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On the value of a random minimum weight
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Abstract

Consider a complete graph on n vertices with edge weights chosen
randomly and independently from e.g., an exponential distribution with
parameter 1. Fix k vertices and consider the minimum weight Steiner tree
which contains these vertices. We prove that with high probability the
weight of this tree is (1+ o(1))(k� 1)(log n� log k)=n when k = o(n) and
n!1.

1 Introduction

Given an arbitrary weighted graph with a �xed set of vertices, the Steiner tree

problem is the task of �nding a minimum weight subtree containing all these
vertices, where the weight of a tree is the sum of the weights of the edges it con-
tains. Steiner trees are very well studied objects in combinatorial optimization.
The interest is motivated by several practical problems such as network design
and VLSI design. The Steiner tree problem is well known to be NP-complete;
this separates it from the similar minimum spanning tree problem, for which
there is a simple polynomial time algorithm. Most of the theoretical work on the
Steiner tree problem concerns obtaining approximating algorithms. Currently
the best approximation factor is 1.55, obtained by Robins and Zelikovsky [16].
Arora [2] showed that an �-approximation can be achieved for every � > 0 when
the underlying graph is Euclidean. On the other hand, unless P = NP , the
Steiner tree problem in general graphs can not be approximated within a factor
of 1 + � for some � > 0, see [4], [7].
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In this paper we focus on random instances of the Steiner tree problem. The
study of random instances of combinatorial problems has a very rich history,
starting with the random Euclidean traveling salesman problem [3] and includ-
ing studies of random minimal spanning tree [11], assignment [1], and shortest
path problems [8],[13], as well as many other examples. The main motivation is
to complement the classical worst case analysis of algorithms with the analysis
of the performance of algorithms on typical instances. Our paper is to the best
of our knowledge the �rst study of the random Steiner tree problem. We con-
sider the problem of �nding the minimum weight of a Steiner tree in a complete
graph Kn on n vertices with edge weights chosen independently from some dis-
tribution X . Essentially, this distribution can be any non-negative distribution
with positive density at zero. Rescaling, we shall assume that

X � 0 and P(X � x) = x+ o(x); (1)

as x! 0. We also assume that E (X) is �nite - this is only needed for results on
expectation. The two distributions of most interest are the exponential distri-
bution EXP(1) with mean 1 and the uniform distribution on [0; 1]. Throughout
the paper we write G for the weighted graph obtained from Kn by taking the
edge weights as independent copies of X . We �x 2 � k � n vertices v1; : : : ; vk,
and consider W (k), the minimum weight of a tree containing these vertices.
Our main result is the following, giving the asymptotic value of W (k) for all
functions 2 � k(n) = o(n).

Theorem 1. Let � > 0 be �xed, and let k = k(n) satisfy 2 � k = o(n). Let

w =
k � 1

n
(logn� log k):

Then (1� �)w �W (k) � (1+ �)w holds with probability tending to 1 as n!1.

Note that since the graph is complete and the weight distribution is the
same for all the edges, the actual choice of the k vertices is irrelevant. This
justi�es the notation W (k). When log k = o(logn), the value (k � 1) lognn that
we obtain has a simple intuitive explanation. Davis and Prieditis [8] and Janson
[13] showed that the minimum weight of a path between a �xed pair of vertices
of G is asymptotically logn=n. This immediately implies an upper bound (1 +

o(1)) (k�1) lognn on the value of W (k) when k is bounded; we just take shortest
paths from vi to vi+1 for 1 � i � k � 1 and delete any redundant edges. Using
Dijkstra's algorithm these paths can be found in O(n2) computation steps. As k
becomes larger, the log k `correction term' becomes important. Intuitively this
arises from the many ways of connecting v1; : : : vk with paths (perhaps using
additional branching vertices). W (k) can be written as the minimum of �(k)k

quantities each of which has expectation (k � 1) logn=n; the smallest of these
turns out to be typically (k � 1) log k=n smaller than its expectation. For the
upper bound it turns out to be suÆcient to consider the shortest path Pr from
vr+1 to fv1; : : : ; vrg for 1 � r � k � 1, as this corresponds to minimizing over
(k � 1)! trees.
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Note that for k constant the minimum weight Steiner tree can be found in
polynomial time O(nk), by a brute force search. An interesting corollary of our
result is that for any k = o(n), using only O(kn2) computation steps (O(n2) to
�nd each path Pr de�ned above) we can construct an asymptotically minimum
weight Steiner tree, when n!1.

Our work is motivated by similar research for other random combinatorial
structures. One of the earliest such results was obtained by Frieze [11] who
showed that the expected weight of the minimum spanning tree in G converges
to �(3) =

P1

k=1 k
�3 when n! 1. This result was extended to regular graphs

with certain expansion properties by Beveridge, Frieze and McDiarmid [5]. The
analysis explicitly uses the greedy algorithm for �nding a minimum spanning
tree. Note that the minimum spanning tree problem is a special case of our
problem when k = n, yet the analysis in [11],[5] does not extend to the general
case since the problem is NP-complete and the greedy search fails.

Before turning to the proof of Theorem 1 we note that the distribution X
chosen for the edge weights is irrelevant, as long as it satis�es (1). This will
allow us to use the distribution which is convenient in the proof. Suppose that
X is a distribution satisfying (1), and let Æ = n�1=2 logn = o(1). Let x and y
be �xed vertices of G. Writing w(e) for the weight of an edge e, for each other
vertex z we have

P(w(xz) + w(yz) � Æ) � P(X � Æ=2)2 � Æ2=4;

so this probability is at least Æ2=5 if n is large enough. Thus the probability
that there is no xy path of weight at most Æ is at most�

1� Æ2=5
�n�2

� e�(n�2)Æ
2=5;

which tends to zero faster than any constant power of n. Thus with very high
probability every pair fx; yg of vertices of G is connected by a path of weight at
most Æ. In particular, an edge of weight larger than Æ can never form part of the
shortest path between two vertices, or of the minimum weight Steiner tree for
any set of vertices. Suppose Y is another distribution satisfying (1). Then there
is a strictly increasing function f such that f(X) has the distribution of Y . (We
are ignoring possible discontinuities in the distribution, but this is not a real
problem). Condition (1) for X and Y implies that f(x) and f�1(x) are both
x+o(x) when x is small. Thus we can convert between edge weights distributed
as copies of X and edge weights distributed as copies of Y changing all weights
less than Æ by a factor of 1 + o(1). As with high probability any minimum
weight Steiner tree uses only such edges, and the conversion goes both ways,
the minimum weight of a Steiner tree also changes by a factor of 1 + o(1), and
a result such as Theorem 1 for edge weights with distribution X implies the
corresponding result for the distribution Y .

The rest of this paper is organized as follows. In the next two sections we
prove lower and upper bounds on W (k) for k = o(n). By the above argument,
we may and shall assume in our proof that the edge weights are independent
EXP(1) random variables. In Section 4 we study the minimum weight of a
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Steiner tree on k vertices when k is linear in n. The last section contains some
concluding remarks. Throughout the paper we shall write w(e) for the weight
of an edge e. Also, when T is a subgraph of G (usually a tree) we shall write
w(T ) for its weight, i.e., the sum of the weights of its edges. All logarithms in
this paper are natural.

2 Lower bound

In this section we obtain a lower bound on the random minimum weight Steiner
tree on k = o(n) vertices. The idea of the proof is as follows: suppose v1; : : : ; vk
are given, and consider a minimum weight Steiner tree T for v1; : : : ; vk in G.
Note that T has at most k leaves (vertices of degree 1), since only the vertices
vi, 1 � i � k, can be leaves of T . In addition the sum of degrees of the
vertices of this tree is 2(jT j � 1). Thus, although T may have many vertices of
degree 2, it is easy to see that it will have at most k�2 vertices of degree larger
than 2, and T consists of l � 2k � 3 paths P1; : : : ; Pl between certain pairs of
vertices. As T is a minimum weight Steiner tree, each path is the minimum
weight path joining its endvertices, and the paths are disjoint. Let us write
W1; : : : ;Wl for the weights of these paths, and W for the minimum weight of
a path between two �xed vertices. The key observation is that the disjointness
of the paths Pi makes it hard for the Wi to be simultaneously small. We could
just use the van den Berg-Kesten inequality [17] or Reimer's inequality [15] to
show that P(Wi � wi) �

Q
P(W � wi). However we obtain better results by

considering P(
P

Wi � w), and it is not clear how to bound this probability in
this way. Instead we proceed `by hand', using only the Harris-Kleitman lemma.
Throughout W is (the distribution of) the minimum weight of a path between
two �xed vertices of G. We write W (l) for the sum of l independent copies of
W .

Lemma 2. Suppose l � 1 and let s1; : : : sl; t1; : : : tl be �xed vertices of G, which
need not be distinct. For 1 � i � l let Pi be the minimum weight siti path in G.
Then for any x > 0 the probability that P1; : : : ; Pl are disjoint and have total

weight at most x is at most P(W (l) � x).

Proof. Let P 01 = P1 be the (with probability 1 unique) minimum weight s1t1
path. For 2 � i � l let P 0i be the minimum weight siti path edge-disjoint from
P 01; : : : ; P

0
i�1, if there is one. Let Wi be the weight of P

0
i , or in�nity if there is

no such path. If the paths Pi are disjoint, then P 0i = Pi for every i. Hence it
suÆces to show that

P(W1 + � � �+Wl � x) � P(W (l) � x): (2)

We shall prove this statement by induction on l. The case l = 1 is clear as
P 01 = P1 is the shortest s1t1 path, so its weight W1 has the same distribution as
W , by the de�nition of W .

Suppose now that l � 2 and that (2) holds with l replaced by l�1. We wish
to consider the distribution of Wl conditional on W1 + : : : +Wl�1. In fact we
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shall condition on the very �ne event that P 01; : : : ; P
0
l�1 are certain particular

paths, and that the individual edges of these paths have certain weights. For
any w the event W1 + : : :+Wl�1 = w is a union of events A of the form

A = fw(ej) = wj ; j = 1; : : : ;mg \ U

where the edges e1; : : : ; em of Kn form edge disjoint paths pi from si to ti,
1 � i � l � 1, the wj are real numbers adding up to w, and U is the event that
certain paths in G0 = Kn � fe1; : : : ; emg have at least certain weights (so that
the paths pi satisfy the minimality conditions de�ning P 0i ). Consider one such
event A, so the ei and hence E(G0) are �xed. Let 
0 be the product probability
space given by the independent EXP(1) edge weights on G0. Then U can be
considered as an event in 
0, and is then an up-set, i.e., an event preserved by
increasing the weight of an edge (in G0). Let W 0 be the minimum weight of an
sltl path in G

0. Then for any w0 the event fW 0 � w0g is a down-set, i.e., an event
preserved by decreasing the weight of an edge. Now it is well known that up-sets
and down-sets are negatively correlated. (This can be seen from the original
correlation inequality proved independently by Harris [12] and Kleitman [14].
Alternatively, for discrete random variables, it follows immediately from the
FKG inequality of [10]. The continuous case is easy to deduce by `discretizing'
the random variables.) Given A we have Wl =W 0, so

P(Wl � w0 j A) = P
0(W
0 � w0 j U)

� P
0(W
0 � w0)

� P(W � w0);

as W 0 is the shortest path between two �xed vertices using edges of G0, a
subgraph of G. As this holds for each A we have

P(Wl � w0 jW1 + � � �+Wl�1 = w) � P(W � w0);

and (2) follows by induction on l.

We now wish to study the sum of independent copies of the random variable
W , the minimum weight of a path joining two �xed vertices of G. We �rst use
a standard method to describe the distribution of W . Then we simply estimate
its moment generating function.

Lemma 3. Let X1; : : : ; Xn�1 be independent EXP(1) random variables, and let

R be uniformly distributed on f1; : : : ; n� 1g and independent of the Xi. Then

W is distributed as
RX
i=1

Xi

i(n� i)
: (3)

For any real x, � > 0 and integer l we have

P(W (l) � x) � (n� 1)�l��le(1+�)nx:
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Proof. The �rst part is standard; we include the proof for the sake of complete-
ness. Consider �xing a vertex x of G and using Dijkstra's algorithm to �nd the
distance in G from x to each other vertex, writing these distances as d1; : : : ; dn�1
in increasing order. Clearly d1 is the minimum weight of an edge from x; be-
ing the minimum of (n� 1) independent EXP(1) random variables, this has an
EXP(n� 1) distribution. Suppose that this minimum weight edge is xy. Then
d2 � d1 is the smaller of minfw(yz); z 6= x; yg and minfw(xz)� d1; z 6= x; yg.
By the memoryless property of the exponential distribution, given y and d1 the
quantities w(xz)�d1 again have an EXP(1) distribution, so d2�d1 is the mini-
mum of 2(n� 2) independent exponentials. Thus d2� d1 has an EXP(2(n� 2))
distribution and is independent of d1. Continuing, we see that di � di�1 is the
minimum of i(n� i) independent exponentials and hence the di, 1 � i < n, have
the same distribution as X

j�i

Xj

j(n� j)
; 1 � i < n:

Since all vertices are equivalent, the distance from x to another �xed vertex x0

is equally likely to be any of the di, proving the �rst part of the lemma.
In order to estimate P(W (l) � x) we consider the moment generating func-

tion of W . If X has an EXP(1) distribution and � > 0, then

E (e��X ) =

Z 1

0

e��te�tdt =
1

1 + �
:

Thus for � > 0 we have

E (e��Xi=i) =
1

1 + �=i
=

i

� + i
:

Let Sm =
Pm

i=1Xi=i and let Z = SR. De�ning W by the sum (3), which gives
the correct distribution by the �rst part of the lemma, we have nW � Z. Now

E (e��Sm) =

mY
i=1

E (e��Xi=i) =
m!

(� + 1) � � � (� +m)
:

For � > 1 it is easy to verify by induction on n that

n�1X
m=1

m!

(� + 1) � � � (� +m)
=

1

� � 1

�
1�

n!

(� + 1) � � � (� + n� 1)

�
�

1

� � 1
:

Hence, as nW � Z = SR,

E (e��nW ) � E (e��SR)

=
1

n� 1

n�1X
m=1

E (e��Sm)

�
1

(n� 1)(� � 1)
:

6



Taking � = 1 + � and applying Markov's inequality,

P(W (l) � x) = P

�
exp(��nW (l)) � exp(��nx)

�
� E (exp(��nW (l)))= exp(��nx)

= E (exp(��nW ))le�nx

� (n� 1)�l��le(1+�)nx;

as required.

We are now ready to prove the lower bound on W (k) in the following rather
unattractive form.

Lemma 4. Let v1; : : : ; vk be �xed vertices of G, where 2 � k = k(n) � n=e2,
and let W (k) be the minimum weight of a Steiner tree for v1; : : : ; vk in G. If

! = !(n)!1 arbitrarily slowly then

P

 
W (k) �

(k � 1)
�
logn� log k � 2 log log(n=k)� 3

�
� !

n

!
! 0

as n!1.

Before turning to the proof note that this gives the lower bound stated in
Theorem 1, since if k = o(n) and ! tends to in�nity suÆciently slowly then the
bound on W (k) above is asymptotically (k � 1)(logn� log k)=n, as required.

Proof of Lemma 4. Let v1; : : : ; vk be �xed vertices of G and let T be a minimum
weight Steiner tree for v1; : : : ; vk. We say that a vertex v of T is a branching

vertex if v has degree at least 3 in T . Suppose that the branching vertices of T
not among fv1; : : : ; vkg are vk+1; : : : ; vm. To make it clear exactly how we are
counting later, we shall insist that vk+1 < � � � < vm for some arbitrary order on
V (G). As noted at the beginning of this section, since T has at most k leaves
it has at most k � 2 branching vertices, so m � 2k � 2. The tree T consists of
disjoint paths Pi from vsi to vti , 1 � i � m � 1, for some 1 � si; ti � m. By
minimality, each Pi is the minimum weight path from vsi to vti . The structure
of T can be represented by an auxiliary tree T 0 on [m] = f1; 2; : : : ;mg; there
is one edge siti of T

0 for each path Pi in T . (Again for the counting we will
assume that the si and ti are �xed by T 0. In other words, given a tree T 0 on
[m] we �x the order of the edges and the starting vertex of each edge according
to some arbitrary rule.)

For each choice of m, vk+1; : : : ; vm and T 0, applying Lemma 2 with l = m�1
shows that the probability of such a minimum weight Steiner tree T existing
with w(T ) � x is at most P(W (m�1) � x). This in turn is at most

(n� 1)�(m�1)��(m�1)e(1+�)nx

for any � > 0 by Lemma 3. Given m, there are
�
n�k
m�k

�
� (n � 1)m�k=(m� k)!

choices for vk+1; : : : vm, and at most mm�2 < mm�1 choices for the auxiliary
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tree T 0 on [m]. (The larger bound will be more convenient in the estimates
below.) Thus for any x, � > 0 we have

P(W (k) � x) �

2k�2X
m=k

(n� 1)m�k

(m� k)!
mm�1(n� 1)�(m�1)��(m�1)e(1+�)nx

=
2k�2X
m=k

mm�1

(m� k)!
(n� 1)�(k�1)��(m�1)e(1+�)nx:

Intuitively, for k small the dominant term should bem = 2k�2, as the minimum
weight Steiner tree will have v1; : : : ; vk as leaves and all branching vertices will
have degree 3. In fact for the whole range of k the quantity am = mm�1=(m�k)!
increases rapidly with m; for m > k � 2 we have

am
am�1

=

�
m

m� 1

�m�2
m

m� k
�

�
1 +

1

m� 1

�m�2
�

3

2
:

For � � 1 the ��(m�1) term also increases with m, so the whole sum above is
bounded by at most

P
i(2=3)

i = 3 times the value of the term with m = 2k�2.
Loosening the estimates slightly to simplify the �nal expression, and applying
Stirling's formula in the weak form r! � (r=e)r, we obtain

P(W (k) � x) � 3
(2k � 2)2k�3

(k � 2)!
(n� 1)�(k�1)��(2k�3)e(1+�)nx

� O(1)
(2k � 2)2k�2

(k � 1)!
(n� 1)�(k�1)��2(k�1)e(1+�)nx

� O(1)(4e)k�1((k � 1)=(n� 1))k�1��2(k�1)e(1+�)nx

� O(1)(4ekn�1��2)k�1e(1��)
�1nx:

Taking logs we see that P(W (k) � x) ! 0 provided that for some ! ! 1 we
have

x � (1� �)(k � 1)
�
logn� log k � 1� log 4� 2 log(��1)

�
=n� !=n

� (k � 1)
�
logn� log k � 1� log 4� 2 log(��1)� � log(n=k)

�
=n� !=n:

The best choice for � is � = 2= log(n=k) which is at most 1 by the assumption
on k. For this � the condition above simpli�es to

x � (k � 1)(logn� log k � 2 log log(n=k)� 3)=n� !=n;

which is the quantity appearing in the statement of the lemma.

Remark. The bound mm�2 on the number of trees in the calculation above
turns out to be a key step|it is from this that the � log k term in the �nal
bounds comes. One might thus think that we should bound the number of
trees more carefully, using the fact that vk+1; : : : ; vm all have degree at least 3.
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Although a method for doing this was suggested to us by Cecil Rousseau, it
turns out that the only gain is to improve the constant 3 appearing above. This
constant is irrelevant for Theorem 1, while for k = �(n) the correct constant
presumably cannot be obtained in this way. Thus for simplicity we have just
used the Cayley bound.

3 Upper bound

In this section we complete the proof of Theorem 1 by obtaining an upper bound
on the minimum weight of a Steiner tree in G. The idea is to consider a simple
method of constructing an upper bound forW (k) given G whose behavior when
G is random we can analyze. The simplest approach, taking a shortest path
from vr to vr+1 for 1 � r � k�1, does not suÆce - this would give a bound like
(k � 1) logn=n. Instead, for 1 � r � k � 1 let Mr be the minimum weight of a
path from vr+1 to fv1; : : : ; vrg. It is easy to see that the union of such paths is
a connected graph containing fv1; : : : ; vkg and thus that M1+ � � �+Mk�1 is an
upper bound onW (k). Indeed, by our construction every vertex vi is connected
by path to a vertex with index smaller than i. This implies that there is a
path form every vertex to v1. Now it is easy to calculate the expectation of
Mr, which turns out to be about log(n=r)=n. This gives us an upper bound
on E (W (k)). We would like to �nd high probability bounds on W (k) itself.
This time, correlation works against us. Rather than �nding upper bounds on
each Mr holding with high probability, it turns out to be better to consider the
expectation not of Mr itself, but of its deviation above its mean.

For any f let us write (f)+ for the positive part of f , i.e., for maxff; 0g. To
avoid having too many brackets, we shall write E+ (f) for E ((f)+). Our aim is
to bound E+ (Mr � log(n=r)). A very useful observation is that the sums Sm
of EXP(i) random variables considered in the proof of Lemma 3 have a simple
explicit description.

Suppose that Y1; : : : ; Ym are independent EXP(1) random variables, and
let (A1; : : : ; Am) be the Yi sorted into increasing order. The minimum of in-
dependent exponentials is again exponential, so A1 � EXP(m). From the
memoryless property of the exponential distribution, given A1 and which Yi
is smallest, the remaining Yj are distributed as A1 plus independent expo-
nentials. Hence A2 � A1 � EXP(m � 1) and A2 � A1 is independent of A1.
Continuing, and setting A0 = 0, we see that the Ai � Ai�1 are independent
with Ai � Ai�1 � EXP(m + 1 � i). Hence Am, the largest of the Yi, has the
same distribution as Sm, a sum of independent exponentials with parameters
1; 2; : : :m.

Lemma 5. Let X1; : : : ; Xn�1 be independent EXP(1) random variables, and let

Sm =

mX
i=1

Xi

i
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and

Tm =
mX
i=1

Xi

i(n� i)
:

Then provided n is larger than some absolute constant n0, for every m in the

range 1 � m � n� n=(logn)2 we have

E+ (Sm � logm) � 1 (4)

and

E+

�
Tm �

logm

n

�
�

2

n
+ o

�
logm

n

�
: (5)

Note that here and throughout the paper the function implied by the o(:)
notation depends on n only.

Proof. As noted above, Sm has the distribution of the maximum of m indepen-
dent EXP(1) random variables. Thus

P(Sm � x) = (1� e�x)m;

and

E+ (Sm � logm) =

Z 1

t=0

P(Sm � logm+ t)dt

=

Z 1

t=0

1�
�
1� e�t=m

�m
dt

=

Z 1

t=0

mX
i=1

(�1)i+1
�
m

i

�
e�itm�idt

=

mX
i=1

(�1)i+1
�
m

i

�
m�ii�1:

The �nal sum is alternating with terms decreasing in size, and is hence at most
the i = 1 term, which is just 1. This proves (4).

From now on we assume that n is larger than some suÆciently large constant.
Let c = bn=(2 logn)c. For m � c we can deduce (5) from (4). As Tm �
Sm=(n�m) � Sm=(n� c) we have

E+

�
Tm �

logm

n

�
�

logm

n� c
�

logm

n
+ E+

�
Tm �

logm

n� c

�

�
c logm

n(n� c)
+ E+

�
Sm � logm

n� c

�

�
c logn

n(n� c)
+

1

n� c

�
1

2(n� c)
+

1

n� c
�

2

n
;
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proving (5) in this case.
For m > c we simply use the fact that the expectation of Tm � Tc is small.

As
Pj

i=1 i
�1 = log j + O(1), we have

E (Tm � Tc) =

mX
i=c+1

1

i(n� i)

=

mX
i=c+1

1

n

�
1

i
+

1

n� i

�

=
1

n

�
log
�m
c

�
+ log

�
n� c

n�m

�
+O(1)

�

�
1

n

�
log
�n
c

�
+ log

�
n

n�m

�
+O(1)

�

�
1

n
(2 log logn+ 2 log logn) =

4 log logn

n
:

Thus, using the result E+ (Tc � log c=n) � 2=n established above,

E+ (Tm � logm=n) � E+ (Tc � log c=n) + E (Tm � Tc)

�
2 + 4 log logn

n
= o

�
logm

n

�
;

as logm � logn, since m > c.

We now turn to the shortest path from 1 point to r points.

Lemma 6. Suppose that 1 � r � n�1, let fv1; : : : ; vr+1g be �xed vertices of G,
and let Mr be the minimum weight of a path from vr+1 to fv1; : : : ; vrg. Then

E+

�
Mr �

log(n=r)

n

�
�

3 + o(log(n=r))

n
:

Proof. Let Xi and Ti be de�ned as in Lemma 5. Applying Dijkstra's algorithm
as before, the distances from vr+1 to the remaining vertices sorted into increasing
order have the same distribution as (T1; : : : ; Tn�1). De�ne a random variable
R independent of the Xi by taking R as the smallest element of a uniformly
chosen r-element subset of [n � 1]. As all vertices are equivalent, the closest
vertex to vr+1 among fv1; : : : ; vrg will be the R

th closest vertex to vr+1. Thus
Mr has the distribution of TR.

To deal with values of R outside the range of Lemma 5, note �rst that

P(R � n� n=(logn)2) � (logn)�2;

even for r = 1. Also, for every m we have

E (Tm) � E (Tn�1) � 2 logn=n

11



by Janson's result [13] (the reader can deduce this result also from Lemma 3).
Thus, writing I(A) for the indicator function of an event A, we have

E
�
nTRI(fR� n� n=(logn)2g)

�
= o(1):

Using this observation together with Lemma 5 we see that

E+ (nTR � log(n=r)) � E
�
(nTR � logR)+ + (logR� log(n=r))+

�
� o(1) + E

�
2 + o(logR) + (logR� log(n=r))+

�
� o(1) + 2 + o(log(n=r)) + (1 + o(1)) E+ (logR� log(n=r)) :

For i � 1 we have

P(R � i) =

�
n� i

r

�
=

�
n� 1

r

�

�

�
n� i

n� 1

�r
=

�
1�

i� 1

n� 1

�r

� exp

�
�r

i� 1

n� 1

�
� exp(1� ir=n):

Note that as the �nal bound is decreasing it also holds when i is not an integer.
Thus

E+ (logR� log(n=r)) =

Z 1

t=0

P(logR � log(n=r) + t)dt

=

Z 1

t=0

P(R � net=r)dt

�

Z 1

t=0

exp(1� et)dt

As et > 1 + t+ t2=2 the �nal integral is a constant a less than one.
Putting this together we have

E+ (nTR � log(n=r)) � o(1) + 2 + o(log(n=r)) + (1 + o(1))a;

which is at most 3 + o(log(n=r)). As Mr and TR have the same distribution,
this completes the proof of the lemma.

We are now ready to prove the upper bound on W (k). Note �rst that since
log(n=r) is a decreasing function of r we haveZ k

1

(logn� log r)dr �

k�1X
r=1

log(n=r) �

Z k�1

0

(logn� log r)dr;

i.e.,

(k� 1)(logn� log k+1)� log k �

k�1X
r=1

log(n=r) � (k� 1)(logn� log(k� 1)+1):

If 2 � k = o(n) then both bounds are asymptotically (k � 1)(logn� log k).

12



Proof of Theorem 1. We have already proved the lower bound. Let � > 0 be
�xed and suppose that 2 � k = o(n). Given vertices v1; : : : ; vk of G, de�ne
Mr, 1 � r < k, as in Lemma 6. The the minimum weight Steiner tree for
fv1; : : : ; vkg has weight W (k) at most M1 + � � �+Mk�1.

Let

� =
1

n

k�1X
r=1

log(n=r) �
(k � 1)(logn� log k)

n
: (6)

By Lemma 6,

E+ (W (k)� �) �
k�1X
r=1

E+

�
Mr �

log(n=r)

n

�

�
k�1X
r=1

3 + o(log(n=r))

n

=
3(k � 1)

n
+ o(�);

as the o(:) notation depends on n only. By (6) the �nal estimate is o(�). Thus
for any �xed � > 0, by Markov's inequality we have

P(W (k) � (1 + �=2)�) = P((W (k) � �)+ � ��=2)

� E+ (W (k)� �) =(��=2) = o(1):

Note that by (6), (1+�=2)� � (1+�)(k�1)(logn� log k)=n if n is large enough.
This completes the proof of the theorem.

4 Steiner trees for many vertices

So far we have found asymptotically the minimum weightW (k) of a Steiner tree
for k vertices of G, for all functions k = o(n). In this section we consider the
case when k is linear in n. For k = n such a tree is just a spanning tree in G, so
by the result of Frieze [11] we have W (n) = �(3) + o(1) with high probability.
It is thus natural to ask what happens in between, when k = �n with � = �(n)
bounded away from 0 and 1, say. Of course the proof of our main result gives
some bounds for free: from Lemma 4 it is easy to see if � < e�7 then for any
� > 0 we have

W (k) � �(log(��1)� 2 log log(��1)� 3)� �

with probability tending to 1 as n ! 1. In the other direction, writing V for
the set of k vertices to be connected, one might expect that as there are so many
ways to use the vertices not in V as part of the Steiner tree, almost all other
vertices will be used. Thus one might expect W (k) = �(3) + o(1) whenever
k = �n with � bounded away from zero. It turns out that this is not the case:
as before let Mr be the minimum weight of a path from vr+1 to fv1; : : : ; vrg, so
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W (k) �
Pk�1

r=1 Mr. It is easy to write down exactly the expectation of Mr and
thus obtain an upper bound on E (W (k)).

Suppose that k = k(n) is such that � = k=n is bounded away from 0 and 1.
For 1 � r � k � 1 consider running Dijkstra's algorithm starting from the set
Vr = fv1; : : : ; vrg. Arguing as in the proof of Lemma 3, the distances from Vr
to the remaining n� r vertices are distributed as (T 01; : : : ; T

0
n�r), where

T 0m =
r+m�1X
i=r

Xi

i(n� i)
;

with the Xi independent EXP(1) random variables as before. Now as vr+1 is
equally likely to be the closest, 2nd closest etc. vertex to Vr we have

E (Mr) =
1

n� r

n�rX
m=1

E (T 0m)

=
1

n� r

n�rX
m=1

r+m�1X
i=r

1

i(n� i)

=
1

n� r

n�1X
i=r

n�rX
m=i+1�r

1

i(n� i)

=
1

n� r

n�1X
i=r

1

i
�

logn� log r

n� r
:

In the last step we used the fact that Æj =
Pj

i=1 j
�1 � log j is bounded to deal

with the case r = O(1), and the fact that Æj tends to a constant as j ! 1,
while logn� log r � log(n=k) is bounded away from zero, to deal with the case
r !1.

Let us write

S =

k�1X
r=1

logn� log r

n� r
:

As all the summands are positive, and the implied function in the � notation
depends on n only, we have E (

Pk�1
r=1 Mr) � S. Now the quantity (logn �

log r)=(n� r) decreases with r. Thus, writing

I(x; y) =

Z y

x

logn� log r

n� r
dr;

we have I(1; k) � S � I(0; k). For 0 � x � 1 let

dilog(x) =

Z 1

x

� logx

1� x
dx:

Writing k = �n and changing the variable in the integration to be x = r=n, one
can easily check that

I(0; k) = log(��1) log((1� �)�1) + dilog(1� �): (7)
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As this quantity is bounded away from zero, while I(0; 1) = O(logn=n) = o(1),
we have S � I(0; k), giving the right hand side of (7) as an asymptotic upper
bound for E (W (k)).

Unsurprisingly, the bounds above, extracted from the proof for k = o(n),
give little or no information when k is close to n. As � ! 0 both bounds
are asymptotically � log(��1), the bound in Theorem 1. For � near 1, the
argument above gives no lower bound at all, while the upper bound tends to
dilog(0) = �2=6 = 1:644 : : :, which is larger than �(3) = 1:202 : : :, Frieze's bound
for � = 1. It would be interesting to know how W (k) decreases from �(3) as
k decreases from n. For example, one might expect that W (k) = �(3) � o(�)
when k = (1 � �)n with � ! 0. This turns out not to be the case. We can
obtain upper and lower bounds for W (k) in this range using the proof in [11] as
a basis. These show that W (k) decreases at least linearly with �.

Let u(0) = 1 and for x > 0 let

u(x) =
1

x

1X
k=1

kk�2

k!

�
xe�x

�k
: (8)

Theorem 7. Let k = k(n) be such that � = 1 � k=n is bounded away from 0

and 1. Then with probability tending to 1 as n!1 we have

�(3)� �=17 �W (k) �

Z u�1(�)

0

(u(x)� �)dx + o(1)

= �(3)� �(log(��1) +O(1)):

For the proof it will be convenient to take the edge weights to be uniformly
distributed on [0; 1]. We ignore the probability 0 event that two edges have the
same weight.

The proof in [11] that E (Wn) = �(3) uses the greedy algorithm to construct
the minimum weight spanning tree in G. Here we use the same algorithm to
construct the spanning subgraph Hk�1 of G which has minimum weight among
all subgraphs of G with rank k � 1, i.e., with n � k + 1 components. As any
connected graph containing any k vertices has rank at least k � 1, the weight
of Hk�1 is a lower bound for the minimum of MWST (V ) over all sets V of k
vertices of G, where MWST (V ) is the minimum weight of a Steiner tree for V .
In particular, W (k) � w(Hk�1).

LetH 0
0 be the empty graph on V (G). For 1 � r � n�1 let er be the minimum

weight edge joining two di�erent components of H 0
r�1, and let H

0
r = H 0

r�1[ferg.
Then it is easy to see that H 0

k�1 is equal to Hk�1. Indeed, suppose this is
not the case. The two graphs have the same number of edges, so there is
some er, r � k � 1, not in Hk�1. If er joins two components of Hk�1 then
Hk�1 [ ferg has fewer components than H 0

k�1, and thus contains an edge f
joining distinct components of H 0

k�1, and hence of H 0
r�1. By de�nition of er

we have w(f) > w(er). On the other hand, if er falls within a component
of Hk�1 then Hk�1 [ ferg contains a cycle which, by de�nition of er, meets
two components of H 0

r�1. Some edge f 6= er of this cycle must also join two
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components of H 0
r�1. Again by the de�nition of er we then have w(f) > w(er).

In either case Hk�1 [ ferg � ffg has smaller weight than Hk�1, but the same
rank, contradicting the de�nition of Hk�1.

Now

w(Hk�1) =

k�1X
r=1

w(er) =

k�1X
r=1

(k � r)(w(er)� w(er�1)); (9)

where w(e0) is to be interpreted as 0. For 0 < p < 1 let Gp be the spanning
subgraph of G formed by all edges with weight at most p. As we are taking
the edge weights to be uniformly distributed, Gp has the same distribution
as a random graph from the standard model G(n; p) where vertices are joined
independently with probability p. As p increases from 0 to 1 edges are added to
Gp one at a time. Each new edge joins two components of Gp if and only if it is
one of the er. Thus if w(er�1) � p < w(er), so e1; : : : ; er�1 2 E(Gp), then Gp

has exactly n+1� r components. Writing k(H) for the number of components
of a graph H we can write (9) as

w(Hk�1) =

Z w(ek�1)

0

(k(Gp)� (n+ 1� k))dp:

Note that the integrand decreases, and becomes zero precisely at p = w(ek�1).
So far the argument is similar to that in [11]. To obtain the lower bound in
Theorem 7 we shall use the standard result below. In the statement of this
result N =

�
n
2

�
and ~G = (Gt)

N
t=0 is the standard random graph process. Thus

G0 is the empty graph on [n], and Gt+1 is formed from Gt by adding one of the
N � t edges of Gc

t chosen uniformly at random. There should be no confusion
between Gp and Gt as 0 < p < 1, while t is an integer. Let u(x) be de�ned
by (8). The following result is Corollary 14 of chapter VI of [6]; we have changed
the notation slightly to avoid clashes.

Theorem 8. The probability that for a �xed  the graph process ~G = (Gt)
N
t=0

satis�es

jk(Gt)� u(2t=n)nj � 2(logn)n

for every t � 4n logn is 1� o(n2�3).

Using this result it is straightforward to deduce the lower bound on W (k).

Proof of lower bound in Theorem 7. Let Gt be the subgraph of G formed by the
t edges with smallest weights. Then (Gt)

N
t=0 forms a standard random graph

process. Applying Theorem 8 with  = 3=4, noting that k(Gt) is decreasing
and that u(8 logn) = o(1), we see that with probability 1� o(1) we have

k(Gt) = (u(2t=n) + o(1))n;

for all 0 � t � N , where the o(1) term depends on n only and is uniform in t.
Now Gp = Gt whenever there are exactly t edges of G with weight at most t.
Standard bounds on the binomial distribution imply that with probability 1�
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o(1) the graph Gp has pN + o(n) edges for all p � n�1=2 simultaneously. As u
is continuous, it follows that with probability 1� o(1) we have

k(Gp) = (u(pn) + o(1))n

for all 0 � p � n�1=2. Now suppose k = k(n) is such that � = 1 � k=n
is bounded away from 0 and 1. Then w(ek�1) is the minimal p such that
k(Gp) = n + 1 � k � �n. Thus with high probability w(ek�1) � u�1(�)=n,
which is much smaller than n�1=2 for n large enough, and

w(Hk�1) =

Z (1+o(1))u�1(�)=n

0

(u(pn)� � + o(1))ndp:

Substituting p = x=n we can write this as

Z u�1(�)+o(1)

0

(u(x)� � + o(1))dx =

Z u�1(�)

0

(u(x) � �)dx+ o(1);

proving the �rst part of the lower bound given in Theorem 7.
The second part is just a matter of calculation. We know from [11], and it

is easy to check, that
R1
0 u(x)dx = �(3). Now u(x) � e�x as x ! 1. Thus as

y ! 0 we have u�1(y) � log(y�1). It follows that u�1(y) = log(y�1) + O(1)
uniformly in y. Also, the tail Z 1

u�1(y)

u(x)dx

is asymptotically y as y ! 0, and is thus O(y) for all y. Thus

Z u�1(�)

0

(u(x)� �)dx = �(3)� �u�1(�)�

Z 1

u�1(�)

u(x)dx

= �(3)� �(log(��1) +O(1));

completing the proof of the lower bound.

We now turn to the upper bound, that if k = (1 � �)n then with high
probability W (k) � �(3) � c�, for some constant c > 0. Our proof is again
based on Frieze's result for k = n. The main idea is to show that the minimum
weight spanning tree has many leaves, some of which can then be omitted.

For x > 0 a constant let

t(x) =
1

x

1X
k=1

kk�1

k!

�
xe�x

�k
:

Erd}os and R�enyi [9] proved that almost every graph on n vertices with bxn=2c
edges has a giant component with (1 � t(x) + o(1))n vertices. Also, trivial
estimates of the �rst and second moments imply that that almost every such
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graph has (e�x + o(1))n isolated vertices. These results and Theorem 8 above
immediately transfer to the random graph Gp when p = x=n, so almost every
such graph has (u(x) + o(1))n components, a giant component with (1� t(x) +
o(1))n vertices, and (e�x + o(1))n isolated vertices. Taking x = 2, the sums
de�ning u(x) and t(x) converge fairly rapidly, and it is easy to verify that
u(2) < 1=6 while t(2) < 1=4 and e�2 > 1=8.

Let p0 = 2=n. From the remarks above, with probability 1� o(1) the graph
Gp0 has the following three properties: (i) Gp0 has a giant component consisting
of at least 3n=4 vertices, (ii) Gp0 has at least n=8 isolated vertices, and (iii) Gp0

has at most n=6 components.
Let H1; : : : ; Hn�1 be the minimum weight forests in G constructed by the

greedy algorithm as above, so Ht = Ht�1 [ fetg, and let t0 be maximal subject
to Ht0 � Gp0 . Then by construction of the graph Ht0 , this graph has the same
components as Gp0 , and thus has properties (i)-(iii) above. (Note that here and
later when we talk about a component we mean its vertex set.) From now on we
take t0 and Ht0 to be �xed, with Ht0 having the properties above, and consider
the random process ~H = (Ht)

n�1
t=t0+1

. Note that at step t > t0 in this process,
going from Ht�1 to Ht, the edge et added is chosen uniformly at random from
among all edges joining two components of Ht�1.

Let I be a set of dn=8e isolated vertices of Ht0 . We say that a vertex x 2 I
becomes a candidate at step t if et is the �rst edge from x in the process ~H ,
and et joins x to the giant component of Ht�1. In other words, x 2 I becomes
a candidate at step t > t0 if x is a leaf of the giant component of Ht but is
isolated in Ht�1. Let us say that step t > t0 is critical if the edge et has at least
one endvertex isolated in Ht�1. Suppose that Ht�1 is given and has m isolated
vertices. Then there are at most mn possible edges et that would make step t
critical. Since the giant component of Ht�1 has at least 3n=4 vertices, at least
3mn=4 of these would create a new candidate at step t. Thus at each critical
step a new candidate is created with probability at least 3=4, no matter what
has happened so far. The number of isolated vertices goes down by at most
two at each critical step, and is otherwise unchanged. Thus there are at least
n=16 critical steps, and the total number of candidates created stochastically
dominates a binomial Bi(n=16; 3=4) distribution. Thus (using the central limit
theorem, for example), with probability 1�o(1) a total of at least n=22 vertices
become candidates at some stage.

From now on we condition on the components of Ht for every t, or equiva-
lently, on which components become joined at which steps. Let A be an event
of the form `for each t > t0 the edge et joins components Ct, C

0
t of Ht�1'. Given

A the only remaining randomness is in which of the jCtjjC
0
tj edges to chose for

et at each stage. Note that A determines which vertices in I become candidates
at which stages. We write L0 = fx1; : : : ; xmg for the vertices which become
candidates at some stage.

Let us say that a candidate x is eliminated at stage t if x is a leaf in the
giant component of Ht�1 but not in that of Ht, so et = xy for some y not in
the giant component of Ht�1. We say that a candidate x survives if it is not
eliminated, and write L1 for the set of surviving candidates, noting that these

18



vertices are leaves of the spanning tree Hn�1.
Let B be the event that certain of the candidates fx1; : : : ; xs�1g are elim-

inated at certain stages, and that the rest survive. We wish to bound the
probability that xs is eliminated given A and B. Given these events we know
that xs becomes a leaf of the giant component at a certain step t. We also know
that the giant component merges with other components at certain later steps
t1; : : : ; tr, with r � k(Ht) � k(Ht0) � n=6. At some of these steps we know
that one of x1; : : : ; xs�1 is eliminated, so xs cannot be. At each of the remaining
r0 � r steps ti we know that an edge eti is added joining the giant component
C to some other component, and that none of x1; : : : ; xs�1 is eliminated. This
leaves at least jCj� (s� 1) � jCj� jI j+1 � 3n=4�n=8 = 5n=8 possibilities for
the vertex y of eti which lies in C. As these are all equally likely, the probability
that xs is eliminated at stage ti is at most 8=(5n). As there are r

0 � r � n=6
stages when xs might be eliminated, we have

P(xs survives j A \ B) � 1�
n

6

8

5n
= 11=15:

As this holds for all s and all events B of the given form, given A the number
of surviving candidates stochastically dominates a Bi(m; 11=15) distribution.
Thus, provided the event A is such that m � n=22, we have

P (jL1j � n=31 j A) = o(1):

As this holds for all A for whichm � n=22, andm � n=22 holds with probability
1� o(1), we have

P (jL1j � n=31) = o(1):

We are now ready to prove the upper bound on W (k).

Proof of Theorem 7. We have already proved the lower bound. Suppose that
k = k(n) is such that � = 1� k=n is bounded away from 0 and 1. Let Hn�1 be
the minimum weight spanning tree in G, and let L1 be the set de�ned above.
Then each vertex x in L1 is a leaf of Hn�1. Furthermore, for each such x the
unique edge xy 2 E(Hn�1) has weight at least p0 = 2=n. This is because we
only considered vertices for inclusion in L1 if they were isolated in Gp0 , i.e.,
were adjacent to no edges of weight less that p0. Now as shown above, with
probability 1 � o(1) we have jL1j � n=31. Let us consider the weights on G
and thus L1 as given, and then the set V = fv1; : : : ; vkg of Steiner vertices as
randomly chosen. Supposing that jL1j � n=31, as jV cj = �n and � is bounded
away from zero we have jV c \ L1j � �n=32 with probability 1� o(1). We may
omit these vertices from Hk�1 to obtain a tree T containing all the vertices of
V with w(T ) � w(Hn�1) � p0jV

c \ L1j. We know from [11] that with high
probability w(Hn�1) = �(3) + o(1). Thus with probability 1� o(1) we have

W (k) � w(T ) � �(3) + o(1)�
2

n

�n

32
< �(3)� �=17;

provided n is suÆciently large. This completes the proof.
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5 Concluding remarks

In this paper we considered the weight of a minimal Steiner tree in a complete
graph on n vertices with edge weights chosen randomly and independently from
some distribution X satisfying P(X � x) = x + o(x) as x ! 0. We showed
that W (k), the minimal weight of a tree that contains a given set of k = o(n)
vertices is with high probability (1 + o(1)(k � 1)(logn � log k)=n. To the best
of our knowledge, this is the �rst result on minimal Steiner trees in a random
setting.

In conclusion, let us draw attention to an interesting problem we could not
solve. It is very likely that there is a function c(�) de�ned on [0; 1] with c(0) = 0
and c(1) = �(3) such that if k=n ! � then E(W (k)) ! c(�). Assuming that
this function exists, we have found its asymptotic behavior as �! 0, and given
upper and lower bounds for all �. We do not believe that either of the latter
bounds is close to being best possible, and we do not have a conjecture, or even
a guess, for the form of c(�). The question is to determine c(�).
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