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APPROXIMATING THE THROUGHPUT OF MULTIPLE

MACHINES IN REAL-TIME SCHEDULING

AMOTZ BAR-NOYy , SUDIPTO GUHAz , JOSEPH (SEFFI) NAORx , AND BARUCH

SCHIEBER{

Abstract. We consider the following fundamental schedulingproblem. The input to the problem
consists of n jobs and k machines. Each of the jobs is associated with a release time, a deadline, a
weight, and a processing time on each of the machines. The goal is to �nd a non-preemptive schedule
that maximizes the weight of jobs that meet their respective deadlines. We give constant factor
approximation algorithms for four variants of the problem, depending on the type of the machines
(identical vs. unrelated), and the weight of the jobs (identical vs. arbitrary). All these variants are
known to be NP-Hard, and the two variants involving unrelated machines are also MAX-SNP hard.
The speci�c results obtained are:

� For identical job weights and unrelated machines: a greedy 2-approximation algorithm.
� For identical job weights and k identical machines: the same greedy algorithm achieves a

tight (1+1=k)k

(1+1=k)k�1
-approximation factor.

� For arbitrary job weights and a singlemachine: an LP formulationachieves a 2-approximation
for polynomially bounded integral input and a 3-approximation for arbitrary input. For
unrelated machines, the factors are 3 and 4 respectively.

� For arbitrary job weights and k identical machines: the LP based algorithm applied re-

peatedly achieves a
(1+1=k)k

(1+1=k)k�1
approximation factor for polynomially bounded integral

input and a (1+1=2k)k

(1+1=2k)k�1
approximation factor for arbitrary input.

� For arbitrary job weights and unrelated machines: a combinatorial (3 + 2
p
2 � 5:828)-

approximation algorithm.

Key words. approximation algorithms, scheduling, real-time scheduling, multiple machines
scheduling, parallel machines scheduling, throughput

AMS subject classi�cations. 68Q25, 90B35, 68W25, 68W40, 90B18

1. Introduction. We consider the following fundamental scheduling problem.
The input to the problem consists of n jobs and k machines. Each of the jobs is
associated with a release time, a deadline, a weight, and a processing time on each
of the machines. The goal is to �nd a non-preemptive schedule that maximizes the
weight of the jobs that meet their deadline. Such scheduling problems are frequently
referred to as real-time scheduling problems, and the objective of maximizing the value
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of completed jobs is frequently referred to as throughput. We consider four variants of
the problem depending on the type of the machines (identical vs. unrelated) and the
weight of the jobs (identical vs. arbitrary). In the standard notation for scheduling
problems, the four problems we consider are: P jrij

P
(1 � Ui), P jrij

P
wi(1 � Ui),

Rjrij
P
(1� Ui), and Rjrij

P
wi(1� Ui).

Garey and Johnson [17] (see also [18]) show that the simplest decision problem
corresponding to this problem is already NP-hard in the strong sense. In this decision
problem the input consists of a set of n jobs with release time, deadline, and processing
time. The goal is to decide whether all the jobs can be scheduled on a single machine,
each within its time window. We show that the two variants involving unrelated
machines are also MAX-SNP hard.

In this paper we give constant factor approximation algorithms for all four vari-
ants of the problem. To the best of our knowledge, this is the �rst paper that gives
approximation algorithms with guaranteed performance (approximation factor) for
these problems. We say that an algorithm has an approximation factor � for a max-
imization problem if the weight of its solution is at least 1=� � OPT, where OPT is
the weight of an optimal solution. (Note that we de�ned the approximation factor so
that it would always be at least 1.)

The speci�c results obtained are listed below and summarized in a table given in
Figure 1.

� For identical job weights and unrelated machines, we give a greedy
2-approximation algorithm.

� For identical job weights and k identical machines, we show that the same

greedy algorithm achieves a tight (1+1=k)k

(1+1=k)k�1 approximation factor.

� For arbitrary job weights, we round a fractional solution obtained from a
linear programming relaxation of the problem. We distinguish between the
case where the release times, deadlines, and processing times, are integral
and polynomially bounded, and the case where they are arbitrary. In the
former case, we achieve a 2-approximation factor for a single machine, and
a 3-approximation factor for unrelated machines. In the latter case, we get
a 3-approximation factor for a single machine, and a 4-approximation factor
for unrelated machines.

� For arbitrary job weights and k identical machines, we achieve a (1+1=k)k

(1+1=k)k�1
approximation factor for polynomially bounded integral input, and a
(1+1=2k)k

(1+1=2k)k�1 approximation factor for arbitrary input. Note that as k tends

to in�nity these factors tend to e
e�1 � 1:58198, and

p
ep

e�1 � 2:54149, respec-

tively.
� For arbitrary job weights and unrelated machines we also present a combina-

torial (3 + 2
p
2)-approximation factor (3 + 2

p
2 � 5:828).

The computational di�culty of the problems considered here is due to the \slack
time" available for scheduling the jobs. In general, the time window in which a job
can be scheduled may be (much) larger than its processing time. Interestingly, the
special case where there is no slack time can be solved optimally in polynomial time
even for multiple machines [3] using dynamic programming. Moreover, the problem
can be solved optimally on a single machine with the execution window strictly less
than twice the length of the job, since it reduces to the case of no slack time.

Another special case that was considered earlier in the literature is the case in
which all jobs are released at the same time (or equivalently, the case in which all
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weight function identical machines unrelated machines

identical job weights (2; 1:8; 1:73; : : : ;

(1+1=k)k

(1+1=k)k�1
; : : : ; 1:58) (2; 2; 2; : : : ; 2)

arbitrary job weights (2; 1:8; 1:73; : : : ;

(1+1=k)k

(1+1=k)k�1
; : : : ; 1:58) (2; 3; 3; : : : ; 3)

integral, poly-size, input

arbitrary job weights (3; 2:78; 2:7; : : : ;

(1+1=2k)k

(1+1=2k)k�1
; : : : ; 2:54) (3; 4; 4; : : : ; 4)

arbitrary input

Fig. 1.1. Each entry contains the approximation factors as a function of the number of machines
(k) in the form (1;2;3; : : : ; k; : : : ; k !1)

deadlines are the same). This special case remains NP-hard even for a single machine.
However, Sahni [30] gave a fully polynomial approximation scheme for this special
case.

The problems considered here have several applications. Hall and Magazine [21]
considered the single machine version of our problem in the context of maximizing the
scienti�c, military or commercial value of a space mission. This means selecting and
scheduling in advance a set of projects to be undertaken during the space mission,
where an individual project is typically executable during only part of the mission. It
is indicated in [21] that up to 25% of the budget of a space mission may be spent in
making these decisions. Hall and Magazine [21] present eight heuristic procedures for
�nding a near optimal solution together with computational experiments. However,
they do not provide any approximation guarantees on the solutions produced by their
heuristics. They also mention the applicability of such problems to patient scheduling
in hospitals. For more applications and related work in the scheduling literature
see [11, 15] and the survey of [27].

The preemptive version of our problem for a single machine was studied by
Lawler [26]. For identical job weights, Lawler showed how to apply dynamic program-
ming techniques to solve the problem in polynomial time. He used the same techniques
to obtain a pseudo-polynomial algorithm for the NP-Hard variant 1jri; pmtnj

P
wi(1�

Ui) in which the weights are arbitrary [26]. Lawler [25] also obtained polynomial time
algorithms that solve the problem in two special cases: (i) the time windows in which
jobs can be scheduled are nested; and (ii) the weights and processing times are in oppo-
site order. Kise, Ibaraki and Mine [23] showed how to solve the special case where the
release times and deadlines are similarly ordered. For multiple machines, we note that
P jri; pmtnj

P
wi(1�Ui) is NP-hard [27], yet there is a pseudo-polynomial algorithm

for this problem [26]. (However, it does not imply a fully polynomial approximation
scheme [32].)

A closely related problem is considered by Adler et al. [1] in the context of com-
munication in linear networks. In this problem, messages with release times and
deadlines have to be transmitted over a bus that has a unit bandwidth, and the goal
is to maximize the number of messages delivered within their deadline. It turns out
that our approximation algorithms for the case of arbitrary weights can be applied
to the weighted version of the unbu�ered case considered in [1], yielding a constant
factor approximation algorithm. No approximation algorithm is given in [1] for this



4 A. BAR-NOY, S. GUHA, J. NAOR AND B. SCHIEBER

version.

Spieksma [31] considered the interval scheduling problem on a single machine. In
this problem, the possible instances of a job are given explicitly as a set of time inter-
vals. The goal is to to pick a set of maximumcardinality (or weight) of non-intersecting
time intervals such that at most one interval from each set of job instances is picked.
This problem can be viewed as the discrete version of our problem. Spieksma [31]
considered the unweighted version of the interval scheduling problem. He proved
that it is MAX-SNP hard, gave a 2-approximation algorithm which is similar to our
greedy algorithm, and showed that the integrality gap of a linear programming for-
mulation for this problem approaches 2 as well. We note that our results imply a
2-approximation algorithm for the weighted interval scheduling problem.

In the on-line version of our problems, the jobs appear one by one, and are not
known in advance. Lipton and Tomkins [28] considered the non-preemptive version
of the on-line problem, while Koren and Shasha [24] and Baruah et al. [8] considered
the preemptive version. The special cases where the weight of a job is proportional
to the processing time were considered in the on-line setting in several papers [5, 14,
16, 19, 20, 7]. Our combinatorial algorithm for arbitrary weights borrows some of the
techniques used in the on-line case.

Some of our algorithms are based on rounding a fractional solution obtained from
a linear programming (LP) relaxation of the problem. In the LP formulation for a
single machine we have a variable for every feasible schedule of each of the jobs, a
constraint for each job, and a constraint for each time point. A naive implementation
of this approach would require an unbounded number of variables and constraints. To
overcome this di�culty, we �rst assume that all release times, deadlines, and process-
ing times are (polynomially bounded) integers. This yields a polynomial number of
variables and constraints, allowing for the LP to be solved in polynomial time. For the
case of arbitrary input, we show that we need not consider more than O(n2) variables
and constraints for each of the n jobs. This yields a strongly polynomial running time
at the expense of a minor degradation in the approximation factor. The rounding of
the fractional solution obtained from the linear programming relaxation is done by
decomposing it into a convex sum of integral solutions, and then choosing the best one
among them. We show that the bounds obtained by rounding a fractional solution
are the best possible bounds that can be obtained, since they match the integrality
gap of the LP relaxation.

We extend our algorithms from a single machine to multiple machines by apply-
ing a single machine algorithm repeatedly, machine-by-machine, and provide a rather
general analysis for such a paradigm. Interestingly, it turns out that the approx-
imation factor for the case of identical machines is superior to the approximation
factor of the single machine algorithm which served as our starting point. A similar
phenomenon (in a di�erent context) has been observed by Cornuejols, Fisher and
Nemhauser [12]. In the unrelated machines case, our analysis is similar to the one
described (in a di�erent context) by Awerbuch et al. [4]. It is also similar to the O(1)-
reduction described by Kalyasundaram and Pruhs [22] (in the preemptive case) from
P jri; pmtnj

P
wi(1 � Ui) to 1jri; pmtnj

P
wi(1 � Ui). Unlike the identical machines

case, in the unrelated machines case the extension to multiple machines degrades the
performance relative to a single machine.

2. De�nitions and notations. Let the job system contain n jobs
J = hJ1; : : : ; Jni and k machines M = hM1; : : : ;Mki. Each job Ji is character-
ized by the quadruple (ri; di; Li; wi), where Li = f`i;1; : : : ; `i;kg. The interpretation
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is that job Ji is available at time ri, the release time, it must be executed by time di,
the deadline, its processing time on machineMj is `i;j, and wi is the weight (or pro�t)
associated with the job. We note that our techniques can also be extended to the more
general case where the release time, deadline and weight of each job di�er on di�erent
machines. However, for simplicity, we consider only the case where the release time,
deadline and weight of each job are the same on all machines. The hardness results
are also proved under the same assumption.

We refer to the case in which all job weights are the same as the unweighted

model, and the case in which job weights are arbitrary as the weighted model. (In the
unweighted case our goal is to maximize the cardinality of the set of scheduled jobs.)
We refer to the case in which the processing times of the jobs on all the machines are
the same as the identical machinesmodel, and the case in which processing times di�er
as the unrelated machines model. In the identical machines model with unweighted
jobs, job Ji is characterized by a triplet (ri; di; `i) where di � ri + `i. Without loss of
generality, we assume that the earliest release time is at time t = 0.

A feasible scheduling of job Ji on machine Mj at time t, ri � t � di � `i;j, is
referred to as a job instance, denoted by Ji;j(t). A job instance can also be represented
by an interval on the time line [0;1). We say that the interval Ji;j(t) = [t; t + `i;j)
belongs to job Ji. In general, many intervals may belong to a job. A set of job in-
stances J1;j(t1); : : : ; Jh;j(th) is a feasible schedule on machineMj, if the corresponding
intervals are independent, i.e., they do not overlap, and they belong to distinct jobs.
The weight of a schedule is the sum of the weights of the jobs to which the intervals
(job instances) belong. In the case of multiple machines, we need to �nd a feasible
schedule of distinct jobs on each of the machines. The objective is to maximize the
sum of the weights of all schedules.

We distinguish between the case where the release times, processing times, and
deadlines are integers bounded by a polynomial in the number of jobs, and between
the case of arbitrary inputs. The former case is referred to as polynomially bounded

integral input and the latter case is referred to as arbitrary input.

3. Unweighted jobs. In this section we consider the unweighted model. We
de�ne a greedy algorithm and analyze its performance in both the unrelated and
identical models. In the former model, we show that it is a 2-approximation algorithm,
and in the latter model, we show that it is a �(k)-approximation algorithm, where

�(k) =
(k + 1)k

(k + 1)k � kk
=

(1 + 1=k)k

(1 + 1=k)k � 1
:

For k = 1; 2 we get �(1) = 2 and �(2) = 9=5, and for k �! 1 we have �(k) �!
e=(e � 1) � 1:58198.

3.1. The greedy algorithm. The greedy strategy for a single machine is as
follows. At each time step t (starting at t = 0), the algorithm schedules the job
instance that �nishes �rst among all jobs that can be scheduled at t or later. Note
that the greedy algorithm does not take into consideration the deadlines of the jobs,
except for determining whether jobs are eligible for scheduling. The greedy algorithm
for multiple machines executes the greedy algorithm (for a single machine) machine
by machine, updating the set of jobs to be scheduled on each machine to include only
jobs that have not been scheduled on previous machines.

We now give a more formal de�nition of our strategy, and introduce some nota-
tions. De�ne the procedure NEXT(t; j;J ). The procedure determines the job instance
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Ji;j(t0), t0 � t, such that t0 + `i;j is the earliest among all instances of jobs in J that
start at time t or later on machine Mj . If no such interval exists, the procedure
returns null.

Algorithm 1-GREEDY(j;J ) �nds a feasible schedule on machine Mj among the
jobs in J by calling Procedure NEXT(t; j;J ) repeatedly.

1. The �rst call is for Ji1;j(t1) = NEXT(0; j;J ).
2. Assume the algorithm has already computed Ji1;j(t1); : : : ; Jih;j(th). Let the

current time be t = th + `ih;j and let the current set of jobs be J := J n
fJi1;j; : : : ; Jih;jg.

3. The algorithm calls NEXT(t; j;J ) that returns either Jih+1;j(th+1) or null.
4. The algorithm terminates in round r+1 when procedure NEXT returns null.

It returns the set fJi1;j(t1); : : : ; Jir;j(tr)g.
Algorithm k-GREEDY(J ) �nds k schedules such that a job appears at most once in

the schedules. It calls Algorithm 1-GREEDYmachine by machine, each time updating
the set J of jobs to be scheduled. Assume that the output of 1-GREEDY(j;J ) in
the �rst i � 1 calls is G1; : : : ; Gi�1, where Gj is a feasible schedule on machine Mj ,
for 1 � j � i � 1. Then, the algorithm calls 1-GREEDY(i;J n [j=1;:::;i�1Gj) to get
schedule Gi.

The following property of Algorithm 1-GREEDY is used in the analysis of the
approximation factors of our algorithms.

Proposition 3.1. Let the set of jobs found by 1-GREEDY(j;J ) for a job system

J be G. Let H be any feasible schedule on machine Mj among the jobs in J n G.

Then, jHj � jGj.
Proof. For each interval (job instance) in H there exists an interval in G that

overlaps with it and terminates earlier. Otherwise, 1-GREEDY would have chosen this
interval. The proposition follows from the feasibility of H, since at most one interval
in H can overlap with the endpoint of any interval in G.

3.2. Unrelated machines. Based on Proposition 3.1, the following theorem
states the performance of the k-GREEDY algorithm in the unweighted jobs and unre-
lated machines model.

Theorem 3.2. Algorithm k-GREEDY achieves an approximation factor of 2 in

the unweighted jobs and unrelated machines model.

Proof. Let G(k) = G1 [ � � � [Gk be the output of k-GREEDY and let OPT (k) =
O1 [ � � � [ Ok be the sets of intervals scheduled on the k machines by an optimal
solution OPT. (We note that these sets will be considered as jobs and job instances
interchangeably.) Let Hj = Oj n G(k) be the set of all jobs scheduled by OPT

on machine Mj that k-GREEDY did not schedule on any machine, and let H =
H1[ � � �[Hk. Let OG = OPT (k)\G(k) be the set of jobs taken by both k-GREEDY
and OPT. It follows that OPT (k) = OG [H.

Proposition 3.1 implies that jHjj � jGjj. This is true since Hj is a feasible
schedule on machine Mj among the jobs that were not picked by k-GREEDY while
constructing the schedule for machine Mj . Since the sets Hj are mutually disjoint
and the same holds for the sets Gj, jHj � jG(k)j. Since jOGj � jG(k)j, we get that
jOPT (k)j � 2jG(k)j and the theorem follows.

3.3. Identical machines. In this section we analyze the k-GREEDY algorithm
for the unweighted jobs and identical machines model. We show that the approxima-
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tion factor in this case is

�(k) =
(k + 1)k

(k + 1)k � kk
:

Recall that for k �!1 we have �(k) �! e=(e � 1) � 1:58198.
The analysis below is quite general and it only uses the fact that the algorithm is

applied sequentially, machine by machine, and that the machines are identical (and
that no job migration is allowed). Let OPT (k) be an optimal schedule for k identical
machines. Let A be any algorithm for one machine. De�ne by �A(k) (or by �(k) when
A is known) the approximation factor of A compared with OPT (k). That is, if A is
the set of jobs chosen by A, then jAj � (1=�(k))jOPT (k)j. Note that the comparison
is done between an algorithm that uses one machine and an optimal schedule that
uses k machines.

Let A(k) be the algorithm that applies algorithmA, machine by machine, k times.
In the next theorem we bound the performance of A(k) using �(k).

Theorem 3.3. Algorithm A(k) achieves an
�(k)k

�(k)k�(�(k)�1)k approximation factor

for k identical machines.

Proof. Let Ai be the set of jobs chosen by A(k) for the i-th machine. Suppose
that the algorithm has already determined A1; : : : ; Ai�1. Consider the schedule given
by removing from OPT (k) all the jobs in A1; : : : ; Ai�1. Clearly, this is still a feasible
schedule of cardinality at least jOPT (k)j�Pi�1

j=1 jAjj. Therefore, by the de�nition of

�(k), the set Ai satis�es jAij � (1=�(k))(jOPT (k)j �Pi�1
j=1 jAj j). Adding

Pi�1
j=1 jAjj

to both sides gives us,

iX

j=1

jAj j � jOPT (k)j
�(k)

+
�(k)� 1

�(k)

i�1X

j=1

jAjj :(3.1)

We prove by induction on i that

iX

j=1

jAjj � �(k)i � (�(k)� 1)i

�(k)i
jOPT (k)j :

When i = 1, by de�nition, jA1j � jOPT (k)j
�(k) . Assume the claim holds for i�1. Applying

the induction hypothesis to Equation (3.1) we get,

iX

j=1

jAjj � jOPT (k)j
�(k)

+
�(k)� 1

�(k)
� �(k)

i�1 � (�(k)� 1)i�1

�(k)i�1
jOPT (k)j :

Rearranging terms yields the inductive claim. Setting i = k proves the theorem,
namely,

kX

j=1

jAjj � �(k)k � (�(k)� 1)k

�(k)k
jOPT (k)j :

We now apply the above theorem to algorithm k-GREEDY. We compute the
value of �(k) for algorithm 1-GREEDY, and observe that algorithm k-GREEDY indeed
applies algorithm 1-GREEDY k times, as assumed by Theorem 3.3.
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Theorem 3.4. The approximation factor of k-GREEDY is �(k) = (k+1)k

(k+1)k�kk , in
the unweighted jobs and identical machines model.

Proof. Recall that algorithm 1-GREEDY scans all the intervals ordered by their
endpoints and picks the �rst possible interval belonging to a job that was not picked
before. Let G be the set picked by the greedy algorithm, and consider the schedule
of H = OPT (k) � G on machines M1; : : : ;Mk. Similar to the arguments of Propo-
sition 3.1, in each of the machines, if a particular job of H was not chosen, then
there must be a job in progress in G. Also this job must �nish before the particular
job in H �nishes. Thus, the number of jobs in H executed on any single machine
by the optimal schedule has to be at most jGj. Since the jobs executed by the op-
timal schedule on di�erent machines are disjoint, we get jHj � kjGj. Consequently,
jOPT (k)j � (k + 1)jGj and �(k) = k + 1. The theorem follows by setting this value
for �(k) in Theorem 3.3.
Remark: It is not di�cult to see that �(k) � k�(1); that is, if the approximation
factor of A compared with OPT (1) is �(1), then the approximation factor of A
compared with OPT (k) is no more than k�(1). However, applying Theorem 3.3
using this bound for �(k) would yield an approximation factor for k identical machines
which is inferior to the �(1) bound on this approximation ratio that can be achieved
directly. We note that for this reason Theorem 3.3 cannot be applied to improve the
result in [22].

3.4. Tight bounds for GREEDY . In this subsection we construct instances
for which our bounds in the unweighted model for algorithm GREEDY are tight. We
�rst show that for one machine (where the unrelated and identical models coincide)
the 2-approximation is tight. Next, we generalize this construction for the unrelated
model, and prove the tight bound of 2 for k > 1 machines. Finally, we generalize the
construction for one machine to k > 1 identical machines and prove the tight bound
of �(k).

Recall that in the unweighted model each job is characterized by a triplet (ri; di; `i)
in the identical machines model and by a triplet (ri; di; Li), where Li = f`i;1; : : : ; `i;kg,
in the unrelated machines model.

3.4.1. A single machine. For a single machine the system contains two jobs:
G1 = (0; 3; 1) and H1 = (0; 2; 2). Algorithm 1-GREEDY schedules the instance G1(0)
of job G1 and cannot schedule any instance of H1. An optimal solution schedules the
instances H1(0) and G1(2). Clearly, the ratio is 2. We could repeat this pattern on
the time axis to obtain this ratio for any number of jobs.

This construction demonstrates the limitation of the approach of Algorithm
1-GREEDY. This approach ignores the deadlines and therefore does not capitalize
on the urgency in scheduling job H1 in order not to miss its deadline. We generalize
this idea further for k machines.

Note that an algorithm that does not consider job lengths and schedules solely
according to deadlines may produce even worse results. Consider the following n+ 1
jobs: n jobs Hi = (0; 2n+ 1; 2), 1 � i � n, and one job G1 = (0; 2n; 2n). An optimal
solution schedules all the H-type jobs whereas an algorithm that schedules jobs with
earliest deadline �rst schedules the G-type job �rst and then is unable to schedule
any of the H-type jobs.

3.4.2. Unrelated machines. For k � 1 machines the job system contains 2k
jobs: G1; : : : ; Gk and H1; : : : ;Hk. The release time of all jobs is 0. The deadline of
all the G-type jobs is 3 and the deadline of all the H-type jobs is 2. The length of



APPROXIMATING THROUGHPUT IN REAL-TIME SCHEDULING 9

job Gi on machine Mi is 1 and it is 4 on all other machines. The length of job Hi on
machine Mi is 2 and it is 3 on all other machines.

Note that only jobs Gi and Hi can be scheduled on machine Mi, since all other
jobs are too long to meet their deadline. Hence, Algorithm k-GREEDY considers
only these two jobs while constructing the schedule for machine Mi. As a result,
k-GREEDY selects the instance Gi(0) of job Gi to be scheduled on machine Mi and
cannot schedule any of the H-type jobs. On the other hand, an optimal solution
schedules the instances Hi(0) and Gi(2) on machine Mi.

Overall, Algorithm k-GREEDY schedules k jobs while an optimal algorithm sched-
ules all 2k jobs. This yields a tight approximation factor of 2 in the unweighted jobs
and unrelated machines model.

3.4.3. Identical machines. We de�ne job systems J (k) for any given k �
1. We show that on J (k) the performance of k-GREEDY(J (k)) is no more than
(1=�(k)) � OPT(J (k)). The J (1) system is the one de�ned in Subsection 3.4.1. The
J (2) job system contains 2 � 32 = 18 jobs: 2 � 3 = 6 jobs of type G1 = (0; d1; `), 2

2 = 4
jobs of type G2 = (0; d2; ` + 1), and 23 = 8 jobs of type H = (0; d; `+ 2). If we set
` = 10, d1 = 100, d2 = 70, and d = 48, we force Algorithm 2-GREEDY to make the
following selections:

� On the �rst machine, 2-GREEDY schedules all the 6 jobs of type G1. This
is true since the length of these jobs is less than the lengths of the jobs of
type G2 and the jobs of type H. The last G1-type interval terminates at time
60. Hence, there is no room for a G2-type (H-type) interval, the deadline of
which is 70 (48), and the length of which is 11 (12).

� On the second machine, 2-GREEDY schedules all the 4 jobs of type G2 since
they are shorter than the jobs of type H. The last G2-type job terminates at
time 44 which leaves no room for another job of type H.

Overall, 2-GREEDY schedules only 10 jobs. We show now an optimal solution that
schedules all 18 jobs. It schedules 9 jobs on each machine as follows:

H(0);H(12);H(24);H(36);G2(48); G2(59); G1(70); G1(80); G1(90) :

Note that all the instances terminate before their deadlines. As a result we get a ratio
�(2) = (2 � 32)=(2 � 32 � 23) = 9=5.

We are ready to de�ne J (k) for any k � 1. The job system contains k(k + 1)k

jobs. Algorithm k-GREEDY is able to schedule only k(k+1)k �kk+1 out of them and
there exists an optimal solution that schedules all of them. As a result we get the
ratio

k(k + 1)k

k(k + 1)k � kk+1
= �(k) :

The J (k) system is composed of k + 1 types of jobs: G1; G2; : : : ; Gk and H. There
are ki(k + 1)k�i jobs (0; di; `+ i � 1) in Gi and kk+1 jobs (0; d; `+ k) in H. Indeed,

kk+1 +
Pk

i=1 k
i(k + 1)k�i = k(k + 1)k. (To see this, divide the equation by kk+1 to

get 1+(1=k) �Pk�1
i=0 (1+1=k)i = (1+1=k)k.) Note also that the length of the Gi-type

jobs is monotonically increasing in i and that the H-type jobs are the longest.
We show how by �xing d1; : : : ; dk and d and by setting ` as a large enough number,

we force Algorithm k-GREEDY to select for machine i all the jobs of type Gi but no
other jobs. Thus, k-GREEDY does not schedule any of the H-type jobs. On the
other hand, an optimal solution is able to construct the same schedule for all the k
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machines. It starts by scheduling 1=k of the H-type jobs on each machine, and then
it schedules in turn 1=k of the jobs from Gk; Gk�1; : : : ; G1 in this order.

We �x the values of d; dk; : : : ; d1 to allow for such an optimal schedule. The
optimal solution starts by scheduling on each machine (1=k) � kk+1 = kk of the H-
type jobs each of length ` + k. Thus, we set d = kk � (` + k) = kk` + kk+1. Next,
(1=k) � kk = kk�1 of the Gk-type jobs each of length ` + k � 1 are scheduled. Thus,
we set dk = d+ kk�1 � (` + k � 1). Similarly, for i = k � 1; : : : ; 1,

di = di+1 + (1=k) � ki(1 + k)k�i � (`+ i� 1)

= di+1 + ki�1(1 + k)k�i � (` + i� 1)

= di+1 + ki�1(1 + k)k�i � ` + ki�1(1 + k)k�i � (i� 1) :

Observe that d < dk < : : : < d1.
We now have to show that with the values �xed above Algorithm k-GREEDY

schedules all the jobs of type Gi but no other jobs on machine i. Note that we have
not set yet the value of `, we set it to be large enough to force such a behavior
of k-GREEDY. First, we �nd the general solution to the recurrence for d(k+1)�i,
1 � i � k. The coe�cient of ` in d(k+1)�i is

iX

j=1

kk�j(k + 1)j�1 + kk = kk�i(k + 1)i :

It follows that

dk+1�i = kk�i(k + 1)i` + kk+1 +
iX

j=1

kk�j(k + 1)j�1(k � j) :

For the analysis below we need to break the expression for di into two components
one is the term that depends (linearly) in `, and the other that depends only on i and
k. For convenience denote dk+1 = d. It follows that for 1 � i � k + 1,

di = ki�1(k + 1)k�i+1` + f(i; k) ;

for some function f(i; k) independent of `.
Algorithm k-GREEDY starts by scheduling all the jobs of type G1 on machine

1, since these are the shortest length jobs. The time taken is k(k + 1)k�1`. Since
our goal is not to have any other jobs scheduled on machine 1, we must make the
deadline of the other jobs early enough so that they cannot be scheduled after this
time. In particular, to prevent scheduling G2-type jobs on machine 1 we must have
k(k + 1)k�1` + (` + 1) > d2. Note that since the deadlines di are monotonically
decreasing and the lengths of the Gi-type jobs are monotonically increasing, if a job
of type Gi cannot be scheduled, then a job of type Gi+1 cannot be scheduled as well.
The same is true for jobs of type H. It follows that if k(k + 1)k�1` + (` + 1) > d2,
then after all the jobs of type G1 are scheduled on machine 1, no other jobs can be
scheduled on machine 1.

In general, assume that Algorithm k-GREEDY starts the scheduling on machine i
after all jobs of type G1; : : : ; Gi�1 have been already scheduled on machines 1; : : : ; i�1
respectively. In this case Algorithm k-GREEDY schedules all the jobs of type Gi on
machine i, since these are the shortest length jobs that have not been scheduled yet.
The time taken is ki(k + 1)k�i(` + i � 1). Thus, if

ki(k + 1)k�i(` + i� 1) + (` + i) > di+1
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then the jobs of type Gi+1 cannot be scheduled on machine i. This implies that also
all jobs of types Gi+2; : : : ; Gk and H cannot be scheduled at this point on machine i.

We conclude that in order to force the desired behavior of Algorithm k-GREEDY
we must have for all 1 � i � k

ki(k + 1)k�i(`+ i� 1) + (`+ i) > di+1 :

By the recurrence relation for di+1 it follows that the above inequality holds if and
only if the following holds

ki(k + 1)k�i(`+ i� 1) + (` + i) > ki(k + 1)k�i`+ f(i + 1; k) :

This is equivalent to

` > f(i + 1; k)� i� (i� 1)ki(k + 1)k�i :

Since f(i + 1; k) does not depend on `, it follows that the above inequality holds for
a su�ciently large `. This provides a tight bound for the k-GREEDY schedule.

4. Weighted jobs. In this section we present approximation algorithms for
weighted jobs. We �rst present algorithms for a single machine and for unrelated
machines that are based on rounding a linear programming relaxation of the prob-
lem. Then, we re-apply the analysis of Theorem 3.3 to get better approximation
factors for the identical machines model. We conclude with a combinatorial algo-
rithm for unrelated machines which is e�cient and easy to implement. However, it
achieves a weaker approximation guarantee than the bound obtained by rounding a
fractional solution obtained from the linear programming relaxation.

4.1. Approximationvia linear programming. In this subsection we describe
a linear programming based approximation algorithm. We �rst describe the algorithm
for the case of a single machine, and then generalize it to the case of multiple machines.
Our linear programming formulation is based on discretizing time. Suppose that the
time axis is divided into N time slots. The complexity of our algorithms depends on
N . However, we assume for now thatN is part of the input, and that the discretization
of time is �ne enough so as to represent any feasible schedule, up to small shifts that
do not change the value of the objective function. Later, we show how to get rid of
these assumptions at the expense of a slight increase in the approximation factor.

4.1.1. A single machine. In this subsection we describe our linear program
assuming that the number of slots N is part of the input.

The linear program relaxes the scheduling problem in the following way. A frac-
tional feasible solution is one which distributes the processing of a job among the job
instances or intervals belonging to it with the restriction that at any given point of
time t, the sum of the fractions assigned to all the intervals at t (belonging to all jobs)
does not exceed 1. To this end, for each job Ji 2 J , de�ne a variable xit for each
interval [t; t+ `i) belonging to it, i.e., for which t � ri and t + `i � di. It would be
convenient to assume that xit = 0 for any other value of t between 1 and N . The
linear program is as follows.
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maximize
nX

i=1

di�`iX

t=ri

wi � xit

subject to:

For each time slot t, 1 � t � N :
nX

i=1

tX

t0=t�`i+1
xit0 � 1

For each job i, 1 � i � n:
di�`iX

t=ri

xit � 1

For all 1 � i � n and 1 � t � N : 0 � xit � 1

It is easy to see that any feasible schedule de�nes a feasible integral solution to the
linear program and vice versa. Therefore, the value of an optimal (fractional) solution
to the linear program is an upper bound on the value of an optimal integral solution.

We compute an optimal solution to the linear program and denote the value of
variable xit in this solution by qit. Denote the value of the objective function in an
optimal solution by OPT. We now show how to round an optimal solution to the
linear program to an integral solution.

We de�ne the following coloring of intervals. The collection of all intervals be-
longing to a set of jobs J can be regarded as an interval representation of an interval
graph I. We de�ne a set of intervals in I to be independent if: (i) No two intervals
in the set overlap; (ii) No two intervals in the set belong to the same job. (Note that
this de�nition is more restrictive than the regular independence relation in interval
graphs.) Clearly, an independent set of intervals de�nes a feasible schedule. The
weight of an independent set P , w(P ), is de�ned to be the sum of the weights of the
jobs to which the intervals belong.

Our goal is to color intervals in I such that each color class induces an independent
set. We note that not all intervals are required to be colored and that an interval may
receive more than one color. Suppose that a collection of color classes (independent
sets) P1; : : : ; Pm with non-negative coe�cients �1; : : : ; �m satis�es (i)

Pm
i=1 �i � 2,

and, (ii)
Pm

i=1w(Pi)��i � OPT. By convexity, there exists a color class Pi, 1 � i � m,
for which w(Pi) � OPT=2. This color class is de�ned to be our approximate solution,
and the approximation factor is 2. It remains to show how to obtain the desired
coloring.

We now take a short detour and de�ne the group constrained interval coloring

problem. Let Q = hQ1; : : : ; Qpi be an interval representation in which the maximum
number of mutually overlapping intervals is t1. Suppose that the intervals are par-
titioned into disjoint groups g1; : : : ; gr, where a group contains at most t2 intervals.
A legal group constrained coloring of the intervals in Q is a coloring in which: (i)
Overlapping intervals are not allowed to get the same color; (ii) Intervals belonging
to the same group are not allowed to get the same color.

Theorem 4.1. There exists a legal group constrained coloring of the intervals in

Q that uses at most t1 + t2 � 1 colors.

Proof. We use a greedy algorithm to obtain a legal coloring using at most t1+t2�1
colors. Sort the intervals in Q by their left endpoint and color the intervals from left
to right with respect to this ordering. When an interval is considered by the algorithm
it is colored by any one of the free colors available at that time. We show by induction
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that when the algorithm considers an interval, there is always a free color.
This is true initially. When the algorithm considers interval Qi, the colors that

cannot be used for Qi are occupied by either intervals that overlap with Qi, or by
intervals that belong to the same group as Qi. Since we are considering the intervals
sorted by their left endpoint, all intervals overlapping with Qi also overlap with each
other, and hence there are at most t1 � 1 such intervals. There can be at most t2� 1
intervals that belong to the same group as Qi. Since the number of available colors
is t1 + t2 � 1, there is always a free color.

We are now back to the problem of coloring the intervals in I. Let N 0 = N2 �n2.
We can round down each fraction qit in the optimal solution to the closest fraction
of the form a=N 0, where 1 � a � N 0. Each qit decreases by at most 1=(N2n2) by
this rounding, and hence the rounding decreases the objective function by at most
maxi wi=(Nn). Since the optimal solution value is at least maxiwi, it follows that
the rounding incurs a negligible error (of at most 1=(Nn) factor) in the value of the
objective function. We now generate an interval graph I0 from I by replacing each
interval Ji(t) 2 I by qit �N 0 \parallel" intervals. De�ne a group constrained coloring
problem on I0, where group gi, 1 � i � n, contains all instances of job Ji. Note that
in I0, the maximum number of mutually overlapping intervals is bounded by N 0, and
the maximum number of intervals belonging to a group is also N 0.

By Theorem 4.1, there exists a group constrained coloring of I 0 that uses at most
2N 0 � 1 colors. Attach a coe�cient of 1=N 0 to each color class. Clearly, the sum of
the coe�cients is less than 2. Also, by our construction, the sum of the weights of the
intervals in all the color classes, multiplied by the coe�cient 1=N 0, is at least OPT
(up to the a factor of 1� 1=(Nn), due to the rounding). We conclude,

Theorem 4.2. The approximation factor of the algorithm that rounds an optimal

fractional solution is 2.
We note that the technique of rounding a fractional solution by decomposing it

into a convex combination of integral solutions was used in [2, 10].
The 2-approximation factor obtained by the rounding algorithm is the best pos-

sible bound that can be obtained through our linear programming relaxation. The
following example shows that the integrality gap between the fractional linear pro-
gramming solution and the integral solution can approach 2. There are two jobs:
G1 = (0; d; 1) and H1 = (0; d; d) both of unit weight. Any integral solution can pro-
cess only a single job. A fractional solution may assign a fraction of 1 � 1=d to job
H1, and then assign a fraction of 1=d to all job instances of G1 of the form [i; i+ 1),
0 � i � d � 1. Thus, the integrality gap is 2 � 1=d. Note that the integrality gap
depends on the discretization of time and it approaches 2 as d goes to in�nity.

4.1.2. A strongly polynomial bound for a single machine. The di�culty
with the linear programming formulation and the rounding algorithm is that the
complexity of the algorithm depends on N , the number of time slots. We now show
how we choose N to be a polynomial in the number of jobs, n, at the expense of losing
an additive term of one in the approximation factor.

First, we note that in case the release times, deadlines, and processing times are
integral, we may assume without loss of generality that each job is scheduled at an
integral point of time. If, in addition, they are restricted to integers of polynomial
size, then the number of variables and constraints is bounded by a polynomial.

We now turn our attention to the case of arbitrary inputs. Partition the jobs in
J into two classes:

� Big slack jobs: Ji 2 J for which di � ri � n2 � `i.
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� Small slack jobs: Ji 2 J for which di � ri < n2 � `i.
We obtain a fractional solution separately for the big slack jobs and small slack

jobs. We �rst explain how to obtain a fractional solution for the big slack jobs. For
each big slack job Ji 2 J , �nd n2 non-overlapping job instances and assign a value
of 1=n2 to each such interval. Note that this many non-overlapping intervals can be
found since di � ri is large enough. We claim that this assignment can be ignored
when computing the solution (via LP) for the small slack jobs. This is true because
at any point of time t, the sum of the fractions assigned to intervals at t belonging
to big slack jobs can be at most 1=n, and thus their e�ect on any fractional solution
is negligible. (In the worst case, scale down all fractions corresponding to small slack
jobs by a factor of (1�1=n).) Nevertheless, a big slack job contributes all of its weight
to the fractional objective function because it has n2 non-overlapping copies.

We now restrict our attention to the set of small slack jobs and explain how
to compute a fractional solution for them. To bound the number of variables and
constraints in the LP we partition the time axis into at most n � (n2 + 1) time slots.
Instead of having a variable for each job instance we consider at most n2 � (n2 + 1)
variables, where for each job Ji 2 J , there are at most n � (n2 + 1) variables, and the
j-th variable \represents" all the job instances of Ji that start during the j-th time
slot. Similarly, we consider at most n � (n2+ 1) constraints, where the j-th constraint
\covers" the j-th time slot. For each small slack job Ji 2 J , de�ne n2 + 1 \dividers"
along the time axis at points ri + j di�rin2 , for j = 0; : : : ; n2. After de�ning all the
n � (n2+1) dividers, the time slots are determined by the adjacent dividers. The main
observation is that for each small slack job Ji, no interval can be fully contained in a
time slot, i.e., between two consecutive dividers.

The LP formulation for the modi�ed variables and constraints is slightly di�erent
from the original formulation. To see why, consider a feasible schedule. As mentioned
above, a job instance cannot be fully contained in a time slot t. However, the schedule
we are considering may consist of two instances of jobs such that one terminates within
time slot t and the other starts within t. If we keep the constraints that stipulate
that the sum of the variables corresponding to intervals that intersect a time slot
is bounded by 1, then we would not be able to represent such a schedule in our
formulation. To overcome this problem, we relax the linear program, and allow that
at every time slot t, the sum of the fractions assigned to the intervals that intersect t
can be at most 2. The relaxed linear program is the following.

maximize
nX

i=1

X

ri�t�di�`i
wi � xit

subject to:

For each time slot t:
nX

i=1

X

t�`i+1�t0�t
xit0 � 2

For each job i, 1 � i � n:
X

ri�t�di�`i
xit � 1

For all i and t: 0 � xit � 1

It is easy to see that our relaxation guarantees that the value of the objective function
in the above linear program is at least as big as the value of an optimal schedule. We
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round an optimal fractional solution in the same way as in the previous section. Since
we relaxed our constraints, we note that when we run the group constrained interval
coloring algorithm, the number of mutually overlapping intervals can be at most twice
the number of intervals in each group. Therefore, when we generate the color classes
P1; : : : ; Pm with coe�cients �1; : : : ; �m, we can only guarantee that: (i)

Pm
i=1�i < 3;

and, (ii)
Pm

i=1w(Pi) ��i = OPT, yielding an approximation factor of 3. We conclude,

Theorem 4.3. The approximation factor of the strongly polynomial algorithm

that rounds a fractional solution is 3.

4.1.3. Unrelated machines. In this section we consider the case of k unrelated
machines. We �rst present a linear programming formulation. For clarity, we give
the LP formulation for polynomially bounded integral inputs. However, the construc-
tion given in the previous section that achieves a strongly polynomial algorithm for
arbitrary inputs can be applied here as well. Assume that there are N time slots.
For each job Ji 2 J and for each machine Mj 2 M, de�ne a variable xitj for each
instance [t; t+ `i;j ] of Ji.

maximize
kX

j=1

nX

i=1

di�`i;jX

t=ri

wi � xitj

subject to:

For each time slot t, 1 � t � N ,

and machine j, 1 � j � k:
nX

i=1

tX

t0=t�`i;j+1
xit0j � 1

For each job i, 1 � i � n:
kX

j=1

di�`i;jX

t=ri

xitj � 1

For all 1 � i � n, 1 � j � k,
and 1 � t � N : 0 � xitj � 1

The algorithm rounds the fractional solution machine by machine. Let S =
fS1; : : : ; Skg denote the rounded solution. When rounding machine i, we �rst discard
from its fractional solution all intervals belonging to jobs assigned to S1; : : : ; Si�1.
Let c denote the approximation factor that can be achieved when rounding a single
machine. Namely, c = 2 for integral polynomial size inputs and c = 3 for arbitrary
inputs.

Theorem 4.4. The approximation factor of the algorithm that rounds a k-
machine solution is (c+ 1).

Proof. Let Fj, 1 � j � k, denote the fractional solution of machine j, and
let w(Fj) denote its value. Denote by F 0

j the fractional solution of machine j after
discarding all intervals belonging to jobs chosen to S1; : : : ; Sj�1.

We know that for all j, 1 � j � k,

w(Sj) � 1

c
�w(F 0

j) :
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Adding up all the inequalities, since the sets Sj (F 0
j) are mutually disjoint, we get

that,

w(S) � 1

c
�

kX

j=1

w(F 0
j)

Recall that for each job i, the sum of the values of the fractional solution assigned to
the intervals belonging to it in all the machines does not exceed 1. Therefore,

kX

j=1

w(F 0
j) �

kX

j=1

w(Fj)� w(S) :

Yielding that

w(S) �
Pk

j=1w(Fj)

c + 1
:

4.1.4. Identical machines. In this subsection we apply Theorem 3.3 for the
case of weighted jobs and identical machines. We distinguish between the cases of
polynomially bounded integral input and arbitrary input.

Theorem 4.5. There exists an algorithm for the weighted jobs and identical

machines case that achieves an approximation factor of �(k) = (k+1)k

(k+1)k�kk , for poly-

nomially bounded integral input, and �0(k) = (2k+1)k

(2k+1)k�(2k)k , for arbitrary input.

Proof. As shown above, a linear program can be formulated such that the value
of its optimal solution is at least as big as the value of an optimal schedule. Let N 0

be chosen in the same way as in the discussion preceding Theorem 4.2. We claim
that using our rounding scheme, this feasible solution de�nes an interval graph that
can be colored by (k + 1)N 0 � 1 colors for integral polynomial size inputs and by
(2k + 1)N 0 � 1 colors for arbitrary inputs.

Consider �rst the case of integral polynomial size input. In the interval graph that
is induced by the solution of the LP, there are at most N 0 intervals (that correspond
to the same job) in the same group, and at most kN 0 intervals mutually overlap at
any point of time. Applying our group constrained interval coloring, we get a valid
coloring with (k + 1)N 0 � 1 colors. Similarly, for arbitrary inputs, in the interval
graph which is induced by the solution of the LP, there are at most N 0 intervals (that
correspond to the same job) in the same group, and at most 2kN 0 intervals mutually
overlap. Applying our group constrained interval coloring, we get a valid coloring
with (2k + 1)N 0 � 1 colors.

This implies that �(k) = k+1 for integral polynomial size input and �(k) = 2k+1
for arbitrary input. In other words, this is the approximation factor that can be
achieved with a single machine when compared to an optimal algorithm that uses k
identical machines. Setting these values of �(k) in our paradigm for transforming an
algorithm for a single machine to an algorithm for k identical machines, yields the
claimed approximation factors.
Remark: Note that as k tends to in�nity, the approximation factor is e

e�1 � 1:58192
for both unweighted jobs and for weighted jobs with integral polynomial size inputs.

For arbitrary input, the approximation factor is
p
ep

e�1 � 2:54149. Setting k = 1 we
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get that these bounds coincide with the bounds for a single machine. For every k > 2
and for both cases these bounds improve upon the bounds for unrelated machines (of
3 and 4).

4.2. A combinatorial algorithm. In this section we present a combinatorial
algorithm for the weighted jobs model. We �rst present an algorithm for the single-
machine version and then we show how to extend it to the case where there are k > 1
machines, even in the unrelated machines model.

4.2.1. A single machine. The algorithm is inspired by on-line call admission
algorithms (see [16, 8]). We scan the job instances (or intervals) one by one. For each
job instance, we either accept it, or reject it. We note that rejection is an irrevocable
decision, where as acceptance can be temporary, i.e., an accepted job may still be
rejected at a later point of time. We remark that in the case of non-preemptive
on-line call admission, a constant competitive factor cannot be achieved by such an
algorithm. The reason is that due to the on-line nature of the problem jobs must be
considered in the order of their release time. Our algorithm has the freedom to order
the jobs in a di�erent way, yielding a constant approximation factor.

We now outline the algorithm. All feasible intervals of all jobs are scanned from
left to right (on the time axis) sorted by their endpoints. The algorithm maintains a
set A of currently accepted intervals. When a new interval, I, is considered according
to the sorted order, it is immediately rejected if it belongs to a job that already has an
instance in A, and immediately accepted if it does not overlap with any other interval
in A. In case of acceptance, interval I is added to A. If I overlaps with one or more
intervals in A, it is accepted only if its weight is more than � (� > 1, to be determined
later) times the sum of the weights of all overlapping intervals. In this case, we say
that I \preempts" these overlapping intervals. We add I to A and discard all the
overlapping intervals from A. The process ends when there are no more intervals to
scan.

A more formal description of our algorithm, called AlgorithmADMISSION is given
in Figure 4.1.

We relegate the details of implementing the above algorithm (keeping track of
intervals), after we show the approximation guarantee.

We say that an interval I \caused" the rejection or preemption of another interval
J , if either interval I directly rejected or preempted interval J , or if for some h � 2,
there exists a sequence of intervals I = I0; I1; : : : ; Ih = J such that Ii preempted Ii+1
for 0 � i � h� 2 and Ih�1 directly rejected or preempted interval Ih. Fix an interval
I that was accepted by the algorithm, and consider all the intervals chosen by the
optimal solution, the rejection or preemption of which was caused by interval I. We
prove that the total weight of these intervals is at most f(�) times the weight of the
accepted interval I, for some function f . Optimizing �, we get the 3 + 2

p
2 � 5:828

bound.

Theorem 4.6. The approximation factor of Algorithm ADMISSION is 3 + 2
p
2.

Proof. Let O be the set of intervals chosen by an optimal algorithm OPT. Let
the set of intervals accepted by Algorithm ADMISSION be denoted by A. For each
interval I 2 A we de�ne a set R(I) of all the intervals in O that are \accounted for"
by I. This set consists of I in case I 2 O, and of all the intervals in O the rejection
or preemption of which was caused by I. More formally:

� Assume I is accepted by rule 3(c). Then, the set R(I) is initialized to be I
in case I 2 O and the empty set ;, otherwise.
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Algorithm ADMISSION:
1. Let A be the set of accepted job instances.

Initially, A = ;.
2. Let I be the set of the yet unprocessed job instances.

Initially, I is the set of all feasible job instances.
3. While I is not empty repeat the following procedure:

Let I 2 Ji be the job instance that terminates earliest among all
instances in I and let w be its weight.
Let W be the sum of the weights of all instances I1; : : : ; Ih in A that
overlap I.
(a) I := I n fIg.
(b) If Ji \A 6= ; then reject I.
(c) Else if W = 0 then accept I;

A := A [ fIg.
(d) Else if w

W > � then accept I and preempt I1; : : : ; Ih;
A := A [ fIg n fI1; : : : ; Ihg.

(e) Otherwise (i.e., w
W
� �) then reject I.

end ADMISSION

Fig. 4.1. Algorithm ADMISSION

� Assume I is accepted by rule 3(d). Then R(I) is initialized to contain all
those intervals from O that were directly preempted by I and the union of
the sets R(I0) of all the intervals I0 that were preempted by I. In addition,
R(I) contains I in case I 2 O.

� Assume J 2 O is rejected by rule 3(b). Let I 2 A be the interval that caused
the rejection of J . Note that both I and J belong to the same job. In this
case add J to R(I).

� Assume J 2 O was rejected by rule 3(e) and let I1; : : : ; Ih be the intervals in
A that overlapped with J at the time of rejection. Let w be the weight of
J and let wj be the weight of Ij for 1 � j � h. We view J as h imaginary
intervals J1; : : : ; Jh, where the weight of Jj is wj�wP

h

j=1
wj

for 1 � j � h. Set

R(Ij) := R(Ij) [ fJjg. Note that due to the rejection rule it follows that the
weight of Jj is no more than � times the weight of Ij .

It is not hard to see that each interval from O, or a portion of it if we use rule 3(e),
belongs exactly to one set R(I) for some I 2 A. Thus, the union of all sets R(I) for
I 2 A covers O.

We now �x an interval I 2 A. Let w be the weight of I and let W be the sum of
weights of all intervals in R(I). De�ne � = W

w . Our goal is to bound � from above.

Interval I may directly reject at most one interval from O. Let wr be the weight
of (the portion of) the interval Ir 2 O \R(I) that was directly rejected by I, if such
exists. Otherwise, let wr = 0. Observe that wr � �w, since otherwise Ir would not
have been rejected. Let I0 2 O be the interval that belongs to the same job as the
one to which I belongs (it may be I itself), if such exists. By de�nition, the weight of
I0 is w. Let W 0 � W � w � wr be the sum of the weights of the rest of the intervals
in R(I). De�ne � = W 0

w . It follows that � � �+ � + 1.

We now assume inductively that the � bound is valid for intervals with earlier
endpoint than the endpoint of I. Since the overall weight of the jobs that I directly
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preempted is at most w=�, we get that w
� � � � � �w. This implies that �+�+1

� � �.

Or equivalently, � � �+1
��1 = 1 + 2

��1 . Therefore, � � 2 + � + 2
��1 . This equation

is minimized for � = 1 +
p
2 which implies that � � 3 + 2

p
2. Finally, since the �

bound holds for all the intervals in A and since the union of all R(I) sets covers all
the intervals taken by OPT, we get that the value of OPT is at most � times the value
of A. Hence, the approximation factor is 3 + 2

p
2.

Implementation. Observe that Step (3) of the algorithm has to be invoked only
when there is a \status" change, i.e., either a new job becomes available (n times) or
a job in the schedule ends (n times). Each time Step (3) is invoked the total number
of jobs instances that have to be examined is at most n (at most one for each job). To
implement the algorithm we employ a priority queue that holds intervals according
to their endpoint. At any point of time it is enough to hold at most one job instance
for each job in the priority queue. It turns out that the total number of operations
for retrieving the next instance is O(n logn), totaling to O(n2 logn) operations.

4.2.2. Unrelated machines. If the number of unrelated machines is k > 1, we
call AlgorithmADMISSION k times, machine by machine, in an arbitrary order, where
the set of jobs considered in the i-th call does not contain the jobs already scheduled
on machines M1; : : : ;Mi�1. The analysis that shows how the 3 + 2

p
2 � 5:828 bound

carries over to the case of unrelated machines is very similar to the analysis presented
in the proof of Theorem 4.6. The main di�erence is in the de�nition of R(I). For each
interval I 2 A that was executed on machine Mi, we de�ne the set R(I) to consist of
I in case I 2 O, and of all the intervals that (i) were executed on machine Mi in the
optimal schedule, and (ii) the rejection or preemption of these jobs was caused by I.

5. The MAX-SNP hardness. We show that the problem of scheduling un-
weighted jobs on unrelated machines is MAX-SNP hard. This is done by reducing
a variant of Max-2SAT, in which each variable occurs at most three times, to this
problem. In this variant of Max-2SAT, we are given a collection of clauses, each con-
sisting of two (Boolean) variables, with the additional constraint that each variable
occurs at most three times, and the goal is to �nd an assignment of values to these
variables that would maximize the number of clauses that are satis�ed (i.e., contain
at least one literal that has a \true" value). This problem is known to be MAX-SNP
hard (cf. [33]).

Given an instance of the Max-2SAT problemwe show how to construct an instance
of the problem of unweighted jobs, unrelated machines, such that the value of the
Max-2SAT problem is equal to the value of the scheduling problem. Each variable
xi is associated with a machine Mi. Each clause Cj is associated with a job. The
release time and deadline of every job is 0 and 3, respectively. A job can be executed
only on the two machines corresponding to the variables the clause Cj contains. (The
processing time of this job in the rest of the machines is set to be in�nite.)

Suppose that clause Cj contains a variable xi as a positive (negative) literal.
The processing time of the job corresponding to Cj on machine Mi is 3=k, where
k 2 f1; 2; 3g is the number of occurrences of variable xi as a positive (negative)
literal. Note that in case variable xi occurs in both positive and negative forms, it
occurs exactly once in one of the forms, since a variable xi occurs at most three times
overall. It follows that in any feasible schedule, machine Mi cannot execute both a
job that corresponds to a positive literal occurrence and a job that corresponds to a
negative literal occurrence.

We conclude that if m jobs can be scheduled, then m clauses can be satis�ed. In
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the other direction, it is not hard to verify that if m clauses can be satis�ed, then m
jobs can be scheduled. Since Max-2SAT with the restriction that each variable occurs
at most three times is MAX-SNP hard, the unweighted jobs and unrelated machines
case is MAX-SNP hard as well.

6. Discussion and open problems. In this paper we considered the problem of
�nding a schedule that maximizes the weight of jobs completed before their deadline on
either a single machine, or multiple machines. We presented constant approximation
algorithms for four variants of the problem depending on the type of the machines
(identical vs. unrelated) and the weight of the jobs (identical vs. arbitrary). Most
of our algorithms are based on LP rounding. We also presented a combinatorial
algorithm for arbitrary job weights and unrelated machines.

Many open problems remain. In what follows we discuss some of them.
� The computational di�culty of the problems considered here is due to the
\slack time" available for scheduling the jobs. Interestingly, we do not know
if the simple case in which the slack equals the length of the job is as hard as
the general case, or is as easy as the case with less slack.

� We showed that the problem of scheduling unweighted jobs on unrelated
machines is MAX-SNP hard. We do not know whether this holds in the case
of identical machines.

� We did not consider the preemptive version of our problems. Lawler [25, 26]
presented some results for the preemptive case (see discussion in the intro-
duction), yet open problems remain. In particular, the migration issue is still
open. We note that it does not seem that our LP-based rounding algorithms
are of use in the preemptive case.

� Several recent papers [29, 6, 9] addressed the following generalization of our
problems. A job has a width that could be an integral number (i.e., the job
requires more than one machine) or a real fraction (as is the case in bandwidth
allocation). Constant factor approximation algorithms for this problem were
obtained by [29] by generalizing our LP rounding technique, and by [6, 9] using
the local ratio technique (and deriving combinatorial algorithms as well).

� Phillips, Uma and Wein [29] used our LP based algorithms to achieve approx-
imation algorithms for other scheduling problems. For example, consider a
problem in which an estimate of the completion time of the jobs can be com-
puted by solving a fractional relaxation of the problem. Then, using these
estimated completion times as deadlines, our algorithms can be applied so as
to get a schedule where a constant fraction of the jobs indeed �nish by these
completion times. This observation yields new approximation algorithms for
various problems, among them the minimum 
ow-time problem.

� Erlebach and Jansen [13] generalized our LP rounding technique and devel-
oped a general procedure for converting a coloring algorithm into an (approx-
imate) maximum weight independent set algorithm. Using this, they obtain
improved approximation factors for several problems.
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