
RC 21945 (98662) 2 February 2001 Computer Science

IBM Research Report

Web Proxy Acceleration

Daniela Rosu, Arun Iyengar, Daniel Dias
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Web Proxy Acceleration

Daniela Rosu Arun Iyengar Daniel Dias

IBM T.J.Watson Research Center, P.O.Box 704,

Yorktown Heights, NY 10598
fdrosu,aruni,diasg@watson.ibm.com

Abstract

Numerous studies show that miss ratios at forward proxy are typically at least 40%-50%.
This paper proposes and evaluates a new approach for improving the throughput of Web
proxy systems by reducing the overhead of handling cache misses. Namely, we propose to
front-end a Web proxy with a high performance node that �lters the requests, processing the
misses and forwarding the hits and the new cacheable content to the proxy. Requests are
�ltered based on hints of the proxy cache content. This system, called Proxy Accelerator,
achieves signi�cantly better communications performance than a traditional proxy system.
For instance, an accelerator can be built as an embedded system optimized for communi-
cation and HTTP processing, or as a kernel-mode HTTP server. Scalability with the Web
proxy cluster size is achieved by using several accelerators. We use analytical models, trace-
based simulations, and a real implementation to study the bene�ts and the implementation
tradeo�s of this new approach. Our results show that a single proxy accelerator node in front
of a four-node Web proxy can improve the cost-performance ratio by about 40%. Hint-based
request �lter implementation choices that do not a�ect the overall hit ratio are available.
An implementation of the hint management module integrated in Web proxy software is
presented. Experimental evaluation of the implementation demonstrates that the associated
overheads are very small.

Keywords: proxy cache, hints, Web performance

1 Introduction

Proxy caches for large Internet Service Providers can receive high request volumes.

Numerous studies show that miss ratios are often at least 40%-50%, even for large proxy
caches [7, 9, 12]. Consequently, a reduction of the cache miss overheads can result in signif-
icant throughput improvements for proxy caches experiencing high request volumes.

Based on this insight and on our experience with Web server acceleration [15], this paper
proposes and evaluates a new approach to improving the throughput of Web proxy systems.
Namely, we propose to front-end a Web proxy system with a high performance node that
�lters the requests, processing the misses and forwarding the hits and new cacheable content
to the proxy. The Web proxy's miss-related overheads are reduced to receiving the cacheable
objects pushed by the accelerator over permanent connections. Consequently, the proxy can
use the released resources to service an increased number of hits. Figure 1 illustrates the
interactions of the proxy accelerator with Web proxy nodes, clients, and Web servers.

Hints Cache

WebServerClient
~30%

WebProxy
10-20 GBytes

~35%

~35%
Non-cacheable

ContentHits

Proxy Accelerator
Misses

Figure 1: Accelerated Web Proxy Architecture.

The accelerator is an extended HTTP server running under an embedded operating system
optimized for communication, like the Web server accelerator described [15], or under a
general-purpose operating system in kernel-mode at service-interrupt level, like the Net�nity
Web Server Accelerator[16]. The accelerator has a main memory cache, mainly used to store
content to be forwarded to the Web proxy.

The accelerator �lters the requests based on a summary of the proxy cache content, called
hints. The hints are maintained based on information provided by proxy nodes and in-
formation derived from the accelerator's own decisions. The hint representation and the
update mechanism are important factors for the performance gains enabled by the proposed
proxy acceleration method. This is due to the related requirements for system and network
resources and to the intrinsic tradeo� between resource usage and information accuracy.

Previous research has considered the use of location hints in the context of cooperative Web
proxies [8, 19, 22, 10]. Our system applies this approach to the management of a cluster-based
Web proxy. In addition, we experiment with new hint maintenance mechanisms, speci�cally
designed for the interaction between a front end and a cluster of homogeneous nodes.

Our work extends the set of solutions to proxy cache redirection [1, 13, 14, 17]. Most

1

relevant is the comparison with the proposal in [14], which has the front end identifying
and processing the requests for non-cacheable content. Extending this functionality, a proxy
accelerator processes all of the requests for content not cached at the Web proxy, including
the cacheable content not currently in the proxy cache.

Building on top of previous research on cluster-based network services [4, 2], our proxy
acceleration method overcomes the intrinsic limitations of content-based routing components
by integrating several accelerator nodes in front of a Web proxy cluster.

In this paper, we use analytical models in conjunction with simulations to study the poten-
tial for performance improvement of our proxy acceleration scheme. We evaluate the impact
of several hint representation and maintenance methods on throughput, hit ratio, and re-
source usage. In addition, we present and evaluate the performance impact of an actual
implementation of the hint-management component in Web proxy application.

Our analytical study reveals that the throughput improvement can be signi�cant. For in-
stance, when the accelerator can achieve about an order of magnitude better throughput
than a Web proxy node for communications operations, such as the embedded system con-
sidered in [15], a single accelerator node can boost the throughput of a four-node Web proxy
by about 100%. Our simulations validate that, with appropriate hint representations and
update protocols, the proposed acceleration method can o�oad more than 50% of the WP
load with no impact on the observed hit ratio. In addition, the evaluation of our implemen-
tation shows that the overhead incurred with hint management has no signi�cant impact on
the client-perceived response times and throughput.

Paper Overview. The rest of the paper is structured as follows. Section 2 describes the
architecture of an accelerated Web proxy. Section 3 analyzes the expected throughput im-
provements with an analytical model. Section 4 evaluates the impact of the hint management
on several Web proxy performance metrics with a trace-driven simulation. Section 5 presents
the implementation of the hint-management module in a Web proxy application and eval-
uates its performance impact. Section 6 discusses related work, and Section 7 summarizes
our results.

2 Accelerated Web Proxy

Typical high-performance Web proxy systems consist of a cluster of nodes running a Web
proxy application and a front-end node that distributes the requests to the application nodes.
Front end-based solutions to improving the performance of Web proxy systems are restricted
mainly to balancing the load based on criteria like number of active connections and CPU
utilization. Because of the inherently unpredictable content mixtures in Web proxy caches,
typical content-based routing policies that distinguish origin servers and/or object types are
less bene�cial. However, a content-based scheme distinguishing between cacheable and non-
cacheable content has been proved to bring signi�cant performance improvements to Web
proxy systems when combined with o�-loading the processing of requests for non-cacheable
content from proxy nodes to the front end [14].

2

WP WP WP WP

PA PA

Web Proxy Cluster

Requests

Hints

Router ServersClients

Figure 2: Interactions in a Web Proxy (WP) cluster with several Proxy Accelerators (PA).

In this paper, we propose to further o�oad proxy node overheads by extending the function-
ality of the front-end. Namely, the extended front-end, called proxy accelerator (PA), is a
content-based router that can distinguish between cache hits and misses based on informa-
tion about proxy cache content. In the case of a cache hit, the PA forwards the request to a
Web proxy (WP) node that contains the object either by TCP splicing or hando� [17, 21].
In the case of a cache miss, the PA sends the request to the origin Web site, bypassing the
WP. When it receives the object from the Web site, the PA replies to the client, and if
appropriate, pushes the object to a WP node which is selected based on some load balancing
criteria.

The enabling element for the new front-end functionality is the PA's information about the
content of the WP cache, henceforth called hints. Possible solutions for hint representation
and update mechanism will be discussed later in this section and evaluated by trace-based
simulation in Section 4.

The PA includes a main memory cache for storing content waiting to be pushed to the WP.
In addition, the PA cache can store duplicates of objects in the WP cache. Requests satis�ed
from a PA cache never reach the WP, further reducing the load of the WP.

Figure 1 illustrates the interactions of a PA in a four-node WP cluster. PA and WP nodes
are connected by permanent TCP connections for request hando� [17], hint updates, and
content push. Notice that WP nodes still interact with Web sites. This occurs when the PA
�lter is not accurate, or cache objects have to be revalidated.

For scalability, the system may include several PAs (Figure 2) and a router that balances
the load among them. Each PA has hints about each of the WP nodes. Therefore, a PA
can appropriately forward any of the incoming hits. The policy for new content distribution
may be as simple as round-robin.

A PA can be built from stock hardware and runs under an embedded operating system
optimized for communication. Alternatively, the PA can be built as an extended kernel-
mode HTTP server. Either way, a PA can achieve an order of magnitude better throughput
than a Web proxy node for communications operations.

A WP node would typically run software extended for hint maintenance and distribution,
for hando� of TCP/IP connections and URL requests, and for pushing objects to PA caches.

3

Hint Representation. Previous research has considered several hint representations and
consistency protocols. Hint representations vary from schemes that provide accurate in-
formation [22, 10] to schemes that trade accuracy for reduced costs (e.g. memory and
communication requirements, look-up and update overheads) [8, 19].

In this study, we consider two representations { one that provides accurate information and
one that provides approximate (inaccurate) information. The accurate-information scheme,
called the directory scheme, uses a list of object identi�ers including an entry for each object
known to exist in the WP cache. In our implementation, the list is represented as a hash
table [10, 22].

1 20

Hash1(obj)

Hint Space
...

Hash3(obj) Hash2(obj)Hash0(obj)

1 1 1

Hint Entry

1

Figure 3: Hint representation based on Bloom Filters.

The approximate-information scheme is based on Bloom Filters [5]. The �lter is represented
by a bitmap, henceforth called hint space (see Figure 3), and several hash functions. To
register an object in the hint space, the hash functions are applied to the object identi�er,
and the corresponding bits, which are generically called hint entries, are set in the hint space.
A hint look-up is positive if all of the entries associated with the object of interest are set.
A hint entry is cleared when no object is left in the cache whose representation includes the
entry. Therefore, the cache owner (i.e., the WP node) maintains a \collision" counter for
each entry, which is updated whenever a related object is added or removed from the cache.
When a collision counter reaches its maximum value, it is no longer updated. The entire
hint space is recomputed when the number of over
owed counters reaches a threshold. The
PA maintains a Bloom Filter for each of the WP nodes.

Hint Consistency. The hint consistency protocol ensures that the information at the PA
site re
ects the content of the WP cache. Protocol choices vary in several dimensions: the
entity that identi�es the updates, the protocol initiator, the rate of update messages, and the
exchanged information. In the previously proposed solutions, updates are identi�ed either
by the WP (henceforth called WP-only updates) [8, 19] or by the content-based router (PA)
[17]. Both methods have a signi�cant likelihood of wrong request redirection decisions. The
�rst method may result in false misses because of the inherent delay of updates. The second
method may result in false hits because information about objects removed from the cache
is not propagated to the router. False misses are also possible because entries in the router
directory are discarded periodically due to space limitations.

In this paper, we propose and evaluate a method, called eager hint registration, which at-
tempts to address the drawbacks of previous methods. Namely, both PA and WP identify
and record hints. When the PA pushes an object to a WP node, it \eagerly" registers that
the object exists in the corresponding cache. As a side e�ect, the method enables a reduc-
tion of the update tra�c sent by a WP node. Namely, a WP node does not send update
noti�cations for objects received from the PA (a small exception, due to the asynchronous

4

communication between PA and WP, is discussed in Section 5).

With respect to the protocol initiator, previously proposed solutions address only WP-only
updates. Updates are pulled by the hint owner (i.e., PA) [19] or pushed by the cache owner
(i.e., WP) [8, 22, 10]. With respect to the update rate, previous proposals consider update
messages sent at �xed time intervals [19] or after a �xed number of cache updates [8]. The
exchanged information may be incremental, addressing only the updates occurred since the
previous message [10, 8, 19], or a copy of the entire hint space [8].

Proxy Accelerator Cache. The PA cache may include objects received from Web sites or
pushed by the associated WP nodes. In selecting the PA cache replacement policy, we have
to consider that all objects in the PA cache also exist in the WP cache. Consequently, the
PA cache replacement policy should not be focused on minimizing the network-related costs,
as shown appropriate for WP caches. Policies that maximize the hit ratio based on hotness
statistics and object sizes are expected to enable better PA performance than policies like
Greedy-Dual-Size [6].

In the following sections, we evaluate the throughput potential of the proposed proxy accel-
eration method and the impact of several hint implementation choices.

3 Expected Throughput Improvements

The major bene�t of the proposed hint-based acceleration of Web Proxies is throughput
improvement. We analyze the throughput properties of this scheme with an analytic model
by varying the number of WP and PA nodes, the PA functionality and cache size, and the
WP's and PA's CPU speeds.

The system is modeled as a network of M/G/1 queues. The servers represent PAs, WP
CPUs and disks, and a Web site. The serviced events represent (1) stages in the processing
of a client request (e.g. PA Miss, WP Hit, Disk Access) and (2) hint and cache management
operations (e.g. hint update, object push). Event arrival rates derive from the rate of client
requests and the likelihood of a request to switch from one processing stage to another. The
likelihood of various events, such as cache hits and disk operation, are derived from recent
studies on cache performance and Web content models [23, 14, 6, 18].

The overhead associated with each event includes a basic compute overhead, I/O overheads
(e.g. connect, receive message, hando�), and operating system overheads (e.g. context
switch). The basic overheads are identical for the PA and WP, but the I/O and operating
system overheads are di�erent. Namely, the PA overheads correspond to the embedded
system used for Web server acceleration in [15] { a 200 MHz Power PC PA which incurs a
514�sec miss overhead (i.e., 1945 misses/sec) and 209�sec hit overhead (4783 hits/sec). The
WP overheads are derived from [17] { a 300 MHz Pentium II which incurs a 2518�sec miss
overhead (i.e., 397 misses/sec) and 1392�sec hit overhead (718 hits/sec). These overheads
assume 8 KByte objects.

The following parameters are �xed for this study: (1) 40% non-cacheable content ratio and
25% miss ratio, (2) TCP hando� is used by the PA for client connections upon positive hint
look-up; (3) directory-based hints with 1 hour incremental updates; (4) disk I/O is required

5

for 75% of the WP hits; (5) one disk I/O per object; (6) four network I/Os per object
transmission; (7) 25% of WP hits are pushed to the PA, when the PA caches hot objects;
(8) 30�sec WP context switch overhead. Unless otherwise speci�ed, the PA nodes have 450
MHz CPUs, and the WP nodes have 300 MHz CPUs. The costs of the hint-related operations
are derived from our implementation and the simulation-based study (see Section 4).

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000

0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t

WP Nodes

traditional
1 PA

2 PAs
3 PAs
4 PAs

Figure 4: Throughput with number of WP and PA nodes. (no service from PA cache)

0

10

20

30

40

50

60

70

80

90

100

C
os

t/P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t (
%

)

WP Nodes

WP300MHz

PA300MHz

WP300MHz

PA450MHz

WP300MHz

PA700MHz

2 4 2 4 6 8 2 4 6 8

1 PA
2 PAs

Figure 5: Cost-performance improvement with number and speed of WP and PA nodes. (no
service from PA cache)

Hint-based acceleration improves throughput and cost-performance ratio. Fig-
ure 4 presents the expected performance for a traditional WP-cluster and for clusters en-
hanced with up to four PAs when the PAs do not service objects from their cache. The
plot illustrates that the hint-based acceleration enables signi�cant WP throughput improve-
ments. For instance, a single PA node can increase the performance of a 2-node WP about
three times and that of a 4 node WP about two times. With two PAs, a 4-node WP can
achieve higher throughput than a 16-node WP. However, consistent with previous studies
on content-based routing [4, 2, 21], the plot illustrates that a PA becomes a bottleneck for
large WP clusters.

6

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

0 2 4 6 8 10 12 14 16
T

hr
ou

gh
pu

t
WP Nodes

traditional
1 PA

2 PAs
1 PA only non-cacheable

2 PAs only non-cacheable

Figure 6: Throughput of hint-based acceleration and non-cacheable redirection. (no service
from PA cache)

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t

WP Nodes

traditional
PA hit 0%

PA hit 10%

Figure 7: Throughput when PA services objects from its cache.

The cost-performance improvement enabled by the proposed scheme is relevant. For instance,
Figure 5 illustrates that if we assume that the cost of a PA is almost the same as for a WP
node, the cost-performance improvement achieved with a single PA is �60% in a 2-node
WP and �40% in a 4-node WP. The performance bene�ts of the scheme increase with the
di�erence between WP and PA's CPU speeds, as illustrated by Figure 5 for the case of 700
MHz PA CPU's. Figure 5 also illustrates that a 2-node accelerator bene�ts relatively large
WP con�gurations. For instance, the cost-performance improvement with a 2 PAs is lower
than with 1 PA for a 2-node WP.

Hint-based acceleration can bene�t more than the redirection of non-cacheable

objects. Figure 6 illustrates that, for appropriately sized WP clusters, the proposed hint-
based acceleration can enable better performance than the previously proposed policy of
redirecting only the non-cacheable objects [14]. For a workload with only 25% miss ratio,
a 2-node WP cluster can attain more than double throughput levels if the front-end can
identify and process the request for cache misses along with the requests for non-cacheable
content.

PA-level caches bene�t low-performance WPs. Figure 7 illustrates that the e�ect of

7

Table 1: Impact of Hint Management Choices.

Characteristic A�ects
memory at WP WP memory hit ratio
memory at PA PA cache hit ratio
update period long-term throughput
update period WP/PA short-term throughput
look-up time PA long-term throughput
false hits WP load
false misses network usage

a PA cache is marginal in particular when the ratio of non-cacheable content is signi�cant,
like in our selection of experiment parameters.

To summarize, the hint-based Web Proxy acceleration may lead to signi�cant performance
and cost-performance improvements when the PA nodes can achieve a much higher through-
put network I/O than the WP nodes. The new scheme improves upon the previously pro-
posed redirection of non-cacheable content for appropriately sized WP clusters.

4 Impact of Hint Management

In this section, we evaluate how the hint representation and the consistency protocol can
a�ect the performance of an accelerated Web proxy. We focus on performance metrics,
such as hit ratio and throughput, and on cost metrics, such as memory, computation, and
communication requirements.

These performance and cost metrics depend on various characteristics of the hint manage-
ment mechanism (see Table 1). For instance, the look-up overhead a�ects the long-term
PA throughput. Also, the false miss decisions of the PA �lter cause undue network loads
and response delays. Table 2 summarizes some of the di�erences between the representation
methods and the update protocols introduced in Section 2. For instance, the look-up over-
head is constant for the Bloom Filter-based scheme while for the directory scheme it depends
on the context, namely on how well the hash table is balanced. Similarly, eager registration
results in no false miss, while for WP-only registration the amount of false misses increases
with the update period.

In this study, we identify and compare relevant trends of these representation methods and
update protocols. The study is conducted with a trace-driven simulator and a segment of
the Home IP Web traces collected at UC Berkeley in 1996 [11]. The traces include about
5.57 million client requests for cacheable objects over a period of 12.67 days. The number of
objects is about 1.68 million with a total size of about 17 GBytes.

Factors. The factors considered in this study are the following: (1) PA and WP memory,
(2) hint representation, (3) hint update protocol, and (4) update period. Namely, we consider
con�gurations with 0.25-1 GByte PA memory and 1-10 GByte WP memory. For the Bloom

8

Table 2: Selected Method Characteristics.

Characteristic Representation
Directory Bloom Filters

memory at WP none O(hint space)
memory at PA O(objs WP) O(hint space)
look-up overhead context-dependent constant
false hits none O(objs WP)

Protocol
WP-only Eager Reg.

false misses period-dependent none
PA computation on-o�, large bursts smaller bursts

Filter-based scheme, we vary the size of the hint space (0.5-10 MBytes) and the number
of hash functions; each hash function returns the remainder of the hint space size divided
by an integer obtained as a combination of four bytes in the object identi�er. Due to
limitations associated with trace encoding, object identi�ers are composed of the 16-byte
MD5 representation of the URL and a 4-byte encoding of the server name (this restriction
makes impossible an accurate evaluation of the resource requirements associated with the
Bloom Filter-based scheme). Finally, we experiment with update periods in the range of
1 sec to 2 hours.

Fixed Parameters. We experiment only with \push" updates; in comparison to \pull"
updates, \push" updates allow better control of hint accuracy [8] and lower I/O overheads.
In addition, we experiment only with incremental updates, as we consider it more appro-
priate than \entire copy" updates in the context of the hint representations and the system
parameters considered in this study. The WP cache replacement policy is LRU. The PA
cache replacement is \LRU with bounded replacement burst". According to this policy, an
incoming object is not cached if this would cause more than a given number of objects to
be removed from the cache. This policy is expected to perform well based on studies that
show that small objects have a large contribution to the hit ratio [18, 3]. For both caches,
garbage collection is invoked when a new object has to be accommodated.

4.1 Cost Metrics

Memory Requirements. The main memory requirements of the hint mechanism derive
from the hint meta-data and the message bu�ers used for the hint consistency protocol.

Hint Meta-data. For the directory scheme, no meta-data is maintained at the WP, and at the
PA, the requirements increase linearly with the population of the WP cache. For instance,
in our implementation, with 68-byte entries, the meta-data is �70 MBytes for a 10 GByte
WP cache. By contrast, for the Bloom Filter-based scheme, meta-data is maintained at both
PA and WP, and is independent of the cache size. The PA meta-data is as large as the hint
space multiplied by the number of WP nodes, and the WP meta-data is as large as the hint

9

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000
M

ax
im

um
 E

nt
ri

es
 P

er
 U

pd
at

e
M

es
sa

ge
 (

E
nt

ri
es

)
WP Memory (MBytes)

BloomFilter, WP-only
BloomFilter, eager

Directory, WP-only
Directory, eager

Figure 8: Variation of maximum number of entries per update message. 1 hour period,
256 MByte PA, 4 MByte hint space, 4 entries per object.

space multiplied by the size of the collision counter (e.g. 8 bits).

Hint Consistency Protocol. Message bu�er storage space required at the WP site for the
hint consistency protocol increases with the rate of WP cache updates and the period of the
consistency protocol. For the directory scheme, an update entry has unpredictable length,
as it includes the full name of the object. For the Bloom Filter-based scheme, an update
corresponds to a hint entry update, represented by a 5-byte data structure; a cache update
can result in as many hint entry updates as hash functions in the �lter.

Computation Requirements. The computation requirements associated with our accel-
eration scheme result mainly from request look-up and the processing of update messages.
In addition, minor computation overheads may be incurred at WP and PA upon each cache
update.

Look-up Overhead. For the directory scheme, the look-up overhead depends on the distri-
bution of objects to hash table buckets. For the Bloom Filter-based scheme, the look-up
overhead is more predictable, depending mainly on the �lter parameter. More speci�cally,
the overhead includes the transformation of the object name into one or more integer val-
ues, the computation of the hash functions, the selection, and the test of the corresponding
bitmap entries. On a 332 MHz PowerPC, the transformation of the object name into an MD5
representation takes �9�sec per 55 byte string segment. For the four simple hash functions
used in our Bloom Filter implementation, the overhead of hash function computation and
bitmap look-up is �1�sec. Overall, the look-up overhead is lower than 10% of the expected
cache hit overhead on a 300MHz PA (see Section 3).

Hint Consistency Protocol. The amount of computation triggered by the receipt of a hint
consistency message depends on the number of update entries included in the message.
Because of hint entry collisions, the Bloom Filter-based scheme results in about half the load
of the directory scheme (with 160-byte object identi�ers). The variation of the maximum
and average message sizes presented in Figure 8 and Figure 9 illustrates this trend. These
�gures also illustrate the bene�t of the eager registration approach. For both hint schemes,
on average, the eager hint registration reduces by half the computation loads. Similar trends

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000
T

ot
al

 E
nt

ri
es

 P
er

 U
pd

at
e

Pa
yl

oa
d

(M
E

nt
ri

es
)

WP Memory (MBytes)

BloomFilter, WP-only
BloomFilter, eager

Directory, WP-only
Directory, eager

Figure 9: Variation of total number of update entries. 1 hour update period, 256 MByte
PA, 4 MByte hint space, 4 entries per object.

48

50

52

54

56

58

60

62

64

66

68

70

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000

O
ve

ra
ll

H
it

R
at

io
 (

%
)

Overall Memory (MBytes)

No PA
Directory

BloomFilter

Figure 10: Variation of overall hit ratio with WP con�guration. 512 MByte PA, Bloom
Filter with 10 MByte hint space.

are observed for the communication requirements of the consistency protocol. Note that the
very large maximums observed in Figure 8 are due to a few very large WP cache replacement
bursts (�2300 objects).

4.2 Performance Metrics

Hit Ratio. The characteristic of the hint mechanism that most a�ects the (observed) hit
ratio is the likelihood of false misses. Typically, false misses are due to hint representation
and update delays. In our experiments, because of the selected hint representations, false
misses are only the result of update delays.

As expected, the likelihood of false misses increases with the update period. Figure 11
illustrates this trend indirectly: the ratio of requests directed to the WP with a traditional
update mechanism decreases with the increase of the update period. Eager hint registration
reduces the number of observed false misses, with less impact on the Bloom-Filter scheme
because of collisions.

11

25.5

26

26.5

27

27.5

28

28.5

29

29.5

0 1000 2000 3000 4000 5000 6000 7000 8000
R

at
io

 o
f

R
eq

ue
st

s
to

 W
P

(%
)

Hint Update Period (secs)

Eager, BloomFilter
WP-only, BloomFilter

Eager, Directory
WP-only, Directory

Figure 11: Variation of WP requests with update protocol and period. 256 MByte PA,
4 GByte WP, 4 MByte hint space.

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

R
at

io
 o

f
Fa

ls
e

H
its

 (
%

)

Hint Space (MBytes)

1 GByte WP
2 GByte WP
4 GByte WP
6 GByte WP
8 GByte WP

10 GByte WP

Figure 12: Variation of false hit ratio with hint space and WP cache. 512 MByte PA.

The amount of hint meta-data at the WP can have a relevant impact on the overall hit ratio
(i.e., hits in both PA and WP caches) when the ratio of the meta-data in the WP memory
is large, as for small WP cache sizes (see Figure 10). PA meta-data has no signi�cant
impact because objects removed from the PA cache are pushed to the WP rather than being
discarded.

Throughput. The extent of throughput improvement depends on how well the PA identi�es
the WP cache misses. This characteristic, re
ected by the likelihood of false hits, is a�ected
by the representation method and the consistency protocol.

Hint Representation. While the directory scheme has no false hits, for the Bloom Filter-based
scheme, the likelihood of false hits increases with the hint-space collision. As illustrated in
Figure 12, this occurs when the hint space decreases or the number of objects in the WP
cache increases. We notice that the false-hit ratio is constant when the hint space increases
beyond a threshold. This threshold depends on the WP cache size, and the e�ect is due to
the characteristics of the selected hash functions.

The likelihood of false hits also depends on the number of hint entries per object. Figure 13

12

3

4

5

6

7

8

9

10

1000 2000 3000 4000 5000 6000 7000 8000 9000 1000011000
R

at
io

 o
f

Fa
ls

e
H

its
 (

%
)

WP Memory (MBytes)

3 bits/obj, 2 MByte hints
3 bits/obj, 4 MByte hints
4 bits/obj, 2 MByte hints
4 bits/obj, 4 MByte hints
5 bits/obj, 2 MByte hints
5 bits/obj, 4 MByte hints

Figure 13: Variation of false hit ratio with hint entries per-object. 512 MByte PA.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1000 2000 3000 4000 5000 6000 7000 8000

R
at

io
 o

f
Fa

ls
e

H
its

 (
%

)

Hint Update Period (secs)

BloomFilter, 4 GB WP
BloomFilter, 6 GB WP

Directory, 4 GB WP
Directory, 6 GB WP

Figure 14: Variation of false hits with update period. 256 MByte PA, 4 MByte hint space.

illustrates the variation observed in our experiments with �lters with 3-5 hash functions.
While, typically, the ratio of false hits decreases with the number of hint entries per object,
when hint space occupancy is high, inversions may occur due to the collisions.

Hint Consistency Protocol. The impact of update period on false hit ratio is more signi�cant
in con�gurations with frequent WP cache updates (e.g., systems with small WP caches).
Figure 14 illustrates this trend for both hint schemes. For instance, for Bloom Filters, the
di�erence between the false-hit ratios observed for 1-hour and for 1-sec updates is 0.07% for
a 4 GByte cache and 0.04% for a 6 GByte cache. Comparing the two schemes, the relative
impact of the update period is almost identical.

Request Response Time. Besides the overhead of hint look-up and update, the acceler-
ated WP architecture can a�ect the average request response time by the reduction of the
hit ratio in the WP and PA main-memory caches. Besides the amount of meta-data in the
available main memory, the hit ratios depend on the cache replacement policies. Consider-
ing the PA cache, Figure 15 illustrates that the bounded replacement policy enables better
PA hit ratios without reducing the overall hit ratio. For instance, limiting the replacement
burst to 10 objects enables more than 5% larger PA hit ratios than with unlimited burst (see
bound = -1). This is because the average replacement burst is signi�cantly smaller than the

13

35

40

45

50

55

60

65

70

-20 0 20 40 60 80 100
H

it
R

at
io

 (
%

)
Replacement Bound

Total Hits, 256 PA
PA Hits, 256 PA

Total Hits, 512 PA
PA Hits, 512 PA

Figure 15: Variation of hit rate with replacement bound. '-1' for unbounded replacements.
Bloom Filter, 6 GByte WP, 4 MByte hint space.

maximum (e.g. 3 vs. 2300 in our experiments).

Summary. By trading o� accuracy, the Bloom Filter-based scheme exhibits lower compu-
tation and communication overheads. However, the meta-data at the WP node may reduce
the memory-hit ratio. While, in general, the hint look-up overheads are small with respect to
the typical request processing overheads, the overheads are more predictable for the Bloom
Filter-based scheme. Eager hint registration reduces update-related overheads and prevents
hit ratio reductions caused by update delays. False hit ratio (and, consequently, through-
put) is more signi�cantly a�ected by hint representation than by update period. For Bloom
Filter-based schemes, this ratio increases exponentially with hint space contention.

5 Implementation of Hint Management in Web Proxy

Nodes

The implementation of the hint-based accelerated Web proxy infrastructure is built by ex-
tending a thread-based Web proxy application and a kernel-mode HTTP server with func-
tionality for hint management and content push. The implementation of the hint mechanism
is based on Bloom Filters with eager registration and periodic updates. The implementation
makes possible a
exible system con�guration. Namely, the Web proxy node can interact
with multiple accelerators and the accelerator node can interact with multiple proxy nodes.

Hint Representation. The size of the hint space is customizable at initialization time.
The collision counters take up one byte. The Bloom Filter has six hash functions, four
applied to the object name and two to the origin server IP address. The object name,
s0s1:::, is transformed into an integer value by evaluating the polynomial

P
i siX

i for a �xed
prime number. The overhead of name transformation is �0.95�sec for the �rst 10 bytes,
and �0.7�sec for each additional 10 bytes, measured on a 332 MHz PowerPC. Note that,

14

although less e�ective than MD5 in avoiding collisions, this solution is characterized by lower
computation overheads, which clearly bene�t the proxy accelerator performance.

The hash functions are equal to mod(HintSpace) applied to the resulting 4-byte integer and
to three permutations of its bytes. Similarly, the mod(HintSpace) function is applied to the
4-byte integer representing the IP address and to one permutation of its bytes. The overhead
of computing these hash functions is �5.5�sec.

Hint Entry

0 1 2

Hash1(obj, 1) Hash2(obj, 1) Hash3(obj, 1) Hash0(obj, 1)

...1 1 1 1

Hint Space

Figure 16: Hint representation as interleaved Bloom �lters for 4 WP nodes.

When the WP has several nodes, the corresponding Bloom Filters are represented at the
PA by interleaved bitmaps. In this representation, the corresponding bits all of the �lters
are placed in consecutive memory locations (see Figure 16). In comparison to the original
representation in which each Bloom Filter is represented in a separate memory segment, the
interleaved representation is characterized by predictable look-up overheads, independent
of the cluster size. With the interleaved representation, the look-up overhead for a 4-bit
entry is constant at �1.28�sec, on a 332 MHz PowerPC. For the original representation,
the overhead varies from �1.19�sec for a single node look-up to �4.39�sec for four node
look-up.

Hint Update Protocol. The hint management implementation uses the eager hint regis-
tration protocol introduced in Section 2. Namely, an accelerator registers hints as it pushes
objects towards a proxy node. A proxy node collects the hint updates and periodically sends
them to each accelerator such that an accelerator will not receive updates resulting from
cache updates for content it has pushed to the WP node. An exception is made when a hint
entry is set by a push operation when the previous clear has not reached the accelerator
before it pushed the object (and set the entry in its representation). If not appropriately
handled, this situation may lead to false misses. To identify this type of situation, proxy
updates are labeled, and the pushed content sent by an accelerator carry the label of the
most recent update enacted by the proxy.

Web Proxy Software Extension. The extension of the Web proxy software has three
components. The �rst component represents the update interface invoked by the proxy
threads handling client requests when objects are added or permanently removed from the
cache (cache operations that remove objects only for accommodating their newer versions
should not result in hint updates). The calling thread indicates the object name, origin
server, and the corresponding cache operation. The resulting hint updates, if any, are
recorded in update bu�ers. When an update bu�er gets full, it is released for transmis-
sion. Update bu�ers are organized in an active set and a waiting set. Updates are recorded
in bu�ers of the active set. When such a bu�er gets full, it is replaced with one in the
waiting set. The active set includes a bu�er for each active accelerator and the local proxy

15

node. Updates are registered in the active bu�er associated with the node that originated
the operation. More speci�cally, updates resulting from a cache-add operation are registered
in the bu�er of the proxy node when it has received the content from the origin Web server;
otherwise, the update is registered in the bu�er of the accelerator that pushed the object
to the proxy cache. Updates for cache-remove operations are registered in the bu�er of the
proxy node. This scheme prevents replication of update representations when the proxy
interacts with several accelerators and permits the use of multicast if available.

The second component represents the proxy accelerator interface. This component consists
of three threads: one thread listens for incoming connections from accelerators, one thread
handles accelerator requests for transmission of the entire hint space, and the third thread
handles the periodic updates. Accelerators may request a complete copy of the hint space at
their initialization. The periodic update thread disseminates to the registered accelerators
the update bu�ers released for transmission. If no bu�er is released, the thread transmits
the currently active batch update bu�er.

The third component of the Web proxy extension is the push handler. This component
receives the new content and stores it in the cache. The content is sent in HTTP format as
a POST request. While this requires the proxy node to duplicate the header processing that
was already done in the accelerator, it decouples the implementations of the proxy cache and
the accelerator. In order to hide the latency of the related I/O operations, multiple push
connections can be concurrently active between accelerator and proxy.

Experimental Evaluation. In the remainder of this section, we present an experimental
evaluation of the overhead of hint management. The experimental evaluation is done with
the Web Polygraph proxy performance benchmark [20]. Each component of the benchmark,
polyclt, polysrv, Web Proxy, and proxy accelerators run on separate nodes of a switched
Ethernet-based LAN.

The selected tra�c model is meant to stress the hint-related component of the Web proxy
application. Namely, the request model is characterized by a 75% miss ratio. The content
size is �xed to 2 bytes, which results, with the headers, in about 370 bytes per request.
Requests are issued by the polyclt node in best-e�ort mode, meaning that a new request
is sent as soon as the reply for the previous one is received. Each experiment consists of
100,000 requests.

During experiments, the Web proxy con�guration is varied from original (i.e., no hint collec-
tion and updates), to hint collection but no updates, and to both hint collection and updates
to one and two accelerators. During these experiments, the role of accelerators is reduced to
receiving hint updates; requests are received directly by the Web proxy and, therefore, they
do not pass through the accelerator. The update period is 5 min.

The Web Polygraph statistics about the response times observed by the client show that the
distributions of hit and miss response times are almost identical up to the 98-percentile for
all the tested con�gurations. For the 99-percentile, the miss response times experienced with
the con�gurations with active hint management di�er by less than 1% from the performance
of the original con�guration. For hit response times, the 99-percentile di�erence is less than
10% of the performance in the original con�guration. The throughput observed by the

16

client is unchanged for the experiment with no active accelerators and �1.8% lower for the
experiments with active accelerators.

With Web Proxy internal monitoring instrumentation, we collected statistics about the over-
head of hint collection with one active proxy accelerator. This overhead includes hint com-
putation and collection into batch update bu�ers. The statistics show a minimum of 31�sec,
a median of 62�sec, and a 95-percentile of 123�sec. The above results demonstrate that hint
collection and update protocol have negligible impact on the performance of a Web proxy
node.

6 Related Work

Previous research has considered the use of location hints in the context of cooperative
Web Proxies [8, 19, 10, 22]. In these papers, the hints help reduce network tra�c by more
e�cient Web Proxy cache cooperation. Extending these approaches, we use hints to improve
the throughput of an individual Web proxy. In addition, we propose and evaluate new hint
maintenance techniques that reduce overheads by exploiting the interactions between a cache
redirector and the associated cache.

Web tra�c interception and cache redirection relates our approach to architectures such as
Web server accelerators [15], ACEdirector (Alteon) [1], DynaCache (InfoLibria) [13], Content
Smart Switch [14], and LARD [17]. The ability to integrate a Proxy Accelerator-level cache
renders our approach similar to architectures in which the central element is an embedded
system-based cache, such as a hierarchical caching architecture [13], or the front end of a Web
server [15]. Our proxy accelerator extends the approach to bypassing the Web proxy proposed
in [14]; besides non-cacheable objects, our accelerator can identify the misses and process
them locally. Trading the throughput of the routing component, which is not the bottleneck
resource, our approach can boost even more the throughput of the bottleneck proxy nodes.
Furthermore, our approach is similar to the redirection methods used in architectures focused
on content-based redirection of requests to Web Proxy nodes [1, 17]. However, our approach
enables dynamic rather than �xed mappings of objects to WP nodes[1]. In contrast to
the method in [17], redirection does not cause caching of multiple object replicas and is
independent of client request patterns.

7 Conclusions

Based on the observation that miss ratios at proxy caches are often relatively high [7, 12, 9],
we have developed a method to improve the performance of a cluster-based Web proxy by
shifting some of its cache miss-related functionality to be executed on a Proxy Accelerator
{ an extended content-based router implemented on an embedded system optimized for
communication. Consequently, the Web proxy can service a larger number of hits, and
the Proxy Accelerator-based system can achieve better throughput than traditional Web
proxies [1, 8, 19, 17] or systems in which the Web proxy is bypassed only for non-cacheable
objects [14]. In addition, under moderate load, response time can be improved with a Proxy

17

Accelerator main memory cache [15, 13].

Our study shows that a single Proxy Accelerator node with about an order of magnitude
better throughput for communication operations than a proxy node [15, 16] can improve
the cost-performance ratio of a 4-node Web proxy by �35%. Our study shows that eager
registration is a \must" and that the Bloom Filter-based scheme is more appropriate than the
directory scheme for large WP clusters or when PA and WP nodes have comparable power.
The implementation of the accelerated Web proxy node demonstrates that the overhead
added by hint management is not signi�cant in comparison to typical proxy node overheads.

References

[1] Alteon Web Systems, ACEdirector Web Switch, in:
http://www.alteonwebsystems.com/products/acedirector2-data.shtml (1999).

[2] M. Aron, D. Sanders, P. Druschel, W. Zwaenepoel, Scalable Content-aware Request
Distribution in Cluster-based Network Servers in: Proc. Annual Usenix Technical Con-
ference (2000).

[3] P. Barford, A. Bestavros, A. Bradley, M. Crovella, Changes in Web Client Access Pat-
terns. Characteristics and Caching Implications in: World Wide Web Journal, Special
Issue on Characterization and Performance Evaluation 2(1-2) (1999).

[4] A. Bestavros, M. Crovella, J. Liu, D. Martin, Distributed Packet Rewriting and its
Application to Scalable Server Architectures in: Proc. 6th International Conference on
Network Protocols (1998).

[5] B. Bloom, Space/time trade-o�s in hash coding with allowable errors. in: Communica-
tions of ACM 13(7) (1970), 422-426.

[6] P. Cao, S. Irani Cost-Aware WWW Proxy Caching Algorithms in: Proc. USENIX
Symposium on Internet Technologies and Systems (1997).

[7] B. M. Duska, D. Marwood, M. J. Feeley, The Measured Access Characteristics of World-
Wide-Web Client Proxy Caches in: Proc. USENIX Symposium on Internet Technologies
and Systems (1997).

[8] L. Fan, P. Cao, J. Almeida, A. Z. Broder, Summary Cache: A Scalable Wide-Area Web
Cache Sharing Protocol in: Proc. SIGCOMM'98 (1998).

[9] A. Feldmann, R. Caceres, F. Douglis, G. Glass, M. Rabinovich, Performance of Web
Proxy Caching in Heterogeneous Bandwidth Environments in: Proc. IEEE INFO-
COM'99 (1999).

[10] S. Gadde, J. Chase, M. Rabinovich, A Taste of Crispy Squid in: Proc. Workshop on
Internet Server Performance (1998).

18

[11] S. D. Gribble, UC Berkeley Home IP HTTP Traces in:
http://www.acm.org/sigcomm/ITA (1997).

[12] Gribble, Steven D. and Brewer, Eric A., System Design Issues for Internet Middleware
Services: Deductions from a Large Client Trace in: Proc. USENIX Symposium on
Internet Technologies and Systems (1997).

[13] A. Heddaya, DynaCache: Weaving Caching into the Internet in: 3-rd International
WWW Caching Workshop (1998).

[14] E. Johnson (ArrowPoint Communications) Increasing the Performance of Transparent
Caching with Content-Aware Cache Bypass (1999).

[15] E. Levy, A. Iyengar, J. Song, D. Dias, Design and Performance of a Web Server Accel-
erator in: Proc. IEEE INFOCOM'99 (1999).

[16] IBM Net�nity Web Server Accelerator V2.0, in: http://www.pc.ibm.com/us/solutions/
net�nity/server accelerator.html (2000).

[17] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, E. Nahum,
Locality-Aware Request Distribution in Cluster-based Network Servers in: Proc. Inter-
national Conference on Architectural Support for Programming Languages and Operat-
ing Systems (1998).

[18] A. Rousskov, V. Soloviev, A Performance Study of the Squid Proxy on HTTP/1.0 in:
WWW Journal 1-2 (1999).

[19] A. Rousskov, D. Wessels, Cache Digests in: http://squid.nlanr.net/Squid/CacheDigest
(1998).

[20] A. Rousskov, D. Wessels, High Performance Benchmarking with Web Polygraph in:
http://ircache.nlanr.net/Polygraph/doc/papers/paper01.ps.gz (1999).

[21] J. Song, E. Levy, A. Iyengar, D. Dias, Design Alternatives for Scalable Web Server
Accelerators, in: Proc. IEEE International Symposium on Performance Analysis of
Systems and Software (2000).

[22] R. Tewari, M. Dahlin, H. M. Vin, J. S. Kay, Beyond Hierarchies: Design Consider-
ations for Distributed Caching on the Internet in: Proc. International Conference on
Distributed Computing Systems (1999).

[23] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, H. M. Levy, On the scale
and performance of cooperative Web proxy caching in: Proc. 17th ACM Symposium on
Operating Systems Principles (1999).

19

