi;k(t)ni;k(t)

T + pi;k

ni;k+1(t)

T + pi;k T + pi;k

T + pi;k
t

t

0

0

0

0

Figure 1: \Fluidizing" a discrete job shop schedule.

3.3 A Suboptimal Fluid Solution with Integral Queue Lengths at the Break Points

Proposition 1 establishes that a
uid optimal solution is characterized by piecewise linear controls, i.e.,

the control is constant between successive breakpoints. Our overall strategy is to construct a near

optimal algorithm to the job shop scheduling problem by rounding the optimal
uid solution. In this

section, we show that starting with the optimal
uid solution, we can construct a piecewise linear
uid

solution with cost close to the optimal
uid cost and such that the queue lengths at the breakpoints are

integral. This is a property that is needed in the construction of our main rounding algorithm.

Lemma 2 Consider a feasible
uid solution that applies constant controls in the time interval [0; L].

At time 0 the
uid level of class (i; k) is xi;k and at time L it is (yi;k). Let c be the average holding cost

associated with this solution during the interval [0; L]. For any integer M � Jmax, we can construct

a new feasible
uid solution which applies constant controls in the time interval [0; L̂], where L̂ =

L+ 2�maxPmaxJmax that has the following properties:

1. The solution starts from the con�guration (bxi;1c+M; bxi;2c; : : : ; bxi;Jic) and ends in con�guration

(byi;1c +M � Jmax; byi;2c; : : : ; byi;Jic) at time L̂.

9

2. The average holding cost of this solution ĉ during the time interval [0; L̂] satis�es

ĉ = c+
X
i;k

(xi;k + yi;k)�maxPmaxJmax + 2IM(2�maxPmaxJmax + L): (6)

Proof. Denote by ui;k the service e�ort that the original
uid solution allocates to the class (i; k). It

then follows that

�i;kui;kL =
kX

l=1

(xi;l � yi;l) � 0: (7)

The new linear
uid solution will be de�ned over the time interval [0; L̂], where

L̂ = L+ 2�maxPmaxJmax: (8)

Speci�cally, we allocate e�ort vi;k to the class (i; k) over the interval [0; L̂], where

vi;k =

Pk
l=1(bxi;lc � byi;lc) + Jmax

�i;kL̂
:

We now show that vi;k de�ne a feasible linear
uid solution with the associated cost satisfying (6). We

�rst show that vi;k � 0. Note

�i;kvi;kL̂ =
kX
l=1

(xi;l � yi;l) +
kX
l=1

(bxi;lc � xi;l + yi;l � byi;lc) + Jmax:

From the de�nition of Jmax and applying the inequality part of (7) we obtain vi;k � 0.

Now �x an arbitrary station �j . We have

X
(i;k)2�j

vi;k =
X

(i;k)2�j

Pk
l=1(xi;l � yi;l)

�i;kL
� L
L̂
+

X
(i;k)2�j

Pk
l=1(bxi;lc � xi;l + yi;l � byi;lc) + Jmax

�i;kL̂

�
X

(i;k)2�j

ui;k
L

L̂
+

X
(i;k)2�j

k + Jmax

�i;kL̂
;

where the inequality follows from the equality part of (7). But by feasibility of the original solution we

have X
(i;k)2�j

ui;k � 1:

Also X
(i;k)2�j

k + Jmax

�i;kL̂
� Pmax�max

2Jmax

L̂
:

From the de�nition of L̂ in (8) it follows that

X
(i;k)2�j

vi;k � 1:

10

We now show that the solution ends with queue lengths in class (i; k) equal to byi;kc. In fact, since the

queue length of the class (i; 1) at time 0 is bxi;kc+M by assumption, then the queue length at time L̂

in class (i; 1) is

bxi;1c+M � �i;1vi;1L̂ = bxi;1c+M � (bxi;1c � byi;1c + Jmax) = byi;1c +M � Jmax:

Similarly, for k = 2; 3; : : : ; Ji the queue length of the class (i; k) at the end time L̂ is

bxi;kc+�i;k�1vi;k�1L̂��i;kvi;kL̂ = bxi;kc+
k�1X
l=1

(bxi;lc�byi;lc)+Jmax�
kX
l=1

(bxi;lc�byi;lc)�Jmax = byi;kc:

To �nish the proof, we analyze the cost of the constructed solution. Note that for each class (i; k); k � 2

the corresponding cost is the area of the trapezoid with height L̂ and the lengths bxi;kc; byi;kc. The area
is then equal to

1=2(bxi;kc + byi;kc)L̂ � 1=2(xi;k + yi;k + 2)(L+ 2�maxPmaxJmax)

= 1=2(xi;k + yi;k)L+ (xi;k + yi;k)�maxPmaxJmax + 2�maxPmaxJmax + L:

Similarly for the classes (i; 1); i = 1; 2; : : : ; I; the corresponding cost is

1=2(xi;1+ yi;1)L+ (xi;1 + yi;1)�maxPmaxJmax + (2M � Jmax)(2�maxPmaxJmax + L):

But for all i; k, 1=2(xi;k+ yi;k)L is the cost of the original solution corresponding to the class (i; k). We

conclude that the total cost of the constructed solution ĉ satis�es

ĉ � c+
X
i;k

(xi;k + yi;k)�maxPmaxJmax + IJmax(2�maxPmaxJmax + L) + I(2M � Jmax)(2�maxPmaxJmax + L)

= c+
X
i;k

(xi;k + yi;k)�maxPmaxJmax + 2IM(2�maxPmaxJmax + L):

This completes the proof of the lemma.

Proposition 2 Consider a feasible
uid solution that has piecewise constant controls and has initial

queue lengths �iN for class i jobs. Suppose that the number of pieces is R and the queue length of the

class (i; k) at the end of the rth piece is Nxri;k. We can construct a new
uid solution with R pieces

such that the initial queue lengths are ni = bN�ic + RJmax, the queue length of the class (i; k) at the

end of the rth piece is bxri;1c+ (R� r)Jmax for k = 1 and bxri;kc, for k > 1, and the cost of this solution

ĉ satis�es

ĉ � c+O(N):

11

Proof. We apply Lemma 2 to each individual piece r = 1; 2; : : : ; R of the original
uid solution. Note

that the values xri;k (queue lengths of the original
uid solution scaled by 1=N) depend on �i but do

not depend on N . Then the di�erence between the costs c and ĉ in Lemma 2 depends linearly on N .

This completes the proof.

Note that by de�nition xRi;k = 0 for all classes (i; k). Thus, the new
uid solution will also have

bxRi;kc = 0, i.e., all jobs will be processed in the new
uid solution.

4 The Fluid Synchronization Algorithm for the Holding Cost Objec-

tive

In this section, we describe the
uid synchronization algorithm under the holding cost objective (FSA�
HC), which discretizes an optimal
uid solution. The algorithm is based on a repeated application

of a variation of the Fluid Synchronization Algorithm (FSA)(called Revised Fluid Synchronization

Algorithm (RFSA)) introduced by Bertsimas and Sethuraman in [5]. We describe the RFSA in detail

in x4.1 and prove certain properties. Speci�cally, we show that for each piece of the optimal piecewise

linear
uid solution, the extra cost incurred by implementing the RFSA compared to the cost incurred

by the
uid solution is O(N). Our overall scheduling algorithm is then based on applying the RFSA for

each individual piece and showing that the extra cost compared to the
uid cost is R �O(N) = O(N),

where R is the number of pieces in the
uid solution. Since the cost of the
uid solution is O(N2)

this would imply that the extra cost is of lower order. The rest of the section is organized as follows.

We introduce the RFSA in x4.1. In x4.2, we introduce the FSA � HC, and in x4.3 we analyze its

performance.

4.1 The Revised Fluid Synchronization Algorithm

The RFSA is a variant of the FSA developed for the makespan objective in [5]. The FSA applies to

any feasible
uid solution in which jobs are serviced at constant rate. However, there is one important

di�culty in using the FSA directly. For the holding cost objective, processing a job \too soon" may

be just as bad as processing a job \too late." For example, consider the nth (i; k) job, and suppose

wi;k � wi;k+1. The operations of the FSA are governed by the discrete start time DSi;k(n) and the

nominal start time NSi;k(n) the nth (i; k) job (formal de�nitions are given below). Under the FSA

if DSi;k(n) � NSi;k(n), then this job is processed sooner than necessary at stage k, thereby reaching

stage (k + 1) substantially earlier, and, therefore, accumulating holding costs at a much higher rate.

12

This is in sharp contrast to the makespan objective, where there is no incentive for a machine to idle.

We overcome this di�culty by modifying our de�nition of when a job becomes available. This variant

of FSA is what we call Revised Fluid Synchronization Algorithm (RFSA). In order to introduce it we

adopt certain de�nitions from [5].

De�nitions.

Note that machine �j requires a certain processing time to process jobs that eventually come to it,

which is

Cj =
X

(i;k)2�j

pi;kni:

The quantity Cj is called the congestion of machine �j . We denote the maximum congestion by

Cmax � max
j=1;:::;J

Cj : (9)

In addition, for machine �j we let

Uj =
X

(i;k)2�j

pi;k;

and

Pj = max
(i;k)2�j

pi;k: (10)

Namely, Uj is the workload of machine �j when only one job per type is present, and Pj is the maximum

processing time at �j . Finally, let

Umax = max
1�j�J

Uj ; (11)

and

Pmax = max
1�j�J

Pj : (12)

We also introduce

Discrete Start time (DSi;k(n)): This is the start time of the nth (i; k) job in the discrete

network, i.e., the time at which the nth (i; k) job is scheduled for processing in the (discrete) job

shop, under the RFSA de�ned below.

Discrete Completion time (DCi;k(n)): This is the completion time of the nth (i; k) job in the

discrete network. In particular,

DCi;k(n) = DSi;k(n) + pi;k: (13)

13

Fluid Start time (FSi;k(n)): This is the start time of the nth (i; k) job in the
uid relaxation

(for the makespan objective), and is given by

FSi;k(1) = 0; (14)

FSi;k(n) = FSi;k(n� 1) +
Cmax

ni
; n > 1: (15)

Fluid Completion time (FCi;k(n)): This is the completion time of the nth (i; k) job in the

uid relaxation (for the makespan objective), and is given by

FCi;k(n) = FSi;k(n) +
Cmax

ni
: (16)

Nominal Start time (NSi;k(n)): The nominal start time of the nth (i; k) job is de�ned as

follows.

NSi;1(n) = FSi;1(n); (17)

NSi;k(1) = DSi;k�1(1) + pi;k�1; k > 1; (18)

NSi;k(n) = max

�
NSi;k(n� 1) +

Cmax

ni
; DSi;k�1(n) + pi;k�1

�
; n; k > 1:

(19)

Nominal Completion time (NCi;k(n)): The nominal completion time of the nth (i; k) job is

de�ned as follows.

NCi;k(n) = NSi;k(n) +
Cmax

ni
: (20)

As a convention, we de�ne DSi;0(n) = DCi;0(n) = 0, for all i; n. Similarly, we de�ne pi;0 = 0 for all

i; n.

Each job in the discrete network is assigned a status at each of its stages, which is one of not available,

available, in progress, or departed. The status of the nth (i; k) job at time t is:

� not available, if 0 � t < maxfDCi;k�1(n); NSi;k(n)g.

� available, if maxfDCi;k�1(n); NSi;k(n)g � t < DSi;k(n).

� in progress, if DSi;k(n) � t < DCi;k(n).

� departed, if t � DCi;k(n).

14

Description of the RFSA.

Scheduling decisions in the discrete network are made at well-de�ned scheduling epochs. Scheduling

epochs for machine �j are instants of time at which either some job completes service at �j and there is

at least one available job at �j , or some job becomes available at an idle machine �j . Suppose machine

�j has a scheduling epoch at time t. Among all the available jobs at machine �j , the RFSA schedules

the one with the smallest nominal start time. This scheduling decision, in turn, determines the nominal

start time of this job at its next stage. The key di�erence between the FSA and the RFSA is thus

in the de�nition of available jobs: under the FSA job n of class (i; k) is declared as available at time

DCi;k�1(n), while under the RFSA it is declared available at maxfDCi;k�1(n); NSi;k(n)g. In other

words, under the RFSA, no job is scheduled to start prior to its nominal start time. As in the case of

the FSA it is easy to see inductively that the RFSA is well de�ned.

Elementary results for the RFSA.

The following theorems relate the
uid and discrete completion times of a job when the discrete schedule

is computed using the RFSA.

Theorem 3 Let DCi;k(n) be the completion time of the nth (i; k) job in the discrete schedule computed

by the RFSA, and let FCi;k(n) be its completion time in the
uid relaxation. Then,

DCi;k(n) � FCi;k(n) +
kX
l=1

(2 P�i
l
+ U�i

l
); (21)

and

DCi;k(n) � FCi;k(n� 1): (22)

Proof. Eq. (21) was proved in Bertsimas and Sethuraman [5] under the FSA. A careful examination

of the proof in Bertsimas and Sethuraman [5] reveals that the exact same argument holds for the RFSA

as well.

Eq. (22) follows by the de�nition of the RFSA as follows.

DSi;k(n) � NSi;k(n)

� NSi;k(n� 1) +
Cmax

ni

� FSi;k(n � 1) +
Cmax

ni

= FCi;k(n� 1):

Thus DCi;k(n) � DSi;k(n) � FCi;k(n� 1):

15

4.2 Algorithm FSA-HC.

In this section, we provide a complete description of algorithm FSA�HC. Its main idea is as follows.

Suppose the optimal
uid solution has R pieces. Following Lemma 2 and Proposition 2, we �rst

construct a modi�ed
uid solution with R pieces which has integral queue lengths at the break points

and has a cost which exceeds the optimal cost by at most O(N). Note that the initial queue lengths of

the modi�ed solution are assumed to be bnic+RJmax; i = 1; 2; : : : ; I if the original initial queue length

is ni. This means that we introduce for each class i additional RJmax virtual jobs.

Let T i denote the time at which piece i ends for this modi�ed
uid solution (also the time at which

piece (i+ 1) begins), and let T 0 = 0 be the time origin. Thus, piece i starts at time T i�1 and ends at

time T i, for 1 � i � R. We discretize each piece separately using the RFSA described earlier in this

section. Speci�cally, for each piece r = 1; 2; : : : ; R we formulate a makespan scheduling problem on a

suitably de�ned input and apply the RFSA. In this way we obtain times T̂ 0 = 0; T̂ 1; T̂ 2; : : : ; T̂R such

that the vector of queue lengths at T̂ i in the discrete network is exactly the same as the vector of queue

lengths at T i in the modi�ed solution to the
uid relaxation. We then evaluate and compare the cost of

each piece, and show that the discretization error accumulated over all the R pieces is asymptotically

negligible compared to the total
uid cost.

The following de�nitions will be needed in a formal description of the FSA�HC.

� Length of piece r: Lr = T r � T r�1.

� Fluid queue length: xri;k denotes the queue length of (i; k) jobs in the modi�ed solution to the

uid relaxation (according to Proposition 2). Speci�cally, if the queue lengths of the optimal
uid

solutions at the break points are NXr
i;k then

xri;1 = bNXr
i;1c+ (R� r)Jmax; xri;k = bNXr

i;kc; k = 2; : : :Ji: (23)

Recall, from Theorem 1 that the optimal
uid solution depends linearly on N and, as a result,

the values Xr
i;k depend only on �i. Thus, the queue lengths xri;k depend linearly on N .

� Number of jobs processed in piece r: yri;k denotes the number of (i; k) jobs processed by the

modi�ed
uid solution in piece r; clearly, yri;k = �i;ku
r
i;kL

r; where uri;k is the constant control on

(i; k) jobs for piece r.

We need an additional de�nition before we can describe the FSA�HC. In the makespan objective,

the
uid solution is constant, and all of the jobs required to be processed are in their corresponding

16

�rst stages. The latter property is true for the �rst piece in the holding cost objective, but may be

violated for the subsequent pieces. Moreover, in the makespan objective, the
uid solution starts with a

number of class (i; k) jobs and drives them to zero within a single piece in the solution. Hence, we need

to enhance our de�nition of \job types." This naturally leads to the de�nition of auxiliary variables

discussed next.

We de�ne class (i; k; l; r) jobs that represent those type i jobs that move from stage k to stage l

during the rth piece of the
uid relaxation. Let zrikl be the number of such jobs. For convenience,

we de�ne zrikk to be the number of type i jobs that remain at stage k during piece r. We also de�ne

class (i; k; E; r) jobs that represent those type i jobs that start at stage k, but depart from the network

during the rth piece of the
uid relaxation. Let zrikE be the number of such jobs. We next illustrate the

computation of zrikl in an example, in order to motivate a formal algorithm to compute these quantities

that follows next.

- - - - -

�����

�2�1 �3 �4

Type 1

Type 2

Figure 2: A four station network.

Consider the following example (see Figure 2): There are four machines and two types of jobs. Type

1 jobs 1 require service at machines 1, 2, 3 and 4 in that order; Type 2 jobs require service at machines

4, 3, 2 and 1 in that order. The processing requirements and the holding cost rates at the various stages

for each job-type are shown in Table 1. Suppose we have 250 jobs of type 1 and 500 jobs of type 2

initially. The
uid solution shown in Table 2, while not optimal, has objective function value close to

the optimal
uid cost. Moreover, the vector of queue lengths at the end points of each piece is integral.

The auxiliary variables associated with this
uid solution are shown in Table 3. In Table 3, the entry

E refers to the external environment: this just indicates that the corresponding jobs leave the network.

The auxiliary variables de�ne the requirements for each piece and capture exactly the dynamics of

the rth piece of the
uid solution. The algorithm to compute the auxiliary variables proceeds as follows.

It will be useful to de�ne some quantities in describing the algorithm. The out
ow of class (i; k) in

piece r, outflow(i; k; r), is the number of type i jobs that were in stage k at T r�1, but ended up in

17

Type 1 Type 2

Holding costs (4, 1, 2, 1) (4, 1, 2, 1)

Processing times (1, 8, 4, 2) (2, 4, 1, 8)

Table 1: Holding costs and processing times.

Type 1 Type 2

(250, 0, 0, 0) (500,0,0,0)

(0, 218, 0, 32) (375, 125, 0, 0)

(0, 136, 0, 114) (0, 406, 0, 0)

(0, 104, 0, 0) (0, 370, 0, 0)

(0, 0, 0, 0) (0, 250, 0, 0)

(0, 0, 0, 0) (0, 0, 0, 0)

Table 2: A near-optimal
uid solution.

Type Origin stage Destination stage Number of jobs

Piece 1 1 1 2 218

1 1 4 32

2 1 2 125

Piece 2 1 2 4 82

2 1 2 375

2 2 E 94

Piece 3 1 2 E 32

1 4 E 114

2 2 E 36

Piece 4 1 2 E 104

2 2 E 120

Piece 5 2 2 E 250

Table 3: Auxiliary variables zrikl for the
uid solution of Table 2.

18

stage k0 > k at T r. (Recall that if a job is waiting at stage k, it has undergone processing upto its

(k� 1)st stage.) By de�nition, outflow(i; k; r) is at most xr�1i;k , the number of (i; k) jobs at T r�1. Also,

outflow(i; k; r) cannot exceed the total number of jobs whose kth stage is processed in piece r. From

these two observations, we have

outflow(i; k; r) = min

� kX
p=1

(xr�1i;p � xri;p); x
r�1
i;k

�
:

Similarly, let inflow(i; k; r) be the number of (i; k; r) jobs that were in some stage k0 < k at time T r�1,

but ended up in stage k at time T r. Again, by de�nition, we have

inflow(i; k; r)� outflow(i; k; r) = xri;k � xr�1i;k :

Computing the auxiliary variables zrikl (for l � k)) now reduces to the problem of allocating the

outflow(i; k; r) to the stages l � k appropriately. We do this one stage at a time, starting from

l = k: in this case, zrikl is just the number of jobs that \stayed" at stage k during [T r�1; T r), which is

exactly xr�1i;k � outflow(i; k; r). For l > k, clearly, zrikl cannot exceed outflow(i; k; r) or inflow(i; l; r).

For l = k + 1, we set

zrikl = min

�
outflow(i; k; r); inflow(i; l; r)

�
;

and subtract zrikl from both outflow(i; k; r) and inflow(i; l; r). The latter step is to account for the

out
ow of zrikl jobs into stage k, and the in
ow of zrikl jobs into stage l. Thus, the modi�ed de�nition

of outflow(i; k; r) re
ects the remaining amount of jobs that need to
ow out of stage k, which is then

used in computing the zrikl for l = k + 2, etc. A formal description of the algorithm to compute the

auxiliary variables zrikl using the vector of
uid queue lengths at time T r�1 and T r is shown in Figure 3.

The discretization algorithm for the holding cost objective can thus be described as follows:

Fluid Synchronization Algorithm for Holding Costs (FSA-HC)

1. Solve the
uid control problem, and obtain the optimal
uid relaxation. This can be accomplished

by applying the algorithm of Luo and Bertsimas [14]. The optimal
uid relaxation has R pieces,

and breakpoints 0; T 1; : : : ; TR and the corresponding lengths of the pieces are Lr = T r+1 � T r.

2. Following Proposition 2 and starting with the optimal
uid solution, construct a new piecewise

linear
uid solution with R pieces, such that the queue lengths at the breakpoints are integral.

3. For r = 1; 2; : : : ; R:

19

For i = 1; 2; : : : ; I :

For k = 1; 2; : : : ; Ji:

outflow(i; k; r) = min

� kX
p=1

(xr�1i;p � xri;p); x
r�1
i;k

�
:

inflow(i; k; r) = xri;k � xr�1i;k + outflow(i; k; r):

outflow(i; E; r) = 0; inflow(i; E; r) =
JiX
p=1

(xr�1i;p � xri;p):

For k = 1; 2; : : : ; Ji:

zrikk = xr�1i;k � outflow(i; k; r)

For l = k + 1; k+ 2; : : : ; Ji; E:

zrikl = min

�
outflow(i; k; r); inflow(i; l; r)

�
:

outflow(i; k; r) := outflow(i; k; r)� zrikl;

inflow(i; l; r) := inflow(i; l; r)� zrikl;

Figure 3: Computing the values of the auxiliary variables zrikl.

20

(a) De�ne new class (i; k; l; r) jobs de�ned to be jobs of type i that move from stage k to stage

l during the rth piece, and new class (ikE; r) jobs de�ned to be jobs of type i that start at

stage k but depart from the network during the rth piece.

(b) Compute the number zrikl and zrikE of such jobs by applying the Algorithm shown in Figure

3.

(c) Apply the RFSA on the new network with zrikl (i; k; l; r)-jobs and zrikE (ikE; r)-jobs. The

new breakpoints will now be 0; T̂ 1; : : : ; T̂R and the corresponding lengths of the pieces will

be L̂r = T̂ r+1 � T̂ r.

In essence, we view each piece r of the modi�ed
uid solution as a job shop scheduling problem with

a makespan objective, but with new classes (i; k; l; r), (i; k; E; r). Lr plays the role of Cmax, job types

are indexed by (i; k; l; r) and (i; k; E; r), and the auxiliary variables zrikl play the role of the ni.

We note that the jobs in the discretized solution may no longer be processed in FCFS order. To

see this, consider a solution in which zrikl � zrik0l for some k; k
0 such that k < k0 < l. In this case, in

our interpretation of the
uid solution, type (i; k; l; r) jobs are processed at a much faster rate than the

type (i; k0; l; r) jobs, and so it is possible for some job at stage k to reach the destination l prior to some

job at stage k0.

4.3 Analysis of the FSA-HC

In this section, we calculate the cost of the discrete schedule the FSA �HC produces and compare it

to that of the
uid relaxation. Our analysis proceeds on a job-by-job basis. The outline of the analysis

is as follows.

1. We focus on (i; k; l; r) jobs in the rth piece, and we evaluate the cost of these jobs in the discrete

network and in the
uid relaxation.

2. We �nd an expression for an upper bound on the di�erence between the cost accumulated in rth

piece and the corresponding cost of the
uid solution in the same piece.

3. We show that the total error, summed over all pieces, is asymptotically negligible compared to

the cost of the
uid solution.

Lemma 4 The cost of the rth piece of the
uid relaxation is equal to

Cr
f =

IX
i=1

JiX
k=1

JiX
l=k

�
wi;kz

r
iklL

r

2
+
wi;lz

r
iklL

r

2

�
: (24)

21

Proof. To evaluate the cost of the rth piece in the
uid network, we observe that

� The inventory level of (i; k; l; r) jobs at stage k decreases linearly from zrikl to zero.

� The inventory level of (i; k; l; r) jobs at stage l increases linearly from zero to zrikl.

� All of the intermediate stages (if any) have zero inventory level for (i; k; l; r) jobs.

Thus, in the rth piece of the
uid solution, the cost incurred by (i; k; l; r) jobs in stage k is

wi;kz
r
iklL

r

2
;

and the cost incurred by (i; k; l; r) jobs in stage l is

wi;lz
r
iklL

r

2
:

Observing that jobs of type (i; k; l; r) do not incur cost at any other stage, we see that the cost of type

(i; k; l; r) jobs is �
wi;kz

r
iklL

r

2
+
wi;lz

r
iklL

r

2

�
: (25)

Summing Eq. (25) over all possible job types, we obtain Eq. (24).

We now evaluate the cost of type i jobs in the discretized solution corresponding to piece r. For

convenience, we shift the origin so that T r�1 = 0, and so T r = Lr.

Lemma 5 The cost of the rth piece in the discrete network is at most

Cr
d =

IX
i=1

JiX
k=1

JiX
l=k

Cr
d(i; k; l); (26)

where

Cr
d(i; k; l) = wi;kL

r

�
zrikl + 1

2

�
+ wi;kz

r
ikl(2 Pmax + Umax)

+wi;lL
r

�
zrikl + 1

2

�
+ wi;lz

r
iklJmax(2 Pmax + Umax)

+
l�1X

p=k+1

wi;p

�
Lr + zrikl(p� k + 1) (2Pmax + Umax)

�
: (27)

Proof. The cost of the rth piece in the discrete network can be computed as follows. We focus on

jobs of type (i; k; l; r) such that zrikl > 0. Otherwise, the cost contribution of the type (i; k; l; r) is zero.

For convenience, we renumber these jobs, if necessary, so that the jobs of type (i; k; l; r) are numbered

1; 2; : : : ; zrikl. For k � p � l, recall that DCikl;p(n) is the completion time of the nth type (i; k; l; r) job

22

at stage p. (We suppress r from DCikl;p(n) to simplify the already congested notation). Clearly, the

cost of type (i; k; l; r) jobs is given by

zr
iklX

n=1

wi;kDCikl;k(n) +

zr
iklX

n=1

wi;l(L̂r �DCikl;l�1(n)) +

zr
iklX

n=1

l�1X
p=k+1

wi;p(DCikl;p(n) �DCikl;p�1(n)): (28)

We next evaluate each of the three terms in Eq. (28) separately. First, consider the last term in

Eq. (28). Using Eq. (21) for type (i; k; l; r) jobs, we conclude that

DCikl;p(n) � FCikl;p(n) + (p� k + 1) (2 Pmax + Umax); (29)

for k � p � l. Also, by de�nition, for any p such that k � p � l,

FCikl;p(n) = n
Lr

zrikl
: (30)

Combining Eqs. (29) and (30), we obtain

DCikl;p(n) � n
Lr

zrikl
+ (p� k + 1) (2 Pmax + Umax); k � p � l: (31)

From Eq. (22), we obtain

DCikl;p(n) � (n� 1)
Lr

zrikl
: (32)

Using Eqs. (31) and (32), we obtain

zr
iklX

n=1

l�1X
p=k+1

wi;p(DCikl;p(n)�DCikl;p�1(n)) �

zr
iklX

n=1

l�1X
p=k+1

wi;p

�
n
Lr

zrikl
� (n � 1)

Lr

zrikl

+(p � k + 1) (2Pmax + Umax)

�

=

zr
iklX

n=1

l�1X
p=k+1

wi;p

�
Lr

zrikl
+ (p � k + 1) (2Pmax + Umax)

�
:

=
l�1X

p=k+1

wi;p

�
Lr + zrikl(p� k + 1) (2Pmax + Umax)

�
:

We next consider the second term of Eq. (28). From Theorem 9 in Bertsimas and Sethuraman [5], we

know that the discretization of the rth piece �nishes at time L̂r, such that

L̂r � Lr + Jmax(2 Pmax + Umax): (33)

Using Eqs. (33) and (32), we obtain

zr
iklX

n=1

wi;l(L̂r �DCikl;l�1(n)) �

zr
iklX

n=1

wi;l

�
Lr + Jmax(2 Pmax + Umax)�

(n� 1)Lr

zrikl

�

23

= wi;lz
r
iklL

r + wi;lz
r
iklJmax(2 Pmax + Umax) �wi;l

Lr

zrikl

zr
iklX

n=1

(n� 1)

= wi;lL
r

�
zrikl + 1

2

�
+wi;lz

r
iklJmax(2 Pmax + Umax): (34)

Finally, we consider the �rst term of Eq. (28). Using Eq. (31), we obtain

zr
iklX

n=1

wi;kDCikl;k(n) �

zr
iklX

n=1

wi;k

�
nLr

zrikl
+ (2Pmax + Umax)

�

= wi;kL
r

�
zrikl + 1

2

�
+ wi;kz

r
ikl(2 Pmax + Umax): (35)

The cost of type (i; k; l; r) jobs in the rth piece in the discrete network is obtained by adding Eqs. (33)-

(35), which yields Eq. (27).

We are now ready to prove that the FSA �HC yields an asymptotically optimal schedule.

Theorem 6 Consider a job shop scheduling problem with I job types and J machines �1; �2; : : : ; �J .

Given initially �iN jobs of type i = 1; 2; : : : ; I, the FSA � HC produces a schedule with cost ZD(N)

such that

ZD(N) � ZF(N) + O(N): (36)

In particular,
ZD(N)

ZJS(N)
� 1 + O

�
1

N

�
; (37)

and thus
ZD(N)

ZJS(N)
! 1; (38)

as

N !1:

Proof: Let ZF(N) be the cost of the optimal
uid solution. Let Z0F(N) be the cost of the modi�ed

uid solution after applying the construction of Proposition 2.

From Eqs. (24) and (26), we have

Cr
d � Cr

f �
IX

i=1

JiX
k=1

JiX
l=k

�
wi;kL

r

2
+ wi;kz

r
ikl(2 Pmax + Umax)

+
wi;lL

r

2
+ wi;lz

r
iklJmax(2 Pmax + Umax)

+
l�1X

p=k+1

wi;p

�
Lr + zrikl(p� k + 1) (2Pmax+ Umax)

��
:

24

From the proof of part (a) of Theorem 1 and from Proposition 2, the terms zrikl, and L
r all vary linearly

with N . Thus,

Cr
d � Cr

f � AN;

for some (large enough) constant A. Thus,

ZD(N)� Z0F(N) =
RX
r=1

(Cr
d � Cr

f)

� ARN;

which establishes ZD(N) � Z0F(N) + O(N), since R is also a constant. From Proposition 2 we have

Z0F(N) � ZF(N) +O(N), and thus ZD(N) � ZF(N) +O(N).

From Theorem 1(b), we have ZF(N) � ZJS(N) + O(N). Thus,

ZD(N)

ZJS(N)
� ZF(N) + O(N)

ZF(N)�O(N)

� CN2 +O(N)

CN2 �O(N)

= 1 + O

�
1

N

�
;

from which (38) follows.

Remark: We note that any algorithm that uses the
uid relaxation will incur O(N) error in the worst

case. For example, consider a single machine with N jobs, with wi = 1. The cost of an optimal discrete

schedule is N(N + 1)=2, but the optimal
uid cost is N2=2.

5 Computational Results

In this section, we report computational results for the objective of minimizing weighted completion

times. This is the special case of the holding cost objective in the weights are all 1, i.e., wi;k = 1

for all i; k. For our computational study, we chose a subset of 20 instances from the OR library

(http://mscmga.ms.ic.ac.uk/info.html); the results shown on these instances are representative of the

results obtained for our algorithm in general. The results reported in Table 4 are for these 20 bench-

marks. The number of machines ranged from 5 to 20, and the number of job types ranged from 5 to

50. For each benchmark, we assume that each job type has N jobs in their �rst stage, and we report

results for N = 1, N = 2, N = 5, N = 10, N = 100, and N = 500. The lower bound based on the
uid

25

ZF
ZD�N2 ZF

N2ZF

Benchmark (N = 1) N = 1 N = 2 N = 5 N = 10 N = 100 N = 500

abz5 4154.54 1.731 1.663 1.302 0.876 0.087 0.014

abz6 3116.64 1.689 1.437 1.101 0.823 0.093 0.011

ft06 109.06 2.111 1.813 1.763 1.106 0.147 0.025

ft10 2740.45 2.117 1.987 1.671 1.037 0.436 0.022

ft20 9493.73 1.989 1.700 1.481 1.002 0.210 0.019

la01 2837.45 1.965 1.573 1.320 1.129 0.313 0.016

la02 2802.26 1.270 1.113 0.912 0.614 0.128 0.023

la03 2471.49 1.961 1.672 1.475 1.131 0.254 0.014

la04 2473.30 2.114 1.842 1.386 1.141 0.195 0.014

la05 2501.91 1.320 1.219 1.214 1.067 0.411 0.016

la06 5732.63 2.630 2.315 2.059 1.254 0.193 0.008

la10 5998.61 1.767 1.645 1.323 1.006 0.255 0.011

la11 10000.16 2.749 2.119 1.346 1.043 0.197 0.009

la13 9715.28 2.643 2.216 1.414 1.095 0.351 0.011

la15 10097.26 2.891 2.148 1.730 1.533 0.471 0.021

la17 2983.00 2.653 2.351 1.985 1.438 0.336 0.021

la19 3072.54 2.717 2.185 1.754 1.324 0.372 0.019

orb01 3013.75 2.018 1.811 1.439 1.007 0.221 0.007

orb03 2831.91 2.005 1.837 1.601 1.105 0.119 0.016

orb05 2719.82 1.882 1.473 1.338 0.903 0.143 0.009

Table 4: Job Shop instances in OR-Library|Weighted completion time.

relaxation, ZF(1), is shown in the second column, and is valid for N = 1; the lower bound for N = n is

n2 ZF (1). The subsequent columns report the value of the relative error,

ZD(N)� ZF (N)

ZF (N)
=
ZD(N)�N2ZF (1)

N2ZF (1)
:

We can make the following observations from the results reported in Table 4.

1. The relative error does converge to zero as N increases as predicted by Theorem 6. The relative

error is of the order of 100% for N = 10, 40% for N = 100, and 1% for N = 500. Compared with

the asymptotics for the makespan objective reported in Bertsimas and Sethuraman [5] for the

same problems, we observe that for the makespan objective the corresponding errors are about

10% for N = 10, 1% for N = 100, 0:05% for N = 500, i.e., we need perhaps an order of magnitude

more jobs in the system in order to obtain the same accuracy. In order to obtain an error of

1%, for example, we need N = 100 for makespan, while we need N = 500 for the holding cost

objective. The relative error is O(1=N), but the hidden constant is much higher for the holding

26

cost objective compared to makespan. This is not too surprising as the number of pieces R will

enter in the constant. Especially if one considers that the relative error is between the performance

of the FSA�HC and the
uid lower bound, the performance of the FSA�HC compared to the

true optimal value will be even better.

2. Given the high quality solutions the algorithm �nds, and given that the running time of the

algorithm is linear in the number of jobs present, the FSA � HC represents in our opinion a

practical and attractive alternative for solving job shop scheduling problems of moderate to

high multiplicity.

6 Conclusions

The major insights from our analysis are:

1. Given that the
uid relaxation ignores all the combinatorial details of the problem, our results

imply that as the number of jobs increases, the combinatorial structure of the problem is increas-

ingly less important, and as a result, a
uid approximation of the problem that only takes into

account the dynamic character of the problem becomes increasingly exact.

2. The FSA �HC is attractive from a practical perspective. First, it is simple to implement and

it is fast. Second, its performance on the 20 problems in the OR library shows that it leads to

high quality solutions for problems of moderate to high multiplicity. Given that especially in a

manufacturing environment, jobs do have high multiplicity, the FSA�HC should be considered

a candidate for practical application.

References

[1] E. J. Anderson and P. Nash. Linear Programming in In�nite-Dimensional Spaces. John Wiley &

Sons, New York, 1987.

[2] D. Atkins and H. Chen. Performance evaluation of scheduling control of queueing networks:
uid

model heuristics. Queueing Systems and Applications, 21:391{413, 1995.

[3] F. Avram, D. Bertsimas, and M. Ricard. Fluid models of sequencing problems in open queueing

networks: an optimal control approach. In F. P. Kelly and R. J. Williams, editors, Stochastic

27

Networks, volume 71 of Proceedings of the International Mathematics Association, pages 199{234.

Springer-Verlag, New York, 1995.

[4] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithms for job shop scheduling and

packet routing. Journal of Algorithms, 1998. to appear.

[5] D. Bertsimas and J. Sethuraman. From
uid relaxations to practical algorithms for job shop

scheduling: the makespan objective. Technical report, Operations Research Center, MIT, 1999.

[6] H. Chen and D. Yao. Dynamic scheduling of a multiclass
uid network. Operations Research,

41(6):1104{1115, 1993.

[7] J. G. Dai. On positive harris recurrence of multiclass queueing networks: A uni�ed approach via

uid limit models. Annals of Applied Probability, 5:49{77, 1995.

[8] D. Eng, J. Humphrey, and S. P. Meyn. Fluid network models: Linear programs for control and

performance bounds. In 13th World Congress of International Federation of Automatic Control.

San Francisco, 1996.

[9] L. Hall. Approximation algorithms for scheduling. In D. Hochbaum, editor, Approximation Algo-

rithms for NP-hard problems. PWS Publishing company, 1997.

[10] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average comple-

tion time: o�-line and on-line approximation algorithms. Mathematics of Operations Research,

22(3):513{544, 1997.

[11] J. M. Harrison. The bigstep approach to
ow management in stochastic processing networks. In

F. P. Kelly, S. Zachary, and I. Ziedins, editors, Stochastic Networks: Theory and Applications,

pages 57{90. Oxford University Press, 1996.

[12] H. Hoogeveen, P. Schuurman, and G. Woeginger. Non-approximability results for scheduling prob-

lems with minsum criteria. In R.E. Bixby, E.A. Boyd, and R.Z. Rios-Mercado, editors, Integer

Programming and Combinatorial Optimization (IPCO-VI proceedings), Lecture Notes in Computer

Science, 1412, pages 353{366. Springer-Verlag, 1998.

[13] D. Karger, C. Stein, and J. Wein. Scheduling algorithms. In CRC Handbook on Algorithms, 1997.

[14] X. Luo and D. Bertsimas. A new algorithm for state-constrained separated continuous linear

programs. SIAM Journal on control and optimization, 37(1):177{210, 1999.

28

[15] C. Maglaras. Discrete-review policies for scheduling stochastic networks: Trajectory tracking and

uid-scale asymptotic optimality. submitted to Annals of Applied Probability, 1997.

[16] S. P. Meyn. The policy improvement algorithm for markov decision processes with general state

space. IEEE Transactions on Automatic Control, 42(12):1663{1680, 1997.

[17] S. P. Meyn. Stability and optimization of queueing networks and their
uid models. In G. G. Yin

and Q. Zhang, editors, Mathematics of Stochastic Manufacturing Systems, volume 33 of Lectures

in Applied Mathematics, pages 175{200. American Mathematical Society, 1997.

[18] M. C. Pullan. An algorithm for a class of continuous linear programs. SIAM Journal on Control

and Optimization, 31(6):1558{1577, November 1993.

[19] M. Queyranne and M. Sviridenko. Approximation algorithms for shop scheduling problems with

minsum criteria. Technical report, Faculty of Commerce, University of British Columbia, April

1999.

[20] A. N. Rybko and A. L. Stolyar. Ergodicity of stochastic processes describing the operations of open

queueing networks. Problems of Information Transimission, 28:199{220, 1992.

29

