RC 21944 (98481) 20 November 2000 Computer Science

IBM Research Report

WebGuard: A System for Web Content Protection

Magda Mourad®, Jonathan Munson® Tamer Nadeem™,
Giovanni Pacifici*, Marco Pistoia*, Alaa Youssef"

IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

**University of Maryland at College Park

==—=-= = Research Division
S S= TS Almaden- Austin - Beijing - Haifa - T. J. Watson - Takyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of TBM and will probably be copyrighted if accepted for publication. khas been issued as a Rescarch Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publicaticn should be limited to peer communications and specific requests.

Afer ourside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g, payment of royalties). Copies may be requested from IBM T. J. Watson Research Center, P. (. Box 218,
1 AOIIENG WATSOR. m library CyberDig. nsfhome

Yorktown Heights, NY 10598 USA (email reports@us.ibm.com). Some reports are available on the internet at hiip:

WebGuard: A System for Web Content
Protection

Magda Mourad’, Jonathan Munson', Tamer Nadeem?, Giovanni Pacific?, Marco Pistoia,
Alaa Youssef!

"IBM T.J. Watson Research Center
*University of Maryland at College Park

{magdam, jpmunson, giovanni, pistoia, ayoussef}@us.ibm.com

Abstract

In this paper we present WebGuard, a content protection system for Web documents. WebGuard
allows content owners to enforce control over the distribution and access to high-value digital
content. We define high-value digital content as either commercially valuable content (e.g. course
material, artwork, etc) or personal and confidential property (e.g. family photos, confidential
material, etc). The novelty of our approach is that WebGuard enables existing Web browsers and
browser plug-ins to handle protected content, in away that is completely transparent to the
browser and its plug-ins. Our solution centers around three components: an application
certification process and a content-protection enabled http protocol handler, and an application-
independent user-interface control module. We show that using these three components a

compl ete end-to-end content protection system can be achieved. To demonstrate our approach we
have built a prototype of WebGuard using the Internet Explorer Browser and the Microsoft

protocol handler technology.

1. Introduction

With the advent of digital distribution and the many mechanisms available for it on the Internet, it
is now possible for a single person to make a perfect copy of a digital content and distribute it to
millions of others. While in most cases content owners welcome this widespread distribution, in
some cases the content owners may wish to enforce some control over the distribution and access
to high-value digital content. High-value digital content can be commercially valuable content
(e.g. course material, artwork, etc) or personal and confidential property (e.g. family photos,

confidential material, etc).

Digital Rights Management (DRM) technology allows content owners—such as publishers,
artists and instructors— to distribute high-value digital content with the confidence that the terms
and conditions they set for the use of their content will be respected. For example, the content
owners may wish to specify terms and conditions that prevents the digital content from being

copied or disables the content after it has been accessed a certain number of times.

These benefits of DRM technology have been available for some time in the specific industries of
music and e-books, however, for general multimedia Web content—HTML, GIF and JPEG

images, animations, audio, etc.—DRM technology has been less successful.

The reason for this, to a large measure, lies in the current state of the art of the DRM technology
and the specific requirements it imposes on end-user applications. Typically a Digital Rights
Management (DRM) system works by encrypting the content and providing a program capable of
playing (or displaying) the content to the user. This player (often referred to as a trusted player)
ensures that the vser does not make unauthorized use of the digital content. To play, or view, the
content, users must use this trusted player; thus the content producers must ensure it is available
to them. While for producers of digital music this situation may not present a problem since there
are several DRM-enabled music players available, it is particularly problematic for producers of
Web content. They enjoy a great range of third-party players to choose from to develop their
content for. To restrict them to develop protected content only for DRM-enabled players is to
restrict their choices to practically nil. In addition, browsers tend to be highly personalized, and
users would prefer not to use a different browser to access protected content, especially if the user
has to use a different web browser to access content protected by different DRM systems.
Furthermore, DRM developers should not be burdened by the need of providing and maintaining
a fully featured web browser, making the DRM solution cost effective only for large scale

distributions and commercially viable content.

In this paper we present WebGuard, a content protection system that allows users to access
protected content using existing web browsers. Our solution centers around three major
components: an application certification process, a DRM-enabled http protocol handier, and an
application-independent user-interface control module. We show that using these two
components a complete end-to-end content protection system can be achieved. We have built a
prototype of WebGuard using the Internet Explorer Browser and the Microsoft protocol handler

technology.

This paper is organized as follows. In Section 2, we first review DRM technology and discuss the
requirements for end-user applications. In Section 3, we describe the novel approach we are
proposing for designing player independent DRM systems. We then present WebGuard,
describing its components and mechanisms. We conclude with a discussion and future plans for

the WebGuard system.

2. Current State-of-the-art in Digital Rights Management

In the recent years we have witnessed the emergence of several content protection systems. The
current most popular systems include InterTrust’s MetaTrust system [5, 9], Microsoft’s Windows
Media Rights Manager [8], the ContentGuard system [3], IBM’s Cryptolope™ system for digital
libraries [6], Adobe’s WebBuy component in their Acrobat Reader™ product [10], and IBM’s
Electronic Media Management System (EMMS) [4].

Figure 1 shows the prototypical components of a generic DRM system. There are five basic
subsystems that are generally used by content protection systems: confent packaging, e-store,

content hosting, clearinghouse and user player (or viewer).

The content packaging component is used by content owners to encrypt and package the content.
Together with the encrypted content, the content packaging subsystem produces a content
description object. The content description object is used to uniquely identify the digital content,
to specify the set of usage rights allowed by the content owner as well as provide marketing

information (such as price, promotional material etc).

The e-Store is responsible for promoting the content and for granting usage rights to individual
users (customers). Usually the e-store supports e-commerce transactions. Rights are granted to
users in the form of unique digital certificates that uniquely identify the content as well as the set

of usage rights being granted.

The Content hosting component is responsible for hosting the encrypted content packages and
releasing them only to authorized users, who have acquired the rights to download the content.
Logically separating this component from the rest of the system allows for flexibility and

independence of the distribution channel used.

The Clearinghouse is responsible for delivery the keys for decrypting the content to authorized
users. It is also the locus of authorization and usage tracking. In general, the Clearinghouse is the

only component that is trusted by all parties (content owners, distributors, and consumers).

The Player/Viewer. runs on the user side and is the application with which the consumer accesses
the content. It may be a music player, a document viewer, or, in our case, a Web browser. In
addition to its primary content-handling functions, it also encapsulates, or invokes, functions of a
DRM client. The DRM client is responsible for maintaining the content in encrypted form using

keys hidden from the user at all times; decrypting the content on demand; interacting with the

Authorize Get keys

Decrypt
Play/Display
Enforce Rights

Buy

Promo Rights >

Encrypted
Content

Get content

Figure 1: Components of a typical DRM system.

Clearinghouse to obtain keys, report usage, and other purposes; and for enforcing the usage

conditions associated with the content.

The development of player/viewer is the most challenging from a technical point of view. The
need to hide keys from users on their own systems, which can be inspected exhaustively; the need
to protect the execution of the decryption code against attacks; and the need to protect the
decrypted content from being siphoned off by malicious code: all of these require clever and
careful programming. The challenge is compounded when the goal is, as it was in our case, to
provide all this protection equally to off-the-shelf Web browsers and browser plug-ins. To better
explain the particular challenge we faced, we first review the approaches taken by current DRM

systems.

2.1. Current Approaches to End-user DRM Software

Current DRM systems take one of two approaches to the end-user side of DRM software. In the
first approach, the DRM functions are integrated with the content-rendering functions of the
player/viewer, Systems that take this, the “integrated player™ approach, include IBM’s
Cryptolope™ gystem for digital libraries [6], Adobe’s WebBuy component in their Acrobat
Reader™ product [10], and IBM’s Electronic Media Management System (EMMS) [4]. In these
systems the DRM functions of key handling, decryption, and rights management are packaged in
the same executable with the content rendering code. Any tamper-resistance measures applied are
effective for the entire executable, and thus form a single protected execution environment. The
strength of such systems is that they offer the strongest protection for the content, since it never
leaves the control of the protected environment. In addition, the integration with the DRM system
allows DRM operations, such as acquisition of additional rights, to be inveked within the user
interface of the application and thus provide a smoother experience for the consumer. The
weakness of the integrated player approach is that their DRM functions are not casily extendible
to new forms of content. This makes the approach appropriate for content producers whose
content fits into the fixed range of content that these applications handle, such as HTML (pure),
digital music, and PDF documents, or who are large enough, such as music studios or book

publishers, to have a player specially developed for their content.

The second approach is to offer DRM functions in a toolkit, then bind content-rendering
applications to the toolkit using a secure mechanism, to ensure that only legitimate applications
can access the content. Systems that use the toolkit approach include InterTrust’s MetaTrust

system [3, 9], Microsoft’s Windows Media Rights Manager [8], and the ContentGuard system

[3]. (Details of the secure mechanisms used to authenticate applications to the toolkits are
proprietary to each vendor.) The strength of this approach is that it offers extendibility to various
forms of content since any application can utilize the toolkits. And, as with the integrated player
approach, it still allows for integration of DRM operations in the user interface with the
operations of the player. The weakness of this approach is that if content producers want to
choose their DRM solution, they must also be the developers of the player application that
renders their content, or have a strong relationship with its developers. Thus, as with the
integrated player approach but to a lesser extent, it is appropriate for content owners who have the

means to have players specifically developed for their content.

The shared drawback of both approaches is that they require the player application to be built
against a specific DRM solution, either integrated with it or using it in the form of a toolkit. This
presents a significant problem for the content producers who neither own the applications that
render their content, nor whose content can be rendered by an existing DRM-enabled piayer.
Most producers of Web-based content fall into this situation. To meet their requirements, we
developed WebGuard, which represents a new approach in DRM-enabled software, that we call
“transparent DRM.” The specific class of applications that WebGuard supports are those that

execute as plug-ins within the Microsoft Internet Explorer browser.

3. New Approach: Transparent DRM Extensions
By *“transparent DRM,” we mean that DRM functions are provided to an application without
requiring it to be specially “DRM-enabied.” QOur approach has three main elements: a trusted

content handler, certificate-based code verification, and UI control through event blocking.

Certificate-based code verification. In the integrated player approach, the developers of the
DRM software have also developed the content-rendering software, and so this code is implicitly
trusted. In the toolkit approach, the development process offers opportunities to verify
trustworthiness, and the player software may be specially configured to implement the toolkits
secure binding mechanisms. Our approach uses a three-step process of establishing the trust of an
application at call-time: (1) the application goes through an off-line certification process that
generates a trust certificate containing the digital signature of the application, (2) this signature is
checked against the signature of the executable image of the application at launch time, and (3)
this validation is remembered and checked by the Trusted Content Handler (below) upon each

request the application makes for content. We describe specifics of this process in Section 4.

Trusted content handler. Since DRM functions must be transparent to the application in this
approach, all rights-management functions and content decryption must be invisible to the
application in its requests for content. To achieve this, we use Internet Explorer’s protocol
handler extension mechanism. URLs for WebGuard-protected content use the HTTP method
names rmfile (for local content) and rmhttp (for remote content). When the browser receives
URLs with these method names, the WebGuard Trusted Content Handler is invoked. The TCH
invokes the necessary DRM functions, decrypts the content, and passes it back to the browser.
We describe the structure of the TCH and the rights specification mechanism in more detail in

Section 5.

User interface control through event blocking. An application handling protected content must
prevent the user from invoking unauthorized operations on the content. To provide this function
for an application in a transparent manner proved to be one of the more challenging tasks in the
project. In the end, we developed a mechanism that will allow the user-interface operations of any
Windows application to be controlled. We rely on the event-handler structure of Windows
programs and the ability of other program modules to register themselves as listeners of the
events and to receive them before the application does. In this way, if the received event
represents an operation that should be blocked, according to the rights in effect for the subject

content, the application can be prevented from receiving the event. We describe this system in

Section 6.

In the following sections, we describe in some detail each of the above three principal elements of
our approach. We then present the rights-specification mechanisms we developed for WebGuard,
and then describe a lightweight end-to-end content distribution and clearinghouse system that we

have developed as part of WebGuard.

4. Certificate-based Code Verification

Recall that in order for the Trusted Content Handler to pass content in the clear to applications
requesting it, it must be confident that the applications can be trusted not to mishandle the content
(by, for example, discreetly writing it to a file). Since it is infeasible to automatically inspect the
application’s executable code to determine this, the TCH relies on WebGuard’s trust verification

system, which has two parts: an off-line certification process, and run-time verification process.
4 1. Certification process

Figure 3 shows the essential elements of the certification system. The certification system

consists of a Certificate Generator and a Certificate Repository. To obtain trust certification for

Application
Developer

Application
Code

v
Certificate ‘Application Certificate
Generator Certificate Repository

App signature
Certificates

Application Certifier

Figure 3: Certification subsystem,

their applications, application developers submit their applications to the Certificate Generator, in
the same form as they will be distributed to end-users. If the operators of the Certificate
Generator decide that the application may be trusted with protected content, the CG produces a
Trust Certificate and stores it in the Certificate Repository. The trust decisions may be based
simply on the source of the application (e.g., if from Macromedia, it is deemed trusted), or in

some cases may require manual inspection of the source code.
The form of the Trust Certificate (TC) is as follows.

Program identifier. This is a string that identifies the program with the previous code digest.

This may be a hierarchical name such as "Microsoft/Internet Explorer/5.01".

Property name. This is a string that identifies precisely what is being certified by this certificate.

For example: "IBM Rights Manager Trusted".

Code digest(s). This is created with a conventional message digest function such as MD5 or

SHA. There will be a digest for each application module that exists in a separate file.

Digital signature. This is the digital signature of the TC, using the private key of the Application
Certifier.

Certifier identification. This is a conventional digital certificate containing the public key of the

Application Certifier, signed by a public certificate authority.

The TC may contain other elements such as date, certificate version, and cryptography

parameters.

Trust Certificates are used by WebGuard’s run-time verification system to verify that the
application being given protected content has in fact gone through the certification process. We
have developed two variations of the run time verification process: one using a Verifying

Launcher, and the other performing In-call Verification.
4.2. Code verification with a verifying launcher

The Verifying Launcher (VL) is responsible for verifying at launch time that the viewer
application is certified as a trusted application for safely handling protected content entrusted to
it. As mentioned above, each trusted viewer must undergo an offline certification process, which
resuits in a trust certificate that includes the signed digest(s) of the application code modules.
Before launching the viewer, VL verifies the integrity of the code. This is done by applying a
message digest algorithm to the code module in question and comparing the result to the pre-
signed digest. An exact match means that the code installed on the client host is identical to the
one certified, and hence is safe to handle the content. VL then instructs the operating system to
load the application from the verified code files. By virtue of its role as the application launcher,
VL obtains OS-specific information, such as the process ID or the process creation date, that
uniquely identifies the loaded application instance within the system. VL uses this information to
compute a stamp that still uniquely identifies the application instance but is hard to guess or
forge. The stamp is computed using a hashing function, which is known to TCH as well. The
algorithm used by the hashing function must be deterministic (always generating the same result
given the same input, for reasons described later. One such algorithm may be a common

encryption algorithm using a predetermined key

Figure 4 shows the out-of-process verification subsystem. The procedure for an application to use
the Trusted Content Handler is as follows:

By opening a file with an extension that is registered to the VL, and which also indicates the
application to load, the user invokes the VL and requests it to load the application. (Alternatively,
given the name of the application, the VL may locate its code through an application registry if
one is available.)

Given the unique name of the application, the VL looks up the associated certificate in its

Certificate Cache, or from the Certificate Repository if the needed certificate does not exist in its

Launcll - === =P Content Viewer

-
rd

”
£
Verifying :\uthentlcate Trusted Content
Launcher Handler

Protected
Rights

Protected
Content

Figure 4: Code verification using the Verifying Launcher.

cache. If a certificate is not found in either the cache or the repository, the VL exits without

loading the application.

The VL reads the file(s) of the application’s executable code (the files to read are indicated in the
certificate) and computes the code digest(s) using the same digest function as used by the

certification system.

The VL compares each computed digest with the corresponding digest in the certificate. If any of

the digests differ, the VL exits without loading the application.

If all computed digests match the digests in the certificate, the VL requests the host operating
system to load the application. The VL then computes a sfamp for the application, as described

above. The VL then stores the stamp in internal memory.

When an application makes a call on the Trusted Content Handler (TCH) to access a protected
resource, the TCH first verifies that the application was launched and verified by the VL. It does
this by computing the stamp for the application using the same uniquely identifying information
and scrambling information that the VL did, and then contacting the VL for comparison. If the
TCH-computed stamp and the VL-computed stamp are the same, then the TCH was called by the
same application instance that the VL verified and launched. The TCH may then cache its stamp
50 that no further communication with the VL is necessary, for this session with the application.

The TCH and the VL. communicate through a secure connection.

10

4.3. In-call verification

The Verifying Launcher mechanism has two drawbacks. One is the inconvenience of requiring
that the application be loaded by the VL. Thus, if a user has a browser instance open and then
wants to view protected content, a new instance will have to be loaded. The more significant
drawback is that, at load time, the VL must anticipate all the executables that must be verified for
a particular set of content. Presently we rely on the content producer to specify which applications
will be handling the content, information which is included at content packaging time (content
packaging is described in a later section). This process is, however, error-prone. Because of these
drawbacks, we have recently developed an alternative mechanism, which we call the In-Call

Verifier.

The In-Call Verifier (ICV), illustrated in Figure 5, uses the same off-line, signature-based
certification as the Verifying Launcher, but performs the code integrity check at the time of the
first request for content to the TCH. At this time the ICV makes a system service call to the host
operating system to query it for the filenames of the modules that are currently loaded for the
given process ID. (Currently we have implemented this mechanism for the Windows NT and
Windows 2000 operating systems; we are investigating it for others.) Having the filenames of all
modules loaded for the process, the ICV computes the file message digests and compares them

with the digests in the corresponding trust certificates. The ICV uses a policy-based mechanism

Content Viewer
In-call f“thmﬁcate Trusted Content
Verifier Handler

Proteded Proteded
Content Rights

Figure 5: In-process verification.

11

(not described here) to determine which modules do or do not require a certificate. The
mechanism also allows the ICV to reject a request for content if it detects the presence of
malicious programs that may try to obtain the content directly from the system’s resources such

as the frame buffer or the audio driver.

5. Trusted Content Handier

The Trusted Content Handler (TCH) is a transparent extension to the content viewer (i.e., the
Microsoft Internet Explorer Web browser) that is responsible for feeding the viewer with
protected content. In this section we describe the structure of the TCH and the rights-specification

mechanism we developed for it.

5.1. Components of trusted content handler

One of our objectives in the TCH was to develop a reusable DRM component that implemented
the core DRM functions in an application-independent way. We could then use the component in
other extendible platforms, such as a Java virtual machine and component-based productivity
applications. Figure 6 illustrates the structure of the TCH. Note that all functions within the
DRMC execute within a tamper-resistant environment designed to make its internal workings

exceedingly difficult to inspect.

Figure 6 shows the structure of the TCH. The interface that the DRMC offers to the IE protocol

UI Control Moduie IE protocol handler
Content

Decrypted

request comntent
Authenticate DRM Client (DRMC)
* Authenticate requestor
(to VL or ICV) Check rights

Set Ul rights

Lookup content decryption key
Decrypt content

JUOUIUOIAUS
Juejsisal-tadwe |,

Figure 6: Structure of Trusted Content Handler.

12

handler is similar to a file system interface in following an “open-read-close” pattern. The content
identifier received from the protocol handler is a URL with a hierarchical path name identifying
the content. One issue we faced is, given a path to an item of content within a larger content
package, how do we identify the package so that we may look up the rights for that item in the
package (without associating a rights file with each item)? We settled on the following identifier
scheme: the URL has the following form: <protocol name>://<package path>/<package name
marker><package name>/<resource relative name>, where the <package name marker> is a
constant used to aid the parser in identifying the package name. E.g.,
rmhttp://.../PackageMark P1/..In this case the protocol is rmht tp and the package

name is P1, Given the package name, we can locate the set of rights associated with the package.
5.2. WebGuard rights specification mechanism

The three elements of the transparent DRM approach—application certification, a trusted content
handler, and application-independent Ul control—are in fact largely independent of the rights
specification mechanism used. Thus we could have adopted an existing rights specification
language for our system. However, we found that rights specification for protected packages
containing large numbers of individual content items—e.g., courseware, photography collections,
literature anthologies—presents issues not addressed by existing rights management systems.
First of all, there must be the ability to specify rights at a fine granularity. This is important in
enabling content owners and distributors to offer consumers a variety of ways to purchase content
in these large packages, and in giving consumers choice in how they purchase it. But rights
specification must also be convenient—it should not be necessary to specify rights individually
for each item of content. Finally, there should be an efficient run-time mechanism, both in speed
and in storage requirements, for associating a particular item of content with its corresponding set
of rights. Meeting these requirements was the design goal of the rights specification mechanism

described here.

A complete rights specification for a protected package consists of (1) one or more rights files,
(2) a key-table file, and (3) a rights-map file. These files are collected together in one directory,

the directory having the same name as the package name.

5.2.1. Rights files

Rights files are text files with the *. ini” extension. A package may have multiple rights files but
must have at least one. The format of the core of a rights file is a series of lines, each line

granting or denying one right. Example:

13

Play: vyes
Print: no
Save: no
Clip: no

More sophisticated rights are also supported, such as time durations, but we do not describe the

complete rights specification language here.

5.2.2. Rights map

A rights map associates content items with rights files in a compact and efficient way.

Conceptually, it is a set of <file specifier>: <rights file> pairs, as illustrated below.

File specifier Rights file
filel RightsSetFilel
.../Section1/* SectionIRights
.../Section2/* Section2Rights

Figure 7: Conceptual Rights Map

As implemented, a rights map is a text file with the name “rightsmap.ini”. Following is a

sample rights map.

[*]
RightsFile: default rights.ini

[Andrew_Jackson.htm]}
RightsFile: AJ rights.ini

[Andrew_Jackson_files/*]
RightsFile: AJ rights.ini

[Jacksons_Hermitage.htm]
RightsFile: JH_rights.htm

[Jacksons Hermitage files/*]
RightsFile: JH_rights.htm

Content-path specifiers (within ‘[’ and ‘] brackets) are relative to the parent directory of the
course. Thus, for a file named

“D;\packages\RMHTTP PACKAGE ROOT DB2Demo\index.htm1”, the content-path specifier

in the content-attributes table is “index.html”.

14

So that not every file in a package requires its own specification line, the rights map allows
hierarchical specification. In the sample above, “ [Andrew_Jackson_files/*] ” specifies all

the files in the directory “Andrew_dJackson_files”.

It can be seen in the sample above that a given a file path name may match more than one path
specification. For example, Andrew_Jackson.html matches both {*] and
(Andrew Jackson.html]. The rule is that specification with the longest matching prefix is

chosen. This makes it possible to assign a default rights file and then override it for selected files.

Since prefix matching is strictly on the basis of whole path elements, the time complexity of any
one rights-file lookup (i.e., given a file name, the time required to look up the associated rights
file) is tinear in the length, in path elements, of the file name. For example, “ [index.html] * has
one path element, and “ [Andrew_Jackson_files/*]” has two. Since the depth of a trec of n
nodes is proportional to log,(#), the time complexity of rights-file lookup in a package of n

content items is O(lg »).

5.2.3. Key tables

Given that any one package may contain hundreds of files, it may not be desirable, for security
reasons, to use a single key for all files. Thus for the WebGuard system we developed a
mechanism for scattering a set of keys among the various files in a package. While details of the
algorithm are omitted for brevity, it provides for a uniform distribution of keys among the files,

and an O(1) key-lookup time.

Keys are distributed separately from the content in a file called a key table. A key table is a text

file with the name “keytable.ini”. Following is a sample key table.

[Version]

0.1
[Parameters]
Algorithm: RC4
NumberOfKeys: 7
[Keys]
0123456789
ARCDEF0123
456789ARCD
EF01234567
8§9ABCDEFO1
2345678B9AB
CDEF012345

Keys are specified in hexadecimal format, and must have an even number of digits. The keys in

the sample each have 10 digits, and are thus 3 bytes, or 40 bits, long.

15

5.3. Content packaging

After the rights specification files—the rights files, a key table, and a rights map—have been
prepared, a packaging tool encrypts the content files for distribution, using the keys specified in
the key table. The rights specification files are also encrypted, and remain encrypted while on the

user’s system.

Because the names of the content files and rights specification files, and their organization in
directories, is not protected against tampering, some users may attempt to circumvent the rights
management system by renaming rights files and/or content files. Seeing a file named
“NoRights.ini” and a file named “A11Rights. ini”, a user may be tempted to delete the
NoRights.ini file, then make a copy of the A11Rights. ini file and name it NoRights.ini,
The obvious intent would be that any content assigned the rights in Norights.ini would

effectively have the rights in AL1Rights. ini.

To prevent this, the packager inserts into each rights specification file and content file, at
encryption time, its name. (For rights specification files, the name is relative to the package’s
rights-specification directory; for content files, the name is relative to the content root directory.)
When one of these files is accessed, the name used to access the file is checked against the name

embedded in the file itself, If the names do not match, the file is not decrypted.

6. User interface control module

The User Interface Control module (UFCM) blocks those UT operations that would represent
actions not allowed by the rights a user possesses for the content. The “policy” of the UICM is set
dynamically by the DRMC upon each request for content. When the user attempts a non-allowed
operation by choosing it from a menu or using a “hot key” such as Ctrl-C, the UICM blocks the
operation and informs the user in a dialog box. Operation of the UICM is transparent to the

application. In this section we describe in overview the operation of the UICM.

6.1. Filtering Ul messages using window subclassing

Since the standard method for handling the user activities and user requests in Windows™

applications is by sending messages to the application containing the command requested by the
user. We found that by intercepting the messages sent to the browser, and filtering them
appropriately, we can achieve the required controlled behavior. We use a technique known as

“window subclassing.”

16

Each application in Windows systems has a main procedure, #inProc, which is called by the
windows system to handle the application’s messages. The address of this procedure is stored in
an application window’s class information structure. By window subclassing we can replace the
WinProc address in that structure by the address of our own procedure. However, rather than
subclassing each individual window in an application, instead we subclass the window classes we
are interested in. Then each time a new window of one of these classes is created, our subclassing

information is created with it. To subclass a window class we call:
SetClassLong(hwnd, GCL. WNDPROC, (LONG)Y NewWndProc))

where Awnd is the handle of the window we want to subclass, GWL_WNDPROC indicates that
we need to change the WndProc information in that structure, and NewWndProc is the address
of our procedure that we want to replace the original WndProc. We store original WinProc

address in order to pass the valid messages to it to be processed in a normal way.

6.2. Determining application windows and events to block

Above we described the mechanism we use to block the window events of interest to us. But how
do we know which windows to subclass and which events to block? Through a manual process of
inspecting the execution of an application, using a tool such as Microsoft Spy++, we can
determine which events are generated by certain user actions, and which windows they occur in.
The basic procedure is to first use Spy++ to generate a graphical display of an application’s
windows. Doing this for Internet Explorer, for example, yielded the three window classes
“MainHeader,” “MainBody,” and “Body.” An instance of the latter window shows the current
page. Having determined which windows are of interest, we then use Spy++’s Messages option to
view the messages (events) sent to a specific window. For example, to intercept the Ctrl+C hot
key, we would watch the messages sent to Body window and then press Ctrl+C and see what
message and what parameters have been sent to that window. This information is then input to the

UI Control module to set its policy for event blocking.
6.3. Dynamic Ul control
The Ul Control module has a single interface function:
int UIControlSetRights(HWND hwnd, WGRightsSet *rightsSet)

This function is called by the DRMC whenever a protected page is loaded in order to set the

rights set for it. Also, the above function receives the handle (hwnd) of the current active

17

window. This is needed for supporting multiple windows or multiple frames per window, where

each window or frame may have a different set of rights associated with it.
6.4. Intrusion detection

Using the same method of window subclassing that we have described here, an intruder could
attempt to disable our security model by re-subclassing the windows which we had already
subclassed. This way, the intruding program can intercept the window messages before our new
WndProc receives them. Then the intruder could pass these messages to the original WndProc of
the controlled application (e.g., IE). In order to prevent this, we should either prevent any
additional subclassing for the windows we subclassed, or detect any such additional subclassing

and terminate the application immediately. We implemented the latter method in our UT control

module.

To detect intrusive subclassing, we perform a periodic test on the WndProc fields in the current
windows of the controlled application and their corresponding classes. The values of these fields
should be equal to the address of our new WndProc function. If the values differ, then there is an

intruder who replaced our filtering module, and we terminate the application immediately.

7. Conclusions

We have presented WebGuard, a system that provides digital rights management in a transparent
fashion to off-the-shelf Web browsers and browser plug-ins. We reviewed the current state-of-
the-art in DRM systems, in particular discussing the prevailing approaches to providing end-user
trusted players. We described how these approaches present difficulties for producers of Web-
based content because they would require not only the browsers but each and every plug-in to be
DRM-enabled. We then discussed our new approach to providing DRM transparently, which
relies on certificate-based code verification, a trusted content handler, and event-based user

interface control. We then described each element separately.

We are currently working on extending and improving WebGuard, in several ways. One area for
development is the user-interface control module, which is at present specialized to Internet
Explorer. We will be developing a configuration mechanism for the UICM so that it can be easily
tailored to any application, given only the window classes and set of events it needs to monitor.

This specification will be tied to the application certification process.

Another area for improvement is in devising protocols that enable access to protected web
content, without requiring the user to go through an initial rights acquisition phase. The

WebGuard system, as described, requires the user to go through a rights acquisition phase during

18

which rights to access protected content are explicitly acquired and downloaded to the uset’s
machine. Instead, we would like to enable users to surf the web freely with rights being acquired
automatically as they encounter protected content. The rights may be acquired in accordance to a

user pre-set profile, possibly linked to a payment account.

Finally, we hope to be able to support other popular web browsers, such as the Netscape browser,

in the near future.

Acknowledgements
The authors would like to thank Craig Bennett, Tim Crowley, and Chris von Koschembahr of

TBM for their helpful and insightful comments on earlier versions of this work.

References

[1] J.T.Brassil, S. Low, N.F. Maxemchuk, Copyright protection for the electronic distribution
of text documents, Proceedings of the IEEE, 87(7), pp. 1181-1196, July 1999.

[2] A.Choudhury, N. Maxemchuk, S. Paul, and H. Schulzrinne, “Copyright protection for
electronic publishing over computer networks”, JEEE Network, May/June 1995.

[3] ContentGuard, http://www.contentguard.com.
[4] IBM’s Electronic Media Management System, http://www.ibm.com/software/emms.
[5] Intertrust’s Metatrust system, http://www.intertrust.com.

[6] U.Kohi, J. Lotspiech, and S. Nusser, Security for the digital library—protecting documents
rather than channels, in Proc. of the IEEE 9™ International Workshop on Database and

Expert Systems Applications, 1998.

[7] G.Lowton, Intellectual property protection advances with new technologies, IEEE
Computer, January, 2000.

[8] Microsoft’s Windows Media Rights Manager,
http://www.microsoﬂ.com/windows/windowsmediafen/wm’?/drm.asp.

[9] O. Sibert, J. Horning, and 8. Orwick, A massively distributed trusted system, in Work-in-
Progress session at the 16™ ACM Symposium on Operating System Principles, Saint-Malo,
France, October, 1997.

[10] WebBuy, http://www.adobe.com/products/acrobat/webbuy/main.html.

19

