
RC 21950 (98676) 6 February 2001 Computer Science

IBM Research Report

Managing Application Service Dependencies with
XML and the Resource Description Framework

Christian Ensel
Munich Network Management Team

University of Munich
Oettingenstr. 67

80538 Munich, Germany

Alexander Keller
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Managing Application Service Dependencies with XML
and the Resource Description Framework

Christian Ensel
Munich Network Management Team
University of Munich
Oettingenstr. 67
80538 Munich, Germany
ensel@informatik.uni-muenchen.de

Alexander Keller
IBM Research Division
T.J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598, USA
alexk@us.ibm.com

Abstract

This paper describes a novel approach for applying XML, XPath and RDF to the problem of describing,
querying and computing the dependencies among services in a distributed computing system. This becomes
increasingly important in today’s networked environments where applications and services rely on both
local and outsourced sub–services. However, service dependencies are not made explicit in today’s systems,
thus making the task of problem determination particularly difficult.

A key contribution of the paper is a web–based architecture for retrieving and handling dependency infor-
mation from various managed resources. Its core component is a dependency query facility allowing the
application of queries and filters to dependency models; its output is a consolidated dependency graph that
can then be used by fault management applications to perform additional problem determination tasks or
event correlation. The definition of an XML based notation for specifying dependencies facilitates infor-
mation sharing between the components involved in the process.

Keywords

Web–based Application Management, Dependency Analysis, RDF, XML, XPath

1 Introduction

The identification and tracking of dependencies between the components of distributed systems is becoming
increasingly important for integrated fault management. Applications and services rely on a variety of
supporting services that might be outsourced to a service provider; moreover, emerging web–based business
architectures allow the composition of web–based e–business applications at runtime: The concept ofWeb
Services[11] consists in the dynamic advertisement, discovery and access of business functionality among
multiple cooperating partners. Consequently, failures occurring in one service affect other services being
offered to a customer, i.e., services havedependencieson other services. For our discussion, we call
services that depend on other servicesdependents, while services on which other services depend are
termedantecedents. It is important to note that a service often plays both roles (e.g., a name service is
required by many applications and services but is dependent on the proper functioning of other services,
such as operating system and network infrastructure), thus leading to adependency hierarchythat can
be modeled as a directed graph. Figure 1 depicts a simplified application dependency graph for various
components of an e–business system that we have used in a testbed for designing, implementing and testing
our approach. It represents a fictitious Internet storefront application that involves a Web Server for serving
the static content of the site, a Web Application Server for hosting the business logic (implemented as
storefront servlets), and a back–end database system that stores the dynamic content of the application
(such as product descriptions, user and manufacturer data, carts, payment information etc.).
Both service providers and customers require management tools that allow navigation through the depen-
dency hierarchy, in order to analyse and track down the root cause of a service failure. In addition, service
providers are interested in tools to determinein advancethe impact of a service outage on other services
and users for scheduling server maintenance intervals (e.g., deploying backup systems when a production
server has to be brought down for performing a software upgrade).

1

Database
DB2 UDB 5.2

E-business Application
Storefront Servlets

Web Server
IBM HTTP Server 1.3.6

Web Application Server
IBM WebSphere 3.5

OS
AIX 4.3.3

OS
WinNT 4

IP
Service

wslab8.watson.ibm.com rslab2.watson.ibm.co m

Figure 1: Simplified application dependency graph of an e–business system

However, the main problem today lies in the fact that dependencies between services and applications
are not made explicit, thus making root cause and impact analysis particularly difficult [3]. Solving this
problem requires the determination and computation of dependencies between services and applications
across different systems and domains, i.e., establishing a ‘global’ service dependency model and enabling
system administrators to navigate through the resulting directed graph from the top to the bottom and in
reverse order.

What is needed is a dynamic model reflecting the dependency relationships between different services;
in addition, a management system should be capable of providing various mechanisms to select parts of
a dependency model according to user–defined criteria. The latter capabilities are similar to the CMISE
scoping and filtering mechanism of the OSI/TMN management framework. The difference is that scoping
and filtering assumes a tree–like representation of management information while dependencies form more
complex, directed graphs, as mentioned above.

While previous work (often within the scope of event correlation, see e.g. [4] and [9]) has focused on
identifying and describing service dependencies in a proprietary format, it remains unclear how dependency
information can actually be exchanged between different entities of the fault management process. Since
it is unlikely that the different parties involved in the fault management process of outsourced applications
use the same toolset for tracking dependencies, it is of fundamental importance to define an open format for
specifying and exchanging dependency information. This is the topic addressed by this paper. The proposed
solution is based on XML,XML Path Language (XPath)[13] and theResource Description Framework
(RDF) [10], an emerging specification of the W3 Consortium. It provides a uniform interface to query
service and dependency information across the systems of a distributed environment and can be used by
various fault management applications and event correlation systems.

The paper is structured as follows: Section 2 states the requirements for determining application and service
dependencies, presents related work and gives an overview of the proposed architecture and its components.
Section 3 introduces the core technologies that we have used for designing our solution, namely XML, RDF
and the XPath language. Further, it analyses how these can be used to represent and process dependency
information and gives a concrete example that applies our methodology to an e–business scenario. The
proof–of–concept prototype implementation is described in section 4. Section 5 concludes the paper and
presents issues for further research.

2

2 Service and Application Dependencies

From a conceptual perspective, dependency graphs provide a straightforward means to identify possible
root causes of an observed problem: If the dependency graph for a system is known, navigating the graph
from an impaired service towards its antecedents—being either co-located on the same host or on different
systems—will reveal which entities might have failed. Traversing the graph towards its root yields the
dependents of a service, i.e., the components that might fail if this service experiences an outage. However,
there are a couple of roadblocks on the way towards appropriate dependency models:

1. The number of dependencies between many involved systems can be computed, but may become very
large. From an engineering viewpoint, it is often undesirable—and sometimes impossible—to store
a complete,instantiateddependency model at a single place. Traditional mechanisms used in net-
work management platforms such as keeping an instantiated network map in the platform database
therefore cannot be applied to dependencies due to the sheer number and the dynamics of the in-
volved dependencies. These two facts make it prohibitive to follow a ‘network–management–style’
approach for the deployment of application, service and middleware dependency models. Instead,
we propose to distribute the storage and computation of dependencies across the systems involved
in the management process. Section 2.1 describes our architecture that is designed to meet these
requirements.

2. As mentioned in the introduction, the acquisition of a service dependency model, even confined to
a single host system, is a challenge on its own as today’s systems do not provide appropriate man-
agement instrumentation. Although a complete discussion of mechanisms for generating dependency
models is beyond the scope of this paper, section 2.2 gives a brief overview of some promising ap-
proaches aiming at establishing such ‘local’ dependency graphs.

3. Further, facilities for combining local dependency graphs, stored on every system, into a uniform
dependency model are required. In addition, these facilities need to provide an API allowing man-
agement applications to issue queries against the dependency model. These queries will allow the
retrieval of the direct antecedents of a specific service, or recursively determine the whole set of
their sub–nodes, etc. The list of nodes received by the management application enables it to perform
specific problem determination routines to check whether these services are operational. Section 3
describes our approach of coping with this problem.

4. As a subproblem of the previous issue, it should be kept in mind that dependency models are directed
graphs. While, e.g., the OSI scoping and filtering capabilities (having a similar functionality to what
we are striving for) are designed to operate on tree–like data structures, dependency analysis faces
the problem that a very similar set of operations has to be provided for directed graphs. This raises
the question which notation and which data format allows the efficient representation of graphs so
that fine–grained query mechanisms can be applied to graphs. Section 3.3.3 describes our solution to
this problem.

5. Finally, the notion of dependencies is very coarse and needs to be refined in order to be useful.
Examples for this are thestrengthof a dependency (indicating the likelihood that a component is
affected if its antecedent fails), thecriticality (how important this dependency is w.r.t. the goals and
policies of an enterprise), thedegree of formalization(i.e., how difficult it is to obtain the dependency)
and many more. While it is out of the scope of this paper to establish a taxonomy for dependencies,
there is a need to add attributes to dependencies that allow their qualification and, accordingly, a need
to reflect these attributes in the dependency representation. This is addressed by section 3.3.3.

2.1 An Architecture for Service Dependencies

Our distributed three–tier architecture, depicted in figure 2, addresses the issue of dealing with potentially
very dynamic dependency relationships among a very large number of components. It follows a ‘divide and

3

System
Repository

Management System

Web
Server
httpd

CIMOM

Management Services Managed Resources

Web
Server
httpd

Dependency
Query

Facility

TraderName

Event
Other Services

Flat XML/RDF Files

Java/RMI

CIM
Provider

CIM
Provider

Dependency DescriptionsGenerate Dependency
Information

Issue Queries

XML/http

XML/http

XML/http

Figure 2: Architecture of our Dependency System

conquer’ approach, which is usually the way of choice for dealing with scalability problems in distributed
systems.

We assume that the managed resources (depicted in the right part of the figure) are able to provide XML
descriptions of their system inventory and their various dependencies. The details on how this information
can be acquired and what the descriptions look like are described in sections 2.2 and 3.3.2, resp. 3.3.3.

In the center of the figure is the core component of our architecture: TheDependency Query Facility,
triggered by queries of the management system using JavaRemote Method Invocation (RMI), processes
them and sends the results back to the manager. Its main tasks are as follows:

� Interacting with the management system. The management system issues queries to the API of the
Dependency Query Facility. The API exposes a flexible ‘drill–down’ method that, upon receiving the
identifier of a service, returns:

– either descriptions of itsdirect antecedents, i.e., the first level below the node representing the
service, or

– thewhole subgraphbelow the node representing the service,
– anarbitrary subsetof the dependency graph (levelsm to n below a given node).

A ‘drill–up’ method with the same facilities, targeting the dependents of the service, is also present.
These two methods are equivalent to the aforementioned scoping capabilities. In addition, methods
for gathering and filtering information for classes and properties of managed objects are present.

� Obtaining the dependency information from the managed resources (by issuing queries over http) and
applying filtering rules (as specified by the manager) to it.

� Combining the information into a data structure that is sent back to the manager as XML document
according to the format specified in 3.3.2 and 3.3.3.

The details of our implementation are given in section 4. It should be noted that due to its fully distributed
nature, the architecture aims at keeping the load on every involved system as low as possible. It completely
decouples the management system from the managed resources and encapsulates the time consumingfilter
andjoin operations in the dependency query facility, which can be replicated on various systems. We are

4

therefore able to achieve a maximum level of parallelism for query operations, since the selection of an
instance of the dependency query facility can be done flexibly by the management system.

Another important advantage of our architecture is that the (very large and highly dynamic) overall depen-
dency model is not stored at a specific place but computed on demand in a stepwise manner. The different
parts of the model are stored at the managed resources. The management system therefore always receives
the most recent information but is still free to store it according to elaborate caching policies.

2.2 Acquiring Dependency Information from Managed Resources

The question where the dependency information on the managed resources comes from is another crucial
issue, although this is not fully within the scope of this paper. For the sake of completeness, we will briefly
mention some of the more common approaches:

� The most straightforward way is to provide appropriate instrumentation within the applications and
services themselves; the problem is that none of today’s applications is able to provide this kind of
information at an acceptable granularity.

� Another approach consists in instrumenting the communication protocol stack and/or some shared
libraries of the host system to intercept the communication between different parties in order to infer
potential dependencies. The resulting information could be either provided by a specific ‘dependency
agent’ or given out as flat files.

� [8] describes an approach that makes use of information stored in system configuration repositories
for generating appropriate service dependency information.

� A technique used in system and protocol design which could be applied to service and application
management is the active perturbation of components within a system (i.e., injecting faults in a con-
troller manner and observing the behavior of the components) while running synthetic transactions
against it. This technique could be used to obtain the required dependency information; however,
great care has to be taken if this technique is used on production systems.

� Other approaches come from the area of Artificial Intelligence. [2] uses Neural Networks to auto-
matically derive dependency information by looking at pairs of systems’ behavior over time.

� The OSIGeneral Relationship Model (GRM)[7] defines a powerful generic model for defining re-
lationships between managed objects and provides a mechanism for qualifying these relationships
by means of attributes. In addition, the GRM specifies extensible operations that can be invoked on
the managed relationships. While its functionality is needed in any distributed system, the GRM is
tightly coupled with the OSI Structure of Management Information and CMISE and, thus, has not
been used outside of TMN environments.

� Finally, aCIM Object Manager (CIMOM), as proposed by the Distributed Management Task Force
(DMTF) could be used to expose the necessary information. The CIM Core Model [1] provides
an association classCIM Dependency, from which eight subclasses are derived (in the Core Model
alone).

Every one of the aforementioned approaches for generating dependency models has its specific advantages
and drawbacks. Given the fact that dependencies cross system and organizational boundaries, it is likely
that a combination of some of these approaches is needed to yield the most comprehensive amount of
dependency information.

3 Applying XML Technologies to Dependencies

A key issue to successfully provide information about dependencies to management applications is the
introduction of a common description format to represent the dependencies in a uniform way. This is espe-

5

cially necessary to hide the heterogeneity of the described systems, resp. the various ways to obtain their
dependency information (as described in 2.2). Furthermore, the representation must be easily understood
by management applications. In addition, it should be possible to extend the dependency information deter-
mined at the resources without requiring changes to other parts of the infrastructure; e.g., to add information
that maps business processes onto system resources by means of a different tool than the one used to create
the descriptions of system resource dependencies.

In order to meet these goals, our approach is based on several key features of XML, resp. the Resource De-
scription Framework (RDF). These will be briefly explained in the following subsections; we also analyse
how they aid to fulfill the requirements.

3.1 XML Parsers

Our main motivation for using XML is the fact that it provides flexible and extensible mechanisms to define
a notation for the description of dependency information; in addition, it is easy to generate and can be
parsed with powerful parsers that are freely available.

There are basically two techniques for parsing XML documents. The first one is used byDOM parsers
(DOM: Document Object Model); they generate an object model (Java objects instantiated from pre–defined
DOM classes) with hierarchically linked objects reflecting the exact structure of the document. These
structures can then be traversed to select the required information. The second (more lightweight) method
areSAX parsers (SAX: Simple API for XML); they sequentially read the document, calling certain user
defined functions whenever a new start–tag or end–tag is encountered. DOM parsers are more powerful but
their drawback is that they consume more resources than SAX parsers if a document is large because they
have to keep the whole document in memory. Common XPath implementations (see below) are usually
based on DOM parsers.

3.2 XPath: Querying XML Documents

The aforementioned parsers provide the basic means to access information in the document. However, for
many purposes a more powerful way to retrieve information is needed. XPath [13] provides an extensive
query language to extract parts of an XML document. Each query describes a ‘path’ through the virtual tree
structure of the XML document that is generated by a DOM parser. Each step on the path consists of:

� an axis—the ‘search direction’, e.g., towards thechild or ancestor nodes,
� a node test—the name of the nodes (i.e., the tag–name) to be chosen, and
� one or more predicates that apply filters to the result. The predicate itself may consist of further

XPath–expressions.

The simple XPath query/descendant::ds:Service[@rdf:about= ID] selects a certain element de-
scription from an XML document: The axisdescendant specifies to search anywhere in the document
below the current node (in this case the root node). After ‘:: ’ follows the name of the desired node
(ds:Service) and the filter predicate (in square brackets), which specifies to select only nodes with an
attributerdf:about that has a certain value (ID).

The use of current XPath implementations also brings the use of the more resource–consuming DOM
parsers with it. In our work, this problem is addressed by introducing the following convention, which
helps to keep the size of the files containing the dependency description within acceptable limits: Every
managed object is described in a separate file on the web–server. In order to be able to locate the file, its
filename is derived from the name of the managed object.

6

3.3 Resource Description Framework

RDF is actually not part of XML, but comes from an independent working group (also within the W3C) and
specifies a common representation format for resource description in the form of directed graphs. However,
RDF documents are valid XML documents.

3.3.1 RDF Principles

The goal of RDF is to provide a means for defining additional semantics for XML tags in a formal way,
mainly focusing on document enrichment. RDF at its current stage allows the description of any resource
by definingRDF properties and making use of the extensible type system. Note that in the terminology of
RDF, anything is regarded as a resource that has (or can be represented by) anUniversal Resource Identifier
(URI). It is then called anRDF resourceand can be described by one or moreRDF descriptions, each
listing properties (attributes) of the resource. The value of each RDF property can either be aLiteral
(a String) or a pointer to another resource. One or more descriptions form an RDF graph. The described
resources plus theLiterals are the nodes of the graph. Edges are formed by the RDF properties. The
type of resource an RDF property can be applied on is called its ‘domain’. The type it may point to is called
its ‘range’.

The main purpose of using RDF in our project stems from the fact that RDF provides a very convenient
and efficient way for representing directed graphs as an XML document. The fact that RDF provides
a mechanism for allowing one node to reference other nodes (that can be either part of the same or a
different XML document, eventually located on another host) circumvents a typical problem of simpler
XML mappings, where nodes with multiple antecedents would be described at multiple places.

3.3.2 RDF based Managed Object Representation

Every described resource (here, managed object) can be embedded into a type system, thus, enabling the
RDF parser to check whether the attributes, methods, etc. are used correctly. This allows a clean object
description, without the need to use tags on a meta level (e.g.,<ds:Service> instead of<ms:Class
classname="ds:Service"> ; see [12] for detailed discussions). Furthermore—and this makes it superior
to purely XML based solutions—it does not lead to the otherwise extremely complex mechanisms needed
to check inherited elements because this is provided by the RDF parsers in a ready–to–use way.

The following code extract defines the RDF classGenericNode that will be used as the superclass of any
node in any dependency graph. Derived from this is the subclassService , which is the type for any service
description. The last element demonstrates the definition of attributes as RDF properties.

<rdfs:Class rdf:ID="GenericNode" >
</rdfs:Class>
<rdfs:Property rdf:ID="NodeDescription">

<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#GenericNode"/>

</rdfs:Property>

<rdfs:Class rdf:ID="Service">
<rdfs:subClassOf rdf:resource="#GenericNode"/>

</rdfs:Class>
<rdfs:Property rdf:ID="ServiceIdentifier">

<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#Service"/>

</rdfs:Property>

In RDF terminology, such meta information is called anRDF schema. It will be referenced by all RDF
documents actually describing the services via XML namespaces. For our purposes, an appropriate schema
is stored at web servers reachable by all involved systems. Its URLs are contained in each RDF document’s
namespace definition. As these do not change frequently, simple caching mechanisms can reduce the traffic
to a minimum.

7

The naming problem is solved by introducing a new namespace for each class. This automatically binds
each RDF element of the class (attributes, methods, etc.) to the same namespaces, which reflects common
principles of object oriented languages.

While this shows that RDF is suitable for describing managed objects, one should also recognize that it
explicitly allows an hybrid approach of RDF and pure XML in the same document. An RDF parser would
only look at those parts of the document that are embraced by theRDF–tag, while the other parts are read
by an ordinary XML parser.

3.3.3 RDF based Dependency Representation

A straightforward approach to describe service dependencies with RDF is to directly map the service de-
pendency graph onto an RDF graph. However, this precludes the definition of attributes for instantiated
dependencies, because RDF properties may not have further attributes.

Managed
Object X

Dependency
Association

Managed
Object Y

Managed
Object X

Managed
Object Y

Dependency
Graph

RDF-Graph

- Resources

- Properties

Figure 3: Mapping a dependency to RDF

The solution to this problem is to map dependencies to a second type of RDF resource, rather than to an
RDF property. As shown in figure 3, the properties are used to bind the matching managed object resources
with the associations, thus spanning a bipartite graph. The advantage of simple dependency graph traversal
is not restricted by this approach. It permits not only every object to have a well–defined set of attributes
(caption, identifier etc.), but also the annotation of dependencies (e.g., strength, criticality, generatedby
etc.). This fulfills the fifth requirement of section 2, which states that a dependency needs to be annotated
with attributes that provide information about the dependency itself. It is therefore possible to target the
dependency attributes for queries by asking, e.g., for all the services in the distributed system on which
other services depend with a ‘high’ dependency strength.

The code extract below shows the basic RDF schema for the generic dependencies, which we calledDepen-
dencyAssociation , together with the properties needed for the binding to and from the managed object
description, as explained above. The lower part of the code further shows an example of an association
attribute.

<rdfs:Class rdf:ID="DependencyAssociation" >
</rdfs:Class>
<rdfs:Property rdf:ID="dependency">

<rdfs:range rdf:resource="#DependencyAssociation"/>
<rdfs:domain rdf:resource="#GenericNode"/>

</rdfs:Property>
<rdfs:Property rdf:ID="antecedent">

<rdfs:range rdf:resource="#GenericNode"/>
<rdfs:domain rdf:resource="#DependencyAssociation"/>

</rdfs:Property>
<rdfs:Property rdf:ID="DependencyStrength">

<rdfs:range rdf:resource="rdfs:Literal"/>
<rdfs:domain rdf:resource="#DependencyAssociation"/>

</rdfs:Property>

8

Object Y
Object X

ServiceDependency

label
generated
strength
criticality
…

dependency

antecedent

caption
identifier
description
version
release
startCommand
stopCommand
…

caption
identifier
description
version
release
startCommand
stopCommand
…

Service
Service

Figure 4: Elements of a dependency description in RDF

Figure 4 gives a graphical representation of the RDF schema we use for representing dependencies. It also
shows further attributes we defined for objects and dependencies.

3.4 Discussion

It is fair to say that RDF is ideally suited for the representation of information about managed objectsand
their dependencies. For the developer of a management tool, RDF allows a significantly simpler way to
perform document validation, while keeping all the benefits of a hierarchical type system, like in object
oriented languages.

There remain only very few issues that cannot be checked by an RDF parser. E.g., if further constraints
are imposed on ranges of attributes (RDF properties), this cannot yet be specified in an RDF schema (but
neither in an XML–DTD).

An additional aspect that has to be mentioned is the ability to easily query required information from
RDF documents. While XPath is the means of choice for the purely XML based approach, no special
query mechanism (beyond parsing) exists that is fully ‘aware’ of RDF concepts. The obstacle that RDF
puts up against a straightforward use of XPath—although its representation finally is nothing but an XML
document—is that it allows various (full and abbreviated) syntaxes for the same RDF concepts.

Our solution consists in restricting the use of RDF to only one syntax (the abbreviated). This brings no
disadvantages when the documents are processed by RDF parsers, but allows the use of XPath in a way that
is as simple as it would be for pure XML documents.

3.5 Example: RDF Representation of Services and Dependencies

We will now present by means of an example how the approach described in section 3 can be applied to
our e–business scenario of section 1. More precisely, we show the content of the document that specifically
represents the dependency ofStorefront Servlets onIBM WebSphere 3.5 on the one side, and
onDB2 UDB 5.2 on the other. These dependencies are marked as dashed arrows in figure 5.

By definition, the header of every document starts with the XML tag (line 1 of the following listing),
followed by links to our dependency schema (line 2) as well as the RDF syntax and schema definitions
(lines 3 and 4). The body of the document contains the service definition start and end tags (line 5, resp.
29), its attributes (lines 6 to 12) and two dependencies (lines 13 to 20, resp. 21 to 28). The document closes
with the RDF end tag (line 30). Note that all pointers to descriptions of antecedents are URIs, thus making
their location (local or remote) completely transparent to the dependency query facility.

9

Database
DB2 UDB 5.2

E-business Application
Storefront Servlets

Web Server
IBM HTTP Server 1.3.6

Web Application Server
IBM WebSphere 3.5

OS
AIX 4.3.3

OS
WinNT 4

IP
Service

wslab8.watson.ibm.com rslab2.watson.ibm.co m

Figure 5: Visualized RDF graph for the example services and dependencies

1 <?xml version="1.0" encoding="UTF-8"?>
2 <rdf:RDF xmlns:ds="http://wslab4.watson.ibm.com/DependencySchema#"
3 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
5 <ds:Service>
6 <ds:name>E-business Application</ds:name>
7 <ds:caption>Storefront Servlets</ds:caption>
8 <ds:identifier>my.catalogServlets</ds:identifier>
9 <ds:description>business logic of catalog app.</ds:description>
10 <ds:version>3</ds:version>
11 <ds:release>1</ds:release>
12 <ds:processName></ds:processName>
13 <ds:dependency>
14 <ds:ServiceDependency>
15 <ds:antecedent rdf:resource=
16 "http://rslab2.watson.ibm.com/xmlrepository/db2.xml"/>
17 <ds:generated>automatic</ds:generated>
18 <ds:label>ebusinessApp DependsOn database</ds:label>
19 </ds:ServiceDependency>
20 </ds:dependency>
21 <ds:dependency>
22 <ds:ServiceDependency>
23 <ds:antecedent rdf:resource=
24 "http://wslab8.watson.ibm.com/xmlrepository/websph35.xml"/>
25 <ds:generated>automatic</ds:generated>
26 <ds:label>ebusinessApp DependsOn webApplServer</ds:label>
27 </ds:ServiceDependency>
28 </ds:dependency>
29 </ds:Service>
30 </rdf:RDF>

4 Proof-of-Concept Implementation

4.1 Components of the Prototype

Our prototype consists of two parts. The first part is responsible for the generation of the managed re-
sources’ RDF/XML descriptions that are obtained from the web servers (lowest section of figure 6). The
central element of the architecture, theDepInformationProvider responds to the queries from the
management application for dependency or element descriptions. It constructs the result document (with
the help of further classes) by collecting the appropriate document parts from the web servers, resp. from
theResourceProxies . The latter implements a cache to store already retrieved documents in order to
keep the number of http queries low if a service description is requested many times. Once the right element

10

RDF
/ XML

DepInformationProvider

DepQueryResolver

httpd
http-queries

queries
Management Application

ResourceProxy

Dependenc y
Query

Facilit y

HashMap of Proxies

ElementURI
Resolver

RDF-
Schema
RDFSubClass

Resolver

RDF
/ XML

Figure 6: Components and information flows

descriptions are found, it is easy to combine them into a complete document by appending them under one
RDF/XML document header.

4.2 Implementation of XPath Queries

The more interesting and complex part is the extraction of the ‘right’ information from the obtained man-
aged object descriptions.

As mentioned in section 3, one of the motivations for the use of XML is the power of its XPath–query
language. This will be demonstrated in the following by means of two queries: The first fetches all the
immediate antecedents of a given service (used, e.g., in root cause analysis) while the second query gets all
the immediate dependents (useful for impact analysis).

4.2.1 Drill–down for immediate Antecedents

The most basic operation is the graph traversal, one step at a time, along the edges of a dependency graph.
In the case of service dependencies this yields all (sub-)services the dependent service is based on. The
result is constructed in two phases:

1. get the dependency information of Service X
2. get the description of all antecedents.

The first query is applied to the description of a service that comes from the web server on the same machine.
The actual evaluation of the XPath expression may be carried out in two places: If the web server is capable
of resolving XPath expressions as part of the URL (and its host has enough free resources) this can be used
to relieve the Dependency Query Facility. In other cases, theResourceProxy will fetch and parse the
whole document and apply the XPath query to it.

The name of the machine hosting the service has to be part of the query to the dependency query facility.
In our prototype, the hostname of the service is part of the (hierarchically structured) service name. The

11

full URL is resolved by a class in the prototype calledElementURIResolver , which reads the mapping
either from a configuration file or uses a default path. The exact XPath query is:
/descendent::[(self::ds: NodeType)]/child::ds:dependency/*[(
self::ds: DependencyType)]/child::ds:antecedent/@rdf:resource

The result is a list of resource identifiers, namely the IDs of the antecedents taken from therdf:resource
attribute. The ID of service X must not appear in the expression as the file only contains descriptions of the
queried service. If this requirement is not met, an additional XPath predicate has to be specified.

The example also shows the problem of using XPath, which is not aware of certain RDF features: The
above query assumes that both the exact type of the resource (the node) as well as the type of the depen-
dency (the association) have to be known before the query is executed. Otherwise, it would not return a
required antecedent where, e.g., the type of the association is replaced by its supertype (i.e.,Dependen-
cyAssociation instead ofServiceDependency). We solve this issue by making a little extension to
the XPath expression in the part of the prototype that finally applies the XPath on the documentResour-
ceProxy . It allows to state the type as generic as possible, by accepting any superclass (for both cases).
These are replaced by an or’ed list of all known subclasses, thus enhancing the XPath expression to match
all of them. The list of subclasses is obtained from theRDFSubClassResolver , which reads the class
hierarchy from the RDF schema. The stringds: in the expression is the namespace–prefix we use for our
”dependency schema”.

In the second phase, the descriptions of all IDs from the first step (of Service Y,Z,...) are obtained from their
web server by a simple XPath expression, which is almost identical to the example at the end of section
3.2. The only difference lies in the specification of the node type, which must be treated in the same way as
above.

4.2.2 Drill–up for immediate Dependents

The main difference of graph traversal in the opposite (upward) direction is that the IDs of the depen-
dents are not kept in a single description document. This is the nature of dependencies, because only the
dependents know on which antecedents they depend, but the antecedents cannot know all their possible
dependents. Thus, the required IDs of the dependents are distributed over a possibly large domain.

To avoid the need to query all possible web servers, a search domain has to be specified for the drill up.
Then—analogous to phase one above—the following XPath expression is applied to the documents obtained
from the restricted number of web servers:
/descendent::*[(self::ds: NodeType)][descendent::ds:antecedent[
rdf:resource= ID]]/@rdf:about

It consists of only two steps. The first selects the node of the service description, while the second extracts
its ID. However, the expression for the first step is much more complex than in the previous examples: It
contains a predicate which again is an XPath expression. This one states that there has to be a descendent
XML node in the description that is calledds:antecedent and has an attributerdf:resource with the
value of the ID for which the drill–up has to be performed.

Each query to the various web pages either results in zero or one ID. The second phase is equivalent to the
one in the first example and collects the descriptions of the IDs.

This example further shows that although XPath expressions always process ‘downwards’ in the XML
document tree, there is no need to insert ‘upwards–’ pointers in the documents (e.g., for drill–ups) since
they can easily be circumvented as demonstrated above.

5 Conclusions and Outlook

We have presented a novel approach for managing application service dependencies with XML, XPath
and RDF. The need for applying these general–purpose technologies to the area of service and application

12

management stems from the fact that, despite related work in the area of event correlation, no previous
work has dealt with describing dependency information in a uniform way so that it does not only meet all
the requirements stated in this paper, but enables management systems in general to make use of it. This
is necessary in contemporary e–business environments where the outsourcing of services results in a vast
amount of dependencies among services that are also highly dynamic.

We have combined several XML related base technologies and are therefore able to represent dependency
graphs in a way that they can not only be parsed by common off the shelf XML parsers, but be also queried
with the powerful XPath facility. This allows us to implement an efficient mechanism for querying a poten-
tially very high number of managed objects in parallel for their attributes and dependencies. Our prototype
implementation has shown that queries for (recursive) drill–up or drill–down operations are surprisingly
compact and relatively easy to write. The problems we experienced during our work are mainly related to
XML and, especially, RDF parsers, which are still in early stages of development.

In our current work, we are investigating the integration of our approach with a CIM Object Manager that
generates the dependency instances and qualifies them with attributes. In the area of multi-role relationships,
we are studying whether it is more efficient to define a single dependency relationship whose attributes
indicate its various roles vs. creating separate instances for every type of relationship.

References

[1] Common Information Model (CIM) Version 2.2. Specification, Distributed Management Task Force, June 1999.

[2] C. Ensel. Automated generation of Dependency Models for Service Management. InWorkshop of the OpenView
University Association (OVUA’99), Bologna, Italy, June 1999.

[3] R. Gopal. Layered Model for Supporting Fault Isolation and Recovery. In Hong and Weihmayer [6], pages
729–742.

[4] B. Gruschke. Integrated Event Management: Event Correlation Using Dependency Graphs. InProceedings of
9th IFIP/IEEE International Workshop on Distributed Systems Operation & Management (DSOM ’98), October
1998.

[5] H.-G. Hegering, S. Abeck, and B. Neumair.Integrated Management of Networked Systems — Concepts, Archi-
tectures and their Operational Application. Morgan Kaufmann, 1999.

[6] J.W. Hong and R. Weihmayer, editors.Proceedings of the IEEE/IFIP Network Operations and Management
Symposium. IEEE Press, April 2000.

[7] Information Technology – Open Systems Interconnection – Structure of Management Information – Part 7: Gen-
eral Relationship Model. IS 10165-7, International Organization for Standardization and International Elec-
trotechnical Committee, 1997.

[8] G. Kar, A. Keller, and S.B. Calo. Managing Application Services over Service Provider Networks: Architecture
and Dependency Analysis. In Hong and Weihmayer [6], pages 61–75.

[9] S. Kätker and M. Paterok. Fault Isolation and Event Correlation for Integrated Fault Management. InProceedings
of the Fifth IFIP/IEEE International Symposium on Integrated Network Management (IM 97), pages 583–596,
May 1997.

[10] Resource Description Framework (RDF) Schema Specification 1.0. W3C Candidate Recommendation, W3 Con-
sortium, March 2000.

[11] Universal Description, Discovery and Integration. Programmer’s API Specification, Ariba, Inc., IBM Corp.,
Microsoft Corp., September 2000.

[12] XML As a Representation for Management Information - A White Paper Version 1.0. Technical report, Distributed
Management Task Force, September 1998. http://www.dmtf.org/spec/xmlw.html.

[13] XML Path Language (XPath) Version 1.0. W3C Recommendation, W3 Consortium, November 1999.

13

