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Abstract

Modeling and designing concurrent systems is one of the most challenging tasks faced by

software engineers as is evinced by many examples of error-laden large and small-scale concurrent

systems. The primary diÆculty is the inarticulate characterization of the semantics of concurrent

systems. The successful development of concurrent systems requires a clear understanding of

the types of relationships that exist between the components found in such systems. Two

particularly important relationships found in concurrent systems are the order relation and the

containment relation. The order relation represents the relative timing of component actions

within a concurrent system and the containment relation facilitates human understanding of a

system by abstracting a system's components into layers of visibility.

One major consequence of improper management of the order and containment relationships

in a concurrent system is deadlock. Deadlock is an undesirable halting of a system's execution

and is the most challenging type of concurrent system error to debug. The contents of this

publication show that no methodology is currently available that can concisely, accurately and

graphically model both the order and containment relations found in complex, concurrent sys-

tems. The result of the absence of a method suitable for modeling both order and containment

is that analysis of concurrent systems is nearly impossible and the prevention of deadlock is

extremely challenging.

I created the diposet as a solution to this problem and introduce the diposet in this pub-

lication. A diposet is a formal, mathematical structure that is similar in nature to a partially

ordered set and is well suited to describing concurrent, computational systems. I de�ne the

diposet and show that it uses an order-centric approach that o�ers insight into the relative tim-

ing of events in a concurrent system and allows the speci�cation of containment. The diposet

o�ers an approach that is distinct from traditional formal concurrency methods that instead

focus on logic which is non-graphical and often inaccessible to the non-mathematician. The

formal structure of a diposet is illustrated through the construction of several proofs and the-

orems and I provide real world examples to show that the diposet can model a wide variety of

communication semantics including synchronous and asynchronous message passing.
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1 Introduction

Modeling and designing concurrent systems is one of the most challenging tasks faced by software
engineers. Anyone who has designed a distributed software system or debugged a multi-threaded
program has, no doubt, encountered frustration and uncertainty, the likes of which is rarely matched
by the corresponding task in a sequential program. If �nding a bug in a sequential program is
equivalent to �nding a needle in a haystack, then debugging a concurrent program is best described
as �nding a bug in a set of haystacks that seem to continually exchange positions while the search
is in progress. The diÆculty of developing concurrent systems is evinced in several high pro�le,
large scale concurrent systems (Gibbs, 1994). For example, the Denver International Airport was
designed to accommodate three airlines landing simultaneously but was delayed for months at a
rate of $1.1 million a day due to errors in its concurrent baggage handling system. Similarly, in
1994 the Federal Aviation Administration was forced to scale back plans for its distributed air
traÆc control system due to software errors after a �ve year delay and a loss of $144 million. These
two projects experienced failures in part due to their magni�cent scale, but their concurrent nature
added signi�cantly (and indeed enabled the great scale), causing much of the problem.

The primary diÆculty with designing and modeling concurrent programs is the inarticulate
characterization of the semantics of concurrent systems. The fundamental question posed in the
study of concurrent system semantics is what does it mean to be simultaneous? The challenge
of this question lies in the incompatibility between human sequential thinking and concurrent
execution. The sequential train of thought that designers engage in does a poor job tracking
simultaneous activities in concurrent systems of signi�cant size. The classic paper \No Silver
Bullet" (Brooks Jr., 1987) sheds light here when it speaks of four essential properties of software that
cause great diÆculty for software designers: complexity, conformity, changeability and invisibility.
Brooks describes the problem of invisiblity as being due to the fact that software does not live in
a three dimensional world and hence is not easily seen by designers. Invisibility is compounded for
concurrent software systems; such systems are neither three dimensional or sequential. Designers
already burdened with intangible, non-three dimensional concepts must also take on the burden of
travelling beyond sequential thought in order to grasp notions of concurrency.

There are many practical problems that result from inarticulate concurrent system semantics.
At the conceptual level, inarticulate semantics prevents clear communication of a design and leads
to noisy information transfer among designers. In some cases, the lack of communication may
prevent a single designer from conceiving a design or recalling a design that was conceived in
the past. In other cases, the lack of communication may prevent a designer from communicating
her conception to a fellow designer in a clean and unambiguous fashion. At the state-space level,
inarticulate concurrent semantics makes it diÆcult to maintain two important properties: safety

and liveness. A concurrent system does not satisfy safety if disparate components of a concurrent
system arrive at inconsistent interpretations of shared information. A concurrent system does not
satisfy liveness if any component of the system halts execution prematurely. At the execution level,
inarticulate concurrent system semantics can result in perceived non-determinism of a concurrent
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system. \Simultaneous" instructions in a concurrent program may be arbitrarily interleaved result-
ing in di�erent interleavings for di�erent execution runs, even if the program inputs and parameters

remain constant. The result is that a concurrent program appears to be non-deterministic since
the resulting trace for a given execution run can involve any one of several possible interleavings.1

Perceived non-determinism makes it extremely diÆcult for the beleaguered concurrent system pro-
grammer to track down bugs because of the diÆculty to reproduce errors.

The diÆculties faced by designers of concurrent systems will not only continue but are likely
to increase in occurrence due in large part to the growing demand for concurrent systems and the
availability of concurrency constructs within the JavaTMprogramming language for designing such
systems. While in earlier times concurrent programming was a relatively esoteric art practiced by
software few engineers, the need to program multithreaded web servers and support distributed per-
vasive computing environments has made concurrent programming a requirement for an increasing
number of engineers. Furthermore, unlike the specialized concurrency libraries that were necessary
in languages such as C++, JavaTMhas integrated standard concurrency constructs into its core lan-
guage. The result is that entry level computer scientists are a�orded the opportunity to attempt
concurrent system design. Unfortunately, this opportunity comes at a high cost. JavaTMprovides
syntax for �ne grained concurrency; such syntax makes no guarantees for preventing errors and
the result is often that a beginning concurrency programmer in JavaTMis given \just enough rope
to hang himself." If the industry is to avoid system failures such as those mentioned previously, it
is imperative that software engineers be given new tools and methodologies for correctly designing
concurrent systems.

I have attempted to establish the diÆculty of creating concurrent systems in the previous dis-
cussion. The remainder of this document consists of the presentation of a modeling framework
that makes concurrent system development easier. An appropriate framework can aid in the spec-
i�cation and analysis of concurrent systems and provide a methodology for describing the varied
semantics found in such systems. Furthermore, a quali�ed framework can give insight into the
execution of a concurrent system so that the perception of non-determinism will be reduced and
safety and liveness will be maintained. I will judge the modeling framework to be presented based
primarily on its applicability to concurrent systems and in particular to its ability to characterize
the order and containment relationships found within typical concurrent systems. As I show in
Section 2, order and containment are two very important types of relationships found between the
components of a concurrent system.

The ability to characterize order and containment may be suÆcient for modeling concurrent
systems but that does not mean it will be practical and intuitive for the designer. Secondary to
the issues of order and containment, I propose four criteria for comparing alternative concurrent
system modeling frameworks.

1In actuality, the choice of the realized trace is due to the system's thread scheduler, a process that is often
deterministic. Nevertheless, thread schedulers are typically beyond the control or view of a programmer and hence the
apparent non-determinism. The absence of \simultaneous" events prevents this phenomenon in sequential programs.
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1) Unambiguous

A framework that is unambiguous allows one to speak precisely. The absence of ambiguity
facilitates understanding and ensures a unique mapping from syntax to semantics.

2) General

Generality allows one to speak about many things. As will be addressed later in this paper,
there are numerous and varied semantics that are in use within the concurrency community
(Andrews, 1991; Girault et al., 1999; Davis et al., 1999). A useful concurrency modeling
framework should be able to address a broad subset of these constructs.

3) Graphical

A graphical approach allows one to speak visually. Indeed, the proverb \a picture is worth
a thousand words" rings true in the design community as much as it does in the world at
large and, to this end, contemporary work on graphical programming tools has been very
active within the research community. For example, graphical representation is the primary
thrust of the Uni�ed Modeling Language (UML) movement (Booch et al., 1999; Booch, 1994;
Rumbaugh et al., 1991).

4) Formal

A formal methodology allows one to speak with authority. The formal methods community
(Alur and Henzinger, 1996; Winskel, 1994; Agha, 1986) studies the composition of systems
and the semantics that result. The community places great emphasis on rigor and the ability
to prove properties about a system. Such proof techniques facilitate guarantees about a
system's execution.

The modeling framework that I created and will present is the diposet. A diposet is a formal,
mathematical structure that is similar in nature to a partially ordered set and is well suited to
describing concurrent, computational systems. Diposets use an order-centric approach that o�ers
insight into the relative timing of events in a concurrent system. Diposets also allow the speci�ca-
tion of containment. This approach is distinct from traditional formal concurrency methods that
instead focus on logic (Andrews, 1991; Magee and Kramer, 1999; Godefroid, 1996). In addition
to its suitability for describing order and containment relationships, I will show that the diposet
satis�es each of the four characteristics presented above and examples will be given to illustrate
the usefulness of the diposet in real world scenarios.

The remaining sections of this paper proceed as follows. In Section 2, I provide an overview of
concurrent systems and establish the importance of the order and containment relationships that
components of the system form with one another. I then consider several traditional and contem-
porary methods such as petri nets and directed graphs that are in use for modeling concurrent
systems and show that they are insuÆcient with respect to order and containment. In Section
3, I formally introduce the diposet and in Section 4 I apply the diposet to various semantics and
real world problems. This paper concludes in Section 5 with reection and consideration of future
extensions.
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2 Order and Containment in Concurrent System Design

A concurrent program speci�es a set of two or more processes that are coordinated to perform a
task and a set of resources that are shared by the processes (Milner, 1989; Andrews, 1991; Magee
and Kramer, 1999; Schneider, 1997). Each process consists of a sequential program made up of
a sequence of instructions and this sequence is often referred to as a thread of control or thread.
The relationships that exist between the processes, threads and instructions found in a concurrent
system are numerous and correctly modeling and designing a concurrent system requires a clear
understanding of these relationships.

One particularly important relationship in concurrent systems, the order relation, deals with the
relative time at which instructions are invoked in an executing concurrent program. An example of
the order relation is illustrated by instructions within a thread. Because each thread is a sequence,
the instructions contained within a thread are totally ordered; i.e., given two distinct instructions,
a and b, either a occurs before b or b occurs before a. While all instructions within the same thread
are ordered with respect to one another, it is not necessary that instructions in separate threads
have such a relationship. To say that two instructions, a and b, are not ordered with respect to
each other simply means that although a and b are distinct instructions, a does not occur before
b nor does b occur before a. Some interpret such absence of ordering as meaning that a and b are
simultaneous instructions (de Bakker and de Vink, 1996).

The containment relation is another very important type of relationship found within concurrent
systems. An obvious example of containment occurs with threads containing instructions. Another
example of containment is instructions containing instructions. Given two distinct components, a
and b, in a concurrent system either a contains b, b contains a or neither. Containment facilitates
abstraction. It allows a designer to vary the amount of detail that is shown in a design. For
example, in some cases a designer needs to know how a thread carries out its duties and in such
cases the ability to see the instructions contained in a thread is important. After verifying a thread's
activities, the designer may no longer need to consider the thread's details and the view will be
refocused to ignore the contents of a thread. The need for abstracting details is seen throughout
the object oriented software community (Booch, 1994; Rumbaugh et al., 1991; Booch et al., 1999;
Lea, 1997).

The importance of the ordering and containment relationships to concurrent systems is made
clear when considering the fundamental problem of interference. The coordination of threads in
a concurrent system requires communication between the threads so that when appropriate, the
threads may modify their activites based on information from other threads. Communication
is accomplished by shared resources and is realized through communication instructions. In some
cases, a shared resource might be a conduit through which communication messages are transferred.
In other cases, a shared resource might be a memory location that multiple threads have read/write
access to. While communication is necessary to coordinate threads, undisciplined communication
can lead to major problems. If two or more threads access the same shared resource, they can
potentially interfere with one another. There are many di�erent types of interference but at its
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core interference occurs when two or more processes attempt to simultaneously change the state of
a shared resource.

Interference is one of the fundamental problems faced in concurrent programming and for this
reason great emphasis is placed on the ordering of instructions in concurrent programming. If two
instructions from di�erent threads modify a common resource, it is essential that one instruction
happen before the other so that interference is avoided. We must be clear when we speak of one
instruction happening before another. To ensure that instruction a precedes instruction b and thus
avoids interference, we often require that instruction a precede instruction b atomically; i.e., that
the completion of instruction a precede the beginning of instruction b. The atomic speci�cation is
where the containment relation becomes important. An instruction is atomic if it does not contain
other instructions and it is non-atomic otherwise. To say that instruction a atomically precedes
instruction b means that instruction a and all of its contents precede instruction b and all of its
contents.

Adding order and containment constraints can be e�ective in preventing interference; unfortu-
nately, lavish use of ordering and containment constraints can result in incomplete execution of a
concurrent program. Consider for example two threads, A and B, such that thread A is instructed
to wait on a particular instruction of thread B. If thread B decides to not invoke the particular
instruction, perhaps in lieu of a more favorable option, then thread A will end up waiting forever
- a potentially undesirable result. For these reasons, concurrent programming can be viewed as
the application of techniques and methodologies for enforcing an appropriate level of ordering and
containment on a set of multithreaded instructions.

The above discussion of order and containment constraints in concurrent programming high-
lights the two fundamental properties of concurrent systems: safety and liveness. Safety is the
property that no bad thing happens during the execution of a program (Andrews, 1991; Schneider,
1997). Interference is an example of a bad thing. Liveness is the property that something good

eventually happens (Andrews, 1991; Schneider, 1997). Liveness is violated if a program's execu-
tion terminates prematurely. All errors unique to concurrent programs can be stated in terms of
safety and liveness. These de�nitions of safety and liveness have a foundation in mathematical
logic. I prefer to cast the de�nitions into a framework based on ordering and containment. Given
such a context, safety is violated in a concurrent program with too few ordering and containment
constraints; liveness is violated in a concurrent program with too many ordering and containment
constraints.

2.1 A Simple Concurrent Program

Figure 1 can be thought of as a simple concurrent program in that it speci�es the ordering of
instructions in a concurrent program. Thread A consists of instructions a; b; c; d and e while thread
B consists of instructions f; g; h; i and j. Note that the arrows indicate instruction ordering such
that the arrowhead indicates the preceding instruction; e.g., in the �gure, instruction a occurs
before instruction b. The angled arrow in Figure 1 indicates an ordering constraint imposed by
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Figure 1: Two Communicating Threads

communication. The arrow does not indicate polarity of the communication but rather serves to
illustrate the ordering constraint that the communication imposes. As shown, instruction h must
occur after instruction b. Implicitly, instructions i and j must also occur after instruction b. Such
constraints between instructions in separate threads would not exist if not for the communication
between the threads.

Note that it is not possible to determine the relative ordering of all of the instructions in Figure
1. In particular, we can not determine whether instruction c occurs before or after instruction
g. In general, a concurrent program will specify ordering constraints on only a subset of thread
instructions. If all instructions between distinct threads were totally ordered, the result would be
a single thread. The absence of an ordering speci�cation is usually taken to indicate that relative
ordering is inconsequential. In other words, the speci�cation in Figure 1 indicates that instructions
c and g can be realized as c followed by g or g followed by c; either realization is allowed and the
choice is arbitrary. The notion of arbitrary ordering of unordered instructions can be applied to all
of the instructions of a set of threads and results in an interleaving. An interleaving is a sequential
realization of a set of threads that does not violate any of the ordering constraints of the threads.
Figure 2 is an example of an interleaving. Note that threads A and B can be interleaved in either of
the �ve ways shown. What this means is that if the concurrent program speci�ed by Figure 2 were
executed, any of the �ve sequential orderings could represent the actual execution. In fact, each
execution can randomly turn out to be any of the �ve orderings even without changing parameters!
Multiple interleavings facilitate both apparent and actual concurrency. In both cases, the goal is to
ensure that the sequential realization/model is correct; i.e., equivalent to what the designer wants.

Unfortunately the existence of multiple interleavings for a single concurrent program speci�ca-
tion leads to a major diÆculty with concurrent programming. The size of the set of interleavings
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Figure 2: Sequential Interleavings

for a given program is typically unmanageably large. In general, given N threads that each execute
M distinct non-communication instructions, there are

(NM)!

(M !)N

possible interleavings. Five threads with ten non-communication instructions result in over 4:83�
1031 possible interleavings.

2.2 Representing Concurrent Systems

A key diÆculty in designing and implementing concurrent systems is the absence of e�ective tools
for specifying and representing such systems. Representation tools are extremely important in
the design process. Representation tools aid designers in communicating with each other about
a given design as well as in �nding errors. Graphical representation tools are especially helpful
in designing software. For example, graphical representation is the primary thrust of the UML
movement (Booch, 1994; Rumbaugh et al., 1991). I will consider graphical representation tools
for concurrent programming. In previous sections I have shown several �gures (e.g., Figures 1 and
2) in an attempt to graphically represent concurrent programs. Unfortunately, these graphs have
signi�cant shortcomings.

In this section, I survey four modeling techniques that are worthy of consideration for modeling
concurrent systems and I discuss the pros and cons of each. The four approaches I survey are par-
tially ordered sets, interval orders, graphs and Petri nets. I chose these four modeling techniques
because of their widespread use and mathematical rigor (West, 1996; Neggers and Kim, 1998; Pe-
terson, 1981). My metric for measuring these four approaches will be their ability to represent both
containment and order simultaneously. I will show that using this metric, each of these techniques
falls short. I will then propose a new formalism for more e�ectively representing concurrent systems
with containment and order; I refer to this formalism as a diposet.
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2.2.1 Partially Ordered Sets

De�nition 2.1. Partially Ordered Set

Let X be a set. A partial order, R, on X is a binary relation that is reexive, anti-symmetric
and transitive. An ordered pair (X;R) is said to be a partially ordered set or a poset if R is a
partial order on the set X. 2

The three conditions on R hold for all x; y; z 2 X as follows

� Reexive: (x; x) 2 R

� Anti-Symmetric: (x; y) 2 R; (y; x) 2 R implies x = y

� Transitive: (x; y) 2 R; (y; z) 2 R implies (x; z) 2 R

I will write � for R such that (x; y) 2 R if and only if x � y; similarly (y; x) 2 R if and only if
y � x.2 Other common notations for R include v and �. If x � y or y � x we say that x and y
are comparable. If x and y are incomparable we write x k y. We say that y covers x if x � y and
there is no element z 2 X such that x � z � y. The set X of a partially ordered set is called the
ground set. If all elements of the ground set are comparable, then the set is called a totally-ordered
set or a chain. If none of the elements of the ground set are comparable, then the set is called an
anti-chain. The up-set, Q � X, of element y is de�ned such that x 2 Q =) y � x. We write the
up-set of element y as yup�set. The down-set is de�ned in a similar fashion.

Partially ordered sets can be graphically represented by Hasse diagrams. A Hasse diagram is a
graph in which each vertex or point corresponds to one element of the ground set. An arrowed-line
is drawn from point x to point y if y covers x.3 If we interpret the partial order as representing
precedence such that x � y if y precedes x, then Figures 1 and 2 are examples of Hasse diagrams.
For clari�cation, note that b is covered by a in Figure 1.

It would seem that partially ordered sets are a natural way to express the ordering relationships
in concurrent programming systems. If we let each element of a set represent a method or function,
then partially ordered sets can represent a program of method calls. Unfortunately, posets are not
expressive enough to accurately represent even very simple programs. Consider the code fragment
found in Program 2.1 (written in JavaTMsyntax) where we assume that the methods do() and
undo() do not call any other methods.

Assume a thread that invokes start(), compute() and then finish(). A poset is not able to
model the complete relationship between start(), compute(), finish(), do() and undo(). More
speci�cally, how do we relate do() and undo() to compute(). Both of the Hasse diagrams in Figure

2Note that I have chosen to use reexive notation so that � reads \less than or equal." Alternatively I could use
irreexive notation such as <, read \less than." Reexive notation as given in the de�nition of partially ordered set
de�nes the relation, R, as a weak inclusion while irreexive notation de�nes the relation, R, as a strong inclusion. In
some cases the relation associated with strong inclusion is called an order as opposed to a partial order.

3Alternatively, Hasse diagrams can be drawn with arrows from x to y if x covers y. Pay attention to the orientation
when viewing a Hasse diagram.
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Program 2.1. Example Sequential Code

public void start() {

a = val;

}

public void compute() {

do();

undo();

}

public void finish() {

a = 0;

}

3 are less than accurate. The method compute() is neither before or after do() and undo(), yet to say
that compute() is incomparable to do() and undo() is not quite right either. The method compute()
is non-atomic in that it contains do() and undo(). The problem illustrated by this example is that

partially ordered sets can not represent both the notion of order and the notion of containment.

Order is necessary to relate start() and compute() while containment is necessary to show that
compute() is non-atomic.

2.2.2 Interval Orders

An interval order is a special class of partially ordered sets. The name implies that interval orders
are amenable to graphical representation, and on the surface an interval order seems suitable for
describing elements that are non-atomic. Nevertheless, interval orders can not describe containment
and indeed they are less expressive then posets.

De�nition 2.2. Interval Order
A poset (X;�) is an interval order if there is a function I : X ! [i(x); t(x)] where i(x); t(x) 2 <
so that x < y in X i� t(x) < i(y) in <. 2

An interval order corresponding to Program 2.1 is shown in Figure 4. The primary problem
with interval orders is that they can not represent certain posets. In particular, while interval
orders can represent incomparable points, they can not represent incomparable chains. Figure 5
illustrates the inability of interval order to represent chains. Given that the intervals of a; b and
c are as shown, where do we place the interval for d? Interval d must intersect a and b without
intersecting c: an impossible constraint. Hence, an interval order must be free of the poset shown
in Figure 5. This precludes a large set of posets and renders interval orders insuÆcient for our
purposes.
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Poset implying that do() and
undo() occur after compute()

start()

compute()

do()

undo()

finish()
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undo()

Figure 3: InsuÆcient Poset Representations of Program 2.1

finish()undo()do()start()

compute()

Figure 4: An Interval Order Representation of Program 2.1
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Figure 6: An Example Graph and Directed Graph
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Figure 5: A Parallel Chain Poset With No Corresponding Interval Order

2.2.3 Graphs

A graph, as its name implies, is a mathematical structure that naturally lends itself to visual
representation. Graphs are used extensively within the �eld of computer science. Examples include
the representation of language grammars and network connectivity diagrams.

De�nition 2.3. Graph
A graph G with n vertices and m edges consists of a vertex set V (G) = fv1; :::; vng and
an edge set E(G) = fe1; :::; emg. Each edge is a set of two (possibly equal) vertices called its
endpoints. We write uv for an edge e = fu; vg. If uv 2 E(G), then u and v are adjacent. 2

Graphs are illustrated by diagrams in which a point is assigned to each vertex and a curve is
assigned to each edge such that the curve is drawn between the points of the edge's endpoints. An
example graph is shown in Figure 6 (on the left). In some cases, it is useful to add directionality
to the edges of a graph. A directed graph models such directionality and is de�ned in the following
de�nition. An example directed graph can be found in Figure 6 (on the right) where arrowed curves
indicate direction.

De�nition 2.4. Directed Graph

A directed graph is a graph in which each edge is an ordered pair of vertices. We write uv for
the edge (u; v) with u being the tail and v being the head. 2

The de�nitions above are consistent with that used in many texts on the subject (West, 1996;
Chen, 1997). Note that the edge set of a directed graph is simply a relation; e.g., E(G) � V (G)�
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V (G). Focusing on the fact that the edge set of a directed graph is a relation emphasizes the
shared traits between directed graphs and many other mathemathical structures. In particular, a
relation-oriented de�nition of directed graph makes it clear that a partially ordered set is a special
case of a directed graph.

Graphs and directed graphs both have de�nitions for several useful characteristics. For our
purposes, two particularly useful de�nitions are path and cycle. Informally, a path in a graph is an
ordered list of distinct vertices v1; :::; vn such that vi�1vi is an edge for all 2 � i � n. A path may
consist of a single vertex. A cycle is a path v1; :::; vn in which vnv1 is an edge. The length of a path
(cycle) v1; :::; vn is n.

In their basic form, directed graphs and graphs are insuÆcient for modelling software systems
for reasons similar to those cited for partially ordered sets. A directed graph only has a single
relation on its set of vertices. A single relation will not suÆciently describe both the order and
containment characteristics that are found in the typical object-oriented software program since
order and containment are distinct qualities that require individual representation.

2.2.4 Petri Nets

Carl Adam Petri developed Petri theory with a concern for asynchronous communication between
components and the causal relationships between events. The basic theory from which Petri nets
developed can be found in the dissertation of Carl Petri (Petri, 1962). The de�nition of a Petri net
structure is found below.

De�nition 2.5. Petri Nets

A Petri net structure, C, is a four-tuple, C = (P; T; I;O). P = fp1; p2; :::png is a �nite set of
places, n � 0. T = ft1; t2; :::; tmg is a �nite set of transitions, m � 0. The set of places and
the set of transitions are disjoint, P \ T = ;. I : T ! P1 is the input function, a mapping from
transitions to bags4 of places. O : T ! P1 is the output function, a mapping from transitions to
bags of places. 2

Tokens can reside in (or are assigned to) the places of a Petri net. A marking � is an assignment
of a nonnegative number of tokens to the places of a Petri net. The number of tokens that may be
assigned is unbounded. Hence, there are an in�nite number of markings for a Petri net.

A Petri net executes by �ring its transitions. A transition �res by removing tokens from its
input places and creating new tokens in its output places. A transition may �re if it is enabled. A
transition is enabled if each of its input places contains at least as many tokens as connection arcs
from the place to the transition. Tokens that cause a transition to be enabled are called enabling

tokens. When a transition �res, it removes all of its enabling tokens from its input places and then
deposits into its output places one token for each output arc.

A Petri net is often graphically displayed as shown in Figure 7. In fact, a Petri net is a directed,
bipartite multigraph. A bipartite graph is a graph that consists of two classes of nodes such that

4A bag is like a set except that it allows multiple occurrences of elements.
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Figure 7: An Example Petri Net With Firing

each edge connects a node from one class to a node in the other class. In a Petri net, every arc
(edge) connects a place to a transition. A multigraph is a graph that allows multiple edges from
one node to another. As shown in Figure 7, several arcs may connect a place/transition pair.

A Petri net is not suÆcient for representing order and containment. Even though it consists
of two classes of nodes, its bipartite nature would constrain the order and containment relations
to occur adjacently. It is not obvious how the containment relation could be graphically displayed
using a Petri net, thus making it diÆcult to represent hierarchy. In addition, Petri nets assume an
asynchronous style of communication. While it is true that asynchronous communication can serve
as a foundation for synchronous communication (Brookes, 1999), asynchronous primitives can not
represent synchronous communication in a succinct manner.
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3 Diposets

In the previous sections I have summarized several mathematical formalisms and critiqued their
usefulness in the context of describing object-oriented software systems. In each case, I showed
that these formalisms were not suÆcient for describing the richness of simple software systems. I
have developed a new mathematical structure that I refer to as a diposet. In the remainder of this
section I will de�ne diposet and in subsequent sections I will make a case that diposets are suitable
for robustly describing software systems.

The key observation with each of the mathematical structures presented thus far is that a single
relation is not satisfactory for describing software systems. One way to deal with this problem is
to use a pair of structures for describing software systems. Consider a pair of directed graphs G1

and G2 such that V (G1) = V (G2). For convenience I will refer to this paired directed graph as
fG1; G2g. Associated with the pair of directed graphs are two relations, E(G1) and E(G2). Each
relation spawns various characteristics. For example, fG1; G2g may have two distinct paths, p1 and
p2, such that p1 is associated with E(G1) and p2 is associated with E(G2).

A paired directed graph fG1; G2g o�ers the beginnings of a tool equipped for describing a
variety of systems that require two types of relations (e.g., order and containment) over a set of
elements. In order to make a paired directed graph completely useful, more structure must be
added. I created the diposet to �ll the need for just such a structure.

De�nition 3.1. Diposet

Let X be a set. A diorder on X is a pair of binary relations on X referred to, respectively, as
the order relation, RO, and the containment relation, RC , such that RC and RO are both
reexive, anti-symmetric and transitive. For all x; y 2 X, if (x; y) 2 RO then (x; y); (y; x) =2 RC .
Similarly, for all x; y 2 X, if (x; y) 2 RC then (x; y); (y; x) =2 RO. A set X that is equipped with a
diorder is said to be a diposet and is denoted (X;RO; RC). 2

It is immediately obvious that a diposet is a special case of a paired directed graph. It is also
clear that (X;RO) and (X;RC) are both partially ordered sets with a common ground set. The
ground set X of a diposet is equivalent to the set of vertices V (= V (G1) = V (G2)) of a paired
directed graph. The containment and order relations of a diposet, fRC ; ROg, are equivalent to the
two sets of edges in a paired directed graph fE(G1); E(G2)g.

We say that the ground set, X, of a diposet consists of events. The order relation determines
how events are ordered with respect to one another. Consider events a; b 2 X. If (a; b) 2 RO then
we say that a �O b. I.e., event a precedes event b. If (a; b); (b; a) =2 RO then we say that a kO b;
e.g., a and b are incomparable. The containment relation facilitates non-atomic events and event
containment. An event is non-atomic if it contains another event. If (a; b) 2 RC then we say that
a �C b. I.e., event b is non-atomic and contains event a. If (a; b); (b; a) =2 RC then we say that
a kC b; e.g., a and b are mutually non-inclusive. Note the distinction between incomparable and
mutually non-inclusive. In the context of diposets, incomparability refers to the order relation;
mutual non-inclusiveness refers to the containment relation. Up-set is de�ned both for order and
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Figure 8: An Example Diposet

containment and is denoted as such; e.g., up � setO and up � setC (similar de�nitions exist for
down-set). An order (containment) path in a diposet is a sequence of events e1; :::; en such that
e1 �O ::: �O en (e1 �C ::: �C en).

Note that a direct result of De�nition 3.1 is that RO \RC = ;. The fact that RO and RC of a
diposet do not intersect leads to two results that hold for all diposets:

i) An event can not contain an event that it precedes or that it is preceded by.

ii) An event can not be contained by an event that it precedes or that it is preceded by.

The disjointness of RO and RC in a diposet serves as one of the key distinctions between a diposet
and a paired directed graph. In a paired directed graph fG1; G2g it is suÆcient for G1 and G2

to share a common set of vertices but there is no constraint on the two sets of edges associated
with a paired directed graph. For example, it is completely admissable for the edge sets of a paired
directed graph to be identical; i.e., E(G1) = E(G2). The intuition behind the disjointness of RO

and RC is that each relation should provide orthogonal information. If the order and containment
relations of a diposet provide redundant information, then the usefulness of distinct relations is
undermined.

Partially ordered sets are graphically represented via Hasse diagrams. Hasse diagrams serve as
a simple way to represent posets with directed graphs where an arrow is drawn from element a to
element b if b covers a. Diposets utilize Hasse diagrams as well, with the notion of covering being
extended to containment. I.e., b covers a if there does not exist q such that a �C q �C b. Given
that b covers a according to a containment relation, we say that b is a cover container of a. To
accomodate both relations in a diposet, diposet Hasse diagrams require two types of arrows. I will
use a black arrow head to represent the the order relation and a white arrow head to represent the
containment relation. Figure 8 displays an example diposet. From this �gure we can see that event
a is contained by event c and is incomparable to event d. Event b is preceded by event a and event
f is preceded by event d.

In many systems, the kind of containment that can be modelled by a diposet is not suÆciently
constrained. Most software systems require that containment be nested. I add this additional
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Figure 9: An Example Nested Diposet

constraint with the following principle.

De�nition 3.2. The Nested Containment Rule

A diposet, (X;RO; RC), satis�es the nested containment rule if 8x; y; z 2 X, the following
conditions are adhered to:
Condition I: If x kC y, then (z �C x =) z 6�C y) and (z �C y =) z 6�C x).
Condition II: If x �O y, then (z �C x =) z �O y) and (z �C y =) x �O z).
A diposet that satis�es the nested containment rule is called a nested diposet. 2

In plain English, Condition I says that an event can have at most one cover container. Condition
II says that each event precedes (is preceded by) each event that its container events precede (are
preceded by). An example nested diposet can be found in Figure 9.

A key distinction between the Hasse diagrams of diposets and nested diposets can be seen when
comparing Figures 8 and 9. In Figure 9 it is implicit that a �O d by Condition II of De�nition
3.2. In a similar fashion, we see that g �O e. These assumptions can not be made in a general
diposet, and hence in Figure 8 a and d are incomparable while in Figure 9 they are comparable.
This distinction between the Hasse diagram for diposets versus nested diposets requires that one
clearly state which type of diagram is being displayed, so that confusion can be avoided. Nested
diposets are generally more useful than diposets. For example, most computer programs have a
nested structure. For this reason, I will focus solely on nested diposets from this point on and
I will use the term nested diposet and diposet interchangeably to mean nested diposet. Several
interesting results can be derived based on the nested containment rule, as the Weighted Chain
Theorem5 illustrates.

5The intuition behind the name \Weighted Chain" is that if ever a subset of a diposet contains a minimum
contained element (e.g., an element contained by all other members of the subset), then the minimum forces the
elements in the subset to be pulled down like a hanging chain with a weight tied at the bottom.
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Theorem 3.1. Weighted Chain Theorem

For nested diposet, (X;RO; RC), if there exists x0 2 X s.t. 8x 2 X;x0 �C x then all events in X
are incomparable.

Proof by Contradiction Suppose that not all events in X are incomparable. Then there must
exist two events y; z 2 X such that either y �O z or z �O y. Consider the former case. We have
y �O z. Since x0 �C y by the theorem statement, then we know from Condition II of De�nition
3.2 that x0 �O z. Again referring to the theorem statement we have x0 �C z. This contradicts
De�nition 3.1 since an event can not be contained by an event that it precedes; e.g., the disjointness
of RO and RC has been violated. Hence our supposition was false. The alternative cases follow in
a similar manner. 2

In considering the nested containment rule, it is important to be clear on what it does not
imply. In particular, note that for a given nested diposet, (X;RO; RC), with x; y; z 2 X

x �O y �C z 6=) x �O z

The simplest counter example that satis�es the above statement is the following three event nested
diposet, x; y; z 2 X:

x �C z

y �C z

x �O y

Note that if x �O y �C z =) x �O z then Def. 3.1 would be violated; i.e., RO \RC 6= ;.

De�nition 3.3. Sequential Nested Diposet (Thread)

A sequential nested diposet or thread is a nested diposet, XND = fX;RO; RCg, for which
9x0 2 X, called the maximum container of X, such that x �C x0;8x 2 X and such that
8x; y 2 X, if x and y have a common cover container, then x �O y or y �O x. 2

An example thread is shown in Figure 10. It is drawn in an explicit graphical format. Explicit
graphical format will be explained in Section 3.1.

Given that each event in a thread has at most one cover container,6 it is useful to develop a
notion of depth. We de�ne depth recursively. The depth of the maximum container in a thread is
0. For any event x contained within a thread other than the maximum container, the depth of x is
the depth of its cover container plus 1.

6A characteristic that is true of all nested diposets.
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Figure 10: A Sequential Nested Diposet (Explicit Representation)
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Theorem 3.2. Connected Thread Theorem

Any two events in a sequential nested diposet (thread) are either related by the order relation or

the containment relation but never both.

Direct Proof Consider any two events x; y contained in a sequential nested diposet with ground
set X. We know that x and y can not be related by both the order and containment relations by
De�nition 3.1. In terms of the rest of the proof there are three possible cases as listed below.

i) If x and y are not mutually non-inclusive then x and y must be related by the containment
relation and we are done.

ii) If x and y are mutually non-inclusive and have a common cover container then by De�-
nition 3.3 x and y must be related by the order relation and we are done.

iii) If x and y are mutually non-inclusive and do not have a common cover container then
apply the following step. Select the event (either x or y) that has the greatest depth.7 Without
loss of generality assume that x has a greater depth then y. If the cover container of x is
comparable to y than we are done by virtue of Condition II of De�nition 3.2. Otherwise,
repeat this step.

2

Theorem 3.3. Acyclic Diposet Theorem

A diposet can not contain order or containment cycles of length 2 or more.

Proof by Contradiction Suppose that a diposet (X;RO; RC) contains an order cycle of length 2
or more. Then there must exist a path e1; :::; en with e1 6= ::: 6= en such that e1 �O ::: �O en �O e1.
By the anti-symmetry property of partially ordered sets, this implies that e1 = ::: = en. Hence,
our supposition must be false and the diposet does not contain a cycle of length 2 or more. Similar
reasoning applies to containment cycles of length 2 or more. This completes our proof. 2

Note that in general a paired directed graph can contain both order and containment cycles
of any length. As will be shown in subsequent sections, the existence of a cycle indicates that a
system can not be modelled by a diposet but perhaps can be modelled by a paired directed graph.

In many situations it is useful to label the events of a diposet. For example, multiple events in
a diposet's ground set may each share a common label indicating that they represent a common
entity or labels may serve as a basis for relating a class of events. A labelling function facilitates
this process.

7If x and y have the same depth then arbitrarily choose one or the other.
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De�nition 3.4. Labelled Diposets

A diposet labelling function, f : X ! L, maps the ground set of a diposet to a label set,
L. A diposet that is associated with a labelling function and label set is referred to as a labelled
diposet. 2

Many of the example diposets that have been previously shown were labelled. For example, in
Figure 9 the label set is L = fa; b; c; d; e; f; gg and the labelling function is bijective.

3.1 Types of Order

Thus far I have presented three partially ordered structures: diposet, nested diposet and sequential
nested diposet (thread). Nested diposets and sequential nested diposets are especially important
for our purposes because of the abundance of nested structures in the �eld of computer science.
When considering a nested diposet, it is always the case that the order relation of a nested diposet
can be separated into two subsets: CO [ TO � RO. CO is referred to as the set of communication
order relations and TO is referred to as the set of threaded order relations. For any two events,
x; y 2 X, CO(x; y) represents a subset of order relations that are associated with x and y; i.e.,
CO(x; y) � CO. In a similar fashion TO(x; y) � TO.

The threaded order relation TO relates events that are in the same thread. For any nested
diposet (X;RO; RC), we have TO(x; y) = ; if x; y 2 X are not part of the same sequential nested
diposet. The communication order relation CO relates events that are not in the same thread. We
have CO(x; y) = ; if x; y 2 X are part of the same sequential nested diposet.

A simple communication order relation is CO(x; y) = (x; y). As will be shown in Section 4.3,
this order relation is equivalent to asynchronous communication between two threads in which
the thread containing event y receives from the thread containing event x. A more elaborate
communication order relation is

CO(x; y) =
f(x; y0)jy0 2 yup�setOg [ f(y

0; x)jy0 2 ydown�setOg
[f(x0; y)jx0 2 xdown�setOg [ f(y; x

0)jx0 2 xup�setOg
(1)

I show in Section 4.3 that the communication order relation of Equation 1 is a precise charac-
terization of synchronous message passing communication in which x and y represent the send-
ing/receiving events of two communicating threads

Given nested diposet (X;RO; RC) we can write

RO =

2
4 [
(x;y)2X�X

CO(x; y)

3
5[

2
4 [
(x;y)2X�X

TO(x; y)

3
5 (2)

We can leverage the dichotomy found in Equation 2 to simplify our nested diposet Hasse diagrams.
Recall that Figure 10 is drawn in an explicit graphical format. By explicit I mean that all cover
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Figure 11: A Sequential Nested Diposet (Implicit Representation)

container relationships are explicitly shown. Alternatively a sequential nested diposet can be rep-
resented in an implicit graphical format. The implicit graphical representation of a nested diposet
relies on the following three rules.

i) Order relations associated with TO are drawn with a vertical line.

ii) Order relations associated with CO are drawn with a non-vertical curve.

iii) Containment relations are drawn with a horizontal line (represented by RC).

An example sequential nested diposet that is drawn in an implicit format is shown in Figure
11. The thread drawn in Figure 10 is identical to that of Figure 11. The only di�erence is that the
former is represented explicitly while the latter is represented implicitly. In the remainder of this
document, I will use implicit representation of sequential nested diposets.
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4 Diposets and Concurrent Programming

Diposets are amenable to modeling a wide variety of systems including manufacturing schedules,
distributed transactions and hardware systems. Given our interests, we will use nested diposets to
model concurrent software systems. In a concurrent system, the ground set of our nested diposet
consists of method invocations or code blocks. The label of an invocation is simply the method's
name. Hence, multiple invocations of a method share a common label. Note that declaring a
nested diposet's ground set as consisting of method invocations can accomodate a rich class of
programming constructs including recursion and software objects.

finish

do
get

Figure 12: A Nested Diposet Corresponding To Program 4.1

If the body of method a contains an invocation of method b, then we say that b �C a. If the
body of method a precedes method b (as in method a returns prior to the invocation of method
b) then we say that b �O a. Consider the code fragment shown in Program 4.1. Here we see both
the notion of containment and order. The methods get() and finish() are contained within the
method do(). E.g., get �C do and finish �C do. In addition, the method finish() is ordered to
occur after the method get(). E.g., finish �O get. A single invocation of the method do() would
result in the thread displayed in Figure 12.

Program 4.1. Sample Method Calls

public void do() {

get();

finish();

}

public void get() {

z1 = x + y;

}

public void finish() {

z2 = z1++;

}

In some cases a nested diposet or a diposet will not be suÆcient for describing a software system.
In particular, as Theorem 3.3 (the Acyclic Diposet Theorem) declares, a diposet can not contain
non-trivial cycles. In cases where inclusion of a cycle is crucial, the structure of a diposet can
be relaxed and transformed into a paired directed graph. Paired directed graphs are amenable to
describing cycles because they are not beholden to anti-symmetry.
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4.1 Safety and Synchronization

Recall that the key problems of concurrent programs fall into two classes: safety and liveness
problems. Let us consider how nested diposets can model these constucts. Safety is solved by
applying mutual exclusion to the critical section of code that should not be simultaneously accessed
by multiple threads. A common way to guarantee safety in a concurrent program is to require lock
synchronization to code blocks. Only one process can synchronize with a given lock and thus access
to the block of code will necessarily be mutually exclusive.

Safety via lock synchronization can be represented with containment and order relationships.
Locks apply to blocks of code, thus we can think of a realized lock as an invoked method. In
nested diposet terms, the code that a realized lock synchronizes is contained by the lock. We
must make sure that multiple realizations of the same lock are not invoked simultaneously. This is
accomplished by ordering the lock invocations. This process is illustrated in Program 4.2 (written in
psuedo JavaTMcode) and Figure 13. Note that the synchronized keyword means that the lock for
the corresponding method is an instatiation of the Obj class. A nested diposet showing a possible
interleaving of calls to methods do and undo that satis�es the synchronization lock constraints is
given in Figure 13.

Program 4.2. Synchronized Method Calls

public class Obj {

public synchronized void do() {

modify();

change();

}

public synchronized void undo() {

change();

modify();

}

private void change() {

// Atomic; contains no methods

}

private void modify() {

// Atomic; contains no methods

}

}

4.2 Liveness and Deadlock

The result of liveness problems within concurrent, computational systems are perhaps the most
recognizable diÆculties that the typical computer user must face. Liveness is closely associated
with the inter-dependencies and relative speeds of autonomous threads. Relative thread speeds are
tied to the thread scheduling algorithms of operating systems and such algorithms are typically
beyond the control of software developers. For this reason, liveness problems have an inherently
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Figure 13: A Possible Interleaving Of Calls To do() And undo() In Program 4.2

non-deterministic nature from the perspective of the software developer. Although the problems
associated with the absence of safety can be just as devastating as those associated with the absence
of liveness, safety is much easier to maintain than liveness and thus for most computational systems
safety is not a major issue.8 Doug Lea categorizes liveness into four groups (Lea, 1997).

i) Contention occurs when several processes wait on resources but only a subset of the pro-
cesses gain the resources. Contention is fundamentally related to fairness and is generally a
deterministic problem in that it is based on the thread/process scheduling algorithm being
used.

ii) Dormancy occurs when a waiting thread is not noti�ed that the condition it is waiting on
becomes true. This problem is relatively easy to solve with well placed \wake up" mechanisms.
For example, in the JavaTMprogramming language a notify() or notifyAll()method would
be used. Dormancy is typically deterministic in that the wake up mechanisms are usually not
dependent upon a particular interleaving of threads.

iii) Deadlock occurs when a cycle of processes are mutually dependent upon each other at the
same time. More precisely, N processes each wait on exclusive access to one of N resources
while simultaneously holding exclusive access to another one of the N resources such that
each process is awaiting access to a distinct resource. Deadlock is typically non-deterministic
in that it is dependent upon the relative speeds of the processes acquiring the resources.

iv) Premature Termination occurs when a process ceases operation unexpectedly without prop-
erly notifying the other processes in the concurrent system. Such termination can result in
both safety and liveness problems for the remaining processes. Premature termination is akin
to a reversal of dormancy and is relatively easy to solve given appropriate exception handling.

8While corrupt data (the result of safety problems) are farely rare, who among us has not witnessed the blue

screen of death?
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Each of the types of liveness problems can cause a concurrent program to halt in an undesirable
manner. While they are all challenging to deal with, in my experience deadlock stands out in a class
of its own. In the best case scenario, deadlock is tied to the interleaving of the threads involved. This
means that deadlock will non-deterministically occur based on the relative speeds of the threads
and how the relative speeds impact thread interleaving. In the worst case scenario deadlock is not
dependent upon relative thread speeds. In this case deadlock is intrinsic in the semantics of the
communicating threads and there is no hope of evasion. Hence, in the worst case scenario there
is nothing one can do while in the best case scenario one's view of the situation is blurred by
randomness. Given the heightened diÆculty of deadlock, I will focus on its representation.

De�nition 4.1. Deadlock

A paired directed graph exhibits deadlock if and only if it contains a cycle. 2

Nested diposets can not exhibit deadlock as per the Acyclic Diposet Theorem (Theorem 3.3).
What De�nition 4.1 tells us is that a software system that can be modelled by a nested diposet
can not exhibit deadlock. To determine if a system exhibits deadlock, apply the relavent order
and containment relationships and attempt to construct a diposet model of the system. If it is

possible to apply order and containment relationships without violating the nested containment rule

and arrive at a cycle, then deadlock can occur. In such instances the model is not a diposet but
rather a paired directed graph that is not anti-symmetric. Otherwise, the model is a diposet and
by de�nition it is deadlock free.

Deadlock often comes about through the use of multiple synchronization locks. As stated in
the previous section on safety, synchronization locks that have a common label typically have
an ordering constraint that requires that they be comparable. In conjunction with the order
constraint on synchronization locks, deadlock-prone code often implements such locks so that they
are contained by one another. This containment constraint can often contradict the ordering
constraint and lead to deadlock. To illustrate this phenomenon see Figure 14. The �rst section
(part a) of the �gure shows a diposet consisting of two distinct threads each involving two events
with the displayed labels. If we treat these events as the holding of synchronization locks, then we
know that an ordering relation must be applied between the separate threads so that the locks are
not concurrent. The next three sections of Figure 14 show distinct application of order constraints to
the two threads. In each case, the applied order constraints do not violate the nested containment
rules. In part d of Figure 14 the thick lines indicate that a cycle exists - deadlock! Given the
order constraints imposed by the synchronization locks, it is possible for this system to experience
deadlock and in fact the model in part d of Figure 14 is not a diposet.

Figure 15 consists of an alternative con�guration such that the containment constraint of the
left thread is reversed. Again, order constraints are applied to the nested diposet, however, because
of the reversed containment constraint, order constraints must be applied in a manner di�erent from
Figure 14. In no case can order constraints be applied without violating the nested containment
rule and lead to cycles. Thus, the con�guration of this software system is not deadlock-prone. Note
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Lock2Lock1 Lock2Lock1

Lock2Lock1 Lock2Lock1

Lock2Lock1 Lock2Lock1

Part d: Cycle

Part c: No Cycle

Part b: No Cycle

Part a: Prior to Order Constraint

Figure 14: Order/Containment Constraints Leading To Deadlock

that there are only two ways to apply order constraints without violating the nested containment
rules in Figure 15.

In considering Figures 14 and 15 note how the order and containment constraints come about
in concurrent programs. Containment constraints are typically determined at compile time. How
the source code of a program is written determines what the containment constraints will be.
Order constraints between threads are typically determined at run-time and are a function of
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Part c: No Cycle

Part b: No Cycle

Part a: Prior to Order Constraint

Lock1Lock2 Lock2Lock1

Lock1Lock2 Lock2Lock1

Lock1Lock2 Lock2Lock1

Figure 15: Order/Containment Constraints That Do Not Lead To Deadlock

relative thread speeds. This is why we show the containment constraints �rst followed by the order
constraints.

4.3 Communication Semantics

Communication between threads imposes an order constraint on their composite diposet. These
order constraints are precisely the communication order relations discussed in Section 3.1. In this
section I will discuss two important communication styles and describe their corresponding commu-
nication order relationsh. Message passing is one of the fundamental ways to communicate within
a concurrent system. Message passing communication assumes that components are connected via
channels through which messages are transmitted. There are two types of message passing commu-
nication: synchronous and asynchronous. Synchronous message passing requires both the sender
and receiver connected by a channel to be synchronized when a communication occurs. Asyn-

chronous message passing does not require the sender and receiver to be simultaneously engaged
and involves a storage facility in which messages can be placed by the sender until the receiver is
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ready.
The communication order relations for asynchronous message passing is very simple. Given

that the sending event is denoted x and the receiving event is denoted y, an asynchronous message
passing communication order relation for x and y is written

CO(x; y) = f(x; y)g:

In other words, x must precede y. A graphical example of such a relation is shown in Figure 16.
Here the left thread communicates to the right thread. Event x is the sending event and event y is
the receiving event.

y

x

Figure 16: A Diposet Representing Asynchronous Communication

The communication order relation for synchronous message passing is signi�cantly more complex
than asynchronous message passing. Given that the sending event is denoted x and the receiving
event is denoted y, a synchronous message passing communication order relation for x and y is
equivalent to that given in Equation 1. For convenience I have rewritten Equation 1 below. Note
that synchronous message passing is symmetric; i.e., CO(x; y) = CO(y; x). Thus, there is no need
to di�erentiate a sender and receiver. The graphical representation of synchronous message passing
is shown in Figure 17 in which event x and y are synchronous.

CO(x; y) =
f(x; y0)jy0 2 yup�setOg [ f(y

0; x)jy0 2 ydown�setOg
[f(x0; y)jx0 2 xdown�setOg [ f(y; x

0)jx0 2 xup�setOg

4.4 An Example: PtPlot And The JavaTMSwing Package

I conclude this paper with an informative and real world example by demonstrating how diposets
can model the threading mechanism that is part of the Swing package of the JavaTMprogramming
language. The JavaTMSwing package consists of a set of graphical user interface (GUI) components
that have a pluggable look and feel. The pluggable look and feel lets one design a single set of GUI
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Figure 17: A Diposet Representing Synchronous Communication

components that can automatically have the look and feel of any OS platform (e.g., Microsoft
WindowsTM, Sun SolarisTM, Apple MacintoshTM). As with all GUIs, the Swing graphical user
interface must respond both to human input such as mouseclicks and text entry as well as computer
input such as new images or windows to display. Responding to both computer and human input
is an inherently concurrent process. Swing addresses this concurrency with a single event dispatch
thread for all GUI operations.

The Swing event dispatch thread takes events (e.g., the pressing of a button or clicking of a
mouse) and schedules them to occur in a sequential order. The invokeAndWait() and
invokeLater() methods are available so that other threads in a program can access the event dis-
patch thread (these methods are part of the javax.swing.SwingUtilities class). The invokeAndWait()
method communicates synchronously with the event dispatching thread. The invokeLater()

method communicates asynchronously with the event dispatching thread. Improper use of the
invokeAndWait() or invokeLater() methods is a greater source of confusion among Swing users
and can result in deadlock.9

PtPlot, created by Edward A. Lee and Christopher Hylands of UC Berkeley, is an example
JavaTMprogram that uses the Swing package (Davis et al., 1999, chapter 10).10 PtPlot consists of
JavaTMclasses (many of which are Swing classes) that plot data on a graphical display. The main
thread in the program is part of the Plot class run() method. This thread (I'll refer to it as the Pt-
Plot thread) repeatedly calls the Plot.addPoint() method. addPoint() synchronizes on the Plot
object lock and then attempts to draw points on the display. This latter task (drawing points on the
display) requires the PtPlot thread to communicate with the Swing event dispatch thread. Separate

9For a glimpse at the headaches faced by users of the two invoke methods, view http://forum.java.sun.com/

and search on invokeLater.
10PtPlot is available at http://ptolemy.eecs.berkeley.edu/java/ptplot.
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from the Plot thread are several buttons for modifying the view of the PtPlot display. One such
button is the �ll button. If a user clicks on the �ll button the ButtonListener.actionPerformed()
method will be called and this in turn calls the Plot.fillPlot() method. The Plot.fillPlot()
method is synchronized on the Plot object lock. Since the �ll button is a swing component,
ButtonListener.actionPerformed() and all of its contents are part of the event dispatch thread.

In order for the PtPlot thread to actually add points to the display, it must communicate with
the event dispatch thread either through the invokeLater() method or the invokeAndWait()

method. Diposets illustrate how the former method is deadlock free while the latter is deadlock
prone. Figure 18 shows the two separate threads - the PtPlot thread and the event dispatch
thread - without communication between them. Two order constraints must be added to this
�gure. The �rst constrains the two invocations of the Plot lock to not occur concurrently. The
second constraint is due to the communication between the PtPlot thread and the event dispatch
thread. This second constraint is a function of the displayPoints event and the event labelled
\communication event." Figure 19 shows both constraints added to the two threads. The upper
section of Figure 19 consists of the asynchronous constraint that is imposed by invokeLater().
The lower section of Figure 19 uses the synchronous constraint of invokeAndWait(). In this latter
case a cycle exists.
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5 Conclusion

The goal of this paper was to introduce the diposet and illustrate its usefulness as a tool for
modeling and designing concurrent systems. To achieve this goal, I �rst established the diÆculty
of concurrent system design in Section 1 and I argued the importance of a design methodology
that is unambiguous, general, graphical and formal. In Section 2, I considered the properties
of concurrent systems and recognized the importance of the order and containment relationships
between the components found in concurrent systems. I then considered several techniques that
satis�ed my criteria of Section 1 including petri nets and directed graphs but showed that these
methods were insuÆcient because of their inability to characterize order and containment.

In Section 3, I introduced the diposet. I presented the de�nition of the diposet as well as
several key variants, proved related theorems and illustrated the graphical representation of the
diposet. The contents of this section served to make clear that a diposet is unambiguous, general,
graphical and formal. Section 4 consisted of application of the diposet to concurrent programming.
In particular, I represented safety and liveness via diposets and used diposets as the basis for a
variety of communication semantics. I concluded Section 4 with an example of the usefulness of
diposets in modeling concurrency in the JavaTMSwing Package.

The concept of using diposets to model and design concurrent systems is a nascent endeavor.
I believe that it can serve as the basis for a radically new approach to programming but there is
much work to do before such a day arrives. One useful area of study for diposets would endeavor to
extend the application of diposets to model a greater set of concurrent system semantics. I applied
diposets to message passing semantics but I did not consider shared memory communication. While
the set of message passing semantics is large enough to single handedly justify diposets, shared
memory systems are widely used and merit consideration for being modeled by diposets as well.
Diposets should also be considered outside the space of concurrent software systems. Partially
ordered set and lattice theory has been applied to the humanities and social sciences; for example,
the mathematics of ordered sets are used to arrive at consensus among selection committees and
within the �eld of market research (Davey and Priestley, 1990). It is likely that diposets will also
�nd fruitful application in these and other disciplines.

Before delving into new application spaces for diposets, perhaps the most important future work
on diposets is a study of the practical eÆcacy of diposets as applied to concurrent programming; i.e.,
do programmers and software engineers �nd diposets intuitive and usable? It would be worthwhile
to study diposets in the modeling and design of a real world large-scale software system. Only
through use can we truly understand the e�ectiveness of diposets. Such a study would reveal the
aspects of the diposet that should be highlighted and the disadvantages of the diposet that should
be removed.
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