
RC 21966 (98714) 13 February 2001 Computer Science

IBM Research Report

Segment-Based Proxy Caching of Multimedia Streams

Kun-Lung Wu, Philip S. Yu, Joel L. Wolf
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Segment-Based Proxy Caching of Multimedia Streams

Kun-Lung Wu, Philip S. Yu and Joel L. Wolf

IBM T.J. Watson Research Center

30 Saw Mill River Road

Hawthorne, NY 10532

fklwu, psyu, jlwg@us.ibm.com

Abstract

As streaming video and audio over the Internet becomes popular, proper proxy caching of
large multimedia objects has become increasingly important. For a large media object, such as
a 2-hour video, treating the whole video as a single web object for caching is not appropriate.
In this paper, we present and evaluate a segment-based bu�er management approach to proxy
caching of large media streams. Blocks of a media stream received by a proxy server are grouped
into variable-sized segments. The cache admission and replacement policies then attach di�erent
caching values to di�erent segments, taking into account the segment distance from the start of
the media. These caching policies give preferential treatments to the beginning segments. As
such, users can quickly play back the media objects without much delay. Event-driven simulations
are conducted to evaluate this segment-based proxy caching approach. The results show that (1)
segment-based caching is e�ective not only in increasing byte-hit ratio (or reducing total traÆc)
but also in lowering the number of requests that require delayed starts; (2) segment-based caching
is especially advantageous when the cache size is limited, when the set of hot media objects changes
over time, when the media �le size is large, and when many users may stop playing the media after
only a few initial blocks.

Keywords: Video Caching, Proxy Caching, Multimedia Streaming, Segment-Based Caching,
Variable-Sized Segmentation, Distance-Sensitive Segmentation.

1 Introduction

The explosive growth of the World Wide Web has led to signi�cant increases in user latency and

network congestion for Internet applications. One popular approach to reducing response time and

network traÆc is to deploy proxy caches. A proxy cache stores recently accessed web objects in

the hope of satisfying future client requests without contacting the content server.

However, existing techniques for caching text and image objects are not appropriate for caching

media streams. For a large media �le, such as a 2-hour video, treating the whole video as a single

web object to be cached is impractical. Just storing the entire contents of several long streams

would exhaust the capacity of a conventional proxy cache. On the other hand, a simple division

1

of the media �le into smaller web objects is not eÆcient, either. This is because the proxy cache

would have to manage many smaller web objects.

As requests for and delivery of streaming video and audio over the Web becomes more pop-

ular, caching of media objects on the edge of the Internet has become increasingly important.

Recently, several commercial companies have announced media distribution services on the Inter-

net using a number of proxy caches. Examples include Akamai (www.akamai.com), Digital Island

(www.digisle.com), Enron (www.enron.com) and others. Companies that provide hardware and

software caching products include Inktomi (www.inktomi.com), CacheFlow (www.cacheow.com),

Network Appliance (www.netapp.com) and others.

Because of the high start-up overhead and isochronous requirement, a streaming media request

typically is not started by a proxy server until suÆcient blocks of data are cached locally. Such

delayed starts can frustrate users and make customers unhappy. To provide quick starts by a

proxy server, the beginning portions of media objects should be cached. Thus, instead of caching

the entire stream as a web object, a more intelligent partial caching of media streams from the

beginning is needed.

In this paper, we examine a segment-based approach to proxy caching of large media objects.

Blocks of a media object received by the proxy server are grouped into variable-sized, distance-

sensitive segments. To simplify segment management, the size of segment i is 2i�1 and contains

media blocks 2i�1; 2i�1+1; � � � ; 2i�1. The number of segments cached for each object is dynamically

determined by the cache admission and replacement policies. They attach di�erent caching values

to di�erent segments based on the reference frequency and the segment distance from the beginning

of a media. The caching policies give preferential treatments to the beginning segments. Hence, a

partially cached media object always starts from the beginning, facilitating immediate starts of user

requests. In addition, we cache more segments for media objects with higher reference frequencies.

Event-driven simulations were conducted to evaluate this variable-sized, distance-sensitive seg-

ment approach to proxy caching of large media objects. We compared the segment-based proxy

caching with a whole media approach and a pre�x/suÆx approach. In the pre�x/suÆx approach, a

media is partitioned into a pre�x and a suÆx. A small portion of the cache is dedicated for caching

the pre�xes while the rest of the cache for the suÆxes. We measured the byte-hit ratio as well as

the percentage of requests with delayed starts. When a request arrives and the beginning blocks

of the requested media are not cached, the request has a delayed start. Sensitivities analyses on

various parameters were conducted. The results show that (1) the segment-based approach indeed

2

is e�ective not only in increasing the byte-hit ratio over a wide range of conditions, but also in

lowering the percentage of requests with delayed starts; and (2) the segment-based approach is

especially advantageous under the conditions that (a) the cache size is limited, (b) the set of hot

media objects changes over time, (c) the media �le size is large, and (d) many users may decide to

stop viewing the media playback after only a few initial blocks.

There have been research work on the multimedia caching and proxy services [1, 8, 10, 14, 13].

However, to the best of our knowledge, none has examined the e�ectiveness of variable-sized,

distance-sensitive segment caching policies for large media objects. Earlier research on multimedia

caching proposed storing a sliding interval of successive frames to satisfy client requests that arrive

close together in time [5, 11]. Other recent work proposed having the proxy server cache a �xed

subset of frames, such as the pre�x of a stream or a subset of other frames, to reduce the overhead

of transmitting to the client [9, 12, 7, 2, 6]. Various aspects of pre�x caching were also studied,

such as workahead smoothing [9, 8] and protocol considerations [3]. Unlike the segment-based

caching approach presented in this paper, the suÆx was not cached in [9]. Partial segment caching

of media objects was proposed to be combined with a dynamic skyscraper broadcasting to reduce

the media delivery cost from a remote server to regional servers [2, 4]. However, the emphasis

in [2] was on caching the initial segments of many media objects and relying on remote multicast

delivery of the later segments, rather than fully caching fewer highly popular objects. In contrast,

in our segment-based caching scheme, the most popular media objects are fully cached while the

less popular objects are partially cached. Moreover, the number of initial segments cached is

dynamically determined by the popularity of an object.

The rest of the paper is organized as follows. Section 2 describes the details of the variable-

sized, segment-based proxy caching, including the system architecture, media segmentation policy,

and cache admission and replacement policies. Section 3 presents our event-driven simulations and

results. Finally, Section 4 summarizes the paper.

2 Design of segment-based proxy caching of media streams

2.1 Caching media streams over the Internet

Fig.1 shows the general system architecture for media streaming over the Internet by employing

proxy caching. A proxy server is placed geographically near the client access device, which can be

a PC, a TV or another display device. A user request originated from a client device is directed

3

media content

cached
segments

proxy server
content server

client device

the Internet

Figure 1: System architecture for media streaming on the Internet.

to the proxy server. If the requested media object is cached, then it is transmitted right away to

the client device. Otherwise, it is fetched �rst from the content server to the proxy server and then

transmitted to the client device. It is assumed that the latency between a client device and the

proxy server is negligibly small, but the latency between the proxy server and the content server

is relatively large and cannot be ignored. Therefore, in order for a client device to immediately

playing back the media, enough initial blocks must be present at the proxy server to mask the

latency between it and the content server. Prefetching can be issued for the remaining not-yet-

cached media.

2.2 Segmentation of media objects

To simplify the management of segments, we use a simple segmentation method (see Fig. 2 for

an example). A media �le is divided into multiple equal-sized blocks, which is the atomic unit of

transfer over the network. Multiple blocks are then grouped into a segment by the proxy server,

where the cache admission and replacement policies attach di�erent caching values to di�erent

segments. The size of a segment is sensitive to its distance from the beginning of the media. The

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

seg
2

seg
0

seg
1

seg
3

seg
4

...

Figure 2: Example of media segmentation.

closer to the beginning a segment is, the smaller the size it will be. The number of blocks grouped

in segment i is 2i�1. Segment i contains media blocks 2i�1; 2i�1 +1; � � � ; 2i � 1, if i � 1; Segment 0

contains block 0. In general, segment i is twice as large as segment i� 1, except the last segment.

The segmentation process is transparent to the media content provider or the client device. It

is the artifact introduced by the proxy server to make cache management more e�ective. The basic

concept is to create smaller sized segments at the beginning and give them higher caching priorities.

This is important because the initial segments determine the latency perceived by the users, and

hence are more important to cache. Moreover, many viewers may decide to stop viewing after only

a few initial segments. In such cases, it is not even necessary to fetch the later segments. The later

segments are therefore made progressively larger so that we can reduce the number of segments

that the proxy server needs to track and manage.

2.3 Cache admission policy

We consider two important cache management policies. One is the cache admission policy and the

other is cache replacement policy. These two are closely related.

The primary idea of cache admission control is to permit only segments from media objects

which are popular enough to enter the cache. The admission control applies di�erent criteria to

di�erent segments of the same media object. The basic consideration is the distance of a segment

5

from the beginning of the media object, i.e., the segment number. The beginning segments of an

object have a critical impact on the initial delay to start the media. If cached, the video may be

streamed immediately to the requesters. The later segments, if not cached, can be prefetched after

the request is received. However, fetching these later segments does have a signi�cantly negative

impact on network traÆc. Thus, these later segments still should be cached if they are requested

frequently enough.

Thus, we use a two-tiered approach to admission control based on the segment number. For a

segment with a segment number smaller than a threshold, Kmin, it is always eligible for caching.

However, for a segment with a segment number no smaller than Kmin, it is determined eligible for

caching only if its caching value is larger than some cached segments also with segment numbers

no smaller than Kmin. For simplicity, we assume that a portion of the cache capacity is used

to store the initial segments while the rest to store the later segments. Hence, the initial Kmin

segments of a media object are cached as a unit and can only be replaced by the initial segments of

other media objects. The value of Kmin should be determined by the criterion that enough of the

non-cached segments can be fetched in time from the content server so that continuous streaming

can be guaranteed once it is started. It depends on the network delay between the proxy server

and the content server. It also depends on the load condition of the content server.

With such a cache admission control, the highest numbered segment cached for a given media

is always the last one to be included into the cache and the �rst one to be replaced. Each partially

cached media object always gets a consecutive set of segments cached starting from the beginning.

At least there are Kmin initial segments stored for any cached objects. Some of the most frequently

requested objects may have the entire contents cached. Fig. 3 shows an example of the size distribu-

tion of cached media objects. Some objects are fully cached, e.g., the entire contents of objects 1{3

are cached. Other objects are only partially cached. For example, objects 8{14 have the minimum

Kmin segments cached.

2.4 Cache replacement policy

The caching value of a segment depends on two variables: reference frequency of an object and

the segment distance. We simply de�ne a segment's caching value to be the ratio of reference

frequency over segment distance. It is a simple reection of the fact that we favor the initial

segments of objects with higher reference frequencies. However, we did vary this value function in

our simulations. We changed it to become the ratio of reference frequency over the n-th power of

6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 3: The size distribution of cached media objects for variable-sized segment scheme.

segment distance, where n is a positive number. But, the results were only slightly sensitive to n,

if at all. Hence, n = 1 was used.

We use timestamp to estimate the reference frequency of an object. A timestamp records the

last time an object is requested. Speci�cally, the reference frequency is estimated as the inverse of

the time since the last reference to the current time. Namely, the reference frequency is estimated

as 1=(T �T 0), where T is the current time and T 0 is the timestamp maintained for an object. If an

object requested is not already in the cache, the timestamp is assumed to be a minus in�nite, so

that the reference frequency will be zero. As a result, the caching value of segment i of an object

is de�ned simply as 1=((T � T 0)� i).

Two LRU stacks are maintained, one for the initial Kmin segments and the other for the later

segments. For each LRU entry, we maintain the object ID, the timestamp of last request to this

object, the last block ID of cached media, and the total number of requests currently still playing

this object. Assume that K denote the �rst segment of media object O that is not yet cached,

i.e., segments 0; 1; 2; � � � ; (K � 1) of object O are cached. If K � Kmin, this segment is eligible for

caching only if its caching value is greater than that of its replacement segment. The candidate

7

if (i < Kmin) f // the LRU stack for initial segments
�nd a replacement segments, if necessary;
cache segment i;

g
else f // the LRU stack for later segments

if (object P is referenced for the �rst time)
exit;

while ((there is not enough free space for segment i) and
(replacement candidate can still be found)) f

�nd object Q whose largest cached segment is least valued;
let segment j be the largest cached segment of object Q;
if ((1=((T � T 0

P)� i) > 1=((T � T 0

Q)� j)) and

(no user is playing Q))
replace segment j of object Q and increase free space;

g
if (there is enough free space for segment i of object P)
cache segment i;

g

Figure 4: Caching algorithm for segment i of object P .

segments for replacement can be found from the LRU stack beginning from the bottom. Since

we have always cached contiguous media from the beginning, a candidate segment for replacement

is always the largest numbered segment. Thus, the replacement policy simply examines a small

number of media objects from the bottom of the LRU stack to �nd the replacement segment.

Fig. 4 shows the caching algorithm for segment i of an object P using the admission as well as

replacement policies outlined above. In order to maintain caching contiguous media for object P ,

we invoke this caching algorithm only if segment i � 1 of object P has been cached. Otherwise,

segment i will not be considered for caching. When an object is requested for the �rst time, the

initial Kmin segments are always eligible for caching and a simple LRU scheme can be used to

�nd the replacement. However, since the reference frequency is zero, the later segments will not

be eligible for caching. The later segments may be eligible for caching on subsequent requests. In

order to make room for segment i of object P , many cached segments might be replaced. The least

valued segment in the cache is identi�ed one by one for replacement consideration. A replacement

candidate segment will be removed from the cache if its caching value is smaller than that of

segment i of object P and there is no active user currently playing back the media.

8

Table 1: System parameters and default values
Notation De�nition (Default values)

B mean number of blocks per video (2,000 blocks)

� mean request inter-arrival time (60 s)

C total cache capacity (400,000 blocks)

� portion of cache capacity used to cache initial seg-
ments (10%)

Kmin initial segments cached for a video (6 segments, or 32
blocks)

M number of distinct video titles (2,000)

Zipf(x;M) Zipf-like distribution for video titles (Zipf(0.2, 2,000))

k maximum shifting distance for a hot video (10)

R number of requests between shifting of hot videos
(200)

3 Performance evaluation

3.1 Methodology

We implemented an event-driven simulator which models a proxy cache server to evaluate this

variable-sized segment-based approach. Two LRU stacks were implemented to track media objects

in the cache. One was to track the initial segments and the other to track the later segments. A

portion � of the total cache capacity C was dedicated for the initial segments. The later segments

are managed in another LRU stack, but segment-based cache admission and replacement policies

(see Fig. 4) are used instead of simply LRU. We computed two important performance metrics:

byte-hit ratio and fraction of requests with delayed starts. The byte-hit ratio measures the ratio of

total bytes from cached objects over the total bytes of objects requested. When a request arrives

and the initial Kmin segments are not in the proxy cache, it has a delayed start.

For the simulations, we assumed that the media objects are videos. The video size is uniformly

distributed between 0:5B and 1:5B blocks, where B is the mean video size. The default value of

B is 2,000. The playing time for a block is assumed to be 1.8 seconds. In other words, the playing

time for a video is between 1,800 seconds and 5,400 seconds, or 30-90 minutes. The cache size

is expressed in terms of number of media blocks. The default cache size is 400,000 blocks. The

inter-arrival time is assumed to be exponentially distributed with mean �. The default � is 60.0

seconds. Table 3.1 shows the de�nition of these system parameters and the default values used in

the simulations.

9

The requested video titles are drawing from a total of M distinct video titles. The popularity

of each of theM video titles follows a Zipf-like distribution Zipf(x;M) [15]. A Zipf-like distribution

takes two parameters, x and M , the former corresponding to the degree of skew. The distribution

is given by pi = c=i1�x for each i 2 f1; � � � ;Mg, where c = 1=[
PM
i=1 1=i

1�x] is a normalization

constant. Setting x = 0 corresponds to a pure Zipf distribution, which is highly skewed. On the

other hand, setting x = 1 corresponds to a uniform distribution with no skew. The default value

for x is 0.2 and that for M is 2,000.

The popularity of each video title changes over time. This is used to simulate the scenario that

there may be di�erent user groups accessing the video titles at di�erent times and their interests

may be di�erent. In other words, the most popular videos at the moment may be replaced by

another ones at a later time. In our simulations, the popularity distribution changed every R

requests. When it did, another well-correlated Zipf-like distribution with the same parameters was

used [13]. The correlation between two Zipf-like distributions is modeled by using a single parameter

k that can take on any integer value between 1 and M . First, the most popular video in Zipf-like

distribution 1 is made to correspond to the r1-th most popular video in Zipf-like distribution 2,

where r1 is chosen randomly between 1 and k. Then, the second most popular video in distribution 1

is made to correspond to the r2-th most popular video in distribution 2, where r2 is chosen randomly

between 1 and min(M;k + 1), except that r1 is not allowed, and so on. Thus, k represents the

maximum position in popularity a video title may shift from one distribution to the next. k = 1

corresponds to perfect correlation, and k = M to the random case or no correlation. We used

an indirect video mapping array to implement this change of popularity distribution. The �rst

element in the mapping array always represents the most popular. However, the video to which

the �rst element maps may change. Hence, the change in popularity distribution was implemented

by changing the videos to which the array maps.

3.2 Simulation results

We compared the variable-sized segment approach to a full video and a pre�x/suÆx schemes. The

full video scheme simply uses an LRU for replacement. Every requested video is cached in its

entirety. The pre�x/suÆx scheme partitions a video into a pre�x and a suÆx. The pre�x size is the

same as the Kmin initial segments of the variable-sized segment approach. Furthermore, the same

portion of cache capacity is dedicated to store the pre�xes. Both pre�x and suÆx are managed

using LRU replacement. Note that an object is always cached once it is referenced in an LRU

10

policy. In contrast, there is a cache admission policy in the variable-sized segment approach.

3.2.1 The impact of cache size

First, we studied the impacts of cache size on the byte-hit ratio and delayed start. For a wide range

of cache sizes, the variable-sized segment approach has the highest byte-hit ratio and the lowest

fraction of requests with delayed starts. Fig. 5 shows the impact of cache size on the byte-hit ratio.

Fig. 6 presents the impact of cache size on the fraction of requests with delayed starts. The full

video approach and the pre�x/suÆx has comparable byte-hit ratio (see 5), with the full video

approach having a slight advantage over the pre�x/suÆx one. The advantage in byte-hit ratio

of the variable-sized segment approach is more signi�cant for a smaller cache size. For instance,

the byte-hit ratio for the variable-sized segment approach is 21% better for a smaller cache size

of 300,000 and 8% better for a much larger cache size of 900,000. With higher byte-hit ratio, the

variable-sized segment approach can achieve the same caching e�ectiveness with a smaller storage

requirement. As a result, it can reduce the system cost for the corporations doing the proxy caching

business. For example, in order to achieve a 50% byte-hit ratio, the variable-sized segment approach

needs only 500,000 blocks in cache size while the pre�x/suÆx approach requires 700,000 blocks, a

40% increase.

Even though the full video and the pre�x/suÆx approaches perform almost equally in byte-hit

ratio, they di�er dramatically in the fraction of requests with delayed starts (see Fig. 6). The full

video approach has a signi�cantly higher fraction of requests with delayed starts. For example, for

a cache size of 400,000 blocks, 60% of the requests cannot start immediately under the full video

approach. On the other hand, only 15.6% of requests need to be delayed. Because of the same

amount of cache capacity dedicated for storing the initial blocks, the variable-sized segment and

the pre�x/suÆx approaches perform identically in Fig. 6 for the whole range of cache sizes.

3.2.2 The impact of skew in video popularity

Secondly, we examined the impact of skew in video popularity on the byte-hit ratio and delayed

start. Again, the variable-sized segment approach has the highest byte-hit ratio and lowest frac-

tion of requests with delayed starts under a wide range of degrees of skew in video popularity.

Speci�cally, we varied the Zipf parameter, x, from 0.1 to 0.8. Fig. 7 shows the impact of skew in

video popularity on byte-hit ratio while Fig. 8 shows the impact on delayed start. In general, the

more skewed the video popularity is, i.e., more viewers are interested in fewer titles, the better the

11

300000 400000 500000 600000 700000 800000 900000

cache size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

by
te

-h
it

ra
tio

variable-sized segment full video prefix/suffix

Figure 5: The impact of cache size on byte-hit ratio.

300000 400000 500000 600000 700000 800000 900000

cache size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fr
ac

tio
n

of
 r

eq
ue

st
s

w
ith

 d
el

ay
ed

 s
ta

rt variable-sized segment full video prefix/suffix

Figure 6: The impact of cache size on delayed start.

12

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Zipf parameter, x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

by
te

-h
it

ra
tio

variable-sized segment full video prefix/suffix

Figure 7: The impact of skew in video popularity on byte-hit ratio.

byte-hit ratio is. Thus, caching is more e�ective if most viewers are repeatedly requesting the same

smaller number of videos. For example, for x = 0:1, the byte-hit ratios are above 50% for all three

approaches. However, for x = 0:8, the byte-hit ratios are only about 10% for all three approaches.

Under such conditions, caching is simply not e�ective, no matter which approach is employed.

In addition to Zipf parameter, x, we also studied the impact of the maximum video shifting

position k, during popularity distribution change. The default R was set to be 200. Fig. 9 shows

the impact of the maximum shifting position of a video. Here, we shows the variable-sized segment

and the pre�x/suÆx approaches. In general, as the maximum distance increases, the byte-hit

ratios for both approaches decrease, but only very slightly. The variable-sized segment approach

is consistently better than the pre�x/suÆx approach. As expected, this is due to the fact that the

popularity distributions in video titles are highly correlated with k ranging from 5 to 40. Note that

k = 1 represents perfect correlation and k =M = 2; 000 represents no correlation. We also varied

the values of R, and the results were similar in the sense that the byte-hit ratios are only slightly

sensitive to R for the similar reason.

13

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Zipf parameter, x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
ac

tio
n

of
 r

eq
ue

st
s

w
ith

 d
el

ay
ed

 s
ta

rt

variable-sized segment

full video

prefix/suffix

Figure 8: The impact of skew in video popularity on delayed start.

5 10 15 20 25 30 35 40

Maximum video shifting distance in popularity change

0

0.1

0.2

0.3

0.4

0.5

0.6

by
te

-h
it

ra
tio

variable-sized segment prefix/suffix

Figure 9: The impact of the maximum shifting position of a video.

14

1000 1500 2000 2500 3000

Mean video length (blocks)

0

0.1

0.2

0.3

0.4

0.5

0.6

by
te

-h
it

ra
tio

variable-sized segment full video prefix/suffix

Figure 10: The impact of video length.

3.2.3 The impacts of other system parameters

Fig. 10 shows the impact of mean video length on the byte-hit ratio. In general, as the media

�le size increases, the byte-hit ratios decrease for all three approaches. Notice that the advantage

of the variable-sized segment approach over the other two is more signi�cant when the media �le

size is larger. For example, the advantage is about 28% for mean video size of 3,000 blocks, but is

only about 9% for the case of 1,000 blocks. This shows that the variable-sized segment approach

is particularly useful in proxy caching of large media streams.

Besides the media �le size, the number of distinct media objects can also impact the caching

e�ectiveness. Generally, there are many media objects exist on the Web. As user requests spread

over more distinct objects, caching becomes less e�ective. Fig. 11 shows the byte-hit ratios of the

three approaches under di�erent numbers of distinct objects users can request. Once again, the

variable-sized segment approach has a bigger advantage over the other two when the condition for

caching is less favorable.

Fig. 12 and Fig. 13 examine the percentage of cache capacity dedicated for storing the initial

segments or pre�xes. Because of reduced cache capacity for the later segments or suÆxes, the

15

1000 1500 2000 2500

number of distinct media objects

0

0.1

0.2

0.3

0.4

0.5

0.6

by
te

-h
it

ra
tio

variable-sized segment full video prefix/suffix

Figure 11: The impact of total number of distinct media objects.

byte-hit ratio decreases as the percentage used for initial segments increases. This slight decrease

in byte-hit ratio can be o�set by the substantially increased bene�ts of reduced delayed starts. For

example, let us compare the cases of 5% and 15%. The byte-hit ratio is barely decreased, but the

fraction of delayed starts drops substantially. However, no more bene�ts can be derived once the

percentage of cache for storing the initial segments increases beyond 20%.

3.2.4 The impact of user viewing behavior

Finally, we study the impact of a not uncommon user behavior on the Web. Most users may

prematurely stop playing back a video after viewing only the �rst few segments. For this study, we

created three scenarios representing partial completion of viewing the video. In partial completion

scenario I, there are 50% of users completing the entire video while 50% of users stopping at half

of the video. In partial completion scenario II, 25% of users complete 1=4 of a video, 25% of them

complete 1=2 of a video, 25% of them complete 3=4 of a video and another 25% of them complete the

entire video. In partial completion scenario III, 50% of users complete 1=4, 20% of them complete

1=2, 20% of them complete 3=4 and only 10% of users complete the entire video. Partial scenario

III represents a case where most viewers stop quite early.

16

5% 10% 15% 20% 25% 30%

Percentage of cache capacity used for initial segments

0

0.1

0.2

0.3

0.4

0.5

0.6

by
te

-h
it

ra
tio

variable-sized segment prefix/suffix

Figure 12: The impact of cache capacity used for initial segments on byte-hit ratio.

5% 10% 15% 20% 25% 30%

percentage of cache capacity used for initial segmets

0

0.1

0.2

0.3

0.4

fr
ac

tio
n

of
 r

eq
ue

st
s

w
ith

 d
el

ay
ed

 s
ta

rt
s variable-sized segment prefix/suffix

Figure 13: The impact of cache capacity used for initial segments on delayed start.

17

full completion
partial completion I

partial completion II
partial completion III

user behavior

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

tr
af

fic
 r

at
io

variable-sized segment prefix/suffix

Figure 14: The impact of user viewing behavior on traÆc ratio.

Fig. 14 shows the traÆc ratio of both the variable-sized segment and pre�x/suÆx approaches.

The traÆc ratio simply computes the ratio of total bytes retrieved from the content server over

the total bytes for requested objects. For the variable-sized segment approach, the prefetch request

for the next segment is issued when the proxy server is transmitting the �rst blocks of the current

segment. Namely, we only prefetch one segment ahead. Hence, if a user stops early, network traÆc

may be saved. For the pre�x/suÆx approach, however, the prefetch request for the suÆx must be

issued once a request is made, making it unable to save traÆc even if a user prematurely stops

viewing a video. In Fig. 14, the traÆc ratio decreases for the variable-sized segment approach as

more users stop viewing the video earlier. Since we always prefetch the next segment, the traÆc

ratio of partial completion scenario I is the same as the full completion case.

4 Summary

In this paper, we have presented a variable-sized segment approach to proxy caching of large

media objects, such as videos. Proper proxy caching is very important as streaming video and

audio over the Internet becomes ever more popular. Instead of treating the entire video as a web

18

object, our segment-based approach groups media blocks into variable-sized segments with a simple

segmentation method. The cache admission and replacement policies assign di�erent caching values

to di�erent segments, taking into account both reference frequency and segment distance from the

beginning of the media. These caching policies give preferential treatments to the initial segments,

resulting partially cached objects starting from the beginning segment.

Event-driven simulations were conducted to evaluate the variable-sized segment approach and

compare it with a full video approach and a pre�x/suÆx caching approach. The pre�x/suÆx

approach partitions a video into a pre�x and a suÆx. The results show that (1) indeed the variable-

sized segment approach is e�ective in not only increasing the byte-hit ratio (or reducing total traÆc)

but also lowering the the fraction of requests that require delayed starts; (2) variable-sized segment

approach is particularly e�ective when the cache size is limited, when the set of hot media objects

changes over time, when requests spread over a large number of media objects, when the media �le

size is large and when many users may stop viewing the video after only a few initial segments.

References

[1] M. Y.M. Chiu and K.-H. A. Yeung. Partial video sequence caching scheme for VOD systems
with heterogeneous clients. IEEE Trans. on Industrial Electronics, 45(1):44{51, Feb. 1998.

[2] D. L. Eager, M. C. Ferris, and M. K. Vernon. Optimized regional caching for on-demand data
delivery. In Proc. of Multimedia Computing and Networking, Jan. 1999.

[3] S. Gruber, J. Rexford, and A. Basso. Protocol considerations for a pre�x-caching proxy for
multimedia streams. Computer Network, 33(1-6):657{668, June 2000.

[4] K. A. Hua and S. Sheu. Skyscraper broadcasting: A new broadcasting scheme for metropolitan
video-on-demand systems. In Proc. of ACM SIGCOMM 97 Conference, pages 89{100, Sept.
1997.

[5] M. Kamath, K. Ramamritham, and D. Towsley. Continuous media sharing in multimedia
database systems. In Proc. Int. Conf. on Database Systems for Advanced Applications, Apr.
1995.

[6] Z. Miao and A. Ortega. Proxy caching for eÆcient video services over the Internet. In Proc.
of Packet Video Workshop, Apr. 1999.

[7] R. Rejaie, M. Handley, H. Yu, and D. Estrin. Proxy caching mechanism for multimedia
playback streams in the Internet. In Proc. of Int. Web Caching Workshop, Mar. 1999.

[8] J. D. Salehi, Z.-L. Zhang, J. Kurose, and D. Towsley. Supporting stored video: Reducing rate
variability and end-to-end resource requirements through optimal smoothing. IEEE Trans. on
Networking, 6(4):397{410, Aug. 1998.

[9] S. Sen, J. Rexford, and D. Towsley. Proxy pre�x caching for multimedia streams. In Proc. of
IEEE INFOCOM, Mar. 1999.

19

[10] J. Shim, P. Scheuermann, and R. Vingralek. Proxy cache algorithms: Design, implementation,
and performance. IEEE Trans. on Knowledge and Data Engineering, 11(4):549{562, Jul/Aug
1999.

[11] R. Tewari, H. M. Vin, A. Dan, and D. Sitaram. Resource-based caching for web servers. In
Proc. of SPIE/ACM Conf. on Multimedia Computing and Networking, Jan. 1998.

[12] Y. Wang, Z.-L. Zhang, D. Du, and D. Su. A network-conscious approach to end-to-end video
delivery over wide area networks using proxy servers. In Proc. of IEEE INFOCOM, pages
660{667, Apr. 1998.

[13] J. L. Wolf, P. S. Yu, and H. Shachnai. Disk load balancing for video-on-demand systems.
Multimedia Systems, 5:358{370, 1997.

[14] K.-L. Wu and P. S. Yu. Latency-sensitive hashing for collaborative web caching. Computer
Network, 33(1-6):633{644, June 2000.

[15] G. K. Zipf. Human Behaviour and the Principles of Least E�ort. Addison-Wesley, Cambridge,
MA, 1949.

20

