
RC 21973 (98761) 26 February 2001 Computer Science

IBM Research Report

Efficient Conservative Visibility Culling Using the
Prioritized-Layered Projection Algorithm

James T. Klosowski
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Claudio T. Silva
AT&T Labs-Research

180 Park Ave.
P.O. Box 971

Florham Park, NJ 07932

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Efficient Conservative Visibility Culling Using The
Prioritized-Layered Projection Algorithm

James T. Klosowski� Cláudio T. Silva†

Abstract

We propose a novel conservative visibility culling technique
based on the Prioritized-Layered Projection (PLP) algorithm.
PLP is a time-critical rendering technique that computes, for a
given viewpoint, a partially correct image by rendering only
a subset of the geometric primitives, those that PLP deter-
mines to be most likely visible. Our new algorithm builds
on PLP and provides an efficient way of finding the remain-
ing visible primitives. We do this by adding a second phase to
PLP which uses image-space techniques for determining the
visibility status of the remaining geometry. Another contri-
bution of our work is to show how to efficiently implement
such image-space visibility queries using currently available
OpenGL hardware and extensions. We report on the imple-
mentation of our techniques on several graphics architectures,
analyze their complexity, and discuss a possible hardware ex-
tension that has the potential to further increase performance.

Index Terms Conservative visibility, occlusion culling, in-
teractive rendering

1 Introduction

Interactive rendering of very large data sets is a fundamental
problem in computer graphics. Although graphics processing
power is increasing every day, its performance has not been
able to keep up with the rapid increase in data set complexity.
To address this shortcoming, techniques are being developed
to reduce the amount of geometry that is required to be ren-
dered, while still preserving image accuracy.

Occlusion culling is one such technique whose goal is to
determine which geometry is hidden from the viewer by other
geometry. Such occluded geometry need not be processed
by the graphics hardware since it will not contribute to the
final image produced on the screen. Occlusion culling, also
known as visibility culling1, is especially effective for scenes
with high depth complexity, due to the large amount of oc-
clusion that occurs. In such situations, much geometry can
often be eliminated from the rendering process. Occlusion
culling techniques are usually conservative, producing images
that are identical to those that would result from rendering
all of the geometry. However, they can also be approximate

�IBM T. J. Watson Research Center, PO Box 704, Yorktown
Heights, NY 10598; jklosow@us.ibm.com.

†AT&T Labs-Research, 180 Park Ave., PO Box 971, Florham
Park, NJ 07932; csilva@research.att.com.

1Visibility culling is also used in a more general context to refer to
all algorithms that cull geometry based on visibility, such as back-face
culling, view frustum culling, and occlusion culling.

(a) (b)

(c) (d)

Figure 1: Office model: (a) This image was computed using
PLP and is missing several triangles. (b) The correct image
showing all the visible triangles rendered with cPLP. (c) The
current z-buffer, rendered as luminance, for the image in (a).
Black/white represents near/far objects. (d) Final z-buffer for
the correct image in (b).

techniques that produce images that are mostly correct, in ex-
change for even greater levels of interactivity. The approxi-
mate approaches are more effective when only a few pixels are
rendered incorrectly, limiting any artifacts that are perceivable
to the viewer.

The Prioritized-Layered Projection (PLP) algorithm, intro-
duced by Klosowski and Silva [16, 17], is one such example
of an approximate occlusion culling technique. Rather than
performing (expensive) conservative visibility determinations,
PLP is an aggressive culling algorithm that estimates the vis-
ible primitives for a given viewpoint, and only renders those
primitives that it determines to be most likely visible, up to a
user-specified budget. Consequently, PLP is suitable for gen-
erating partially correct images for use in a time-critical ren-
dering system. To illustrate this approach, consider the images
of the office model shown in Fig. 1. The image generated by

PLP for this viewpoint is shown in Fig. 1(a), while the cor-
rectly rendered image is in Fig. 1(b). We can see that the im-
age rendered by PLP is fairly accurate, although portions of
the model are missing, including the plant stand, clock, door
jam, and parts of the desk lamp.

PLP works by initially creating a partition of the space oc-
cupied by the geometric primitives. Each cell in the partition is
then assigned, during the rendering loop, a probabilistic value
indicating how likely it is that the cell is visible, given the
current viewpoint, view direction, and geometry in the neigh-
boring cells. The intuitive idea behind the algorithm is that a
cell containing much geometry is likely to occlude the cells
behind it. At each point of the algorithm, PLP maintains a
priority queue, also called thefront, which determines which
cell is most likely to be visible and therefore projected next
by the algorithm. As cells are projected, the geometry asso-
ciated with those cells is rendered, until the algorithm runs
out of time or reaches its limit of rendered primitives. At the
same time, the neighboring cells of the rendered cell are in-
serted into the front with appropriate probabilistic values. It is
by scheduling the projection of cells as they are inserted in the
front that PLP is able to perform effective visibility estimation.

In [16, 17], PLP was shown to be effective at finding visi-
ble primitives for reasonably small budgets. For example, for
a city model containing 500K triangles, PLP was able to find
(on average) 90% of the visible triangles while rendering only
10% of the total geometry. This number alone does not guar-
antee the quality of the resulting images, since the missing
10% of the visible triangles could occupy a very large per-
centage of the screen or may be centrally located so that the
incorrect pixels are very evident to the viewer. To address this
concern, the authors reported the number of incorrect pixels
generated by the PLP algorithm. In the worst case, for the
same model and viewpoints discussed above, PLP only gener-
ated 4% of the pixels incorrectly. These two statistics support
the claim that PLP is effective in finding visible geometry.

As mentioned previously, approximate occlusion culling
techniques will sacrifice image accuracy for greater rendering
interactivity. While this tradeoff may be acceptable in some
applications (especially those that demand time-critical ren-
dering), there are many others (such as manufacturing, medi-
cal, and scientific visualization applications) that cannot toler-
ate such artifacts. The users of these applications require that
all of the images generated to be completely accurate. To ad-
dress the requirements of these applications, we describe an
efficient conservative occlusion culling algorithm based upon
PLP. Essentially, our new algorithm works by filling in the
holes in the image where PLP made the mistake of not ren-
dering the complete set of visible geometry.

An interesting fact is that after rendering PLP’s estimation
of the visible set, as shown in Fig. 1(a), most of the z-buffer
gets initialized to some non-default value, as illustrated by
Fig. 1(c). This figure corresponds to the z-buffer rendered as
luminance, where black represents near objects, and white rep-
resents far objects. If we were to render the cells in the front
(see Fig. 3), the visible cells would protrude through the ren-
dered geometry. The techniques we present in this paper are
based on incrementally computing which cells in PLP’s front
are occluded (that is, can not be “seen” through the current
z-buffer), and eliminating them from the front until the front
is empty. When this condition holds, we know we have the
correct image (1(b)) and z-buffer (1(d)).

The use of (two-dimensional) depth information to avoid
rendering occluded geometry is not a new idea. The Hierar-

Figure 2: Illustration of the accuracy of PLP: For the same
viewpoint and model as shown in Fig. 1, the visible geometry
that PLP rendered is shown in white, and the visible geometry
that PLP did not render is shown in red.

chical Z-Buffer technique of Greene et al. [14] is probably the
best known example of a technique that effectively uses such
information. However, even before this seminal paper, Kubota
Pacific already had hardware support on their graphics sub-
system for visibility queries based on the current status of the
depth buffer. In Section 5, we will put our new techniques into
context with respect to the relevant related work.

The main contributions of our work are:

� We propose cPLP, an efficient interactive rendering algo-
rithm that works as an extension to the PLP algorithm by
adding a second phase which uses image-space visibility
queries.

� We show how to efficiently implement such image-space
visibility queries using available OpenGL hardware and
extensions. Our implementation techniques can poten-
tially be used in conjunction with other algorithms.

� We discuss the performance and limitations of current
graphics hardware, and we propose a simple hardware
extension that could provide further performance im-
provements.

The remainder of our paper has been organized as follows.
In Section 2, after a brief overview of PLP and some aspects
of its implementation, we detail our new cPLP algorithm.
We present several techniques for the implementation of our
image-space visibility queries using available OpenGL hard-
ware and extensions in Section 3. We also propose a simple
hardware extension to further improve rendering performance.
In Section 4 we report on the overall performance of the vari-
ous techniques on several graphics architectures. In Section 5,
we provide a brief overview of the previous work on occlusion
culling, followed by a more thorough comparison of our cur-
rent algorithm with the most relevant prior techniques. Finally,
we end the presentation with some concluding remarks.

2 The Conservative PLP Algorithm

The conservative PLP algorithm (cPLP) is an extension to
PLP which efficiently uses image-space visibility queries to
develop a conservative occlusion culling algorithm on top of
PLP’s time-critical framework. In this section, we briefly re-
view the original PLP algorithm and then present our cPLP
algorithm. Our image-space visibility queries, a crucial part
of the implementation of cPLP, are discussed in Section 3.

2.1 Overview of PLP

Prioritized-Layered Projection is a technique for fast render-
ing of high depth complexity scenes. It works by estimating
the visible primitives in a scene from a given viewpoint incre-
mentally. At the heart of the PLP algorithm is a space-traversal
algorithm, which prioritizes the projection of the geometric
primitives in such a way as to delay rendering primitives that
have a small likelihood of being visible. Instead of explic-
itly overestimating the visible set of primitives, as is done in
conservative techniques, the algorithm works on a budget. For
each viewpoint, the viewer can provide a maximum number of
primitives to be rendered and the algorithm will deliver what
it considers to be the set of primitives which maximizes the
image quality, based upon a visibility estimation metric. PLP
consists of an efficient preprocessing step followed by a time-
critical rendering algorithm as the data is being visualized.

PLP partitions the space that contains the original input ge-
ometry into convex cells. During this one-time preprocess-
ing, the collection of cells is generated in such a way as to
roughly keep a uniform density of primitives per cell. This
sampling leads to large cells in unpopulated areas and small
cells in densely occupied areas. Originally, the spatial parti-
tioning used was a Delaunay Triangulation [16]; however, an
octree has recently been shown in [17] to be a more effec-
tive data structure, both in terms of efficiency and ease of use.
Since an octree is actually a hierarchy of spatial nodes as op-
posed to a disjoint partition, we only utilize the set of all leaf
nodes of the octree, since these do provide such a partition.

Using the number of geometric primitives contained in a
given cell, asolidity valueρ is defined, which represents the in-
trinsic occlusion that this cell will generate. During the space
traversal algorithm, solidity values are accumulated by cells
based upon the current viewing parameters (viewpoint and
view direction), as well as the normal of the face shared by
neighboring cells. Using these accumulated values, the traver-
sal algorithm prioritizes which cells are most likely to be vis-
ible and therefore should be projected. For a complete treat-
ment of these calculations, please refer to [16, 17].

Starting from the initial cell which contains the viewpoint,
PLP attempts to carve cells out of the tessellation. It does this
by always projecting the cell in the frontF (the front is the
collection of cells that are immediate candidates for projec-
tion) that is least likely to be occluded according to its solidity
value. For each new viewpoint, the front is initially empty,
and we insert the cell containing (or closest to) the viewpoint.
This cell is then immediately projected (since it is the only
candidate currently in the front) and as its neighboring cells
are inserted into the front, their accumulated solidity values
are estimated to reflect their position during the traversal. At
the next iteration, the cell in the front most likely to be visi-
ble is projected, and its neighboring cells are inserted into the
front with appropriate solidity values. If a cell has already
been inserted into the front, its solidity values are updated ac-

cordingly. Every time a cell in the front is projected, all of the
geometry assigned to it is (scheduled to be) rendered.

2.2 The cPLP Algorithm

As previously mentioned, the cPLP algorithm is built on top
of PLP. The basic idea is to first run PLP to render an ini-
tial, approximate image. As a side effect of rendering this
image, two further structures will be generated that we can
exploit in cPLP:(i) the depth buffer corresponding to the ap-
proximate image, and(ii) PLP’s priority queue (front), which
corresponds to the cells of the spatial partition that would be
rendered next by PLP if it had more time. In cPLP, we will
iteratively use the depth buffer to effectively cull the cells in
the front until all of the visible geometry has been rendered.
The general idea can be summarized as follows:

(1) Run PLP using a small budget of geometric primitives.

This step generates a partially correct image with “holes”
(regions of incorrect pixels), the corresponding depth
buffer, and the priority queue (front) containing the cells
that would be projected next.

(2) While the front is not empty, perform the following
steps:

(2a) Given the current front, determine which cells
are occluded, using image-space visibility queries,
and remove them from the front.

(2b) Continue running PLP, so that each cell in the cur-
rent front gets projected, since we know that they
are all visible.

During this phase, new cells that neighbor the pro-
jected cells are inserted into the front as before,
although they not candidates for projection during
this iteration. We terminate this iteration after each
of the original cells (i.e. those in the front after step
(2a)) have been projected.

As cells are rendered in step (2b), the holes (and the
depth buffer) get filled in, until the image is complete.
A nice feature of cPLP is that we know we are done ex-
actly when the front is empty.

One advantage of the formulation given above is that cPLP
is able to perform several visibility queries during each itera-
tion. At the same time, the main complication in implement-
ing cPLP comes from the visibility queries in step (2a). This
is further discussed in Section 3.

2.3 Challenges

There are primarily three obstacles that cPLP must overcome
to be a conservative, interactive rendering algorithm. It must
start with a good estimation of the correct image, determine
which regions of the estimation are incorrect, and find the re-
maining visible geometry. Of course, to be truly interactive,
each of the solutions to these challenges must be performed
very efficiently. This can be done thanks to the way PLP was
designed. We discuss each of these issues below.

Figure 3: The current front is highlighted in green. By deter-
mining where the front is still visible, it is possible to localize
the remaining work to be done by our rendering algorithm.

Estimating the image As demonstrated in [16, 17], PLP
is very effective in finding the visible polygons and correctly
rendering the vast majority of pixels, even when using rela-
tively small budgets. To illustrate this point, Figs. 1(a) and 1(b)
show images of an office model for the PLP and cPLP algo-
rithms. PLP was fairly successful in finding most of the visible
geometry for this viewpoint. To better visualize the accuracy
of PLP, Fig. 2 highlights the visible geometry that PLP ren-
dered in white, and the visible geometry that PLP did not ren-
der in red. By taking full advantage of the accuracy of PLP,
our conservative algorithm can quickly obtain a good estima-
tion of the correct image.

This feature can also be used to potentially speed-up other
occlusion culling techniques (such as those in [25, 33]), which
rely on using the z-buffer values to cull geometry.

Finding the holes As PLP projects cells (and renders the
geometry inside these cells), it maintains the collection of
cells that are immediate candidates for projection in a prior-
ity queue, called the front. Clearly, as the primitives in the
scene are rendered, parts of the front get occluded by the ren-
dered geometry. In Fig. 3, we illustrate this exact effect. If no
“green” (the color that we used for the front) were present, the
image would be correct. In general, the image will be com-
pleted, and rendering can be stopped, after all of the cells in
the front are occluded by the rendered primitives. Thus, to
find the holes in the estimated image, we need only consider
the cells in the front.

Filling the holes The final piece that we need to build
cPLP is how to complete the rendering once we know what
parts of the front are still visible. For this, it is easier to first
consider the current occluded part of the front. Basically, we
can think of the occluded front as a single occluder (see Fig. 4)
that has a few holes (corresponding to the green patches in
Fig. 3). Thinking analogously to the work of Luebke and
Georges [19], the holes can be thought of as “portals”, or re-
duced viewing frusta, through which all of the remaining visi-
ble geometry can be seen. An equivalent formulation is to in-

Eye

Front

Visible

Visible

Occluded

Figure 4: This figure illustrates the technique used in finding
the remaining visible cells in cPLP. These cells are found by
limiting the remaining work done by the algorithm to only the
visible regions.

crementally determine what cells belong to these smaller view
frusta by using an efficient visibility query (discussed below).

3 Implementing Visibility Queries

As previously discussed, to extend PLP into a conservative al-
gorithm, we need to efficiently determine which cells in the
front are visible. The visibility queries will take place in
image-space and will utilize the current depth buffer. In this
section, we first describe three techniques for implementing
these queries using available OpenGL hardware and exten-
sions. These include using a hardware feature available on
some graphics architectures (such as some Hewlett-Packard
(HP) and Silicon Graphics (SGI) graphics adapters), an item-
buffer technique that requires only the capability of reading
back the color buffer, and an alternative approach that uses an
extension of OpenGL 1.2. Then, we discuss some further op-
timization techniques. Finally, we end this section by propos-
ing a new hardware extension that has the potential to speed
up visibility queries even further.

3.1 Counting Fragments After Depth Test

One technique for performing the visibility queries of cPLP
is to use the HP occlusion culling extension, which is imple-
mented in their fx series of graphics accelerators. This propri-
etary feature, which actually seems quite similar to the capa-
bilities of the Kubota Pacific Titan 3000 reported by Greene
et al. [14], makes it possible to determine the visibility of ob-
jects as compared to the current values in the z-buffer. The
idea is to add a feedback loop in the hardware which is able
to check if changeswould have been made to the z-buffer
when scan-converting geometric primitives. The actual hard-
ware feature as implemented on the fx series graphics accel-
erators is explained in further detail in [25, 26]. Though not
well-known, several other vendors provide the same function-
ality. Basically, by simply adding instrumentation capabilities
to the hardware which are able to count the fragments which

pass the depth test, any architecture can be efficiently aug-
mented with such occlusion culling capabilities. This is the
case for the SGI Visual Workstation series which have defined
an extension calledGL SGIX depth pass instrument
[27, pages 72–75]. Several new graphics boards, such as the
SGI InfiniteReality 3 and the Diamond FireGL have such func-
tionality. Even low-cost PC cards such as the 3Dfx Voodoo
graphics boards have had similar functionality in their Glide
library (basically by supporting queries into the hardware reg-
isters). Since the functionality proposed by the different ven-
dors is similar, in the rest of this paper, we concentrate on the
HP implementation of such occlusion culling tests.

One possible use of this hardware feature is to avoid render-
ing a very complex object by first checking if it is potentially
visible. This can be done by checking whether a bounding vol-
umebv, usually the bounding box of the object, is visible and
only rendering the actual object ifbv is visible. This can be
done using the following fragment of C++ code:

glEnable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_FALSE);
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
DrawBoundingBoxOfObject();
bool isVisible;
glGetBooleanv(GL_OCCLUSION_RESULT_HP, &isVisible);
glDisable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
if (isVisible)
DrawGeometryofObject();

This capability is exactly what is required by our cPLP visi-
bility queries. Given the current z-buffer, we need to determine
what cells in the front are visible. It is a simple task to use the
HP hardware to query the visibility status of each cell.

The HP occlusion culling feature is implemented in several
of their graphics accelerators, for example, the fx6 boards. Al-
though performing our visibility queries using the HP hard-
ware is very easy, the HP occlusion culling test is not cheap.
In an HP white paper [26], it is estimated that performing an
occlusion query with a bounding box of an object on the fx6 is
equivalent to rendering about 190 25-pixel triangles. Our own
experiments on an HP Kayak with an fx6 estimates the cost
of each query being higher. Depending upon the size of the
bounding box, it could require anywhere between 0.1 millisec-
onds (ms) to 1 ms. This indicates that a naive approach to vis-
ibility culling, where objects are constantly checked for being
occluded, might actually hurt performance, and not achieve
the full potential of the graphics board. In fact, it is possible
to slow down the fx6 considerably if one is unlucky enough
to project the polygons in a back-to-front order, since none
of the bounding boxes would be occluded. In their most re-
cent offerings, HP has improved their occlusion culling fea-
tures. The fx5 and fx10 accelerators can perform several oc-
clusion culling queries in parallel [9]. Also, HP reports that
their OpenGL implementation has been changed to use the oc-
clusion culling features automatically whenever feasible. For
example, prior to rendering a large display list, their software
would actually perform an occlusion query before rendering
all of the geometry.

Utilizing the HP occlusion culling feature has proven to be
the simplest and most efficient of our three techniques for per-
forming the visibility queries needed by cPLP. Unfortunately,
at this time, this hardware feature is not widely available in
other graphics boards (for instance, neither of market leaders

Nvidia or ATI support this feature). Because of this, we next
describe a simple item-buffer technique, whose only require-
ment is the capability to read back the color buffer. In Sec-
tion 3.6, we propose a simple extension of the OpenGL func-
tionality which extends the fragment-counting idea, by adding
components of the techniques described next.

3.2 An Item Buffer Technique

It is possible to implement visibility queries similar to the ones
provided by the HP occlusion test on generic OpenGL hard-
ware. The basic idea is to use the color buffer to determine the
visibility of geometric primitives. For example, if one would
like to determine if a given primitive is visible, one could clear
the color buffer, disable changes to the z-buffer (but not the ac-
tual z test), and then render the (bounding box of the) primitive
with a well-known color. If that color appears during a scan
of the color buffer, we know that some portion of the primi-
tive passed the z test, which means the (bounding box of the)
primitive is actually visible.

There are two main costs associated with the item-buffer
technique: transferring the color buffer from the graphics
adapter to the host computer’s main memory and the time it
takes the CPU to scan the color buffer. The transfer cost can
be substantial in comparison to the scanning cost (see Table 2).
Consequently, it is much more efficient to do many visibility
queries at once. By coloring each of the cells in the front with
a different color, it is possible to perform many queries at the
same time.

An unwanted side effect of checking multiple cells is that
a cell,C, in the front may be occluded by other cells in the
front, as opposed to the current z-buffer which contains depth
information for thepreviously rendered geometry. This is a
problem because although cellC is occluded by the other cells
in the front, the geometry contained within cellC may not be
occluded by the geometry within the other cells. A multi-pass
algorithm is therefore required to guarantee that a cell is prop-
erly marked as occluded. Initially, all cells in the front are
marked as “potentially visible”. We also disable writing to
the z-buffer, so that it remains accurate with respect to the ge-
ometry previously rendered by PLP. To retain the color buffer
information for this geometry, we save the initial image gen-
erated by PLP during step (1) (see Sections 2.2 and 3.5). Each
pass of the algorithm then clears the color buffer and renders
the boundary of each of the cells in the front that is poten-
tially visible using a distinct color. We then transfer and scan
the color buffer to determine which cells are actually visible
and mark them. Iterating in this fashion, we can determine
exactly which cells are visible with respect to the previously
rendered geometry. The remaining cells are determined to be
occluded by the previously rendered geometry and need not be
considered further. The multi-pass algorithm terminates once
the color buffer scan indicates that none of the rendered cells,
for the current pass, were determined to be visible. That is, the
color buffer is completely empty of all colors. Note that po-
tentially visible cells will need to be rendered multiple times,
however, once a cell is found to be visible in one pass, it is
marked appropriately and not rendered again. Pseudo-code
for the item-buffer technique is included below.

glDepthMask(GL_FALSE);
for each cell c in front {
markCellPotentiallyVisible(c);

}
bool done = false;
while (!done) {
glClear(GL_COLOR_BUFFER_BIT);
for each cell c in front {

if (potentiallyVisible(c))
renderCell(c);

}
glReadPixels(0, 0, width, height,

GL_RGBA, GL_UNSIGNED_BYTE, visible_colors);
int cnt = 0;
for each cell c that appears in visible_colors {

markCellVisible(c);
cnt++;

}
if (cnt == 0)

done = true;
}

3.3 The OpenGL Histogram Extension

The item-buffer technique just proposed performs a lot of data
movement between the graphics accelerator’s memory and the
host computer’s main memory. On most architectures, this
is still a very expensive operation, since the data must flow
through some shared bus with all of the other components in
the computer. We propose a different technique which uses in-
trinsic OpenGL operations to perform all the computations on
the graphics accelerators, and only move a very small amount
of data back to the host CPU.

Our new technique shares some similarity to the previous
item-buffer technique. For instance, it also needs to render
the potentially visible cells multiple times, until no visible
cell is found. However, the new method uses OpenGL’s his-
togramming facility, available in the ARBimaging extension
of OpenGL 1.2, to actually compute the visible cells (see [1]).
After rendering the potentially visible cells in this case, rather
than transferring the color buffer to the host’s CPU and scan-
ning it for the visible cells, we simply enable the histogram-
ming facility and transfer the color buffer into texture mem-
ory (still on the graphics accelerator). During this transfer,
OpenGL will compute the number of times a particular color
appears. A short array with the accumulated values can then
be fetched by the host CPU with a single call. A fragment of
our C++ code illustrates this approach.

glEnable(GL_TEXTURE_2D);
glEnable(GL_HISTOGRAM_EXT);
glHistogramEXT(GL_HISTOGRAM_EXT, 256,

GL_LUMINANCE, GL_TRUE);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0,

0, 0, WIDTH, HEIGHT, WIDTH, HEIGHT);
GLuint histogram_values[256];
glGetHistogramEXT(GL_HISTOGRAM_EXT, GL_FALSE,

GL_LUMINANCE, GL_UNSIGNED_INT,
histogram_values);

glResetHistogramEXT (GL_HISTOGRAM_EXT);
glDisable(GL_TEXTURE_2D);
glDisable(GL_HISTOGRAM_EXT);

After this code is executed, the array histogramvalues con-
tains the number of times each color (here uniquely identified
by an integer between 0 to 255) appeared. With this tech-
nique, the graphics board does all the work, and only trans-

fers the results to the host CPU. The same termination crite-
rion exists for this multi-pass algorithm as for the item-buffer
technique, although we can more easily test for this condition
in this case. For instance, if histogramvalues[0] is equal to
WIDTH � HEIGHT, meaning all pixels are the same (back-
ground) color, then no cells are visible and we terminate the
algorithm.

3.4 Improving Visibility Query Performance

It is possible to improve the performance of our visibility
query techniques by implementing several optimizations. The
previous two techniques need to perform operations that touch
all the pixels in the image, possibly multiple times. To avoid
computations in areas of the screen that have already been
completely covered, we have implemented a simple tiling
scheme that greatly reduces the amount of transfers and scans
required. The basic idea is to simply divide the screen into
fixed tiles. For a 512x512 pixel image, we could break the
screen up into 64 tiles, each containing a block of 64x64 pix-
els. During the multi-pass algorithm, we need to keep track
of the active tiles, those that in the previous iteration con-
tained visible primitives. After each iteration, tiles get com-
pleted, and the number of tiles which need to be rendered to
and scanned decreases.

Another simple optimization for the item-buffer technique
was to minimize the number of color channels to transfer to
the host computer’s main memory. For example, if we have
r bits to represent the red color component on our machine,
and we have fewer than 2r cells to check in the front, we can
uniquely color these cells using only the red color component.
Consequently, we would only need to transfer and scan the
GL RED component for each pixel in the image, as opposed
to transferring and scanning the entire GLRGBA component.

We have implemented and are currently using these two
optimizations. A non-conservative optimization for our tech-
niques would be to compute visibility in a lower resolution
than the actual rendering window [33]. Although a quite ef-
fective optimization, this might lead to undesirable artifacts.
This is one of the reasons we do not use it in our system.

3.5 Integration with cPLP

The techniques presented so far essentially solve step (2a) of
cPLP. Both the item-buffer technique as well as the histogram-
ming technique need to have access to the color buffer of the
machine being used for its computations. For each pass, they
require that the color buffer be cleared, which conflicts with
the image computation which is performed in steps (1) and
(2b). Naively, it would be necessary to save the complete color
buffer (or at least the active tiles) before each call to step (2a)
and restore it before the call to step (2b).

Instead, since we expect that after step (1) most of the vis-
ible triangles have been rendered, we simply save the image
step (1) generated, and ignore the changes to the color buffer
from then on (we re-rendered the extra geometry in the end
to recover the correct image). The important thing is to cor-
rectly account for the z-buffer changes that are triggered by
the rendering of the geometry inside the cells. To do this, be-
fore step (2b), we change the masks on the z-buffer so that it
gets updated as geometry is rendered in (2b). When the front
becomes empty, we know the z-buffer was completed. At that
point, we perform a single image restore (with the image we

Host Memory Pixel Storage Ops RasterizationPixel Transfer Ops Per-fragment Ops Framebuffer

Texture Memory

Figure 5: OpenGL imaging pipeline

saved in step (1)), and we re-render all the geometry that was
found to be visible since that point.

Fig. 10 provides an overview of our cPLP algorithm as de-
scribed. For a sample view of an office model, snapshots
were taken at several iterations (step 2) of our algorithm.
Figs. 10(a)-(c) illustrate the current color buffer and front (in
blue) at each iteration. The remaining visible geometry will
come from within the visible front cells. (d)-(f) illustrate the
tiles of the screen that have been completed and therefore do
not need to be scanned during subsequent iterations. (c) and
(f) correspond to the final (correct) image, since all of the tiles
have been completely covered. Note that in (b), the front cells,
which are barely visible, are in the upper left corner and near
the two desks in the middle of the screen. As expected, the
tiles that represent these areas are not marked as completed.

3.6 Extending the OpenGL Histogram

Here we propose a modification to OpenGL that has the po-
tential to greatly improve performance. In particular, it would
make it possible to avoid the costly multi-pass visibility com-
putations that we are currently forced to use, and it can be seen
as a generalization of the HP occlusion culling test.

OpenGL background Before we go into details, it helps
to understand a bit more on how OpenGL works. The graph-
ics pipeline is the term used for the path a particular primitive
takes in the graphics hardware from the time the user defines it
in 3D to the time it actually contributes to the color of a partic-
ular pixel on the screen. At a very high level, a primitive must
undergo several operations before it is drawn on the screen. A
flowchart of the operations is shown in Fig. 5.

The user has several options for specifying vertices that are
grouped into primitives, e.g., triangles or quads. Primitives go
through several stages (not shown), and eventually, get to the
rasterization phase. It is at rasterization that the colors and
other properties of each pixel are computed. During raster-
ization, primitives get broken into what we usually refer to
as “ fragments” . Modern graphics architectures have several
per-fragment operations that can be performed on each frag-
ment as they are generated. As fragments are computed, they
are further processed, and the hardware incrementally fills the
framebuffer with an image.

Per-Fragment Histogramming The OpenGL histogram-
ming facility, part of the pixel transfer operations shown in
Fig. 5, operates on images, which can potentially come from
the framebuffer. The OpenGL histogram works by counting
the number of times a color appears in a given image.

The reason we need to perform multiple passes to deter-
mine when cells are visible at this time is that we are using
the color buffer to find which of the primitives passed the z-
test. With the standard pipeline, we only get the “ top layer”

of visible cells, since one of the per-fragment operations that
occurs before a pixel is written to the color buffer is the depth-
test. If a per-fragment histogramming facility is added to the
pipeline and it could be used to perform the same exact opera-
tion on fragments (which pass the z-test), it would be possible
to count how many fragments of a given primitive passed the
z-test. If this number is zero, the primitive would be occluded,
otherwise, the histogram value would not only tell us that it
is visible, but actually provide an upper bound on the num-
ber of its pixels that are visible. With the proposed change in
the OpenGL pipeline, we would still be able to perform sev-
eral queries at the same time, but we would not be required to
perform multiple passes over the framebuffer.

The per-fragment histogramming functionality we are
proposing is a clean way to extend the (already useful) tech-
niques based on counting the number of fragments which pass
the z-test (such as the HP occlusion culling test), so that it is
able to handle multiple and more general tests with better per-
formance. We would like to point out that the hardware cost
(in component cost or chip area) would likely be non-trivial,
since high-performance graphics hardware is highly parallel
(for instance, Nvidia’s GeForce can compute four fragments
simultaneously), and the extra hardware for the per-fragment
histogramming would have to be replicated for each fragment
generator. Of course, this is already the case for several other
extensions, including the existing fragment counting hard-
ware. We believe the actual cost (in time) of our augmented
test would be similar to the cost of a single HP test, while we
would be able to perform several tests concurrently.

4 Experimental Results

We performed a series of experiments to determine the effec-
tiveness of our new cPLP algorithm. We report results for each
of the three implementations of our visibility queries presented
in Section 3, as well as several alternatives for benchmarking:

cPLP-HP: cPLP, using the HP occlusion culling extension,

cPLP-IB: cPLP, using the item-buffer technique,

cPLP-HG: cPLP, using the OpenGL histogram extension,

cPLP-EXT: cPLP, using our hardware extension proposed in
Section 3.6,

PLP: the original PLP,

VF-BF: view frustum and back-face culling only,

HP: using the HP hardware to perform the visibility queries
without the benefit of running PLP to preload the color
and depth buffers.

Machine CPU(s) Graphics RAM

SGI Octane 1 X R12000, 300MHz MXE 512MB
SGI Onyx 12 X R10000, 195MHz Infinite Reality 2GB
HP Kayak 2 X Pentium II, 450MHz fx6 384MB

Table 1: The configurations of the machines used in our ex-
periments. The number of processors P per machine is listed
in the CPU(s) column, in the form: P X cpu-type, cpu-speed.

Test model The primary model that we report results on is
shown in Fig. 9(a) and consists of three copies, placed side by
side, of the third floor of the Berkeley SODA Hall. Arranging
the copies in such a way helps us better understand how the
different occlusion culling techniques function in a high depth
complexity environment, since they have their greatest oppor-
tunity where there is significant occlusion. Each room in the
model has various pieces of furniture and in total, the three
replicas contain over one million triangles.

We generated a 500-frame path that travels right-to-left,
starting from the upper right corner of Fig. 9(a). In Fig. 9(b)–
(e), we show a few representative frames of the path. The
number of visible polygons in each frame varies considerably,
especially when moving from room to room.

Machine architectures Our experiments were performed
on a three different architectures: an SGI Octane, an SGI
Onyx, and an HP Kayak. The configurations of the machines
are listed in Table 1.

Preprocessing As discussed in Section 2, the preprocess-
ing step of cPLP, which is identical to the preprocessing step
of the original PLP algorithm, is very efficient. The prepro-
cessing includes reading the input geometry from a file, build-
ing the octree, determining which geometry each cell contains,
and computing the initial solidity values. The total preprocess-
ing times for the one million triangle model mentioned above
was 76 seconds, 128 seconds, and 90 seconds, for the Octane,
Onyx, and Kayak, respectively. While these times are actually
quite modest, we have an additional opportunity to reduce the
preprocessing requirement. For portability purposes, we are
currently using an ASCII format to store the model. For each
of the three machines being used, at least half (42, 64, and 56
seconds, respectively) of the preprocessing time listed above
was spent simply reading in the model. If we were to store the
model in a compact binary format, the input portion of the pre-
processing would likely be reduced considerably. The octree
construction, geometry assignment, and initial solidity com-
putation only required 34, 64, and 34 seconds, respectively,
on each of the three machines, and could likely be reduced by
carefully optimizing our code. For the experiments reported
here, we subdivided the octree until each leaf contained fewer
than 5000 triangles. This resulted in 1429 octree leaf cells be-
ing created.

Rendering results We present our main rendering results
for the various cPLP implementations in Fig. 6. The vertical
axis represents the average rendering time for each of the 500
steps in the path generated for the test model. The horizontal
axis represents the initial budget used by PLP to render what
it determined to be the most likely visible geometry, thereby
preloading the color and depth buffers.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100A
v
e
r
a
g
e

R
e
n
d
e
r
i
n
g

T
i
m
e

(
s
e
c
o
n
d
s
)

PLP Triangle Budget (thousands)

Octane cPLP-IB
Octane cPLP-HG

Onxy cPLP-IB
Onxy cPLP-HG
Kayak cPLP-HP

Figure 6: Average rendering times per frame for the imple-
mentations of the cPLP algorithm. The PLP budget, reported
in thousands of triangles, determines the number of triangles
initially rendered to fill-in the depth buffer.

If we compare the item-buffer and histogram techniques,
we see that the item-buffer is considerably faster on each of
the SGI machines. All of these runs2 tended to reach their
minimum values for an initial PLP budget of 25K triangles,
or roughly 2.5% of the total number in the model. For this
budget, the rendering times for the item-buffer technique on
the Octane and Onyx were 0.081 and 0.113 seconds on aver-
age per frame. This is equivalent to rendering 12.35 and 8.85
frames per second, respectively. In comparison, the histogram
approach took 0.164 and 0.178 seconds on average per frame,
or the equivalent of 6.10 and 5.62 rendered frames per second.

We did not run cPLP-HG on the Kayak since the OpenGL
histogram extension is not available on that machine. Also,
the cPLP-IB technique on the Kayak was very slow, requiring
0.864 seconds on average per frame. We explain why this is
the case when we discuss the costs of the primitive operations
for each of the techniques below. The HP hardware occlusion
culling extension was clearly not available on the SGIs, and so
we can only report on this technique on the Kayak.

cPLP-HP was the most efficient algorithm but we were a
little surprised by the fact that it increased in running time as
we increased the PLP budget. We anticipated that we would
see a parabolic curve similar to the runs on the two SGI ma-
chines. Initially, we considered that running PLP followed by
our cPLP-HP visibility queries was not benefitting us at all on
the Kayak. To test this hypothesis, we implemented another
technique, HP, that used the hardware occlusion culling ex-
tension without the benefit of running PLP first to preload the
depth buffer. Given the set of leaves in our octree, we first
discarded those nodes that were outside the view frustum, and
then sorted the remaining nodes according to their distance
from the viewpoint. We then performed visibility queries for
the nodes in this order. On average, the HP technique required
0.157 seconds per frame, which is considerably slower than
our cPLP-HP algorithm.

While sorting the nodes according to distance appeared to

2The only exception being the Octane cPLP-HG method, which
reached a minimum at a PLP budget of 50K triangles.

be a good technique, it clearly cannot capture any occlusion
information as did cPLP. In addition, this HP technique does
not have a mechanism for determining which nodes are still
visible and which sections of the screen are yet incomplete.
Consequently, this method cannot easily determine when it
is finished, and therefore must perform many more visibility
queries than the cPLP-HP technique. One could think of mod-
ifying this HP approach so that the queries are performed in a
hierarchical fashion since we have the octree constructed any-
way. However, while in some cases this could reduce the over-
all rendering time, in many others the times will increase due
to the increase in the number of visibility queries. We shall
discuss shortly the times required for the HP visibility queries.
Thus, although the benefit gained from PLP was not exactly as
we anticipated, it still plays a crucial role in achieving interac-
tive rendering times.

To quantify how well our conservative culling algorithm is
working, we implemented a simple rendering algorithm, VF-
BF, that performed only view frustum and back-face culling.
These traditional culling approaches were also used within
cPLP. The VF-BF algorithm is considerably slower than all of
the cPLP implementations. For example, on the Octane, VF-
BF took 0.975 seconds to render each frame on average. Thus,
our cPLP-IB and cPLP-HG methods render frames 12 and 6
times faster than the VF-BF technique. Our cPLP-HP method
provides even better comparisons. Such improvements in ren-
dering speeds, which were similar on all of the architectures,
are crucial for any application requiring interactivity.

Of the time spent by our cPLP approaches, a good portion
of that time was actually spent running the initial PLP algo-
rithm. For example, on the Octane, out of the 0.081 seconds
it takes to render a frame on average, 0.064 seconds were oc-
cupied by the initial PLP algorithm, and 0.017 seconds used
by the iterative visibility queries to complete the rendered im-
age. For the item-buffer and histogram techniques, the average
number of iterative visibility queries per frame ranged from
4.7 iterations, for an initial PLP budget of only 1000 triangles,
to 1.5 iterations, for an initial budget of 100000 triangles.

Primitive Operation Costs To better understand the ren-
dering times reported in Fig. 6, we analyzed the cost of per-
forming the underlying primitive operations for each of the
methods. By looking at these results, we can offer additional
insight into why each of the methods works as well, or as
poorly, as it does.

For the cPLP-HP technique, the visibility queries involve
enabling the HP culling extension, rendering a cell, and read-
ing back the flag to indicate whether the z-buffer would have
changed if we had actually rendered the cell. We timed the
visibility queries on the HP Kayak and found that the time
ranged between 100 microseconds (µs) and 1000µs. In addi-
tion to these costs, the HP visibility query can also interrupt
the rendering pipeline, thereby reducing the overall through-
put. Consequently, it is imperative when using these queries to
do so with some caution. It is especially advantageous when
you are very likely to find significant occlusion. Otherwise,
many queries may be wasted and the overall rendering perfor-
mance will be reduced.

The primitive operation for the item-buffer technique is the
transferring of the color buffer from the graphics accelerators
memory to the main memory of the host computer. This is
done in OpenGL using a single call to glReadPixels. The other
main cost associated with this technique is the time it takes the
CPU to scan the color buffer to determine which cells have

Machine SGI Octane SGI Onyx HP Kayak
Image Size 642 5122 642 5122 642 5122

Transfer 217 4483 564 7733 375 11250
Scan 30 2300 20 1000 47 3430

Total 247 6783 584 8733 422 14680

Table 2: Times for the primitive operations of the item-buffer
technique. An image size of 642 refers to an image that is
64x64 pixels in size. The transfer time is the dominant cost of
this method. All times are reported in microseconds.

actually contributed to the image. We report these numbers
for each of our machines in Table 2. It is immediately ap-
parent why the cPLP-IB technique on the Kayak is so slow.
The transfer and scan times are considerably slower (for the
512x512 image) than on the SGIs. Another interesting ob-
servation, which also helps justify our tiling optimization in
Section 3.4, is the substantial increase in time that is required
to transfer and scan a 512x512 pixel image, as opposed to only
a 64x64 pixel (sub)image.

For those machines that support the OpenGL histogram ex-
tension, the underlying operations include copying an image,
or sub-image in the case of our tiles, from the framebuffer to
texture memory. We have timed this operation with the his-
togram extension enabled to see how much time is required
for the copy with the histogram calculations. The histogram
calculation also includes the time to retrieve and scan the his-
togram results. On the Octane it takes 800µs for a 64x64
pixel image, and 34000µs for a 512x512 image. On the Onyx,
it takes 690µs for a 64x64 pixel image, and 13500µs for a
512x512 image. (We should note that it is quite difficult to
perform such measurements, but we have done our best to re-
port accurate results.) We were surprised by the amount of
time required to copy the image to texture memory and per-
form the histogram computations. Our initial belief was that
by using the actual hardware to perform our visibility queries,
our rendering times would decrease. Unfortunately, this is not
the case at this point in time. While the Onyx appears to be
more advanced than the (newer) Octane in its histogramming
features, neither machine performs well enough to be faster
than the item-buffer techniques.

Depth Complexity To further test our cPLP algorithms,
we considered another model with extremely high depth com-
plexity. Fig. 7 shows an interior view of a skyscraper model
which consists of over one million triangles. The model, cour-
tesy of Ned Greene, consists of 54 copies of a module, each
with almost 20K triangles.

The purpose of this experiment was to determine the depth
complexity of this model when rendering it using the various
techniques. By depth complexity, we refer here to the average
number of times a z-test is performed for each pixel in the
image. If our cPLP techniques are effective at determining
occlusion, our methods should reduce the depth complexity
considerably in comparison to a standard rendering algorithm.
Using one such technique, VF-BF, we determined the depth
complexity of this model (for this viewpoint) to be 26.70 on
average, for all of the pixels in the image. Using cPLP, we
were able to reduce this value to only 7.97. We emphasize
that these numbers refer to the number of z-tests per pixel, as
opposed to the number of z-tests that pass (i.e., resulting in
the pixel’s color being overwritten by a fragment that is closer

Figure 7: Interior view of a skyscraper model. cPLP reduced
the depth complexity of this rendered image from 26 to 8.

to the viewer), which has been reported in other approaches.
We opted for this number since the number of z-tests more
accurately reflect the work that is done during the rendering
algorithm.

cPLP-EXT Since we do not actually have hardware which
implements our proposed extension, here we extrapolate on its
performance based on the results we have, assuming we were
to add such an extension to the HP Kayak fx6. Using cPLP-IB,
it is possible to determine the number of tests that can be per-
formed in parallel for each triangle budget in Fig. 6. Assuming
our extension is properly implemented, we believe it should
take no more time than the fragment counting technique al-
ready available on several architectures. While measuring on
HP machines, we found that in the worst case, an occlusion
test costs 1 ms. But since we have to bring more data from the
graphics hardware for our extension, we will assume that each
query is twice as expensive, or 2 ms, to account for the extra
data transfer. (Since only extremely small arrays of 256 values
are being transfered, we don’ t actually believe it would have
such an impact.)

Table 3 summarizes our findings. Basically, we are com-
puting the time for cPLP-EXT as a sum of the initial PLP cost
(initialize its per-frame data structures, such as zeroing the so-
lidity of each cell; and rendering the first batch of triangles for
all frames), plus the total number of parallel EXT tests (which
we assume take 2 ms each), plus the time to rendering the ex-
tra triangles (at a rate of approximately 1 million triangles/sec)
which are found as visibility tests are performed.

With these assumptions, we can see that our frame rates
get considerably better (see Fig. 8), and we could potentially
achieve a frame rate of 23 Hz (versus 18 Hz for cPLP-HP; an
improvement of 28%) if we had a hardware implementation
of our extension. We would like to point out that the advan-
tage would be even greater if the cost of initializing PLP’s per-
frame data structures was made lower. Our current PLP imple-
mentation uses an STL set, which is not particularly optimized
for linear traversals which are necessary during initialization.
If necessary, it would be possible to optimize this code further.

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 20 40 60 80 100A
v
e
r
a
g
e

R
e
n
d
e
r
i
n
g

T
i
m
e

(
s
e
c
o
n
d
s
)

PLP Triangle Budget (thousands)

Kayak cPLP-HP
Kayak cPLP-EXT

Figure 8: Average rendering times per frame for cPLP-HP
and our proposed hardware extension method cPLP-EXT. The
PLP budget, reported in thousands of triangles, determines the
number of triangles initially rendered to fill-in the depth buffer.

5 Related Work

There has been a substantial amount of recent work on occlu-
sion culling (see, for instance, [5, 6, 8, 11, 18, 23, 24, 30, 31]).
The purpose of this section is not to do an extensive review
of all occlusion culling algorithms. For that, we refer the in-
terested reader to the recent surveys by Cohen-Or et al. [7]
and Durand [10]. Instead, we focus on reviewing work that is
more closely related to our own, so that we can indicate the
similarities and differences with our current work.

Closely related to our work are techniques that use two-
dimensional depth information to avoid rendering occluded
geometry. An early example of this is a technique by
Meagher [20] that stores the scene in an octree, and the frame-
buffer in a quadtree. Meagher renders the octree in a strict
front-to-back order, while keeping track of which parts of the
quadtree get filled, in order to avoid touching parts of the oc-
tree that can not be seen. Naylor [22] proposes another version
of this idea, where instead of using an octree and a quadtree,
he uses two binary-space partitioning trees [12], one in 3D, the
other in 2D, to efficiently keep both the scene and the image
respectively. The 3D BSP can be used to traverse the scene in
a strict front-to-back order, and the 2D BSP is used to keep the
areas of the screen which get filled. Our current approaches
differ from these methods in that they do not render in a strict
front-to-back order (which was shown to be less effective), but
rather allow PLP to determine the order in which to visit (and
render) the cells.

The Hierarchical Z-Buffer (HZB) technique of Greene et
al. [14] is probably the best known example of a technique that
efficiently uses depth information for occlusion culling. Their
technique is related to Meagher [20] in that it also uses an
octree for managing the scene, which is rendered in front-to-
back order. Another similarity is that they also use a quadtree,
but not for the actual framebuffer (as in [20]). Instead, they
use the quadtree to store the z-buffer values, which allow for
fast rejection of occluded geometry. The HZB technique also
explores temporal coherency by initializing the depth buffer
with the contents of the visible geometry in the previous frame.

PLP Budget (triangles) PLP Time (s) # EXT Tests Avg. Extra Triangles Average Time (s) Frame Rate (Hz)

1,000 0.019 4.688 16844 0.044 22.7
10,000 0.028 3.376 10978 0.045 22.2
25,000 0.043 2.426 5641 0.053 18.9
50,000 0.066 1.908 2796 0.072 13.9
75,000 0.091 1.630 1770 0.096 10.4
100,000 0.112 1.372 1247 0.116 8.6

Table 3: Performance of cPLP-EXT on a “hypothetical” HP Kayak fx6. All times are reported in seconds. The average extra
triangles are the number of triangles that get rendered in addition to the PLP budget. See text for further details.

The Hierarchical Z-Buffer has several similarities to cPLP.
Their use of the visible geometry from the previous frame for
the purpose of estimating the visible geometry is similar to our
approach, although in our case, we use the visibility estimation
properties of PLP to estimate the current frame. One advan-
tage of doing it this way is that (as we have shown earlier) the
front intrinsically tells us where to continue rendering to fill-
up the z-buffer. HZB has no such information; it renders the
remaining geometry in front-to-back order. The fact that we
employ a spatial partitioning instead of a hierarchy in object-
space is only a minor difference. Depending upon the scene
properties, this may or may not be an advantage. The flat data
structure we use seems more efficient for a hardware imple-
mentation, since we do not need to stop the pipeline as often
to determine the visibility of objects. In [13], Greene intro-
duces an optimized variation of the HZB technique, including
a non-conservative mode.

A closely related technique is the Hierarchical Occlusion
Maps of Zhang et al. [33]. For each frame, objects from a
precomputed database are chosen to be occluders, and are ren-
dered (possibly) in lower resolution to get a coverage foot-
print of the potential occluders. Using this image, OpenGL’s
texture mapping functionality generates a hierarchy of image-
space occlusion maps, which are then used to determine the
possible occlusion of objects in the scene. Note that in this
technique, the depth component is considered after it is deter-
mined that an object can potentially be occluded. One of the
main differences between HOM and cPLP is that HOM relies
on preprocessing the input to find its occluders, while cPLP
uses PLP for that purpose. HOM also utilizes a strict front-to-
back traversal of the object-space hierarchy.

The work by Bartz et al. [3, 4] addresses several of the same
questions we do in this paper. They provide an efficient tech-
nique for implementing occlusion culling using core OpenGL
functionality, and then propose a hardware extension which
has the potential to improve performance. Similar to the pre-
vious methods, Bartz et al. use a hierarchy for the 3D scene. In
order to determine the visible nodes, they first perform view-
frustum culling, which is optimized by using the OpenGL se-
lection mode capabilities. For the actual occlusion tests, which
are performed top-down in the hierarchy nodes, they propose
to use a virtual occlusion buffer, which is implemented using
the stencil buffer to save the results of when a given fragment
has passed the z-test. In their technique, they need to scan
the stencil buffer to perform each visibility test. Since this
has to be performed several times when determining the visi-
ble nodes of a hierarchy, this is the most time consuming part
of their technique, and they propose an optimization based on
sampling the virtual occlusion buffer (thus making the results
only approximate). In their paper, they also propose an ex-
tension of the HP occlusion culling test [25] (see [3] for de-

tails). At this time, the HP occlusion test simply tells whether
a primitive is visible or not. Bartz et al. propose an extension
to include more detail, such as number of visible pixels, clos-
est z-value, minimal-screen space bounding box, etc. There
are several differences between their work and our own. First
and foremost, our techniques are designed to exploit multi-
ple occlusion queries at one time, which tend to generate a
smaller number of pipeline stalls in the hardware. Also, our
hardware extension is more conservative in its core function-
ality, but has the extra feature that it would support multiple
queries. One additional difference is that, similar to Greene
et al. [14], cPLP incorporates an effective technique for filling
up the depth buffer so as to minimize the number of queries.
We do not believe that it would be difficult to incorporate this
feature within the framework of Bartz et al.

The technique by Luebke and Georges [19] describe a
screen-based technique for exploiting “visibility portals” , that
is, regions between cells which can potentially limit visibil-
ity from one region of space to another. Their technique can
be seen as a dynamic way to compute information similar to
that in [28]. One can think of cPLP’s obscured front as a sin-
gle occluder, which has a few holes. If we think of the holes
as “portals” , this is in certain respects analogous to the work
of Luebke and Georges. In the context of their colonoscopy
work, Hong et al. [15] propose a technique which merges Lue-
bke and Georges’s portals with a depth-buffer based technique
similar to ours. However, in their work, they exploit the spe-
cial properties of the colon being a tube-like structure.

HyperZ [21] is an interesting hardware feature that has been
implemented by ATI. HyperZ has three different optimizations
that improve the performance of 3D applications. The main
thrust of the optimizations is to lower the memory bandwidth
required for updating the z-buffer, which they report is the sin-
gle largest user of bandwidth on their graphics cards. One op-
timization is a technique for lossless compression of z-values.
Another is a fast z-buffer clear, which performs a lazy clear of
the depth values. ATI also reports on an implementation of the
hierarchical z-buffer in hardware. Details on the actual fea-
tures are only sketchy and ATI has not yet exposed any of the
functionality of their hardware to applications. Consequently,
it is not possible at this point to exploit their hardware func-
tionality for occlusion culling.

Another recent technique related to the hierarchical Z-
buffer is described by Xie and Shantz [32]. They propose the
Adaptive Hierarchical Visibility (AHV) algorithm as a simpli-
fication of HZB for tile architectures.

Alonso and Holzschuch [2] propose a technique which ex-
ploits the graphics hardware for speeding up visibility queries
in the context of global illumination techniques. Their tech-
nique is similar to our item-buffer technique. Westermann et
al. [29] propose a different technique for using the OpenGL

histogram functionality for occlusion culling. Their work in-
volves histogramming the stencil buffer, instead of the color
buffer as done in our work.

6 Conclusions

In this paper we presented a novel conservative visibility algo-
rithm based on the non-conservative PLP algorithm. Our ap-
proach exploits several features of PLP to quickly estimate the
correct image (and depth buffer) and to determine which por-
tions of this estimation were incorrect. To complete our con-
servative approach, we required an efficient means of perform-
ing visibility queries with respect to the current estimation im-
age. We showed how to implement these visibility queries
using either hardware or software. If fragment-counting hard-
ware is available (such as on HP fx, Diamond FireGL, SGI
IR3), this is clearly the best choice. Otherwise, the item-buffer
technique is the next best option. As graphics hardware con-
tinues to improve, and if the OpenGL histogramming features
are further optimized, this approach may offer the highest lev-
els of interactive rendering.

Our cPLP approach has several nice features. It provides
a much higher level of interactivity than traditional rendering
algorithms, such as view frustum culling. As opposed to PLP,
cPLP provides a conservative visibility culling algorithm. The
preprocessing required by our algorithm is very modest, and
we are not required to store significant occlusion information,
such as view-dependent occluders or potentially visible sets.
We are also able to run our algorithm on all (polygonal) data
sets since we do not require any underlying structure or format,
such as connectivity information.

Further investigation is necessary to study the feasibility
(cost) of adding our hardware extension proposed in Sec-
tion 3.6 to current architectures. As we show in this paper, it
can further improve the performance substantially over tech-
niques that provide a single counter of the fragments that pass
the depth-test, such as the HP occlusion-culling extension,
since it is able to perform several test in parallel.

Acknowledgements

We thank Craig Wittenbrink for help with the occlusion culling
capabilities of the HP fx series accelerators. Craig provided
us with much needed material, including documentation and
a sample implementation that showed us how to use the HP
occlusion test. Many thanks to Prof. Carlo Sequin and his stu-
dents at the University of California, Berkeley for the SODA
Hall model used in our experiments. Thanks to Ned Greene
for providing us with the Skyscraper dataset, and for helping
in tracking down hard to find references. Thanks to David
Kirk of Nvidia for discussions about the complexity of adding
the per-fragment histogramming extension. Finally, we thank
Dirk Bartz for comments on an earlier version of this paper.

References

[1] OpenGL histogram documentation. http://www.open-
gl.org/developers/documentation/Version1.2/1.2specs/-
histogram.txt.

[2] L. Alonso and N. Holzschuch. Using graphics hardware
to speed-up your visibility queries. Journal of Graphics
Tools, to appear.

[3] D. Bartz, M. Meißner, and T. Hüttner. Extending
graphics hardware for occlusion queries in OpenGL.
1998 SIGGRAPH / Eurographics Workshop on Graph-
ics Hardware, pages 97–104, August, 1998.

[4] D. Bartz, M. Meißner, and T. Hüttner. OpenGL-assisted
occlusion culling for large polygonal models. Computers
& Graphics, 23(5):667–679, October, 1999.

[5] F. Bernardini, J. T. Klosowski, and J. El-Sana. Di-
rectional discretized occluders for accelerated occlusion
culling. Computer Graphics Forum, 19(3):507–516, Au-
gust, 2000.

[6] Y. Chrysanthou, D. Cohen-Or, and D. Lischinski. Fast
approximate quantitative visibility for complex scenes.
Computer Graphics International ’98, pages 220-229,
June, 1998.

[7] D. Cohen-Or, Y. Chrysanthou, and C. Silva. A Survey
of Visibility for Walkthrough Applications. Submitted
for publication, 2000. Also in “Visibility, problems,
techniques, and applications” , ACM SIGGRAPH 2000
Course #4, 2000.

[8] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario.
Conservative visibility and strong occlusion for views-
pace partitioning of densely occluded scenes. Computer
Graphics Forum, 17(3):243–254, 1998.

[9] R. Cunniff. Visualize fx graphics scalable architecture.
In Hot 3D Proceedings, Graphics Hardware Workshop
2000, Interlaken, Switzerland, August, 2000.

[10] F. Durand. 3D Visibility: Analytical study and Applica-
tions. PhD thesis, Universite Joseph Fourier, Grenoble,
France, July, 1999.

[11] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Con-
servative visibility preprocessing using extended projec-
tions. Proceedings of SIGGRAPH 2000, pages 239–248,
July, 2000.

[12] H. Fuchs, Z. M. Kedem, and B. Naylor. On visible sur-
face generation by a priori tree structures. Proceedings
of SIGGRAPH 1980, pages 124–133, 1980.

[13] N. Greene. Occlusion Culling with Optimized Hierar-
chical Buffering. In Proc. ACM SIGGRAPH’99 Sketches
and Applications, page 261, August, 1999.

[14] N. Greene, M. Kass, and G. Miller. Hierarchical Z-buffer
visibility. In Computer Graphics Proceedings, Annual
Conference Series, 1993, pages 231–240, 1993.

[15] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T.
He. Virtual voyage: Interactive navigation in the hu-
man colon. Proceedings of SIGGRAPH 97, pages 27–34,
1997.

[16] J. T. Klosowski and C. T. Silva. Rendering on a budget:
A framework for time-critical rendering. IEEE Visual-
ization ’99, pages 115–122, October, 1999.

[17] J. T. Klosowski and C. T. Silva. The prioritized-layered
projection algorithm for visible set estimation. IEEE
Transactions on Visualization and Computer Graphics,
6(2):108–123, April - June, 2000.

[18] V. Koltun, Y. Chrysanthou, and D. Cohen-Or. Virtual
occluders: An efficient intermediate pvs representation.
Rendering Techniques 2000: 11th Eurographics Work-
shop on Rendering, pages 59–70, June, 2000.

[19] D. Luebke and C. Georges. Portals and mirrors: Simple,
fast evaluation of potentially visible sets. In 1995 ACM
Symposium on Interactive 3D Graphics, pages 105–106,
1995.

[20] D. Meagher. Efficient synthetic image generation of arbi-
trary 3-d objects. In Proceedings of IEEE Conference on
Pattern Recognition and Image Processing, pages 473–
478, June, 1982.

[21] S. Morein. ATI Radeon Hyper-Z technology. In Hot 3D
Proceedings, Graphics Hardware Workshop 2000, Inter-
laken, Switzerland, August, 2000.

[22] B. F. Naylor. Partitioning tree image representation and
generation from 3D geometric models. In Proceedings
of Graphics Interface ’92, pages 201–212, May, 1992.

[23] C. Saona-Vazquez, I. Navazo, and P. Brunet. The visibil-
ity octree: A data structure for 3d navigation. Computers
and Graphics, 23(5):635–643, 1999.

[24] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion.
Conservative volumetric visibility with occluder fusion.
Proceedings of SIGGRAPH 2000, pages 229–238, July,
2000.

[25] N. Scott, D. Olsen, and E. Gannet. An overview of the
visualize fx graphics accelerator hardware. The Hewlett-
Packard Journal, May:28–34, 1998.

[26] K. Severson. VISUALIZE Workstation Graphics for
Windows NT. HP product literature.

[27] Silicon Graphics, Inc. SGI Visual Worksta-
tion OpenGL Programming Guide for Win-
dows NT. Document Number 007-3876-001.
https://www.sgi.com/developers/nt/sdk/files/-
OpenGLEXT.pdf

[28] S. J. Teller and C. H. Séquin. Visibility preprocess-
ing for interactive walkthroughs. In Computer Graphics
(SIGGRAPH ’91 Proceedings), volume 25, pages 61–69,
July, 1991.

[29] R. Westermann, O. Sommer, and T. Ertl. Decoupling
Polygon Rendering from Geometry using Rasterization
Hardware. Unpublished manuscript, 1999.

[30] P. Wonka and D. Schmalsteig. Occluder shadows for fast
walkthroughs of urban environments. Computer Graph-
ics Forum, 18(3):51–60, September, 1999.

[31] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibil-
ity preprocessing with occluder fusion for urban walk-
throughs. Rendering Techniques 2000: 11th Eurograph-
ics Workshop on Rendering, pages 71–82, June, 2000.

[32] F. Xie and M. Shantz. Adaptive hierarchical visibility
in a tiled architecture. 1999 SIGGRAPH / Eurographics
Workshop on Graphics Hardware, pages 75–84, August,
1998.

[33] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff
III. Visibility culling using hierarchical occlusion maps.
Proceedings of SIGGRAPH 97, pages 77–88, 1997.

(a)

(b) (c)

(d) (e)

Figure 9: (a) A top-down view of our dataset. (b)–(e) Sample views of the recorded path.

(a) (b) (c)

(d) (e) (f)

Figure 10: Snapshots during three iterations of our cPLP algorithm. The current front (blue) and completed tiles (red) are high-
lighted for iteration 1 in (a) and (d), iteration 2 in (b) and (e), and iteration 3 in (c) and (f). The final rendered image is (c).

