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Abstract

Despite its unrealistic independence assumption,
the naive Bayes classifier is remarkably suc-
cessful in practice. This paper identifies some
data characteristics for which naive Bayes works
well, such as certain deterministic and almost-
deterministic dependencies (i.e., low-entropy
distributions).  First, we address zero-Bayes-
risk problems, proving naive Bayes optimality
for any two-class concept that assigns class 0
to exactly one example (i.e. H(P(z;|0)) = 0
). We demonstrate empirically that the entropy
of P(x;|0) is a better predictor of the naive
Bayes error than the class-conditional mutual in-
formation between features. Next, we consider
a broader class of non-zero Bayes risk prob-
lems, further pursuing the study of low-entropy
distributions. We derive error bounds for ap-
proximating the joint distribution by the prod-
uct of marginals in case of nearly-deterministic
class-conditional feature distributions P(z;|C),
and we demonstrate how the performance of
naive Bayes improves with decreasing entropy
of such distributions. Finally, we consider func-
tional dependencies between features and prove
naive Bayes optimality in certain cases. Using
Monte Carlo simulations, we show that naive
Bayes works best in two cases: completely in-
dependent features (as expected by the assump-
tions made) and functionally dependent features
(which is surprising). Naive Bayes has its worst
performance between these extremes.

1. Introduction

Classification has been the subject of much research in the
machine learning community. One well-established ap-
proach is Bayesian classification, a technique that has be-
come increasingly popular in the recent years in part due
to recent developments in learning with Bayesian belief
networks (Heckerman, 1995; Friedman et al., 1997). The

simplest Bayesian classifier is the widely used naive Bayes
classifier. It greatly simplifies learning by assuming that
features are independent given class, that is, P(x,¢) =
[T, P(zilc), where x = (z1,---,z,) is a feature vec-
tor and ¢ is a class. Although feature independence is gen-
erally a poor assumption, naive Bayes is surprisingly suc-
cessful in practice (Langley et al., 1992; Domingos & Paz-
zani, 1997; Mitchell, 1997; Hellerstein et al., 2000). Naive
Bayes has proven effective in text classification, medical
diagnosis, and computer performance management, among
many other applications.

Why does naive Bayes often work well even though its
independence assumption is violated? A central observa-
tion is the following: optimality in terms of zero-one loss
(classification error) is not necessarily related to the qual-
ity of the fit to a probability distribution (i.e., the appropri-
ateness of the independence assumption). Rather, an op-
timal classifier is obtained as long as both the actual and
estimated distributions agree on the most-probable class
(Domingos & Pazzani, 1997). For example, (Domingos
& Pazzani, 1997) prove naive Bayes optimality for some
problems classes that have a high degree of feature depen-
dencies, such as disjunctive and conjunctive concepts.

Herein, we probe further into the data characteristics that
make naive Bayes work well. For zero-Bayes-risk prob-
lems, we prove naive Bayes optimality for any two-class
concept with nominal features where only one example
has class 0 (or class 1), thus generalizing the results
for conjunctive and disjunctive concepts. Then, using
Monte-Carlo simulation, we study the behavior of naive
Bayes for increasing prior P(0), observing that the en-
tropy of class-conditional marginals, H (P(X;|C), is usu-
ally a better indicator of naive Bayes performance than the
class-conditional mutual information between the features,
I(X1, X5|C).

Next, we consider a broader class of non-zero Bayes
risk problems, focusing on deterministic or close-to-
deterministic dependencies. We prove that naive Bayes is
optimal in certain cases of functionally dependent features.
Then we relax those dependencies by adding noise, demon-



strating empirically that naive Bayes reaches optimal per-
formance in two extreme cases: completely independent
features (as expected by the assumptions made) and func-
tionally dependent features (which is surprising). Naive
Bayes has its worst performance between these extremes.
We also show that a joint distribution and its approximation
by the product of marginals converge with decreasing en-
tropy of the distribution (i.e., P(a1, ..., a,) =[], P(a;)
for low-entropy distributions), and demonstrate how de-
creasing entropy of class-conditional feature distributions
affects the error of naive Bayes classifier.

Note, that our error analysis only focuses on the bias of
naive Bayes classifier, not on its variance, i.e. we assume
an infinite amount of data, or perfect knowledge of data
distribution to be available and compare naive Bayes versus
Bayes-optimal classifier.

Although it may seem counterintuitive, the naive Bayes er-
ror is not correlated with class-conditional mutual infor-
mation between the features. This phenomenon is consis-
tently demonstrated by our simulation for different prob-
lem classes, including both zero- and non-zero Bayes risk
problems. Our results support previous observations on
UCI benchmark problems that also reveal low correlation
between the degree of feature dependence and the perfor-
mance of naive Bayes (Domingos & Pazzani, 1997)). This
motivates a search for other metrics such as entropy of
class-conditional marginal feature distributions.

Our study is also motivated by significant amount of em-
pirical evidence suggesting that approximate probabilis-
tic inference algorithms that make independence assump-
tions often find accurate most-likely variable assignment
on problems involving nearly-deterministic dependencies.
One of the most prominent examples is successful applica-
tion of Pearl’s belief propagation algorithm to probabilistic
decoding (Frey & MacKay, 1998): although belief propa-
gation performs local inference ignoring long-range depen-
dencies, its iterative variant applied to certain coding net-
works results into lower error rates than the state-of-the-art
decoding algorithms. Another example of local inference
algorithm that partially ignores dependencies is the mini-
bucket approach (Dechter, 1997). When applied to find-
ing most probable states, it performs significantly better on
problems with lower “noise” (Rish, 1999).

2. Definitions and Background

LetX = (Xi, ..., X,,) be avector of observed random vari-
ables, called features, where each feature takes values from
its domain D;. A feature vector is also called an example,
or a state (of nature), and the set of all possible examples,
or the state space, is denoted Q2 = Dq x ... x D,,. Let C be
an unobserved random variable denoting class of an exam-

ple, where C' can take one of m values ¢ € {0, ...,m — 1}.
Capital letters, such as X;, will denote variables, while
lower-case letters, such as z;, will denote their values;
boldface letters will denote vectors. Also, we will some-
times use shorter notation P(x) and P(z1, ..., x,) instead
of P(X = x) and P(X; = z1,..., X, = xp), respec-
tively, as well as P(i) and P(x|i) instead of P(C' = i)
and P(x|C = 1), respectively. Also, we may denote
P(A|C =) as Pi(A).

A function g : Q@ — {0,...,m — 1}, where g(x) = C,
denotes a concept to be learned. In general, g(x) is a ran-
dom function, and a concept is called noisy. In the absence
of noise, g(z) is deterministic, i.e. it always assigns same
class to a given example (e.g., disjunctive and conjunctive
concepts are deterministic).

A classifier is defined by a (deterministic) function i : Q —
{0,...,m — 1} (a hypothesis) that assigns a class to any
given example. A common approach is to associate each
class i with a discriminant function f;(x),7 =0, ...,m — 1,
and let the classifier select the class with maximum dis-
criminant function on a given example®:

fi(x). ()

h =
o) = B gmx )

The Bayes classifier h*(x) (that we also call Bayes-optimal
classifier and denote BO(x)), uses as discriminant func-
tions the class posterior probabilities given a feature vec-
tor, i.e. f¥(x) = P(C = i|X = x). Applying the Bayes
rule gives P(C = i|X = x) = P(X:’;Jg(::ii’;(c:i), where
P(X = x) is same for all classes, and therefore can be
ignored. This yields Bayes discriminant functions

fi(x) = P(X = x|C =) P(C =), 2

where P(X = x|C = i) is called the class-conditional
probability distribution (CPD). Thus, the Bayes classifier

h*(x) = argmax P(X = x|C =4)P(C =1i) (3)

finds the maximum a posteriori probability (MAP) hy-
pothesis given example x. However, direct estimation of
P(X = x|C = 1) from a given set of training examples
is hard when feature space is high-dimensional. Therefore,
approximations are commonly used, such as using the sim-
plifying assumption that features are independent given the
class. This yields naive Bayes classifier N B(x) defined by
discriminant functions

FYP(x) = W, P(X; = 2|0 = i)P(C =1i).  (4)

J

1CIearIy, discriminant functions are not unique, since classifier
does not change if a monotone function (e.g., log) is applied to all

fl' ’S.



The probability of classification error, or risk, of a classi-
fier h is defined as

R(h) = P((X) #C) = Y_ P(h(x) # C)P(X = x) =
xEN

= Ex{P(h(x) # O)},

where E, is the expectation over x. R* = R(h*) denotes
the Bayes error (Bayes risk).

We say that classifier A is optimal on a given problem if its
risk coincides with the Bayes risk. Assuming there is no
noise (i.e. zero Bayes risk), a concept is called separable
by a set of functions S = {f.(z)|c =0, ...,m — 1} if every
example x is classified correctly when using each f.(x) as
discriminant functions.

As a measure of dependence between two features X, and
X; we use the class-conditional mutual information (Cover
& Thomas, 1991), which can be defined as

I(Xy; X;51C) = H(X3|C) + H(X;|C) = H(X}, X;]C),
where H(A|C) is the class-conditional entropy of A, de-
fined as:

—Y P(C=i)Y P(A=t|C =i)log P(A = t|C = ).

Mutual information I(X}; X;|C) can be also expressed
as the class-conditional KL-divergence between the joint
distribution P(Xy, X;|C) and the product of marginals
P(X|C)P(X;|C) (Cover & Thomas, 1991):

ZP(C:@') >

Xk:mk,X]‘:.t]‘

P(Xk :l‘k,Xj :l‘j|C :i)

« 1o P(Xk:.’Ek,Xj:.’EﬂC:i)
S P(Xr = 2£|C = )P(X; = 2,|C =1)’

which is zero when X and X; are mutually independent
given class C, and increases with increasing level of depen-
dence, reaching the maximum when one feature is a deter-
ministic function of the other.

3. Naive Bayes on zero-Bayes-risk problems

In this section, we will focus on concepts without noise,
namely, concepts where P(C' = i|x) = 0 or 1 for any x
and 4 (i.e. an example always has the same class), and thus
Bayes risk is zero. We assume finite-domain, or nominal
features, where i-th feature has &; values. Clearly, nominal
features can be transformed into numeric ones by imposing
an order on their domains.) We also assume there are only
two classes, C =0and C = 1.

It is well known that for binary features (k; = 2 for all
i = 1,...,n) naive Bayes is a linear classifier (Duda &

Hart, 1973), i.e. its discriminant functions are linear func-
tions of features, and thus it is suboptimal for non-linearly
separable concepts. For example, naive Bayes is not opti-
mal for m-of-n concept (Kohavi, 1995; Domingos & Paz-
zani, 1997). However, as shown in (Domingos & Pazzani,
1997), naive Bayes is optimal disjunctive and conjunctive
concepts.

When k; > 2 for some features, naive Bayes yields polyno-
mial discriminant functions (Duda & Hart, 1973). Polyno-
mial separability of such concepts is therefore a necessary
condition of naive Bayes optimality. While characterizing
sufficient optimality conditions may be hard in general, we
can easily identify some specific problem classes. For ex-
ample, a generalization of disjunctive and conjunctive con-
cepts to concepts with any nominal features yields the fol-
lowing result:

Theorem 1 Naive Bayes classifier is optimal for any two-
class concept with nominal features that assigns class 0 to
exactly one example, and class 1 to the other examples,
with probability 1.

Proof. We assume that n is the number of features, &; is the
number of values of i-th feature, and x° = (29, ...,22) is
the example assigned class 0. We denote by N = ], k;
the total number of examples, and by N; = N/k; the total
number of examples having a fixed value of i-th feature.
Note that P(C = 0) = 1/N, P(C = 1) = (N — 1)/N,
P(z4]0) = 1if z; = 2 and 0 otherwise, P(z;|1) = Ji=!
if z; = 2§ and ;2 otherwise. Note that the naive Bayes
rule for selecting class 0 is

n n

PO [ Pxil0) > P(1) [] Pail1). )

i=1 =1

We now prove naive Bayes optimality for the two cases:
x # x9 (class 1) and x = x° (class 0).

Class 1. x # x°. Clearly, 3i z; # ¥ and, therefore,
P(z;]0) = 0. On the other hand, Vi P(z;|1) > 0, thus
the inequality 5 does not hold, and therefore naive Bayes
assigns class 1 to x, which is a correct decision.

Class 0: x = x°. The left-hand-side of the inequality 5
yileds

n

1
H 010) —

P(O)Z:1P(xz|0) - N — 1:
while the right-hand side equals

n

N—-1+N;—1
i=1

i=1

This yields the decision rule (N — 1)1 > [T, (N; — 1)



for class 0, or, equivalently,

”1>HNH1—i) (6)

A n _ n N _ N
from 6

NP— 1(

= N"! we get

a- > Ila- . )

Note that N > N;and 1— - < 1foranyi,sothat1—5 >
T—g-and (1— )" > (11— 32) - [[5 (1 - ).
Thus inequality 7 holds and naive Bayes assigns class 0 to
x? which is correct. m

Clearly, theorem 1 also holds for concepts with only one
example of class 1.

Our next questions are: how does the performance of naive
Bayes change with increasing number of class-0 examples
(i.e., with increasing prior P(0))? Which data character-
istics can be used as “error predictors”? We address these
questions empirically using Monte-Carlo simulations. As-
suming there are only two features each having & values,
we vary the number [ of class-0 examples from 1 to k2 /2
(P(0) varies from 1/N to 0.5), and generate 1000 random
problem instances for each value of [ (it is not necessary
to increase P(0) beyond 0.5 due to the symmetry of the
results for varying P(0) and P(1)).

As expected, larger P(0) (equivalently, larger 1), yield a
wider range of problems with various dependencies among
features, which result into increased errors of Bayes (see
Figure 1a); a closer look at the data shows no other cases
of optimality besides P(0) = 1/N.

It is interesting to observe, however, that the strength of
dependencies among features is not a good predictor of
naive Bayes performance. Figure 1b plots average naive
Bayes error and average class-conditional mutual informa-
tion between the two features, I(X;; X2|C'), as functions
of P(0) (the other two plots in the figure will be discussed
shortly). Note the monotone increase of the naive Bayes
error and the non-monotone behavior of the mutual infor-
mation. These results support some previous observations
on UCI benchmarks (Domingos & Pazzani, 1997)) that also
revealed low correlation between the degree of feature de-
pendence and relative performance of naive Bayes with re-
spect to other classifiers, such as C4.5, CN2, and PEBLS.

Another data characteristic related to the performance of
naive Bayes is the entropy of class-conditional marginal
distributions, P(X;|C). Consider again a concept defined
on two features, which yields a £ by k& matrix filled with
0Os and 1s. By analogy with the theorem 1, we would ex-
pect lower naive Bayes error when most of Os are “con-

NBerror vs P(0) (n=2, m=2, k=10)
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Figure 1. Results for the generator ZeroBayesRisk (k=10, 1000
problem instances per each of 13 values of P(0) in [0, 0.5] range):
(a) Naive Bayes error vs. P(0); (b) Average values of naive
Bayes error (NBerr), class-conditional mutual information be-
tween features (I(X1; X2|C)), and entropy of marginal distri-
bution, H(P(X1]0)); (c) Naive Bayes error vs. H(P(X1|0)).



centrated” within one row or column (i.e., the entropy of
P(X;|0) is low), rather than randomly distributed over the
matrix (this intuition follows from the fact that the ratio
P(X;|0)/P(X;|1) is same for all examples having fixed
value of X; and is determined by majority class among
those examples). Figure 1b plots average H (P(X1|0) ver-
sus P(0); clearly, average naive Bayes error is a mono-
tone function of average H(P(X1|0). Thus, an entropy
of class-conditional marginals is a better indicator of naive
Bayes error than the mutual information between the fea-
tures. However, the variance of such prediction is quickly
increasing with P(0) and is quite high when P(0) gets
closer to 0.5 (see Figure 1c).

In the following section, we provide a more formal treat-
ment of concepts with low-entropy marginals in the context
of non-zero Bayes risk problems.

4. Naive Bayes on low-entropy distributions

We now focus on problems having non-zero Bayes risk. A
natural question arises: is there an analog of theorem 1 for
noisy concepts? In other words, what if P(0|x) = 1 —§
rather than 1, for some small §? We will consider next do-
mains with almost deterministic, i.e. low-entropy, or “ex-
treme”, probability distributions, i.e. distributions having
almost all the probability mass concentrated in one state.
We show that approximating such distributions using in-
dependence assumption becomes more accurate with de-
creasing entropy, and therefore yield asymptotically opti-
mal performance of naive Bayes.

The following lemma states that if a joint distribution over
a set of variables is “extreme”, than the marginal distribu-
tions of those variables are also “extreme”.

Lemma?2 Given a joint probability distribution
P(Xy,...,X,) such that P(x*) > 1 — ¢ for some
state x* = (7, ..., z%), x* € Q,then for each 4,

P(X;=z5)>1-6.

Proof. Let S} = {z = (21, z,)|z; = ], € Q}. Since
P(X; = z7) = > ,cq P(x), and since S} includes the
point (z7,...,x;) thathas 1 — § of all probability mass,

R n

weget P(X; =zf)>1—-0. m

The opposite result is also true: if all marginal distributions
are “extreme”, the joint distribution is “extreme”.

Lemma3 Given  marginal  probability  distribu-
tions P(Xy),..,P(X,) such that for each i

b

P(X; =z}) > 1— ¢ for some z}, then

P(z},...,z}) > 1—nd.

Proof. Since P(X; # z}) < ¢ forall i,

P(Xy #£a5V---VX, #a3) <> P(X; #17) < nd,

using the simple union bound. The claimed bound follows
by taking the complement of the event in the left hand side
of the above inequality. m

These results allow to compute a bound on approximation
error when using independence assumption with “extreme”
distributions, i.e. when the joint distribution is replaced by
the product of marginals:

Theorem 4 Given a joint probability distribution
P(Xy,...,X,) such that P(z7,...,z%) > 1 — § for some
state x* = (7, ..., z%), then

|P(1, .0 20) — [[ P(Xi = 2)| < nd.

i=1

Proof. From lemma 2 it follows that P(X; = z}) > 1 —
foranyi=1,...,n.Sincel—nd < (1-§)"for0 < <
we get

0
11

1P(x*) - [[ P(Xi=2))| <1-(1—8)" <nd.
i=1
On the other hand, if x = (z1,...,z,) and z; # x for
some i, then P(X; = z;) <, and P(x) < ¢, so that

|P(x) — ﬁp(xi = 2;)| <0 < nd,

i=1
which concludes the proof. m

Similarly, it can be shown that

Theorem 5 Given a set of marginal probability distribu-
tions P(Xy),..., P(X,) such that for each 1 P(X; =
x}) > 1— 4 for some z}, then

|P(1, .0 20) — [[ P(Xi = 2)| < nd.

i=1

Proof. Let x* = (z7,...,2%). From lemma 3 it follows
that P(x*) > 1 — nd, therefore, since 1 — nd < (1 — J)",
we get

|[P(X =2*) — I, P(X; = z})| < nd.
On the other hand, if x = (z1,...,2,) and z; # z} for
some i, then P(x) < nd, and P(X; = z}) < 4, so that

|P(x) — ﬁp(xi = 2;)| <0 < nd,

i=1



which concludes the proof. m

Clearly, if the difference between the joint feature distribu-
tion and its approximation by the product of marginals (all
conditioned on class) vanishes with § — 0, we would ex-
pect the naive Bayes error to vanish as well. Indeed, this
is demonstrated using the following Monte-Carlo simula-
tions.

A random problem generator, called EXTREME, takes the
number of classes, m, number of features, n, number of
values per feature, k, and the parameter §, and creates m
class-conditional feature distributions, each satisfying the
condition P(x|C = ¢) = 1 —§ if x = x°, where x°
are m different states randomly selected from £™ possible
states. For each class 7, the remaining probability mass ¢ in
P(x|C = i) is randomly distributed among the remaining
k™ — 1 states. Class prior distributions are uniform. Once
P(X|C) is generated, we compare naive Bayes classifier
(NB) versus Bayes-optimal classifier (BO), assuming that
both classifiers have perfect knowledge of data distribution
(i.e., infinite amount of data).

Simulation results on a set of 500 problems with n = 2,
m = 2, k = 10, and § varying from 0 to 1 are shown in
Figure 2. Figure 2a shows the distributions of the difference
between Bayes and naive Bayes errors, Ryp — R*, as a
function of . As expected, the distributions shift to the
smaller values with decreasing .

Similarly to our previous results for zero Bayes risk, we ob-
serve that the strength of dependencies among features (for
the sake of simplicity, we consider only two features here)
is not correlated with naive Bayes error, as we see in figure
2b which plots Bayes error and naive Bayes error versus
average mutual information between the two features, as
functions of 4. The errors are monotone functions increas-
ing with §, while mutual information is a concave function
reaching its maximum at intermediate value of § (approxi-
mately between 0.45 and 0.5).

Similar results were also obtained for a different class of
problems that mixes low-entropy distributions with an arbi-
trary ones. For one class, our generator called M1X creates
a low-entropy class-conditional distribution as described
before, and for the other one, it generates k™ random en-
tries in the feature probability table, and then normalizes
the probabilities. The naive Bayes error converges slower
than in the case of two low-entropy distributions, since for
same value of ¢ there is more noise in the problems due
to random (instead of low-entropy) nature of one of the
class-conditional feature distributions. The plot for aver-
age errors versus average mutual information (omitted here
due to space limitations) looks very similar to the one we
showed before, except that the errors are higher, and the av-
erage mutual information does not reach zero with § — 0

Distribution of (RNB—R*) for different values of delta (n=2, m=2, k=10)
0.18 T T T T

=0~ delta=0.1
=~ delta=0.4
0.16- — delta=0.7

0.14F

Probability

o
=
o

o

o

>
T

Average errors vs. mutual information (n=2, m=2, k=10)

0.6

05r-

041

error

031
021

01p

= boptErr
=©- NBerr
10GYIC)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
delta

(b)

Figure 2. Results for the generator EXTREME: (a) Distribution
of Rnp — R”, the difference between naive Bayes and Bayes
errors; (b) Average Bayes and naive Bayes errors versus average
class-conditional mutual information.

since now the features do not become independent in the
limit.

5. Nearly-functional dependencies among
features

Surprisingly, naive Bayes can be optimal in cases just op-
posite to the class-conditional feature independence (when
mutual information is at minimum) - namely, in cases of
completely deterministic dependence among the features
(when mutual information achieves its maximum).

Theorem 6 Given equal class priors, Naive Bayes is op-
timal if X; = f;(X;) for every feature X;, i = 2,...,n,
where f;(-) is a one-to-one mapping.



Proof. Clearly, for every class ¢ and feature 7, P.(X; =
z;| X1 =) is1lifz; = fi(x1) and 0 otherwise (assuming
that fi(z1) = z1). Letx* = (21, fa(2), ..., fu(z)). Then
this is the only non-zero-probability state. Therefore, by
the theorem of total probability

Po(z1) = Y Po(x)+P.(x") = Pu(x").

XIXFEX*

Then the Bayes-optimal for selecting class ¢ can be written
as
P.(X1 =x1) > Pu(Xy = 1)V £ c.

On the other hand, the naive Bayes rule for selecting class
¢ can be written as

n n

[I 2tsi@) > T Po(filan)) Ve # e,

=1 1=1
and, since Ve, P.(fi(z1)) = P.(x1), we get
P.(X1=m1)" > Po (X1 =21)" V' #c.

Clearly, those two classification rules agree for every value
of x that has nonzero probability, i.e. for every x =
(z1, fa(x1), -y fm(x1)). Thus naive Bayes is optimal. m

Our next objective is to assess the naive Bayes performance
for increasing noise in functional dependencies between
the features. To answer this question, we used two ran-
dom problem generators that relax functional dependen-
cies using a noise parameter ¢ in a way similar to the low-
entropy distribution generators. As before, we assume uni-
form class priors. Consider a simple case of two classes
and two variables (n = 2 and m = 2) with k£ values
each. Our almost-functional distribution generator called
FUNC1 selects a random permutation of k£ numbers, which
corresponds to a one-to-one function f that binds the two
features: Xo = f(X;) (1 —4). Then it generates randomly
two class-conditional (marginal) distributions for the X
feature, Py(X;) and P, (X), for class O and class 1, re-
spectively. Finally, it creates class-conditional joint feature
distributions satisfying the following conditions:

Pc(flﬁl,(l?-g = f(.’El)) = Pc((lﬁl)(l — 6),and

Pe(z1,29 # f(71)) = PC(xl)k i 1

,c=0,1.

This way the states satisfying functional dependence ob-
tain 1 — & probability mass, so that by controlling § we can
get as close as we want to the functional dependence de-
scribed before, i.e. the generator relaxes the conditions of
theorem 6. Note that, on the other hand, § = ’“k;l gives
us uniform distributions over the second feature P,(z2) =
>, Pe(z1,22) = £, which makes it independent of X,
(given class ¢). Thus varying § from 0 to 1 explores the
whole range from deterministic dependence to complete
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Figure 3. Results for the generator FUNC1: (a) Average Bayes
and naive Bayes errors ; (b) Average Bayes and naive Bayes errors
versus average class-conditional mutual information.

independence between the features given class. Figure
3 summarizes the results for 500 problems with n = 2,
m = 2 and k = 10. Figure 3a shows the average errors; as
we can see, naive Bayes is optimal when § = 0 and when
6 = 0.9, while the maximum error is reached between the
two extremes. Note again, that errors are not correlated
with the average class-conditional mutual information be-
tween the features (see Figure 3b), which decreases mono-
tonically with § going from 0 to 0.9. So, we can conclude
that naive Bayes is close to the optimal not only for close-
to-independent features (low mutual information), but also
for close to one-to-one functional dependence.

Similar results are obtained for a modification of genera-
tor FUNC1, called FUNC2, where the probability mass §
is distributed over the rest of states not uniformly but ran-
domly. As expected, in this case we do not get complete in-



dependence, and therefore average naive Bayes error only
increases with 4. Again, no (linear) correlation was ob-
served between average error and average mutual informa-
tion.

6. Conclusions

Despite its unrealistic independence assumption, the
naive Bayes classifier is surprisingly effective in practice
(Domingos & Pazzani, 1997; Mitchell, 1997; Friedman
et al., 1997), since it often assigns maximum probability to
the correct class even if its probability estimates are inaccu-
rate. Although some optimality conditions of naive Bayes
have been already identified in the past (Domingos & Paz-
zani, 1997), a deeper understanding of data characteristics
that affect the performance of naive Bayes is still required.

In this paper, we focus on problems including determinis-
tic and close to deterministic dependencies, often presentin
some practical applications. First, we address zero-Bayes-
risk problems, proving naive Bayes optimality for any two-
class concept that assigns class 0 to exactly one example,
i.e. has zero-entropy P(z;|0) (a generalization of con-
junctive and disjunctive concepts to arbitrary nominal fea-
tures). Then we demonstrate empirically that the entropy
of P(z;]0) is a better predictor of the naive Bayes error
than the class-conditional mutual information between fea-
tures. Next, we consider a broader class of non-zero Bayes
risk problems, further pursuing the idea of low-entropy
distributions. We derive error bounds for approximating
the joint distribution by the product of marginals in case
of nearly-deterministic class-conditional feature distribu-
tions P(xz;|C), and we demonstrate how the performance
of naive Bayes improves with decreasing entropy of such
distributions. Finally, we consider functional dependen-
cies between features and prove naive Bayes optimality in
certain cases. Using Monte Carlo simulations, we show
that naive Bayes works best in two cases: completely in-
dependent features (as expected by the assumptions made)
and functionally dependent features (which is surprising).
Naive Bayes has its worst performance between these ex-
tremes.

Directions for future work include analysis of naive Bayes
on practical application that include almost-deterministic
dependencies, and further investigation of data characteris-
tics that yield a good performance of naive Bayes. An ulti-
mate goal is to characterize probability distributions that
are insensitive to the independence assumption w.r.t. to
classification task. This approach aims directly at learn-
ing probabilistic models that result into better classifica-
tion accuracy, even though such models may not provide
good approximations with respect to other criteria, such as
KL-distance between true and estimated probability distri-
butions, or MDL criterion. Empirical results also suggest

that such general model selection criteria do not necessarily
lead to better classifiers (Friedman et al., 1997).
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