
RC 21990 (98808) 14 March 2001 Computer Science

IBM Research Report

FARM: A Framework for Exploring Mining Spaces
with Multiple Attributes

Chang-Shing Perng, Haixun Wang, Sheng Ma, Joseph L. Hellerstein
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

FARM: A F
�
ra
�
mework for Explor

�
ing M

�
ining Spaces with Multiple

Attributes

Chang-Shing Perng Haixun Wang Sheng Ma Joseph L. Hellerstein

fperng,haixun,shengma,hellersg@us.ibm.com

IBM Thomas J. Watson Research Center

Hawthorne, NY 10532

Abstract

Mining for frequent itemsets typically involves a preprocessing step in which data with multiple

attributes are grouped into transactions and items are de�ned based on attribute values. We have

observed that such �xed attribute mining can severely constrain the patterns that are discovered. Herein,

we introduce mining spaces, a new framework for mining multi-attribute data that not only discovers

patterns but also discovers transaction and item de�nitions (with the exploitation of taxonomies and

functional dependencies if they are available). We prove that special downward closure properties hold

for mining spaces, a result that allows us to construct eÆcient algorithms for mining patterns without

the constraints of �xed attribute mining. We apply our algorithms to synthetic data and to real world

data collected from a production computer network. The results show that by exploiting the special

kinds of downward closure in mining spaces, execution times for mining can be reduced by a factor of

three to four.

1 Introduction

Mining for frequent itemsets has been studied extensively because of the potential for actionable insights.

Typically, before mining is done, a preprocessing step uses data attributes to group records into transactions

and to de�ne the items used in mining. For example in supermarket data, the market basket attribute might

be used to group data into transactions and the product-type attribute (with values such as diapers, beer) to

specify items. We refer to this as �xed attribute mining in that mining does not change which attributes

are used to determine transactions and items.

We have observed that �xing the attributes used to de�ne transactions and items can severely constrain

the patterns that are discovered. For example, by having items characterized in terms of product type, we

may fail to discover relationships between baby items in general (e.g., diapers, formula, rattles) and adult

beverages (e.g., beer and wine). And, by having transactions be market baskets, we may fail to note

relationships between items purchased by the same family in a single day.

To go beyond the limits of �xed attribute mining, we introduce FARM, a new mining framework that

uses mining spaces to discover frequent patterns for transactions and items that are de�ned in terms of data

attributes. Here a \transaction" is a general term for a group of records. Our framework does not require

prespeci�ed taxonomies, although our approach exploits such information if it is available. We prove that

downward closure holds for a class of mining spaces. This results provides for the implementation of eÆcient

mining algorithms. We apply our algorithms to event data collected from a production computer network

and show that our approach is considerably faster than simply employing apriori-like algorithms on each

choice of attributes for de�ning transactions and items.

To better motivate the problem we address, consider the domain of event management for complex

networks. Events are messages that are generated when a special condition arises. The relationship between

events often provides actionable insights into the cause of existing network problems as well as advanced

warnings of future problem occurrences. Figure 1 illustrates event data we obtained from a production

network at a large �nancial institution. The attributes of the data are: Date, T ime, Interval (�ve minute

interval), EventType, Host from which the event originated, and Severity. The column labeled \Rec" is

only present to aid in making references to the data. Observe the following:

1. Host 23 generated a large number of InterfaceDown events on 8/21. Such situations may indicate a

problem with that host.

2. When Host 45 generates an InterfaceDown event, Host 16 generates a CiscoLinkUp (failure recovery)

event within the same �ve minute interval. Thus, a Host 45 InterfaceDown event may provide a way

to anticipate the failure of Host 16.

3. The event types MLMStatusUp and CiscoDCDLinkUp tend to be generated from same Host and

within the same minute. This means that when a Cisco router recovers a link, it will discover that

its mid-level manager is accessible. Such event pairs should be �ltered since they arise from normal

operation.

4. Host 24 and Host 32 tend to generate events with same severity in the same day. This suggests a close

linkage between these hosts. If this linkage is unexpected, it should be investigated to avoid having

problems with one host cause problems with the other host.

Several de�nitions of transactions and items are needed to discover patterns (1)-(4). For (2), trans-

actions are determined by groupings events into �ve minute intervals (attribute Interval). For (1) and (4),

event groupings are done by Date attribute. For (3), a transaction reects events that occur on the same

Host within the same minute. The de�nition of items is similarly diverse. For (1) and (4), an item is a Host.

For (3), it is an EventType. For (2), it is determined by the values of Host and EventType.

Herein, we extend the mining problem to include the manner in which data attributes are used to

de�ne transactions and items. One way to approach this extended data mining problem is to itera-

tively preprocess the data to form di�erent items and transaction groupings and then apply current mining

algorithms. However, this scales poorly. For example, for a data set with six attributes, it turns out that

there are 665 ways to group and label records. Another approach is to mine for multi-level associations (e.g.,

2

(Rec) D
�
ate T

�
ime I

�
nterval E

�
ventType H

�
ost S

�
everity

(1) 08/21/00 2:12am 2:10am TcpCnnctClose 3 harmless

(2) 08/21/00 2:13am 2:10am InterfaceDown 45 severe

(3) 08/21/00 2:14am 2:10am InterfaceDown 23 severe

(4) 08/21/00 2:14am 2:10am InterfaceDown 5 severe

(5) 08/21/00 2:15am 2:10am InterfaceDown 24 severe

(6) 08/21/00 2:16am 2:15am CiscoLinkUp 16 harmless

(7) 08/21/00 3:16am 3:15am MLMStatusUp 16 harmless

(8) 08/21/00 3:16am 3:15am CiscoDCDLinkUp 16 harmless

(9) 08/21/00 3:33am 3:30am InterfaceDown 45 severe

(10) 08/21/00 3:34am 3:30am CiscoLinkUp 16 harmless

(11) 08/21/00 3:51am 3:50am InterfaceDown 23 severe

(12) 08/21/00 4:06am 4:05am MLMStatusUp 19 harmless

(13) 08/21/00 4:06am 4:05am CiscoDCDLinkUp 19 harmless

(14) 08/21/00 4:10am 4:10am InterfaceDown 45 severe

(15) 08/21/00 4:11am 4:10am InterfaceDown 23 severe

(16) 08/21/00 4:13am 4:10am network down 32 severe

(17) 08/21/00 4:14am 4:10am CiscoLinkUp 16 harmless

(18) 08/21/00 5:18am 5:15am MLMStatusUp 19 harmless

(19) 08/21/00 5:18am 5:15am CiscoDCDLinkUp 19 harmless

(20) 08/21/00 6:15am 6:15am InterfaceDown 23 severe

(21) 09/15/00 3:53am 3:50am MLMStatusUp 12 harmless

(22) 09/15/00 3:53am 3:50am InterfaceDown 45 severe

(23) 09/15/00 3:53am 3:50am CiscoDCDLinkUp 12 harmless

(24) 09/15/00 3:55am 2:55am CiscoLinkUp 16 harmless

(25) 09/15/00 4:35am 4:35am InterfaceDown 23 severe

(26) 09/15/00 5:15am 5:15am InterfaceDown 24 severe

(27) 09/15/00 5:18am 5:15am InterfaceDown 45 severe

(28) 09/15/00 5:19am 5:15am SegmentDown 32 severe

(29) 09/15/00 5:12pm 5:10pm RouterLinkDown 46 fatal

(30) 09/15/00 5:18pm 5:15pm DBServerDown 73 fatal

(31) 09/15/00 5:21pm 5:20pm CiscoLinkUp 16 harmless

Figure 1: System Management Events. (Rec) is included only for reference purposes.

3

[7] and [13]). Unfortunately, this requires specifying hierarchies. Since many such hierarchies are possible,

considerable iteration may be necessary. Further, these approaches do not address how to group data into

transactions.

1.1 Related Work

Agrawal et.al.[2, 3] identi�ed the association rule problem and developed the level-wise search algorithm.

Since then, many algorithms have been proposed to make mining more eÆcient (e.g. [1, 4, 8, 9] and [5] for

a review). Our work builds on these e�orts but broadens the scope of the mining problem.

Srikant et.al.[13] and Han et.al.[7] consider multi-level association rules based on item taxonomies, and

[11] and [14] provide further extensions to handle more general constraints. All of these e�orts assume that

items occupy a �xed position in the hierarchy and that the hierarchies are known in advance. Further, none of

these e�orts considers di�erent ways of grouping records into transactions. In contrast, our framework enables

the discovery of patterns without either �xing the way in which transactions are de�ned or prespecifying an

item hierarchy.

Also related to our work, Shen et.al.[12] develop metaqueries for Bayesian data clusters using templates

expressed as second-order predicates. Fu et.al.[6] and Kamber et.al.[10] extend metaqueries to relational

databases and multi-dimensional data cubes. Meta-rules can be viewed as rule templates expressed as a

conjunction of predicates instantiated on a single record. In contrast, our work considers multi-attribute

patterns formed from multiple records. Further, we consider mining the transaction groupings as well,

something that the foregoing work does not address.

1.2 Contribution

The main contributions of this paper are:

1. A framework for mining multi-attribute data without prespecifying the attributes used to group records

into transactions or the attributes used to de�ne items. The framework is based on the concept of a

mining camp that has three components: the pattern length (the number of items), the set of attributes

used to group data into transactions, and the set of attributes used to de�ne items.

2. The identi�cation (and associated proofs) of two new kinds of downward closure related to searching

mining camps for patterns.

3. The multi-attribute mining (MAM) algorithm that uses downward closure of pattern length along with

the two new types of downward closure that we identify

4. Empirical studies with real world data that show a factor of three to four reduction in execution times

by using the new kinds of downward closure that we identify.

4

1.3 Organization of the Paper

The remainder of this paper is organized as follows. Section 2.1 de�nes the FARM framework and the

concepts of mining camps and mining spaces. Based on the framework, we study the downward closure

properties in Section 2.2. Section 2.3 shows how the FARM framework can exploit prede�ned taxonomies.

Section 3 presents the multi-attribute mining (MAM) algorithm that uses the downward closure properties

of Section 2.2, and Section 4 compares MAM with SAM, a naive extension of the apriori algorithm. Our

conclusions are contained in Section 5.

2 The FARM Framework

This section describes the elements of the FARM framework for mining data with multiple attributes. Section

2.1 provides key de�nitions. Section 2.2 establishes the conditions for three types of downward closure for

mining within our framework. Section 2.3 extends our framework to include taxonomies and functional

dependencies.

2.1 Problem Statement

The FARM framework goes beyond �xed attribute mining to mine directly from multi-attribute data. We

are given data D with attributes A = fA1; � � � ; Akg. Thus, each record in D is a k tuple. For a given pattern,

a subset of these attributes is used to de�ne how transactions are grouped and another (disjoint) subset of

attributes determines the items. The former are called the grouping attributes, and the latter are the

itemizing attributes.

We begin with an example based on Figure 1. Here, k = 6. For pattern 3, the grouping attributes

are Host and T ime; the itemizing attribute is EventType. The pattern has length two, which means that

a pattern instance has two records. The items speci�ed by these records are determined by the value of

the EventType attribute. That is, one record must have EventType = MLMStatusUp and the other has

EventType = CiscoDCDLinkUp. Further, these records must have the same value for their Host and T ime

attributes. Records 7 and 8 form an instance of pattern 3 with Host = 16 and T ime = 3 : 16am. Note that

items may be formed from multiple attributes. For example, pattern 2 has the itemizing attributes Host

and EventType.

We use the term mining camp to provide the context in which patterns are discovered. Context

includes pattern length (as in existing approaches), grouping attributes, and itemizing attributes. For

example, pattern 3 has the mining camp (2; fHost; T imeg; fEventTypeg):

De�nition 1 A mining camp is a triple (n;G; S) where n is number of records in a pattern, G is a set of

grouping attributes, and S is the set of itemizing attributes. A mining camp is well formed if G
T
S = ;.

A mining camp is minable if S 6= ;.

We demand that G
T
S = ; to avoid interactions between the manner in which groupings are done

and items are de�ned. We require that S 6= ; since there must be items to count (even if there is only one

5

group).

Next, we formalize the notion of a pattern. There are several parts to this. First, note that two records

occur in the same grouping if their G attributes have the same value. Let r 2 D. We use the notation �G(r)

to indicate the values of r that correspond to the attributes of G.

De�nition 2 Given a set of attribute G, two records r1 and r2 are G-equivalent if and only if �G(r1) =

�G(r2).

In Figure 1, records 7 and 8 are G equivalent, where G = fHost; T imeg:

In FARM, items are determined by the combinations of values of the attributes of S. Consider pattern

2 for which we require one record with EventType = InterfaceDown, Host = 45 and a second for which

EventType = CiscoLinkUp, Host = 16: Thus, (InterfaceDown, 45) is one component (or item) of the

pattern and (CiscoLinkUp, 16) is the other component.

De�nition 3 Given a mining camp (n;G; S) where S = fS1; � � � ; Smg. A pattern component or item

is a sequence of attribute values sv = hs1; � � � ; smi where si 2 Si for 1 � i � m. p = fsv1; � � � ; svng is a

pattern of length n for this mining camp if each svi is a pattern component for S.

An instance of a pattern is a set of records that are in the same grouping and whose itemizing attributes

match those in the pattern.

De�nition 4 Let p = fsv1; � � � ; svng be a pattern in mining camp (n;G; S) and let D be a set of records. An

instance of pattern p is a set of n records R = fr1; � � � ; rng such that ri 2 D and �S(ri) = svi for 1 � i � n,

and ri and rj are G-equivalent for all ri; rj 2 R.

Having de�ned what is an item (i.e., pattern component), a pattern, and a pattern instance, we now

consider the support for a pattern. A G-equivalent class may have a large number of records. A decision

has to be made about whether multiple instances in a G-equivalent class should provide more support than

one instance. Early work [2, 3] assumes at most one pattern instance can be found in one transaction. We

believe that this decision is domain dependent. So, we isolate this decision to the choice of an aggregating

function f : Z+ �! Z+. Two common choices of f are:

� Existence Function

f(x) =

8<
:

0 if x = 0

1 otherwise

� Identity Function f(x) = x

Now we can de�ne the concept of support in the FARM framework.

De�nition 5 Given an aggregating function f , a mining camp (n;G; S) and a set of records D that can be

divided to G-equivalent classes GEC1; � � � ; GECw, the f-support of a pattern p is de�ned as f(jGEC1jp)+

� � � ;+f(jGECwjp) where jGECijp is the number of disjoint instances of p in GECi for 1 � i � w.

6

We now have in place all of the de�nitions necessary to discuss mining in the FARM framework. First,

note that if G and S are �xed, then we have the traditional �xed attribute data mining problem. Here,

downward closure of the pattern length is used to look for those patterns in (n+ 1; G; S) for which there is

suÆcient support in (n;G; S):

(2,{TB},{A})

(1,{TB},{A})

(3,{TB},{A})

(4,{TB},{A})

(2,{T},{A})

(3,{T},{A})

(4,{T},{A})

(1,{T},{A})

(2,{T},{B})

(3,{T},{B})

(4,{T},{B})

(1,{T},{B})

(2,{TA},{B})

(1,{TA},{B})

(3,{TA},{B})

(4,{TA},{B})

(2,{T},{AB})

(3,{T},{AB})

(4,{T},{AB})

(1, {T},{AB})

Level:

1

2

3

4

Figure 2: A Simple Search Space

In FARM, G and S need not be �xed. Consider the attributes T;A;B for which we require that T 2 G.

Figure 2 displays one way to search these mining camps. In essence, a separate search is done for each

combination of G;S. This scales poorly. In particular, the number of permitted combinations of G and S

is 3k � 2k, where k is the number of attributes (which follows from observing that Ai may be in G, S, or

neither and eliminating the 2k cases for which S = ;).

How can we eÆciently search the set of possible mining camps? To provide intuition, consider Figure 1.

Let G = fDateg; which results in two groups: records 1-20 and 21-31. Now consider G0 = G
S
fIntevalg:

This new set of grouping attributes re�nes the previous groupings. Thus, if records are not in the same

fDateg grouping, then they cannot be in the same fDate; Intervalg grouping. Hence, patterns based on

these records cannot have more instance in fDate; Intervalg than they do in fDateg.

Similarly, consider Ai 62 S: Let p be a pattern in (n;G; S). Now consider (n+ 1; G; S
S
fAig): If p is a

sub-pattern of p0 in this second mining camp, then every occurrence of p0 in this camp is also an occurrence

of p in the �rst camp.

The foregoing suggests that mining camps can be ordered in a way that relates to downward closure.

De�nition 6 Given a mining camp c = (n;G; S) and an attribute Ai 62 G [S then

1. (n+ 1; G; S) is the type-1 successor of c.

2. (n;G [fAig; S) is a type-2 successor of c.

3. (n;G; S [fAig) is a type-3 successor of c.

Figure 3 depicts the predecessor/successor relationships present in Figure 2. The root precedes all

other mining camps. (In this case, it is not a real camp since S = ;.) The level of mining camp (n;G; S) is

7

(1, {T}, {})

(2,{T},{A}) (1,{TB},{A}) (1,{T},{AB}) (1,{TA},{B}) (2,{T},{B})

(1, {T}, {A}) (1, {T}, {B})

(3,{T},{A}) (2,{TB},{A}) (2,{T},{AB}) (2,{TA},{B}) (3,{T},{B})

(4,{T},{A}) (3,{TB},{A}) (3,{T},{AB}) (3,{TA},{B}) (4,{T},{B})

Level

2

3

4

5

6

Figure 3: Search Space MS(1; fTg; fg) for attribute set fT;A;Bg

de�ned as n + jGj + jSj. Since n is at least 1 and S is nonempty, a minable mining camp has level no less

than 2. We structure the mining camps so that the successor relationships only exist between mining camps

at di�erent levels. This imposes a partial order. Figure 3 is an example of a mining space. More formally,

De�nition 7 A mining space MS(c) is a partially ordered set (poset) of mining camps containing c and

all of its successors.

To make the notation more readable, we use MS(n;G; S) to denote MS((n;G; S)).

The objective of the FARM framework is now clear

De�nition 8 A FARM problem is a triple (MS(c); f; �) where f is an aggregating function and � is the

threshold. The solution of a FARM problem in dataset D is all patterns of every mining camp in MS(c)

with f-support greater than �.

One concern with this problem formulation is the potential for an explosive growth in the number of

mining camps as the number of attributes increases. Many of these mining camps may contain meaningless

combinations of itemizing and/or grouping attributes. This problem can be addressed, in part, by employing

a rule-based mechanism that allows domain experts to specify the part of the mining space that may

contains interesting patterns. In particular, such user-de�ned directives could be expressed as predicates on

the elements in G and S, such as which attributes can be members of which set and under what conditions

(e.g., always, never, only if another attribute is not present). We note, however, that removing some mining

camps from a mining space does not necessarily guarantee faster execution because the results of removed

mining camps may be used to reduce the number of candidates of the next level.

2.2 Downward Closure Properties

This section shows that several types of downward closure can be present in the FARM framework. Exploiting

these properties provides considerable bene�t in terms of eÆciency.

We begin by de�ning properties of the aggregating function.

8

De�nition 9 Assume f is an aggregating function, then

1. f is type-1 downward closed if f is non-decreasing.

2. f is type-2 downward closed if f is monotonic increasing and for any two G-equivalent classes GEC1

and GEC2 and a given pattern p, f(jGEC1jp) + f(jGEC2jp) � f(jGEC1 [GEC2jp).

3. f is type-3 downward closed if f is non-decreasing.

Note that by this de�nition, f is type-1 downward closed if and only if f is type-3 downward closed.

Our main result is that downward closure is possible for n, G, and S.

Theorem 1 Given a mining camp c = (n;G; S) and an aggregating function f such that the f-support of a

pattern p = fsv1; � � � ; svng is less than �.

1. If f is type-1 downward closed then for any type-1 successor of c, any pattern that is a superset of p

has f-support less than �.

2. If f is type-2 downward closed then the f-support of p in any of type-2 successor of c is less than �.

3. If f is type-3 downward closed then the f-support of pattern p0 = fsv01; � � � ; sv
0

ng of any type-3 successor

of c is less then � if svi � sv0i for all 1 � i � n.

Proof:

1. This is the a priori property proved in [3].

2. For Ai not in G [S, let G0 = G [fAig and consider c0 = (n;G0; S), a type-2 successor of c. Let

GEC1; � � � ; GECm be the G-equivalent classes in c, and GEC 0

1; � � � ; GEC
0

m0 be the G0-equivalent classes

in c0. Note that for all 1 � j � m, there is a set Zj � fGEC
0

1; � � � ; GEC
0

m0g and GECj =
S
V 2Zj

V .

Now, consider a pattern p: Its support in G is �p and its support in G0 is �0p . Observe that

�p =

mX
j=1

f(jGECj jp)

=

mX
j=1

f(j
[

V 2Zj

V jp)

�

mX
j=1

X
V 2Zj

f(jV jp)

= �0p

The inequality holds because of f being type-2 downward closed.

3. Suppose c0 = (n;G; S0) is a type-3 successor of c. The G-equivalent classes of c remain intact in

c0. It is obvious that for every pattern instance inst0 = fsv01; � � � ; sv
0

ng, its projection to S, inst =

f�S(sv
0

1); � � � ; �S(sv
0

n)g is a pattern instance of c. But not every pattern instance of c can expand to a

pattern instance of c0. So the f -support of inst0 is lower than that of inst.

9

Downward closure properties are the foundation of MAM as they are in traditional (�xed attribute)

mining for frequent itemsets. The more downward properties the chosen aggregating function has, the greater

the eÆciencies that can be realized in mining. Note that the identity function has all three downward closure

properties. However, the existence function is type-1 and type-3 downward closed but not type-2 downward

closed.

2.3 Taxonomies and Functional Dependency

LA

CA

Beverly Hills

90066 90024 90210

NY

New York City Hawthorne

 10532Zip

City

State

10012 10019

Figure 4: Example of a Taxonomy

In some situations, taxonomies (is-a hierarchies) are available. For example, Figure 4 shows a taxonomy

of geographical information with three levels: zip code, city and state. A reasonable database design is to

store only the lowest level attribute, e.g. zip code, in the main table, keep the taxonomies in a separate table,

and create a logical view that contains all attributes for data ming.

Since the value of a lower level attribute uniquely determines the value of attributes in higher level,

taxonomies are special cases of functional dependencies. So it is suÆcient to discuss functional dependencies.

As previously stated, the number of mining camps grows exponentially with the number of attributes.

There is de�nitely no need to discover that \houses located in the same zip code tend to be in the same

city". The following theorem shows how to avoid such unnecessary computation.

Theorem 2 Suppose U ,V , G and S are attribute sets and U uniquely determine V .

1. The output of (n;U [V [G;S) and (n;U [G;S) are identical.

2. The output of (n;G; S [U [V) can be derived from the output of (n;G; S [U) by looking up the

taxonomy.

3. For n > 1, (n;U [G; V) has no pattern.

Proof:

1. In each U [G-equivalent class, every record is also V -equivalent. That is, U [G-equivalent classes are

exactly U [V [G-equivalent classes. So the two camps have the same grouping and labeling hence

produce identical result.

2. trivial.

10

3. Let G0 = G
S
U , and c0 = (n;G0; V): Now consider r1 and r2 in a G0-equivalent class. Clearly,

�U (r1) = �U (r2). But since U determines V , we have �V (r1) = �V (r2). Thus, there can be at most

one distinct item in each G0-equivalent class.

All three properties are useful in making mining more eÆcient. Property (1) allows us to skip certain

attribute combinations. Property (2) provides a more eÆcient means to determine the patterns in a mining

camp. Property (3) allows us to truncate a search early.

3 Algorithm

This section describes the multiple attribute mining (MAM) algorithm for mining FARM problems.

MAM exploits the downward closure properties in Theorem 1 to improve the eÆciency of mining.

The extended mining problem we address raises some diÆcult scaling issues as a result of discovering

mining camps with di�erent grouping attributes (G). Existing mining algorithms assume that data are sorted

by transaction identi�er so that locality can be exploited in counting pattern instances. Such locality can

be imposed on FARM problems as well if there is an attribute T , called the ordering attribute such that:

(1) T is required to be in G, (2) data records are sorted by T , and (3) all of the records in a T -equivalent

class �t in main memory. Possible ordering attributes include those that deal with time (e.g., day) and place

(e.g., zip code). However, even if locality is not present, other techniques can be used to improve eÆciency,

such as decomposing the problem into subproblems with fewer attributes. In the sequel, we assume there is

an ordering attribute T , and we address the mining problem (MS(1; fTg; ;); f; �).

We describe MAM in an object-oriented fashion. The core data structure is the Camp class.

class Camp

f

n: Integer // number of items

G: Sequence of Attributes // grouping attributes

S: Sequence of Attributes // surrogate attributes

pred1: Camp // type 1 predecessor

pred2: Set of Camp // type 2 predecessors

pred3: Set of Camp // type 3 predecessors

ptrns: Set of Pattern // candidates and patterns

g

The member ptrns contains candidates before counting their f -support has been computed, and it

contains patterns after counting is completed and low-support candidates are removed. The Pattern class is

de�ned as:

class Pattern

f

svalue: Set of Sequences of Attribute Values // See De�nition 3

support: Real // f -support

g

11

The MAM algorithm adapts to the choice of the aggregating functions. If the aggregating function has

all three downward closure properties, the mining space looks like Figure 3, and the lowest level containing

minable camps is level 3, e.g. (1; fTg; fAig). Otherwise, the mining space looks like Figure 2 in which the

level of a mining camp is de�ned as the number of items, n, in the camp.

We structure theMAM algorithm into seven routines. Algorithm 1, the top level routine, is very similar

to the classical apriori algorithm. However, Algorithm 1 sets levels based on the kinds of downward closure

present, and the algorithm operates on mining camps, not candidate patterns.

Algorithm 2, CampGen, is called by Algorithm 1 to generate mining camps. Note that type-2 downward

closure is used to make camp generation more eÆcient.

Algorithm 3, SetPredAndCandiGen, determines the predecessor to use when extending the set of

patterns. Type-2 downward closure is exploited here as well.

Algorithm 1 MAIN(AttributeSet: A, Ordering-Attribute: T , Dataset: D, MinSupport: �)

Input: A = fA1; � � � ; Akg: set of attributes.

T : a special ordering attribute

D: a dataset with k + 1 attributes (A [fTg), sorted by attribute T .

�: minsupport threshold

Output: frequent itemsets of all the mining camps

if f is type-2 downward closed then

l 3

else

l 1

end if

campsl CampGen(l; A)

for each camp 2 campsl do

camp:ptrns ffrequent 1-itemsets g

end for

while exist camp 2 campsl; camp:ptrns 6= ; do

Evaluate(D; campsl)

for each camp 2 campsl do

eliminate patterns with support lower than � in camp:ptrns;

end for

l l+ 1

campsl CampGen(l; A)

campsl:SetPredAndCandiGen()

end while

return fcamp:ptrnjcamp 2 campsl; l � 3g

Algorithm 4, CandiGen, applies the extended downward closure properties. There are two issues here:

how to generate candidates and how to �lter out impossible candidates. The initial candidate set can be

generated from the pattern sets of any of type of predecessors. But in general, the most eÆcient candidate

generation is to start from patterns of type-2 predecessors. This is because patterns of type-2 predecessors

12

Algorithm 2 CampGen(Level: l, AttributeSet: A, Ordering-Attribute: T)

if f is type-2 downward closed then

camps f(n; fTg [G;S)j1 � n � l � 2; G � A; jGj � l � n� 2; S � A�G; jSj = l � n� jGj � 1g

else

camps f(l; fTg [G;S)jG � A;S � A�G;S 6= ;g

end if

return camps

Algorithm 3 SetPredAndCandiGen(CampSet: camps)

for each camp = (n;G; S) 2 camps do

if n > 1 then

camp:pred1 (n� 1; G; S)

end if

if jSj > 1 then

camp:pred3 f(n;G; S � fAyg)jAy 2 Sg

end if

if (f is type-2 downward closed) and (jGj > 1) then

camp:pred2 f(n;G� fAxg; S)jAx 2 G;Ax 6= Tg

end if

CandiGen(camp)

end for

have the same n and S as their successors. Thus, successor patterns are computed by re�ning the G-

equivalent classes of the predecessor. This is done by taking intersections, a computation that can be done

in linear time (if patterns are sorted). In contrast, both type-1 and type-3 require a \join" operation. Not not

only is this more computationally intensive, the number of candidates generated tends to be very large. The

algorithm tries to generate candidates from the pattern sets of its type-2 predecessors and then uses pattern

sets of other types to further �lter candidates. If there is no type-2 predecessor, the type-1 predecessor is

used instead. If there is no type-1 predecessor, type-3 predecessors are used.

Algorithm 5, Evaluate, computes the support level of candidate patterns. Each pattern component is

checked in turn. The resulting support level is the minimum of f applied to the minimum of the count of

each pattern component.

Algorithm 6, AttrHash, provides a hash table to the counting routines.

Algorithm 7, PatternComponentCount, builds the count matrix for each pattern component. A pattern

component is a set of jSj attribute values, and it is 'satis�ed' by a tuple if all the values appear in the

corresponding attributes of the tuple. We use an array Satpc to store the number of attribute values satis�ed

by the current tuple. For each attribute value ak in the tuple, we retrieve all the pattern components that has

constraint Ak = ak from the hash table for attribute k, and increase the Sat count of the pattern component

by 1. A pattern component is satis�ed by the tuple if all of its constraints are satis�ed, and support of the

pattern component is increased by 1.

One remaining issue is how to choose a set of mining camps to be mined in a pass of data scan. A very

13

Algorithm 4 CandiGen(Camp: camp)

if camp:pred2 6= ; then

camp:ptrns
T
c2camp:pred2 c:ptrns

Type1Filter(camp:ptrns; camp:pred1)

Type3Filter(camp; camp:pred3)

else if camp:pred1 6= ; then

camp:ptrns fp = p1 [p2jfp1; p2g � camp:pred1:ptrns; jpj = ng

Type1Filter(camp:ptrns; camp:pred1)

Type3Filter(camp; camp:pred3)

else

c1 the camp with the least number of patterns in camp:pred3

c2 the camp with the least number of patterns in camp:pred3� fc1g

camp:ptrns fhs1; � � � ; snijh�c1:S(s1); � � � ; �c1:S(sn)i 2 c1:ptrns;

h�c2:S(s1); � � � ; �c2:S(sn)i 2 c2:ptrns and jsij = jSj; for 1 � i � ng

Type3Filter(camp; camp:pred3� fc1; c2g)

end if

return

SUBROUTINE Type1Filter(ptrns, camp)

if camp 6= null then

for each p 2 ptrns do

for each p0 � p, jp0j = n� 1 do

eliminate p from ptrns if p0 =2 camp:ptrns

end for

end for

end if

SUBROUTINE Type3Filter(thiscamp, camps)

if camps 6= ; then

for each p 2 thiscamp:ptrns do

for each S0 � thiscamp:S where jS0j = jSj � 1 do

eliminate p from ptrns if there exists c 2 camps such that c:S = S0 and �S0(p) 62 c:ptrns

end for

end for

end if

14

Algorithm 5 Evaluate(Dataset: D, CampSet: Camps)

H AttrHash(Camps)

p:support 0 for all pattern p

while not End Of File do

TD ReadBlock(D)

count PatternComponentCount(D;H)

for each camp = (n;G; S) 2 Camps do

for each p 2 camp:ptrns do

p:support p:support+ f(min(fcountg;pcjpc 2 p; gisaninstanceofGg))

end for

end for

end while

Algorithm 6 AttrHash(CampSet: camps)

for each attribute k do

Hk newHash();

end for

for each pattern pij that appears in camp ci do

for each pattern component pc 2 pij do

pc is in the form of hA1 = a1; � � � ; Ak = ak; � � �i;

insert pair (ak; pc) into hash table Hk;

end for

end for

natural design, as adopted in MAM, is to mine camps on same level in one data scan because each camp has

to wait for the result of camps in the previous level. This design is reected in Algorithm 1 and Algorithm 5.

We conclude this section by mentioning some additional eÆciencies that can be obtained. First, note

that if the aggregating function is type-2 downward closed, the patterns of (1; fTg [G;S) and (1; fTg; S)

are identical because the number of one-item instances is not a�ected by grouping. Also, observe that if a

mining camp has a predecessor of any type with no pattern, the camp has no pattern either. This is a direct

result of the downward closure property.

4 Performance

This section assesses the performance of the MAM algorithm. Section 4.1 details the data used in our

assessments. Section 4.2 compares the MAM algorithm with one that does not exploit downward closure for

G (type 2) or S (type 3). The results show that MAM provides considerable eÆciencies, reducing execution

times by a factor of three to four.

4.1 Data

Two kinds of data are used in our study. The �rst are event data taken from a production computer network

at a �nancial service company. One data set (NETVIEW) has six attributes: Hour, EventType, Host,

15

Algorithm 7 PatternComponentCount(DataBlock D, HashArray H)

for each tuple r = ha1; � � � ; ani 2 D do

Satpc 0, for all pattern component pc;

for each attribute k do

for each pc retrieved by key ak in hash table Hk do

pc is a pattern component in the patterns of camp = (n;G; S);

Satpc Satpc + 1;

if Satpc = jSj then

g �G(r);

countg;pc countg;pc + 1;

end if

end for

end for

end for

Severity, Interestingness, DayofWeek; Hour is used as the ordering attribute. There are 241 values of

EventType, 2526 for Host, 5 levels of Severity, and 5 for Interestingness. The second data set (TEC) has

the attributes Hour, EventType, Source, Severity, Host and DayOfY ear. Again, Hour is used as the

ordering attribute. There are 75 values of EventType, 16 types of Source, 2718 Host values, and 7 Severity

levels.

We also generated synthetic data (SYN) to cover a large range of data characteristics. Data generation

is parameterized to take into account many factors, such as the number of records, the number of attributes,

and the pattern lengths. The generation of discrete random variables uses the Poisson distribution.

4.2 Comparisons

To our best knowledge, there is no existing algorithm that solves the mining problem proposed in this paper.

A naive approach is to preprocess the data to obtain every possible combination of G and S. Clearly, this

has poor eÆciency since it requires many data scans.

A more insightful study is to compare MAM with an approach that only uses downward closure based

on pattern length and ignores the type-2 and type-3 downward closure. We refer to this as the Single

Attribute Mining algorithm or SAM. SAM is a degenerate case of MAM in which the aggregating function

is not type-2 nor type-3 downward closed1. Put di�erently, we show the performance gain obtained by

exploiting type-2 and type-3 downward closure.

Figure 5 compares MAM and SAM in terms of the number of the number of candidates generated and

execution time. The rationale for doing so is that MAM and SAM require about same number of data scans.

So, the reduced execution time achieved by MAM is entirely due to having far fewer candidates. In our

experiments, both real world data sets and the synthetic data show similar result. SAM generates several

1The MAM algorithm shown in Section 3 is based on the assumption that if an aggregating function is type-1 downward

closed, then it is also type-3 downward closed. It is not too diÆcult to modify the algorithm so only the type-1 downward

closure property is used.

16

orders of magnitude more candidates than MAM. As a result, SAM execution times are often a factor of

three to four greater than MAM execution times.

A closer look at this �gure reveals that the MAM provides the greatest speedup over SAM when there

is the smallest di�erence in the number of candidates generated. This occurs when the support threshold is

smallest. To understand why, we must dig deeper. The overhead at the �rst level of the algorithms does not

depend on the support threshold. For SAM, the overhead is proportional to the number of distinct records;

for MAM, the overhead is proportional to the sum of number of distinct values of each attribute. In both

cases, the number of candidates considered is �xed. But at low support thresholds, processing at the �rst

level dominates the overall execution time.

In Figure 6, we show that the execution times of MAM and SAM are roughly linear to the number of

records, although execution times do increase as the support threshold decreases. However, SAM execution

times increase at a considerably faster rate than those for MAM.

We conclude this section by listing some of the patterns discovered by MAM in the NETVIEW data.

The camp (2; fHourg; fHost; Severity; Interestingnessg) generates output (hHost3,Harmless, VeryInterestingi;

hHost17,minor warning, some interesti) with 1:12% support. This suggests that Host17 has some close rela-

tionship (potential causal) with key events that occur on Host3. Such insights provide an excellent starting

point for problem determination. Another such insight is obtained from the camp (3; fHour;DayOfWeekg,

fHostg), which generates the pattern fhHost3i; hHost17i; hHost31ig with support 1:01%.

5 Conclusion and Future Work

Mining typically involves a preprocessing step in which data with multiple attributes are grouped into

transactions, and items are de�ned based on attribute values. Unfortunately, �xing the attributes used to

de�ne transactions and items can severely constrain the patterns that are discovered.

This has motivated us to introduce FARM, a new framework for mining multi-attribute data. In FARM,

mining is done directly from multi-attribute data without prespecifying the attributes used to group records

into transactions or the attributes used to de�ne items. The framework is based on the concept of a mining

camp: (n;G; S), where n is the pattern length (the number of items), G is the set of attributes used to group

data into transactions, and S are the attributes used to de�ne items. We identify (and prove) two new kinds

of downward closure related to searching mining camps for patterns based on the relationship between the

G and S. These results are incorporated into the multi-attribute mining MAM algorithm. Empirical studies

with real world data show a factor of three to four reduction in execution time by using the new kinds of

downward closure that we identify.

Much work remains. In particular, we hope to extend the framework to include numeric attributes.

We are also interested in irregular mining camps, camps that have di�erent itemizing attributes for each

record. Last, we want to allow patterns to contain wildcard values.

17

1000

10000

100000

1e+06

00.010.020.030.040.050.060.070.080.09

of

 C
an

di
da

te
s

Support (%)

MAM
SAM

100

200

300

400

500

600

00.010.020.030.040.050.060.070.080.09

T
im

e
(in

 s
ec

on
ds

)

Support (%)

MAM
SAM

(a) TEC: number of candidates (b) TEC: execution time

1000

10000

100000

00.010.020.030.040.05

of

 C
an

di
da

te
s

Support (%)

MAM
SAM

0

50

100

150

200

250

300

350

400

450

00.010.020.030.040.05

T
im

e
(in

 s
ec

on
ds

)

Support (%)

MAM
SAM

(c) NETVIEW: number of candidates (d) NETVIEW: execution time

100

1000

10000

100000

1e+06

0.010.0150.020.0250.030.0350.040.0450.05

of

 C
an

di
da

te
s

Support

MAM
SAM

0

200

400

600

800

1000

00.010.020.030.040.05

T
im

e
(in

 s
ec

on
ds

)

Support (%)

MAM
SAM

(e) SYN: number of candidates (f) SYN: execution time

Figure 5: Performance Comparison

18

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000

T
im

e
(in

 s
ec

on
ds

)

of records

SAM 1%
SAM 2%
SAM 8%
MAM 1%
MAM 2%
MAM 8%

0

500

1000

1500

2000

2500

3000

100 200 300 400 500 600 700 800 900

T
im

e
(in

 s
ec

on
ds

)

of records (in thousands)

SAM 1%
SAM 2%
SAM 8%
MAM 1%
MAM 2%
MAM 8%

(a) TEC (b) NETVIEW

Figure 6: E�ect of the Number of Records at Di�erent Support Levels

References

[1] Aggarwal, C., Aggarwal, C., and Parsad, V. Depth �rst generation of long patterns. In Int'l

Conf. on Knowledge Discovery and Data Mining (SIGKDD) (2000).

[2] Agrawal, R., Imielinski, T., and Swami, A. Mining association rules between sets of items in large

databases. In Proc. of Very Large Database (VLDB) (1993), pp. 207{216.

[3] Agrawal, R., and Srikant, R. Fast algorithms for mining association rules. In Proc. of Very Large

Database (VLDB) (1994).

[4] Bayardo, R. EÆciently mining long patterns from database. In SIGMOD (1998), pp. 85{93.

[5] Deogun, J., Raghavan, V., Sarkar, A., and Sever, H. Data mining: Research trends, challenges,

and applications, 1997.

[6] Fu, Y., and Han, J. Meta-rule-guided mining of association rules in relational databases. In Proc. 1st

Int'l Workshop on Integration of Knowledge Discovery with Deductive and Object-Oriented Databases

(KDOOD'95), Singapore. (1995), pp. 39{46.

[7] Han, J., and Fu, Y. Discovery of multiple-level association rules from large databases. In Proc. of

Very Large Database (VLDB) (1995).

[8] Han, J., Pei, J., and Yin, Y. Mining frequent patterns without candidate generation. In Int. Conf.

Management of Data (SIGMOD) (2000).

[9] Hipp, J., Myka, A., Wirth, R., and Guntzer, U. A new algorithm for faster mining of generalized

association rules. In Proc. 2nd PKKD, 1998. (1998).

[10] Kamber, M., Han, J., and Chiang, J. Y. Metarule-guided mining of multi-dimensional association

rules using data cubes. In Int'l Conf. on Knowledge Discovery and Data Mining (SIGKDD) (1997),

pp. 207{210.

19

[11] Ng, R., Lakshmanan, L., Han, J., and Pang, A. Exploratory mining and pruning optimizations

of constrained associations rules. In Int. Conf. Management of Data (SIGMOD) (1998), pp. 13{24.

[12] Shen, W., Ong, K., Mitbander, B., and Zaniolo, C. Metaqueries for data mining. AAAI/MIT

press, 1996, pp. 375{398.

[13] Srikant, R., and Agrawal, R. Mining generalized association rules. In Proc. of Very Large Database

(VLDB) (1995), pp. 407{419.

[14] Srikant, R., Vu, Q., and Agrawal, R. Mining association rules with item constraints. In Int'l

Conf. on Knowledge Discovery and Data Mining (SIGKDD) (1997), pp. 67{93.

20

